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OSCILLATIONS IN HIGHER-ORDER
NEUTRAL DIFFERENTIAL EQUATIONS

CH. G. PHILOS, I. K. PURNARAS AND Y. G. SFICAS

ABSTRACT  Consider the n-th order (n > 1) neutral differential equation

dn
(E) = [x(t) +5 fl ® x(t + 5)dp(s)

(0
+¢ / x(t+s)dn(s) = 0,
Joy

where § € {0,+1,—1},¢ € {+1,—1}, —00 < 1) <7 < cowith i1, # 0, —00 <
01 < 0y < oo and p and 7 are increasing real-valued functions on [7, ;] and [0}, 05]
respectively The function p 1s assumed to be not constanton [y, 7] and [, 75 ] for every
T € (11,7), similarly, for each o € (0}, 0,), 1t 1s supposed that 7 1s not constant on
[o1,0]) and [0, 03] Under some mild restrictions on 7, and o, (1 = 1,2), 1t 1s proved that
all solutions of (E) are oscillatory 1f and only 1f the characteristic equation

A

1 +5[12 e“du(s)] +</0‘:2 M dn(s) =0

of (E) has no real roots

1. Introduction and statement of the main result. A neutral differential equation
is a differential equation in which the highest order derivative of the unknown function s
evaluated both at the present state and at one or more past or future states. Neutral differ-
ential equations arise naturally in the theory of transmission lines where the hyperbolic
partial differential equations are linear and the boundary conditions are nonlinear. Other
problems of nonlinear vibrations can also be formulated in terms of these equations.
Consider the n-th order (n > 1) neutral differential equation

(E) dii:; [x(t) +6 [1 Px(t+5) du(s)] e /U :’2 X(t +5) diy(s) = 0,

where: § € {0,41,—1} and ¢ € {+1,—1}; 71 and 7, are nonzero real numbers with

71 < Tp; 01 and o, are real constants with oy < 07; g is an increasing real-valued

function on [}, 7], which is not constant on any interval of the form [r},7] or of the

form [1,7,] where 7 < 7 < 73; 1 is an increasing real-valued function on [0, 03], which

is not constant on the interval [0, 0] and on [0, 0,] for every o with 0y < 0 < 0;.
Throughout the paper we will use the notation

vy = min{0,7,01}.
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Clearly, v is a nonpositive number.

By a solution of (E) we mean a continuous real-valued function x on the interval [Y, 00)
such that the function x(f) + 6 [7? x(f + 5) du(s) is n-times continuously differentiable for
t > 0 and x satisfies (E) for all # > 0. Concerning existence, uniqueness and continuous
dependence of solutions of neutral differential equations the reader is referred to [6],
[10], [11], and [18].

As usual, a solution of (E) is said to be oscillatory if it has arbitrarily large zeros.
Otherwise, it is called nonoscillatory.

The characteristic equation of (E) is

(%) FO) = A" [1 +5 [ T ohs du(s)] +¢ /U & di(s) = 0.

It is known that the behavior of solutions of neutral differential equations exhibit
features which are not true for nonneutral equations. There are examples (see [8], [9],
[18], [26], and [27]) of neutral differential equations with all the characteristic roots in
the negative half-plane or with all the characteristic roots simple and on the imaginary
axis and yet the equations have unbounded solutions; such a behavior is not possible in
the case of nonneutral equations.

The oscillatory behavior of solutions of neutral differential equations has been the
subject of intensive investigations during the past few years. In the oscillation theory
of neutral differential equations one of the most important problems is to obtain neces-
sary and sufficient conditions for the oscillation via the characteristic equation. Among
numerous papers dealing with this problem we refer in particular to [1], [2], [5], [7],
[12]-[15], [20]-[22], [24], [25], [28], and [30]. Sufficient conditions for the oscillation
of the solutions of neutral equations have been obtained in many recent papers; we choose
to refer in particular to [3], [4], [19], and [23]. Most of the papers mentioned above con-
cern the case of first order neutral equations and two of these papers (see [21] and [22])
are referred to second order equations; the papers [1], [7], [19], [23], [28], and [30] are
concerned with the oscillation of neutral differential equations of higher order.

Our aim in this paper is to show that, under some mild restrictions on 7, and o,
(i = 1,2), all solutions of the differential equation (E) are oscillatory if and only if
its characteristic equation (x) has no real roots. Such a result has been established by
Philos and Sficas [24] for the first order case (i.e. when n = 1) with ( = +1 and under
the additional assumption that 77, > 0.

Some restrictions on 7, and o, (i = 1,2) will be imposed. More precisely, for { = +1
it will be assumed that

nisodd,§ = +1l,and 1, <0 =7 # 0y
{n iseven,6 = —1,and 7y <0 =11 # 0y
b=—landm, >0=>1 # 07
and for ¢ = —1 it will be supposed that
{nisodd,& =—l,andT < 0= 7 # 0y

(H.)

(H) niseven,d = +l,and 7y <0 =1 # 0
§=+landm, >0=1n # 0,

Our main result is the following:

https://doi.org/10.4153/CJM-1993-008-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-008-6

134 CH. G. PHILOS, L. K. PURNARAS AND Y. G. SFICAS

THEOREM. Assume that (H,) holds for { = +1 and (H_) holds for { = —1. Then
a necessary and sufficient condition for the oscillation of all solutions of (E) is that its
characteristic equation (*) has no real roots.

It is remarkable that the assumption (H,) for ¢ = +1 or the assumption (H_) for { =
—1 is needed only for the proof of the fact that, if the characteristic equation (x) has no
real roots, then all solutions of the differential equation(E) are oscillatory.In Section4, we
will show that in the case of neutral difference-differential equations the condition (H,)

for { = +1 or (H_) for { = —1 is a consequence of the assumption that the characteristic
equation has no real roots (and so in this case the hypothesis (H,) for { = +1 or (H_)
for { = —1 is not needed in our theorem). The same is also true in several other cases of

neutral differential equations (see Section 4).

The method used in proving our theorem is based on the theory of Laplace transforms.
The arguments rely on a known result (Lemma 1 in Section 2) about the abscissa of
convergence of the Laplace transform of a nonnegative function. These arguments were
presented for the first time in the excellent paper by Gyori, Ladas and Pakula [17]; this
technique is an improved version of a similar one used by Arino and Gy®ori [1] (see also
Gyori, Ladas and Pakula [16]).

It must be noted that the use of Laplace transforms in equations with mixed (or ad-
vanced) arguments (which are included in equation (E)) exhibits some particular diffi-
culties which are faced mainly by Lemmas 5 and 6 of this paper. More precisely, in the
case of delay differential equations it is well known (see Hale [18]) that any solution is
of exponential order and it does not tend to zero faster than any exponential. (This result
was used in [1].) However, it is not known that such a result is true for the case of equa-
tions with mixed (or advanced) arguments. This difficulty is faced by Lemmas 5 and 6,
which establish that, if (E) has a nonoscillatory solution, then the differential equation (E)
admits also a nonoscillatory solution which is of exponential order and does not tend to
zero faster than any exponential.

