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A REMARK ON THE MOYAL’S CONSTRUCTION
OF MARKOV PROCESSES
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To Professor Katuji Ono on the occasion of his 60th birthday.

§ 1. Result. In the author’s previous paper [3], we used Theorem
1 of the present paper to assure the existence of a signed branching Markov
process with age satisfying given conditions in [3]. The purpose of this
paper is to give a proof of Theorem 1.

Let X = {X,,¢, Z., Px; « € E} be a right continuous Markov process?
on a locally compact Hausdorff space E satisfying the second axiom of
countability, and 2 be the sample space of X. A non-negative function
olw) (w € Q) is called a Z;,-Markov time if it holds that for each #=0

(o€ 2;00) =t<f(0)}e B.
For any Markov time ¢, &, is defined as the collection of the sets A such

that for any ¢=0

Aet;/o% and A N {o;olw) <t <o)} € F,

where t\a/ %, denotes the g-algebra generated by the sets of &, ¢=0.
0

Let C(E) be the space of all bounded continuous functions on E. A right
continuous Markov process X is said to be strong Markov if it holds that
for any Markov time o, t=0, x € E, f € C(E), and A€ Z,,

Elf(Xevs); AN {o <8 = ELEx [f(X)]; AN {o <],

where E,[-; A] expresses the integral over A by P,.
Let x,(t,2, +) and ¥(x; ¢, -) be substochastic measures on the ¢-algebra
Z(E)?, and suppose that % (-,:,B) and ¥(-;-,B) are Borel measurable
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1) A Markov process is said to be right continuous if their almost all sample paths are
right continuous in ¢=0.
2) % (Z°) denotes the class of Borel set on the topological space 2°.
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functions of (¢,%) €[0,00) X E for any fixed B Z(E). A pair of 2, and ¥
is said to be satisfied Moyal’s x¥-condition if they satisfy the following
conditions®:

(1) %t +5,2,B) = x(t,2,d0n(s,9,B), 10,5,E) =1,

(2) lim¥(x;t,E)=1 —tlimxo(t,x,E)

t—o0
(3) ¥(z;t+s,B)=;t,B)+| n(t,2,dy¥(y; s, B)

(4) ¥(x;t,E) is continuous in ¢ +=0, x € E, Be Z(E).

Now, suppose that the z,%-condition is satisfied for a given pair of %, and
¥, By virtue of (3), ¥(x;¢,B) is monotone nondecreasing in #, and hence
it determines a measure ¥(x; dt,dy) on F([0,0)XE). Using this measure,
we shall define measures ¥,(z;-, ) and x,(¢,2, -) as follows:

Uy(x; dt,dy) = ¥(x; dt, dy),
t
(5) Wralos dt,dy) ={ | ¥,(s; ds, d2¥(z; d(t — s), dy),
t
noltyw,dy) ={ | ¥.(w; ds, depult — 5,2, dy),
r=1, t=0, Be Z(E).
Further we set
(6) Wia; t,dy) =¥, (s ds,ay), r=1.
0

Then we have

Tureorem. (J.E. Moyal) If the 2&-condition is satisfied, then it holds that
Sor any t,s=0, x € E, and Be Z(E),

t
(7) Trunlws dt,B) = | ¥.(e; ds,dy)0.(y; dlt - s), B), r,r' =1,
t
(8) x,+,,(t,x,B)=Song,(x;ds,dy)x,,(t—s.y,B), r=1, =0,

(9) %t +5,2,B) = 3 | 2(t,2,d0)2-nls,4,B), r=0,

r'=0

3) J.E. Moyal [2] defined the X¥-condition for non-stationary Markov processes. The
condition stated here is the one for stationary case with an additional condition (4).
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(10) H7,(t,2,E) =1 - im ¥, (z, 1, E).

r—00

Moreover, if we set
(1) (t,%,B) = 2 4.(t,3,B), t=0, 2 E, Be F(E),
then 2 satisfies so-called Chapman-Kolmogorov’s equation, i.e.,
(12) x(¢ +s,,B) =SEx(t, z,dy)x(s, y, B),
and further % is the minimal non-negative solution of the equation:
(13) #t,2,B) =it 2, B +( | wlw; ds, dyiutt — 5,4, B).

In addition, % is the unique solution of (13) if it holds that for each t =0

(14) lim¥,.(x; t, E) = 0.

¥—00

According to Kolmogorov’s extension theorem, (1) and (12) imply that
there exist two Markov process X and X° whose transition functions are
given by 2 and %, respectively. We shall consider the relation between X
and X°.

Let E U {4} be the one-point compactification of E and set
Co(E) =1{f; f € C(E) and lim f(z) =0},
| fll=sup{|f(2)]; =z € E},

TOf(@) ={ 1.t 3,a9)7), 720, fe CyE),

and

Tf@) =\ 2(t,2,d9) ), f & CoED.