In the special case where n = 1 and ( = +1, our theorem leads to an improved ver-
sion of the main result in the recent paper by Philos and Sficas [24] where the restriction
7172 > 0 was imposed. The method used here patterns after that of [24]. However, the ar-
guments have considerably been simplified. Moreover, the technique has been improved
so that the restriction 7175 > 0 has been removed. Finally, let us notice that in Lemma 6
it is established that any n-times continuously differentiable, positive and strictly mono-
tone solution of (E) is of exponential order and it does not tend to zero faster than any
exponential.

The proof of the theorem will be given in Section 3. Some lemmas which are needed
for the proof of the main result are presented in Section 2. The last section (Section 4)
contains some applications of the theorem and, in addition, a discussion.

2. Some useful lemmas. This section is devoted to some lemmas which will be
used in proving our main result.
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We first recall some facts about Laplace transforms. Let ¢ be a continuous real-valued
function on the interval [0, co). For the improper integral

/0 = e Mot dt

three possibilities arise:
(a) the integral converges for no point A in the complex plane;
(b) it converges for all points A;
(c) itconverges for every point A with Re A > o and diverges for all A with Re A <
ap, where o is a real number.
Assume that (b) or (c) is true and define

qm—/m—” dt for Re A
()—Oe () dt for Re )\ > a,

where @ = —oo in case (b), and o = « in case (c). Then the function @ is called the
Laplace transform of . Moreover, we refer to o as the abscissa of convergence of the
Laplace transform of . Note that ® is an analytic function in the half-plane Re A > «,
when o > —o0.

We will use the following known result from Widder [29].

LEMMA 1. Let ¢ be a nonnegative continuous real-valued function on the interval
[0, 00). If @ is the Laplace transform of ¢ and has abscissa of convergence o« > —00,
then the real point A\ = o is a singularity of ®.

The function ¢ is of exponential order c, for some real number c, if there exist M > 0
and fy > Osuch that |¢(r)] < Me“ forallt > 1. Itis easy to see that, if ¢ is of exponential
order c, then the abscissa of convergence of the Laplace transform of ¢ is less than or
equal to c.

The next lemma gives conditions under which the Laplace transform (if it is defined)
of a function has abscissa of convergence o > —oo; this lemma gives also sufficient
conditions for a function to be of exponential order ¢ for some real number c.

LEMMA 2. (a) Let p be a positive function on the interval [0, 00). Assume that, for
some T > 0, the function ¢ is strictly decreasing on [T, 00), continuous on [0, T] and
such that

e <Mp(t+¢) fort 2T,

where M > 1 and £ > O are real constants. Then there exist C > 0 and k > 0O so that
1) () > Ce™ forall t > 0.

(b) Let ¢ be a positive function on the interval [0, 00). Assume that, for some T > 0,
the function ¢ is strictly increasing on [T, 00), continuous on [0, T| and such that

e 2Mp(t+§) for t 2T,
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where M € (0, 1) and £ > 0 are real constants Then there exist C > 0 and k > 0 so that

) () < CeM forall t >0

PROOF (a) Consider an arbitrary point z > T and set

V:[t—_{q+l

Then we obtain

1 1
P> p(T+vE) > o(T+ = D) = = +op(T)

1 1
_ —(nM/ &)
> o) = e e(De

LT
l+é

So, 1f we put

InM
k=—>0
§

and |
* kt
C= mm{tglgr;][w(t)e 1, YN T/gw(ﬂ} >0,

then we see that (1) 1s true
(b) The conclusion can be obtained by applying (a) for the function 1 /¢
Let the function ¢ 1n Lemma 2 be continuous on [0, 00) If (1) holds, then we obtain

—(=hr > =
/Oooe cp(t)dt~C/0mdt 00

Thus, (1) means that the Laplace transform (1f 1t 1s defined) of ¢ has abscissa of conver-
gence o > —k > —oo Moreover, note that (2) implies that ¢ 1s of exponential order
k

Lemma 3 below provides necessary conditions for the characteristic equation (x) to
have no real roots

LEMMA 3 Assume that the characteristic equation (x) has no real roots If { = +1,
then we have
(1) nisoddand § € {0,+1} = o, <0,
() nisodd, 6 = —1,andt) > 0= 0, <0,
(1) nisoddand 6 = +1 = 1 > 04,
(v) niseven, 6 = —1,and <0 =1 >0},
(v)b=—landmn >0=>mn <o,
Moreover, if ( = —1, then we have
(vi) nisevenand$ € {0,+1} = o1 <0,
(vu) niseven, 6 = —1,andt > 0= 0y <0,
(vir) nisodd, 6 = —1, and1 <0 =1 > 0,
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(ix) nisevenandé =+1 =1 > 0y,
(x) 6 € {0,+1} = 0, >0,

(xi) 6=—1andm <0= 0y >0,

(xii) 6 = +1 = 1 <0

PROOF.  Assume that ¢ = +1. Then F(0) = [72 dn(s) > 0. So, as F(\) = 0 has no
real roots, we have

3) F(\) > 0forall A € (—00,0).
Assume that n is odd, 6 € {O, +1}, and 01 > 0. For each )\ < 0, we get
__\n 2 s 92 s n 72
FO\) = A [1 +5/; e du(s)] +/a. & dn(s) < A +/m dn(s)

and so F(—00) = —oo. This contradicts (3) and hence (i) is proved.
Letnbeodd,éd = —1, 7 >0, and o; > 0. We have for A <0

FO\) = /\"[1 - [ P d,u(s)] + [ 7 dn(s)
< A= €\t /: du(s)+/:2 dn(s).

This guarantees that F(—o00) = —oo, which contradicts (3) and so (ii) is established.
Now, we introduce the function R defined by
2 e dus)
4 RO =Tt — A .
“4) (09) 7 e dnts) 00 <A< oo

For this function we have
3) 71 < 01 = R(—00) = 00.

Indeed, in the case where 71 < o) we can consider a positive number ¢ with g, — 7 <
€ < o1 —71. Then 1y < 01 — e <7y and so, for every A < 0, we obtain

ROy > € duls) A R IO B T O}
152 e dn(s) er f72 dn(s) I52 dn(s)

This ensures that R(—00) = 00, i.e. (5) is true. Furthermore, if » > o,, then we can
choose an ¢ > 0 so that 1 — 0 < € < 7, — 0, and hence we derive for A > 0

2 e/\s d,u(s) e/\(02+5) 2

du(s) . [Ree du(s)

gy+e gy +E
RO> xan) ~ on g dn ¢ 2 dns)
Therefore,
(6) T2 > 09 = R(00) = 00.

Next, we proceed to prove (iii). We suppose that n is odd, § = +1, and 71 < o;. Then
we have .
FOO) = M+ VRO + 1] f’ M dn(s), MER
ay
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But (5) implies the existence of a Ay < 0 such that A"R(\) < —1 forall A < \y. Hence,
F()\) <0 for A < )\g, which contradicts (3). So, (iii) holds.

Assume that n is even, § = —1, 77 < 0, and 7y < 0. First of all, we will prove that
o1 < 0. To this end, suppose that o; > 0. We choose a7 < 0 with 7y <7 < 7, and we
obtain for A <0

FO) = )\"[1 — /: e du(s)] +/: e dn(s)
< /\"[1 — /:e“ du(s)] +e\ /:2 dn(s)

< ,\”[1 s /TT du(s)] +[ :’2 dn(s).

This gives F(—00) = —o0, which contradicts (3) and so ; < 0. Now, we can consider
a o < 0O such that 6y < 0 < 07 and hence

/U ‘]’2 & diy(s) > /U ” & dn(s) > e [j dn(s)

for all A < 0. This guarantees that

)\n
NP
@) )\EIPOO fglz e d(s)
We have
— —"_ n T2 s
®) O = | rgtegn ~ VRO +1 [ ¢ dn for s € R.

Thus, by (5) and (7), we can conclude that there exists a Ay < 0 so that F(\) < 0 for
every A < )p. This contradicts (3) and hence (iv) is true.

Next, let us assume that § = —1, 7, > 0, and 7, > 0,. If we suppose that 0, < 0 and
we consider a 7 > 0 with 7 < 7 < 7, then we get for A > 0

FO\) < A"[l - f PN d,u(s)] + /J  dn(s)
< ,\"[1 —e [ dp(s)] + /[:2 dn(s).

This gives F(0o) = —o0, which contradicts (3). This contradiction establishes that o, >
0. Thus, we can choose a o > 0 with 07 < ¢ < 0,. Then we have

/02 e du(s) > /02 dn(s) for A > 0,
oy o

which implies that
>\Il
. —0
® /\ILI{.IO ngz ers dn(s)

From (6), (8) and (9) it follows that F(A) < O for all large A\, which contradicts (3) and
proves that (v) is valid.
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Consider now the case where { = —1. In this case we have F(0) = — fgf dn(s) <0
and consequently

(10) F(\) < Oforall A €R.

Assume that n is even, § € {0,+1}, and o7 > 0. Then we have for A < 0
FO)=M1+6 [C e du)| — [C e dpsy > — [ d
W =N [1+8 [*duts)| - [ an) [

and hence F(—o00) = 0o, which contradicts (10). This contradiction proves (vi).
Let nbeeven, 6 = —1, 7 > 0, and o1 > 0. Then, for each A < 0, we obtain

FO) = X’[l . [ P ehs dp(s)] - /'" > e dip(s)
> A" — A /: du(s) — /: dn(s),

which gives F(—o0) = oo. This contradicts (10) and so (vii) is true.
Let us suppose that nis odd, § = —1, 71 <0, and 11 < o). We have for A <0

FO) = /\”[1 - f e du(s)] - /: ™ dn(s)
> )\"[1 -~ [ e“dp(s)] _ P /: * di(s)
> /\"[l — e’\T/TT du(s)] — M /{:Z dan(s),

where 7 is a negative number with ) < 7 < 72. So, if 07 > 0, then we get F(—00) = o0,
which contradicts (10). Hence, we always have o; < 0. Thus, as previously, we can see
that (7) holds. Now, we have

n

(11) FO\) = [ — A"RO\) — 1} / & dn(s) for \ € R,

152 € dn(s) o

where the function R is defined by (4). From (5), (7) and (11) it follows that there exists
a Ao < 0 such that F(\) > O for all A < ). This contradicts (10) and so (viii) has been
proved.

Assume that nis even, 6 = +1, and 1; < ;. We have

(12) FO) = A"[A\"R() — 1] f 2N dnes), A ER.

By (5), there exists a A\g < 0 such that \"R()\) > 1 for every A < Ag. So, F(A\) > 0 for
A < )Xo, which contradicts (10) and proves (ix).
Let us assume that § € {0,+1} and 0, < 0. We have

FO) = ,\"[1 +5 f PN du(s)] - /ﬂ 7N dn(s) > M — /U  dn(s)

for all A > 0, and hence F(00) = o0o. This contradicts (10) and so (x) has been proved.
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Assume thaté = —1, 7 < 0, and 0, < 0. We have for A > 0
—_\nl1 _ 2 s _ 2 s
FOO = A [1 f e du(s)] /: & di(s)

>N =\t /:2 du(s) — /:2 dn(s),

which gives F(0co) = o0o. This contradicts (10) and so (xi) is true.

Finally, let 6 = +1 and 7, > ;. From (6) it follows that there exists a Ao > 0 such
that A\"R()\) > 1 for every A > \o. Hence, (12) gives F(A) > 0 for all A > A, which
contradicts (10). Thus, (xii) has been established.

LEMMA 4. Let x be a solution of the differential equation (E). Then we have:
(a) If tg = 0, then the function z(t) = x(t + to), t > 7Y is also a solution of (E).
(b) Set

u () = [2 x(t +s)du(s) fort > 0.
Then the function u(t) = u)(t — ), t > 7 is also a solution of (E).

PROOF.  (a) The conclusion follows easily and it is a consequence of the autonomous
nature of (E).

(b) For any ¢ > —7, we obtain

145 [ e+ ) du)] " +¢ [ e+ 5)dnts
- {f [x(t+s)+5/: x(t+s+r)du(r)] dp(s)}(n)+§/:z [/:x(t+s+r)du(r)} dn(s)
= /:[JC(HS)+5/:X(t+S+r)du(r)](")du(S)+<I/TT2 U:Z x(t+S+r)dn(r)] du(s)

= /:{[x(t+s)+6/:x(t+s+r)du(r)](n)+§/:x(t+s+r)dn(r)}du(s)
=0

and hence u, satisfies (E) for every t+ > —7. Since (E) is autonomous, we conclude that
u satisfies (E) for all t > 0. Thus, u is a solution of (E).

LEMMA 5. Assume that the differential equation (E) admits a nonoscillatory solu-
tion. Then (E) also has a solution which is n-times continuously differentiable, positive
and strictly monotone on the interval [Y, 00).

PROOF. Let x be a nonoscillatory solution of (E). As the negative of a solution of
(E) is also a solution of the same equation, we may (and do) assume that x is eventually
positive. Consider the function y defined by

(1) = x(t) +6 f * xX(t +5) du(s) for 1 > 0.