Then (1) and (12) imply T, = TT and T,., = T,T, if they act on Cy(E).
Now we can state

THEOREM 1. Let the semi-group T, t =0, be strongly continuous on Cy(E)
with respect to the norm || |, and assume that for any r=1, T maps Cy(E)
into utself and it holds that
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(15) lim ITPfll=0, r=1, fe& CyE)
Then it holds that (i) there exists a right and quasi-left continuous® strong Markov

process X ={X,,&, B, P,; x € E} corresponding to the semi-group T,, (ii) there
exists a Markov time  of X, such that the killed process X° = {X?, £°,

¢ Py w e E}
of X at time <% corresponds to the semi-group T, (iii) setiing

00 =0, 7y=7, Tyu; =T, + 029, r=1,

we have
(16) Pz(Xt = B, o =t< Tr+1) = Xr(t’ z, B)’
(17) Py X., € B,r, €dt) =¥ ,(z; dt,B),
xe E, Be #(E), t=0, r=0,
§ 2.

Proof. Let N={0,1,2,---} and S be the product space E X N
where the topology of S is introduced in a natural way. Then S is a locally

compact Hausdorff space satisfying the second axiom of countability. We
define a measure P(¢,(x,p), -)” on Z(S) by

%-p(t,2,B), if g=p,
(18) P(t,(x,p),(B,q) = .
: :0, otherwise,
(z,p)€ S, t=0, Be #(E), p,q€ N.
Then we have

LemmA 1. For t,5=0, (z,p) S, A F(S), it holds that

P(t + s, (x’ p)’A) =SSP(t’ (-’5, p)’ d(y9 T))P(S, (yy f),A).

Proof. It suffices to prove the above equality for A = (B,q) where
g=7p. By the definitions of P(t,(x,p), +) and (9), we have

9 A Markov process X={X,,{, B,;, P,; *<E} is said to be quasi-left continuous if it
holds that for any increasing sequence z, of Markov times,

P,(lim Xe, = Xr, 7<8) = Py(r <{),
r—>00
where
7(w)=lim 7, ().
r—>o
5) The killed process X° of X at time z means that

Xg(w):{X,(w), if <z,

4, if t=r.
6) ¢, denotes the shift operator.

7 P(s,+,(B,q) is Z ([0, ) xS)-measurable.
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P(t + 5, (2, p), (B, q)) = Xg-p(t + 5,2, B)

q-p
= oSExr(t’ X, dy)xq—p—r(s’ ¥, B)

=5 | P, (5, 2; @y, + M) Pls, (4,7 +7); (B,0)

={ Ptt, (@, 2, dly, MP(s, (w,7); (B, ),

[}

as was to be proved. Q.E.D.

According to Lemma 1, there exists a Markov process ¥ = {Y, = (X}, N,),
¢, By Pony; (®,0) € S} with transition function P(¢,(x,p), -) where &, is
the o-algebra generated by sets of the form ({Y,€A4;s<t,Ae Z(S)}.
Since it follows from (18), (11), and (13) that for any ¢,A=0

Piypy(N(t) > N(t + h)) =0,
and

Pio,n)(N() < N(t + h))

3| it 2, dyh, v, B)

r=0,s=

= g}l SEx(t, 2, dy)Xs(h, Y, E)

= 1t 2, dv)ix(h, v, B) = 1k, v, B))

E
h
=S X(t,x,dy)s S W(y; du, d2)x(h — u, 2, E)
E 0JVE
—>0 as k—>0,

there exists a version of Y in which N, is right continuous in ¢. So we
take this version as Y.

Now let us consider 2,(¢,%,dy). As was stated already, ¥, defines a
Markov process X° = {X?,£° !, P3; x=E} on E. Let us denote its sample
space by 2°= {0’ =0f);»"(¢) is a mapping of [0,¢") to E}. Next we
consider a function space 2, which is a kind of copy of shifted ©,. This
means that

2, ={a = (@,(t), 3(t)); & is a mapping of [a,, §,)
to E x {r} where 0<a,(é) <8,(0) <o and they
may vary with &},
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and, for each @ 0,, there corresponds one and only one '€ %, such
that the graph ({(f,0%);0=¢t <{(w"} 1is identical to {(¢, (¢ + «,));

0§t<.,81(a‘») —a,(@}. Let &7 be the algebra generated by cylinder sets
of the following type

A

B = {@ € *Qr; toéar(d’)< tl’d)l(ar(‘b)) € Boad’i(ti) S Biy i=12-- '9n}
(19) 0=t =t <t =<+ =t,,
B,e #(E), i=0,1,2,+++,n, n=0,1,2, ¢ -,

and define a finitely additive measure vo(+) on 77 by

ty

@) voiB) =('| ¥(e;dt,dn)PYXs s € B, i =12, ,m).

toY By

Then we have

LemMA 2. v,(+) can be extended to a measure on the o-algebra B, generated
by 7.
Remark. Consider a Markov time ¢, defined by
7.(0) = inf {¢; Ni(0) = Ny(o) + 7},

where N, is the right continuous second coordinate of Y, = (X;, N;). If the
distribution of the joint variable (c,,X:,) is given by ¥,(z,d¢,dy), then
v,(+) is supposed to be the restricted measure of P,, on E x{r}. So
intuitively, Lemma 2 is clear.