Lemma 4 guarantees that the function y(r) = y(t — ), t > 7 is also a solution of the
differential equation (E), which is n-times continuously differentiable on the interval
[, 00). For every ¢t > 0, we have

2 (n) 05
Y1) = [x(t) +5/TT x(t +5) du(s)] =—C fm x(t + 5) dn(s)
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and consequently y™ is either eventually positive or eventually negative. This implies
that y (and hence ) is either eventually positive or eventually negative. Set

{7 if§(@® > 0 for all large ¢
47\ =5, if5(r) < 0 forall large r.

Then z; is a solution of (E) which is n-times continuously differentiable on [, 00), even-
tually positive and eventually strictly monotone. Let T > ¥ be such that z; is positive and
strictly monotone on [T, 00). Then, by Lemma 4, the function z(t) = z; ¢+ T —"7),t >
is also a solution of (E). This solution is obviously n-times continuously differentiable,
positive and strictly monotone on the interval [7, 00).

LEMMA 6. For (= +1 we suppose that (i) and (ii) hold and:
(iii) nisodd, 6§ = +1,andm <0 =1 > 03,
(iv) niseven, § = —1,andm <0 =1 > 0y,
) §=—landt, >0=1 <o,
Also, for { = —1 we suppose that (vi), (vii), (x) and (xi) hold and:
(viii) nisodd, 6 = —1,andm <0 =1 > 0y,
(ix)' niseven, 6 = +1,andm < 0= 1 > 01,
(xii) 6 =+l andm >0 =1 < 0,.
Let x be a solution of (E) which is n-times continuously differentiable, positive and
strictly monotone and on the interval [Y, 00). Then:
(a) x is of exponential order c for some ¢ € (—00, 00);
(b) the Laplace transform of x has abscissa of convergence o > —00.

PROOF. Set L = lim,_,x(#), 0 < L < 00.If 0 < L < 00, then the solution x is
bounded on the interval [0, 00) and so x is of exponential order c = 0. If 0 < L < oo,
then there exists a u > 0 so that x(t) > u for every ¢ > 0 and consequently

x(dt > dt = oo.
b b

This means that, provided that x has a Laplace transform, the abscissa of convergence o
satisfies & > 0 > —o00. Hence, it is enough to restrict ourselves to the cases where L = 0
or L = 00. Moreover, for L = oo it suffices to prove that x is of exponential order ¢ for
some real number ¢, while for L = 0 it remains to show that the abscissa of convergence
o of the Laplace transform of x is such that & > —oo. Furthermore, by Lemma 2, for
L = oo it is enough to prove that there exist T > 0, M > 0 and £ > 0 so that

(13) x(t) > Mx(t+ &) fort > T,

while for L = 0 it suffices to show that for some constants 7 > 0, M > 0 and £ > O the
following inequality is true

(14) x(1) < Mx(t+€) fort > T.

[Note that, if L = oo and (13) is satisfied, then we always have 0 <M < 1, while L = 0
and (14) imply that M > 1.]
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Define i
(@) = x(t) +0 [ x(t +5)du(s) for t > 0.

Then from (E) we obtain

(15) Yyt = —C /ﬂ " x(t +5) dn(s) forevery t > 0

and so y™ is either positive on the interval [0, c0) or negative on [0, c0). Then it is easy
to verify that there exists a Tp > 0 such that, for each i € {0, 1,...,n — 1}, the function
y¥ is either positive on the interval [Ty, 00) or negative on [Ty, o). Clearly, for L = oo
the solution x is strictly increasing on the interval [, 00), while x is strictly decreasing
on [7, 00) in the case where L = 0. Consider now the following four cases:

CASEl. (= +1 and L = 0o. From (15) we obtain for every ¢ > 0

¥ = — [ e+ 5 dnis) < - I dn(s)|xte+ o),

which gives lim, ., y™(f) = —o0, and consequently ¥ is negative on [0, c0). It is easy
to see that lim, ., y(f) = —00 (i = 0,1,...,n — 1) and so we have
(16) yO() <Oforeveryt>Ty (i=0,1,...,n—1).

If§ € {0,+1}, then the definition of y ensures that y(r) > 0 for t > 0. This contradicts
(16). Next, let us suppose that 6 = —1 and 7, < 0. Then, by (16), we obtain for t > Ty

0> y(1) = x(t) — /: * Xt + 5) du(s) > x(1) — { /TT : du(s)]x(t+ )

and consequently
~1
X(t+72) > [ f : dp(s)] x(t), t>T,.
1

This gives
x(1) > UTT du(s)]-lx(t — 1) forevery t > T
and so (13) holds with
T=Ty>0, M= [/T du(s)]il >0, and € = —1, > 0.
It remains to consider the case where § = —1 and 7, > 0. By (v)/, we have 7, < 0>

and hence we can choose a number ¢ with 0 < 7, < o < 3. Set

1+
() = —y" () — /02 [/ ’ x(r) dr] dn(s) fort > 0.
o Ho
Then, by using (15), we obtain for every ¢ > 0

) = -y — /U ’ [x(t + 5) — x(t + 0)] dn(s)
= /a TZ x(t +5) dn(s) — /a Xt +5) di(s) + [ /0 ” dﬂ(S)] Xt +0)
= /a T x(t +5)dn(s) + [ /a ” dn(s)]x(t +0)
> [/:2 dn(s)]x(t+a),
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which ensures that lim,_, zj(f) = 00. Thus, we have lim, ., z1(f) = 00 and so, for some
t1 > Ty, the function z; is positive on [}, 00). Hence, for every ¢t > ¢,

1+s o
— D> [ [ [ x dr] dn(s) > [ [ = dn@|se+o)
and so
a7 —y" D) > Ax(t +0) forall £ > 1y,
where A; = [J2(s — o) dn(s) > 0.If n = 1, then (17) gives fort > t;
Arx(t +0) < —y(1) = —x(1) + f " x(t+9)dus) < [ / : du(s)}x(t+72)
T Tl
and consequently
-1
xX(t+72) > Ay [/” dp(s)] x(t +0) fort > 1,
T

ie. .

x(1) > Ay [[2 du(s)J x(t—1m+0), t>t+T1.
Thus, for n = 1, (13) is true with

-1
T=t1+m >0, M:Al[fz dp(s)] >0, and € = -1 +0 > 0.

So, we suppose that n > 1. Consider a number § with 0 < ¥ < ¢ — 7. By using (16)
and (17), we obtain for t > ¢,

I 9 t+9/(n—1)
_ (n=2) _ (n=2) (n-2)py — _ (n—1)
y (t+~—n_1>> y (t+———n*1)+y ) /' y (s)ds

9 /(n—1)
A /t”/ X(s + 0)ds > A,

x(t+0)
n—1

and hence

—y" () > Ay

9 9
_ >
n~1x<t n_1+a)f0rtﬁt1+

By this procedure, after n — 1 steps we find

9 n—1
1) X(t—9+0)forallt > 1 + 9.

() > A1 (—

Thus, for every t > t; + 9

Al(nﬁ 1)n~1x(t —9+0) < ‘X(f)ﬁ“/:2 x(t +5)dp(s) < [/: du(5)]x(t+fz),

which gives

x(1) > Al( )71[/7 du(s)];lx(t 9oy fort >0 +0+7

n—1
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So, if we put

T=1+94+m >0, M:Al( )_’[f alu(s)}_1 >0, and € = —1—9+0 >0,

n—1
then (13) is also true.

CASEIL. ¢ = +1 and L = 0. From (15) it follows that y'™ is negative on [0, 00).
Furthermore, we can see that lim, ., y?(f) = 0(i = 0, 1,...,n—1). So, we can conclude
that

(18) (=)0 > 0foreveryt > Ty (i=0,1,...,n—1).

In particular, y is negative on [Ty, 00) for n even, and y is positive on [T, 00) for n odd.

If § € {0,+1}, then the definition of y ensures that y(f) > 0 for ¢t > 0. We have thus
arrived at a contradiction in the case where niseven and § € {0,+1}. Next, let us assume
that niseven, 6 = —1, and 7, > 0. Then we obtain for t > T

0> y(t) = x(t) — f * (e + 5) du(s) > x(t) — [ f : du(s)}x(m )

and consequently
x() < [ f : d,u(s)]x(t+r1) fort > Tp.

That is, (14) holds with
2

T="T>0, M:[ du(s)> 0, and £ = 71 > 0.
!

Consider now the case where nis odd, § = —1, and 71 < 0. Then we choose a7 < 0
with 1; < 7 < 7. Then, for every t > T, we have

0 <y(r) = x(t) — fz x(t +5) du(s)
< x(1) — /: x(t +5)du(s)
<x0 = [ du(s)]xte+7)

or 1
x(t+1) < { [ du(s)] x(t) for every t > Ty.

This gives
-1
xX(1) < [ f du(s)] xX(t —7) forall t > T,

which means that (14) is true if we set

T=Ty>0, M= [/;du(s)]_l >0, and £ = — > 0.
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It remains to examine the following cases:

nisoddand§ € {0,+1};

{niseven,é =—l,and 1 <0
nisodd,d = —1,and 7, > 0.

By the assumptions (i), (ii), (iii)’, and (iv)’, we can verify that 5y < 0 and oy < 7. (If
6 = 0, then 7| can be chosen arbitrarily and so there is no loss of generality to assume
that 0; < ;.) Thus, we can choose a ¢ < 0 witho; < 0 <7 and 0 < 3. Set

a0 =y"""0- [ [ NEG) dr] dn(s) for t > 0.
Then, by taking into account (15), we obtain for r > 0
50 =y"(0) ~ [1x1+0) =t + ) dncs)
=[x+ sydnts)— | [ dnts)|str+ o)+ [ xte+.9)dncs)
= - [: “x(t + ) dn(s) — [ /U T dﬂ(S)}x(t+0)
<0

and hence z; is strictly decreasing on [0, 00). On the other hand, for every ¢t > 0, we get

LI stvar]ans) < [ [ @ =9 dn]xo + o)

4]

and consequently

(19) lim ”[ /:” x(r) dr] dn(s) = 0.

t—00 Jo

This together with the fact that lim, ., "~ V(¢) = 0 ensure that lim,_oo z2(¢) = 0. Thus,
since z; is strictly decreasing on [0, 00), we conclude that z; is positive on the interval
[0, 00). So, for every ¢t > 0, we obtain

0 <20 ="~ [[[ [ xtrydr] dncs)
<0~ | [0 = ) dnes)xti +0)
and hence
(20) Y1) > Aox(t + o) for all £ > 0,

where Ay = 7 (0 — s)dn(s) > 0. Assume first that n = 1. If 6 € {0,—1}, then (20)
gives
X(6) > x(1) +6 f * Xt +5)du(s) > Apx(t + o) for t > 0

and consequently

1
x(1) < A—x(t —o) forevery t > 0,
2
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which means that (14) holds with
T=0, M=1/A,>0,and{ =—0>0.

If 6 = +1 and 7y > 0, then from (20) we obtain for z > 0
2
Aox(t + ) < Y1) = x(t) + f Xt +5) dp(s)
< [1 + f : du(s)]x(t)

and therefore
L+ 72 du(s)

x() < e

x(t — o) fort > 0,

i.e. (14) is true with

o L)

T=0,
A

>0,and { = —0 > 0.
If 6 = +1 and 1; < 0, then from (20) it follows that
Aox(t + 0) < y(1) = x(1) + f * Xt + 5)duls)
1
2
< |1+ d t+
|1+ [ )]st +m)

for all + > 0, which gives

L+ [Tt du(s)

x(t) < A5

x(t—o+1), t>0.

Thus (14) is also true with

1+ d
v = LI A

T=0,
Ay

>0, and € = —0+1 >0.

Next, let us examine the case where n > 1. Consider an arbitrary positive number 9.
From (18) and (20) it follows that for every t > Ty

B B 9 Y 49 /(n—1) e
YD) > 2)(t+ n___1> D) :/t Y11 (5) ds

x(t+nfl +U),

++9 /(n—1)
>A2[ x(s +0)ds > Ay——

9 9
_y(n—Z)(t) > Ay x<t+ + o) fort > T,.
n—1 n—1

By using the same arguments, we can obtain

n—1
@1 (—1)”+1y(t)>A2( 01) X(t +9 +0) forall 1 > T,

n—
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If niseven, § = —1, and 1, < 0, then we choose the number 9 sothat0 < 4 <1 — o
and from (21) we obtain for t > T
9 n—1
Az(n 1) X1 +0+0) < —y(t) = —x(1) + f " x(t +5) du(s)
_ -

< U: du(s)]x(t+7'1)

and consequently

(1) < [/” du(s)] [Az(n f l)er(t —9—o+m)fort>Tp.

This means that (14) is true with

T=Ty>0, M= [[ du(s)HAz(nf I)"'l]_' >0,and €= —9 —g+7 >0.

In the case where n is odd and 6 € {0,—1} we take 9 = —5 > 0 and from (21) we
obtain for t > T

X(t) > x(1) +5/: Xt +5)du(s) = y(2) >Az(;i/12)"7]x(t+ %)

which gives

w0 < [ (X2 (1= D) fore = 7

Hence, (14) holds with

T=Ty>0, M= [Az(;i/f

Fornodd, § = +1,and 1 > 0, we set ¥ = —% > 0 and from (21) we get for every

)H]W‘ >0, and £ = —92-’ >0.