Proof. The proof is given by the same way as the construction of
product measure. It suffices to prove that if a decreasing sequence

{B,} c &5, satisfies
Vz(Bn);C>O, n=1,23+"+",
where ¢ is a constant, then we have
N B, ¢.
n=1
Since ¥,(x;-,E) is a finite measure on [0, o),
vallo; a,(0) = 1) = ¥(a; dt, B)

tends to zero as ¢ tends to infinity. Therefore, without loss of generality,
we may assume that there exists 7>0 such that
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.

B,clo;0=a,(0)<T}, n=1,23-:--
Now let us express B, in a form

A

) By = 3103 1 S arla) < 52, arlarla) € BY,
o(tf) € B, i=12+-+,n;}", n=123,---,
where the following are assumed to be satisfied.
DT, f=1,2-ky n=1,
P =<tP, i=0,1,2,+-+,m;,—1, n=1,
R eI X BR N[ty i1 x Big = ¢ if jxkn=>1,

and for any » and j there exists j, such that

[t(n+l) t(n+1)) X B(n+l) c [t‘(;za’ ;1;1) X B;:%.

Set

CP ={(t,y); =t <tP,y e BY and

v 9)
PYX%m_, € B®, i=1,2, - °,nj)>%} ,

) (n) ( ) (n) (n)
D [tJO ’ 1 ) B Cj" .

Then we can see

?r-

2 C(n) L

J=1

and
kn c
v.(x; 2 CP)>—5->0.
P! 2
Accordingly there exist (#o,%,) and j, such that
(22) (tOy yo) € cfi:); n =12 33 Tty
which means

8) For the set {@; 8,(®)=<t}, we used the notation {@;0=<a,(@)<?, @:(a,(d)EE, @,(t)Ed}.
The last funny expression @,(¢)E¢ means @;(¢) is not defined at #.
9 If B=¢, PYX,eB) is regarded as 1-P3(X,€E).
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P:'(I(;J(X?jnt‘to (= B;‘:i’ i = 1, 2, LY ,'th,‘) >% > 0.

By the monotonicity of B,, the events in the above parentheses are mono-
tone non-increasing. So we can take o' such that for all n=>1

(28) X 1 (@) € B}, i=1,2,3,++,nj.
If we put
a (@) =ty (@) = t,+ 50, @ity =y,
and
a(t + 1) = (&°(8),7), 0=1 <),

then (21), (22) and (23) show

as was to be proved. Q.E.D.
Now we return to the process Y ={Y, = (X, V), ¢, &, Po.ny; (2, 0) € S}
Since N, is right continuous, z, defined by

w.(0) = inf {¢; Ny(0) = Nyo) + 7},
are Z,-Markov times. Then we have
LemMa 3. Let X° be a Markov process on E corresponding to the transition

Sunction xo(¢,x,+). If X° s right continuous, Y has a right continuous version
and, for this version, we have

(24) I)(x.p)(yt € (B’p + 7’)) = X’r(ts x; B)’
(25) F)(x,p)(YTnl S (B,p + 7+ 1)’ Tr4 € dt) = wr+1(x; dt, B)
Be #(E), r=0.

Proof. By (5), (18) and (20), we can see that for r=1,

(26) Ex.p)(Yfie (Bup + 7’), i=12--- ’n) = vx({(‘)) 0= ar(d))<t1’ asl(ti)EBi)
1 =1,2,¢- '9”})-

Hence P_,, defines a measure on the space of sub-trajectories of Y, in
the time interval [r,,7,+) which is equivalent to v,. On the other hand,
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y,(+) is a measure on &, which is obtained from the sample space of X°
by shift of starting time point. So we may consider that on the time
interval [r,,7,4;), Y, has the same continuity property with X°  Since
r=1 is arbitrary, we may regard that the right continuity of X° implies
the right continuity of Y, on [r,,{). Evidently Y, restricted on [0,7,) is
equivalent to X° and hence we can have a right continuous version of
Y:. Furthermore, the event in parentheses of left hand side of (25) is

measurable if Y, is right continuous. Then the definition of v, and (26)
implies

Po.pyiz-(0) € dt, X (0) € (B,p + 7)) = v,({lo; a,(0) € dt,d(e,) € B})
= w’r(z; dt’ B);

which proves (25). Since (24) is obtained from (18) we have proved the

lemma. Q.E.D.
Now Theorem 1 is proved easily as follows.