=T —0 /2 \n-1 o 3
Az(n_ 1) x(t+ 5) < (1) :x(t)+/: X(t +5) du(s)
< [1 +f : dp(s)]x(t)
and hence

x(0) < [1+ [ duts) {Az(;‘i/lz)"_']"x(t IREL]

So, (14) is fulfilled with
—0 / 2

T=T,>0, M=[1+f du(s)HAz( ) 1] >0,and£:—%>0.

Finally, let n be odd, § = +1, and 7; < 0. Suppose that the number is 9 is chosen so that
0 < ¥ <11 — 0. From (21) we obtain for every t > Ty

Az(n_f_l)""x(msw) <30 = x(0+ [ x(t+5)dp(s)

< [1 +/: du(s)]x(l+71)
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and therefore

X0 < [1 +f du(s)] [Az( )H] -9 —o+m) fort > Ty

That 1s, (14) holds 1f we take

n—1

T=Ty>0, M= [1+j: d,u(s)HA2< )'H] 'S0, ande= —d—o+m >0

n—1

CASEIIl (= —1and L = oo From (15) we obtain for t > 0
70 =[xt dnes) > | [T dnes)|xe+ o,

which ensures that lim,_, y"(f) = oo Thus, y™ 1s positive on the 1nterval [0, 00) It
follows easily that lim,_, Y?(1) =00 1 = 0,1, ,n—1)and so

(22) yO@) > 0foreveryt>Ty (=0,1, ,n—1)

If 6 = —1 and 7, > 0, then we can choose a positive number 7 such that 7} <7< 7,
So, from (22) we obtain for t > T

0 < y(t) = x(1) — f P X+ ) du(s) < x(t) — [ f : d,u(s)}x(t +7)

Therefore
(1) > [ [ : du(s)]x(t +7) forallt > Ty,

which shows that (13) 1s true for
T=T,>0, M:/” du(s) >0, and € = 7> 0

In what follows, we will assume that 7 < 0 when 6 = —1 By the assumptions (x),
(x1), and (x11)’, we conclude that o0, > 0 and 7, < o, (If§ = 0, then 7, can be chosen
arbitrarily and so we can assume that 7 < 0, ) Thus, we can choose a positive number
owitho) <o <oyandm, <o <o, Weput

a5 =y""0- [ [ /,: x(r) dr] dn(s) for t >0
Then, by taking into account (15), we have for every ¢ > 0
50 =70 — [t +5) = x(t+ )] dn(s)
= a x(t+5)dn(s) — [  x(t +5) di(s) + [ / ” dn(s)}x(t +0)
=[x+ syans)+ [ [ ants)|xtt +.0)
> [ [ dn(s)]x(t +0)
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It is now clear that lim,_, zg () = oo and so we can find a t, > Tj such that z3 is positive
on the interval [f,, 00). Hence, for every t >,

0 < z3(0=y""Dr) - [r - [ [r: x(r) dr] dn(s)
<y V= [ [ = o dns)]xte+ o)
or
(23) YD) > Ayx(t + o) forall £ > 1y,

where A; = [%(s — 0)dn(s) > 0. Assume first that n = 1. If § € {0,—1}, then (23)
givesfort > t;

x(t) > x(t) +6/r2 x(t+s)du(s) = y(t) > A1 x(t + o)
T
and so (13) holds with
T=1$>0, M=A;>0,and{=0>0.

If 6 = +1, then we choose a positive number 7 with 7, < 7 < ¢ and from (23) we obtain
foreveryt > t,

Ax(t +0) < (1) = x(1) + f Xt +5)du(s) < [1 + f : du(s)]x(zw).

Hence

x(t) > —T40), t>h+T,

1
—x(t
L+ 77 duls)
i.e. (13) holds again for

A
1+ 72 du(s)

Next, we will examine the case where n > 1. Consider an arbitrary positive number 9.
From (22) and (23) we obtain forall ¢t > 1,

B 9 " 9 _ t+19/(n—]) _
NG 2)<t+n—l) >y 2)(t+n——1) _ 2>(t):/’ ¥ D(s) ds

T=t+72>20, M= >0,and€ = —1+0>0.

¥ /(n—1)
Al f”/ X(s +0)ds > A ——x(t + 0),

n—1

ie.

39 9
Y25 > A x(t— + 0) fort >t +
n—1 n—1 n—1

Following the same procedure, after n — 1 steps we derive

n—1
Y 1) x(t — 9+ o) forevery t > 1, + 9.

n—

(24) ¥ > A1
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If§ € {0, —1}, then, for 9 = §, (24) gives

x(1) > x(1) +5/: x(t +5) du(s) = y(t) > A (:121 )"_'x(H g)

for every 1 > 1, + ¢/2, and so (13) 1s true with

o/2
n—1

o n—1 o
= -—> = = —
T=n+220. M A.( ) >0, and§ = 2 >0

If 6 = +1, then we can choose a positive number 7 with 7, < 7 < ¢, and next we
can consider that ¥ satisfies 0 < ¥ < —7 + o In this case from (24) 1t follows that for
t>Hn+9

A1<;f—1)n_1x(t—19+0) <y = x(t)+/;2 x(t+5)du(s) < [1 +/: dlt(s)]x(“'T)’

which gives
¢ \n—1 2 -1
x(t)>A|(n—_—1) [1+/T-r du(s)] xt—7—0+0o)fort>tH+0+71

This implies that (13) 1s true 1f we take

T=t,+0+7>0, M:Al(—rﬁ—l>n_l[l+/: du(s)} L andE=—r—94+0>0

CASEIV (= —1and L =0 From (15) 1t follows that y 1s positive on [0, 00) We
also see that im,_o Y?(#) =0 = 0,1, ,n— 1)and so we have

(25) D)"Y >0forallt >Ty 1=0,1, ,n—1)

Particularly, y 1s positive on [Ty, 00) 1f n 1s even, and y 1s negative on [Ty, 00) if n 1s odd

If § € {0,+1}, then the definition of y guarantees that y(f) > 0 for ¢ > 0, which
contradicts (25) when n 1s odd Now let n be even, § = —1, and 1y < 0 Then we can
choose a1 < 0 with 7y < 7 < 7, and next from (25) we get fort > T

0 < y(t) = x(1) — f " x(t + 5) du(s) < x(t) — [ f d,u(s)]x(t +7)

Consequently
1
x(1) < [[ dy,(s)] x(t—7)forallt > T,
T

Thus, (14) holds with
-1
=720, M= [f du(s)] >0,and{ =—7>0
T
Moreover, if n1s odd, § = —1, and 1, > 0, then (25) gives

0> y(1) = x(1) — [ " x(t +5) dp(s) > x(t) — [ [ : d,u(s)]x(t +71)
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for every t > Ty. That is,
2
x(t) < [/ d,u(s)]x(t +711) fort > Ty,
T
which means that (14) is true for
T=T,>0, M=f2 du(s) >0, and € =71 > 0.
T

Now, it remains to concentrate our interest to the next cases:

nisevenand§ € {0,+1};
niseven,6 = —1,and 7, > 0;
nisodd,é = —1,and 7 <O;

By the assumptions (vi), (vii), (viii)’, and (ix)’, we can see that o; < 0 and 07 < 7y. (If
o = 0, then there is no loss of generality in assuming that oy < 71.) Thus, we can choose
ao <0witho; <o <7 and o < ;. Define

[ /t:a x(r) dr] dn(s) fort > 0.

"0

u(n = "0 - [

a1

Taking into account (15), we obtain for t > 0
&40 = ")~ [[[x(t+0) —x(e-+ 5)]dn(s)
== ["xte+sydns) = | [ anes)|xt+0)+ [ xte+9)dne)
=~ [P x4 sydnes) = [ [ dnts)]sta+0)
< 0.

Hence, z4 is strictly decreasing on [0, 00). But (19) and lim,_., y*~"(#) = 0 imply that
lim, 0 24(2) = 0. So, z4 is positive on the interval [0, 00). Thus, we have for t > 0

"0

0<z0=—""0- [ . [ f:’ x(r) dr] dn(s)
<" - [ [ = 9 dn(s)|xtt+0)
and consequently

(26) —y"D(#) > Apx(t + o) for all 1 > 0,

where A, = [7 (0 —s) dn(s) > 0. Assume first that n = 1. Then we always have § = —1
and 71 < 0 and so (26) gives forr > 0

Aox(t +0) < —y(1) = —x(1) + /? P x(t+5)du(s) < [ f : du(s)Jx(t+7‘1).

Consequently

72 du(s)
x() < —A————x(t —o+7)forallt >0
2
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and (14) holds for

™ du(s)

T=0 M=
A

>0,andé = —o+71 >0

Now, let n > 1 We consider an arbitrary positive number ¢ Using (25) and (26), we
find fort > 0

B B 9 B t+9 /(n—1) _
y(n 2)(1‘) > _y(n 2)(t+ n—_T) +y(n 2)(t) — _l y(n 1)(s)ds

x(z+nfl+a)

1+9/(n—1)
>A2/+/n x(s+o)ds > A
t n—1

Following this procedure, after n — 1 steps we derive

19 n—1
1) x(t+9+0)forallt >0

n—

@7) (—1"y(0) > Ao

If nisodd, 6 = —1, and 7y < 0, then (27) gives for ¢ > 0

Ao~ i 1 )Hx(t +040) <30 = —x(0+ [ xtt+ 9 d(s) < [ [ du()]xte +7)

Taking 9 € (0, —o +71) we find that

X0 < M du(s)HAz(nf 1)" 1]'lx(t—19—a+ﬁ)fortzo

Thus, (14) 1s true for

T=0 M= [/T du(s)HAz(nf I)H];l >0, and € = —9— o475 >0

If n1seven and § € {0, —1}, then we take ¥ = —§ > 0 and from (27) we get forr > 0

A2<“0/2>"_1x(,+ %) < (1) :x(t)+5/: x(t +5)dp(s) < x(t)

n—1

This gives

X1 < [Ag(:i/lzygl]f‘x(t— %) forall £ > 0,

which shows that (14) holds with

—0/2
n—1

T=0, Mz[Az( )"_']_l>o, and§=—g>0

If n1s even, § = +1, and 1; < 0, then we can assume that 0 < ¥ < —¢ + 71 and from
(27) we obtain

A2<ni’i l>n’1x(t+19 +0) <y = X(t)+/:x(t+s)du(s) < [1 +/:2 d,u(s)}x(t+7'l)
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for all + > 0. This implies that

9 n—17-1
1) J x(t—9—o+7)forr>0.

n—

X(1) < [1 + f : du(s)] [A2<
Clearly, (14) is true with

T=0, M= [1+/: du(s)HAz( )H]_' >0, and € = —9 —g+7 > 0.

Finally, assume that n is even, = +1 and 7y > 0 and set J = —5 > 0. Then from (27)
it follows that

n—1

A2<_0/2)n~1x(t+ %) < y(1) :x(t)+/: x(t+5)dp(s) < [1 +[|2 du(s)}x(')

—1
for everynt > 0. Consequently
w0 < [14 [ duo] [ Z2L2)] a1 - 9 fors 20,

n—1

which shows that (14) holds with

—0/2
n—1

T=0, M= [1+/: du(s)] [Ag( )Hr >0, and € = —% >0.

The proof of the lemma is now complete.

3. Proof of the main result. We are now ready to give the proof of our theorem.

Equivalently, we will show that there is a nonoscillatory solution of the differential
equation (E) if and only if the characteristic equation (x) has a real root.

Assume first that (x) has a real root A. Then (E) has the nonoscillatory solution x(¢) =
eMNt>.

Assume, conversely, that there is a nonoscillatory solution x of the differential equa-
tion (E). By Lemma 5, the solution x can be supposed to be n-times continuously dif-
ferentiable, positive and strictly monotone on the interval [7, 00). Assume also, for the
sake of contradiction, that the characteristic equation (*) has no real roots. Lemma 3 en-
sures that for { = +1 the implications (i)-(v) are true and for { = —1 the implications
(vi)—(xii) are also true. Furthermore, for = +1 the hypothesis (H,) means that (iii)'—(v)’
are valid and for { = —1 the assumption (H_) ensures the validity of (viii)’, (ix)’, and
(xii)’. Hence, we can apply Lemma 6 to conclude that the solution x is of exponential
order ¢ for some ¢ € (—00,00) and that the Laplace transform X of x has abscissa of
convergence o > —0Q.

We now introduce the function u defined by

u(t) = x(t) + 6 f Xt +9)du(s), 1>0,

which is n-times continuously differentiable on the interval [0, c0). We also consider the
continuous function v which is defined on the interval [0, 00) as follows

w(t) = /:2 xX(t+5)dn(s), t>0.

https://doi.org/10.4153/CJM-1993-008-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-008-6

154 CH. G. PHILOS, I. K. PURNARAS AND Y G SFICAS

These functions satisfy u” = —(v. As the function x is of exponential order c, we can
consider a positive constant C such that x(r) < Ce* for all r > 7. Thus, for each ¢ > 0,
we have

lu(] < C[l + /: e du(s)]e” and v(t) < CU: e dn(s)]e”,

which means that the functions u and v are also of exponential order c. Moreover, the
function u™ is of exponential order c. Without loss of generality, we can assume that ¢ >
1. Itis easy to see that, if ¢ is a continuously differentiable function on the interval [0, 00)
such that ¢’ is of exponential order ¢ (with ¢ > 1), then ¢ is also of exponential order
c. So, we can conclude that the functions u” (i = 0, 1,...,n) are of exponential order
c. Let U, V and Z be the Laplace transforms of the functions u, v and u™ respectively.
Obviously, we have Z = —(V. Moreover, one has

n—1
Z\) = N"UN) — ) N u=1=9%0) for Re X > ¢
1=0

and consequently

n—1
(28) —CVO) = XU — 3 N u179(0) for Re X > c.