Proof of Theorem 1. Since T3 is strongly continuous on Cy(E), by the
general theory of Markov processes®, a Markov process X = {X?,{, Z,°, P?;
x €E} corresponding to 7 can be considered to be right continuous.
Accordingly, by Lemma 3, we may regard Y, is right continuous.

Now let V, be the semi-group on Cy(S) induced by Y, and g C,(S)".
Then we have

©o

Vig(a,p) — 9o, 7) = 31 | P, (2,0),(dy, 2 + Maly, p + 1) — gz, )

r=

o

27)

gExo(t, z,dy)g(y, p) — g(x, D)

+ 21 S x.(t,x,dy)g(y,» + 7).
r=1JE

Since g(x,p) belongs to Cy(S),g(x,p) tends to zero uniformly in x as p tends
to infinity. Furthermore the assumption on 79> implies

133§, 2t 2, dw)gtw, 2 + N —>0 as t—>o.

Then we can see from (27) and the assumption on T¢ that V, is strongly
10) ¢f, [1] Theorem 3.14, p. 104.

1) g(x, n) belongs to Co(S). if it holds that g(+, ) €Cy(E) for any fixed €N and g(z, n)
tends to zero, uniformly in %, when # tends to infinity.
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continuous on CyS). Therefore we may consider that Y is a right con
tinuous and quasi-left continuous'® strong Markov process.

Now let 2° be a sample space of the process X?, and 2 (i =1,2,3, -+ -)
be infinitely many copies of 2°. Let us set

and, for any @ = (0% o', - - o, )e 2, set
r—1 .
60(@) =0, o,(@) = Zoé‘o(wl)’ r=1,
1=

R(6) = 6(t) = 0" — S 840" if 0,(@) =t < 0,1 (@),

=0
{@) = lima,(@).
Further set
0, = (0t‘07(70)wry wr+1’ ° ') if ar((D) =t< 0r+l(d)>'

Then we consider the g-algebra %, generated by the cylinder sets of the

form of
(e @;a(t) e B,s,(@)<t}, Be FE), r=0,
and set
F =\ Z..

If we consider the correspondence of
{6 €@;a(t) € B,o, (@) =<t <0,+,(d)}
and
{o € 2;Y(0) = (0,(t), 0:(1)) € (B, 1), 0,(0) = 0},
then it induces the correspondence between %; and &, defined by
Fi = Z: N {o € 2; No) =0}.
So, P,(-) defined by
P,(A) = Pp.0(A4),
12) cf. [1] Theorem 3.14, p. 104.

13) To define ¢, completely, we have to consider an extra point 4 as a grave of X and
an @ such that @(¢)=4, #=0.
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where A € &; corresponds to A e Z,, defines a measure on Z. Further,
setting f(x,p) = f(x) for any bounded continuous function f on E, we can
see that

EJf(X); ¢ <8 = | F(Xa)aP,
= EGolf(Y:); ¢ <£]
= Eq.nf(Y); t <El
Since, for fixed Be Z(E), r=0, P, ,(X:,, N)< (B,p+r) is independent
of », we can see from the above equalities that
P(lae @;at) e B; and ¢,(@) < t; <o, 44(@); i =1,2})
= P,.pllo € 2; o(t;) € (B;,7;),i =1,2})
= E(z,o)[l"(X,‘,Ntl)((th—t,, Niy—t) € (B, 7)) 5 (X1, N,) € (By, 74)]
= Ez0lFx;, N (Xty—t3y Nty—1,) € (Bay 73 — 71+ Np,)) 5 (X, Nyy) € (By, 71)]
= E‘w[PX,l()?,z_,1 € Byo,, (@) <t,— t,<0,,_, 1.(@);
X, € By,0,,(0) = t, <0, )],

which proves the Markov property of P,. So we have a right continuous
Markov Process X = {X,,{, &, P,; » € E} on E. Similarly, for a Z,-Markov
time p, if we consider a Z;-Markov time ¢ of Y defined by
o) t, if o€ A where A={aec @;p@) =t}, t=0
gl\w) =
o0, if o & {COE.Q;JVO((D)=0},
then we can see that X is strong Markov and quasi-left continuous since

Y is. Furthermore, by the definition of %0, is a Z,-Markov time of X
and (16), (17) are obtained from Lemma 3 and the definition of P,. Thus
taking X as X, we complete the proof. Q.E.D.
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