1=0

Now, for any A with Re A > ¢, we obtain
U = XO\) +6 /0 * N [ f Xt +9) du(s)] dr
=X\ +6 ’ [/Ooo e Mx(t +5) dt] du(s)

= XO\) +6 f : e“[ fo e Nx(r) dt] du(s)
= X(\) +6 f M [X(A) -/ " e Mx(r) dt] dus).

So, we have for Re A > ¢
U\ = [1 +6 f M du(s)]X()\) —5 [ P [ /0 " e Mx(r) dz] du(s).

In a similar way, we find for Re A > ¢

02 5} S
voo = [ [ e anwxon — [ e[ [ e dr] dngs).
W =[xy [ e [N xtn at] dns)
Thus, (28) gives
n—1
FOOXO) = Y- Nu170) 483" [~ ™ [ [ et dt] dyu(s)
29) =0 n 0
72 s [* - —
+4/a. e [/0 e x(t)dt] dn(s) = GO
for all A with Re A > c¢. The functions F - X and G are obviously analytic in the half-
plane Re A > «. So, we can extend (29) to hold for every A with Re A > «. Finally,
Lemma 1 guarantees that X has a nonremovable singularity at the real point A = «. This

is a contradiction, since the equation F(\) = 0 has no real roots.
The proof of the theorem is complete.
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4. Some applications: discussion. Introduce the assumption

(H,) holds if { = +1

(H) (H-) holds if { = —1.

In our theorem, the hypothesis (H) has been used only in the proof of the fact that, if the
characteristic equation (x) has no real roots, then all solutions of the differential equa-
tion (E) are oscillatory. There are many interesting cases in which the restriction (H)
imposed in the theorem can be removed, because of the fact that in these cases (H) is a
consequence of the assumption that the characteristic equation has no real roots. Such
a case is that of neutral difference-differential equations. The same is also true in the
case where 1 and 1 have continuous and positive derivatives on the intervals {3, 7] and
[o1, 02] respectively. These two special cases will be examined below.
Consider the neutral difference-differential equation

a" m ¢
(Eo) ——n[x(t)+(52p,x(t+s,)]+§qux(,+rj) =0,
ar 5 =

where § € {0,+1,—1}, € {+],—1},m > 1,£ > 1,p, (i =1,...,m)and q, (j =
1,...,£) are positive numbers, s, (i = 1,...,m) are real numbers such that 51 < s, <
<< smand sism # 0,and r, G = 1,..., £) are real numbers withry <r, < -+ <ry.
This equation is a special case of the differential equation (E). The characteristic equation

of (Ey) is
m !

(¥)o Fo) = X" (1+83pie™ )+ g =0.
=1 J=1

We will show that in the special case of the differential equation (Ep) the condition (H)
follows from the assumption that the characteristic equation (x)o has no real roots. To
this end, let us assume that (x)y has no real roots. Since (F(0) = Zf:l q, > 0, we must
have

(30) CFo(A) > 0 for all real numbers .

Assume first that { = +1. If nis odd, § = +1, 57 <0, and s; = ry (here we have 1} = s;
and o; = r), then we can see that Fo(—o00) = —o0, which contradicts (30). If n is even,
6 = —1,s5; <0, and s; = ry, then we have Fyp(—00) = —00, a contradiction. In the
case where 6 = —1, s,, > 0, and s,, = r, (we have here 7, = s,, and 0, = r;) we can
obtain Fy(0co) = —oo, which contradicts (30). Next, let us suppose that { = —1. If nis
odd,$ = —1, sy <0, and s; = ry, then it follows that F(—00) = 00, which contradicts
(30). The same contradiction can be obtained when n is even, 6 = +1, 57 < 0, and
sy = ry. Finally, if 6 = +1,s,, > 0, and s, = ry, then we get Fy(co) = 00, which
contradicts (30). Thus, our assertion has been proved. Now, from our theorem we obtain
the following result (cf. [7]):

A necessary and sufficient condition for the oscillation of all solutions of (Eg) is that
its characteristic equation (x)q has no real roots.

https://doi.org/10.4153/CJM-1993-008-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-008-6

156 CH G PHILOS I K PURNARAS AND Y G SFICAS

Consider next the case where the functions y and 7 have continuous and positive
derivatives on the intervals [71,72] and [0, 2] respectively Our purpose 1s to establish
that 1n this case the assumption that the characteristic equation (*) has no real roots 1m-
plies again that condition (H) 1s fulfilled There are two positive constants « and 3 so

that
€1)) a < p'(s) < Bfors € [11,7]
and
(32) a < y'(s) < Bfors € [01,02]

Furthermore, for each A # 0, we can apply the mean value theorem to obtain

Tt du(s) = ’ N/ (s)ds = p'(s*) M ds
n n T

1
and consequently
AT AT
2 s Y P € — €
(33) e ) = i

where the point s* € [7],72] depends on A In a stmilar way, for any A £ 0, we can find
apoint§ € [0}, 0,] (which depends on \) such that

Aoy Aoy

T2 N\g PN — €
(34) [ dnts) =o' &) ——

Combining (31), (32), (33) and (34), we can conclude that there exist positive constants
A, and B, (1 = 1,2) such that

e/\'rz . e/\‘rl e/\az _ e/\m
(35) FO > /\”(1 +6A1—)\—) + Ay for A £ 0
and

e/\Tz _ e)\'rl e)\m . e)xcn

Now, let us assume that the characteristic equation (x) has no real roots As (F(0) =
J52 dn(s) > 0, we must have

37 CF(A\) >0 forall A € (—o0,00)
Consider first the case where ( = +1 If n1sodd,d = +1,and 1y = 0y < Oorifnis
even,d = —1,and 1y = o < 0, then from (36) 1t follows that F(—o0) = —o00, which
contradicts (37) Also, if 6 = —1 and 7 = 0, > 0, then (36) gives F(00) = —oo, which
also contradicts (37) Next, we suppose that{ = —1 Inthe cases where n1sodd,é = —1,
andTy = 0y < Oorniseven, § = +1, and 1, = o; < 0, we can obtain from (35) that
F(—00) = 00, which contradicts (37) Finally, for 6 = +1 and , = 0, > 0, from (35) 1t
follows that F(co) = 00, a contradiction So, condition (H) 1s satisfied

There are cases of neutral differential equations of the form (E) for which the charac-
teristic equation has no real roots while the assumption (H) fails Such a case 1s that of
the neutral equation (¢f [24])

%[x(t) +/~ex(z+s)ds] 12 —0)=0 (0>e)
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