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1. Preliminaries

The present paper deals with the Clifford groups in the case p = 2. For
the most part, it runs parallel to the previous paper I ([1]) on the case
p > 2, and a number of proofs are therefore either given in outline or omit-
ted. A general introduction to both papers is given in I, § 1.

1.1 Index to notation.

General notation: see I, § 2.1.

Symplectic groups: see I, § 2.2.

Orthogonal groups: see II, § 1.2.

§ 1-2: q[a), qi(a), q,(a), Q(a, fi), /(«, /»), 0{q), O+(q), O^m, 2), O2(2m, 2).
§ 2.1: V, vx, Wa, <f>(a,/}), CG, V&, CT.
§ 3 (introduction): Wt.
§ 3.1: real, semi-real, CGt, W^ CTit §t{q), wa.
§ 3.3: CT+, V&-+, <ey-t.

1.2 Orthogonal groups. We set down for reference some properties of ortho-
gonal groups over GF(2). Let

(1.2.1) q(a)= 2 «««<«>

be a quadratic form on T^^. The skew form

(1.2.2) Q(a, ft) = q(a + fi) + q(a) + q{fi) = £ «„(«,& + «,&)
<</

is called the polar form of q. q is said to be non-defective when Q is non-de-
generate. We assume that this is the case.

The matrices T such that q(aT') = q{a) form the orthogonal group O(q)
of q. O(q) is clearly a subgroup of Sp{Q). A necessary and sufficient condition
that TeO(q) is that the rows tlt • • •, t^ of T' satisfy the conditions:

q(ti) = <*« (* = 1, • • •, 2m), Q{tt, t,) = ait (1 ^ i < / ^ 2m).
80
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It is known that q is equivalent to one, and only one of the two canonical
quadratic forms

(1.2.3) A
q2{a) = ft(o) + «i + o|ro.

Hence 0(q) is isomorphic to one of the two groups O(q1), 0(q2). The standard
notations for these groups are 01(2w, 2), <92(2m, 2). Notice that the polar
form of each of qx, q2 is the canonical skew form

so that 01(2w, 2) and 02(2m, 2) are subgroups of Sp(f) = Sp(2m, 2).
A vector a in ir

2m is called isotropic or non-isotropic (with respect to q)
according as q(a) = 0 or 1. The transvections in 0(q) are the linear trans-
formations

(1.2.4) a-^ a + Q(a, a)a,

where a is non-isotropic.
The Dickson invariant D(T) is a certain function of the elements T of

0(q) with values in GF(2); we omit the precise definition (cf. Dieudonne" [3],
p. 62 et seq.). The T such that D(T) = 0 form a subgroup of 0(q) of index 2,
which we denote by 0+(q). If T is an orthogonal trans vection, then D(T) = 1,
so that 0(q) = 0+(q) + TO+(q).

(1.2.5) 0+(2w, 2) is the commutator group of Oi(2m, 2), except when m — 2
and i = 1. 0^4, 2)' is a subgroup of 0J"(4, 2) of index 2.

(1.2.6) Structure Theorem. If m = i = 2, or if m S; 3, 0t(2m, 2) is a »o«-
cyclic simple group.

The orthogonal groups of low dimension have the following structures.
Ox(2, 2) has order 2. 0X(4, 2) has a subgroup of index 2 (not 0}"(4, 2)),
which is isomorphic to the direct product 5 3 X 53 . 02(2, 2) ( = Sp(2, 2)),
02(4, 2), 01(6, 2) are isomorphic to 53 , S5, S8 respectively. 02(

6> 2) *s t n e

group of order 51840 associated with the lines on a cubic surface, Oj(6, 2)
its simple subgroup of order 25920.

(1.2.7) Cahit Arf's Theorem. If a1, • • •, as and fi1, • • •, y3, are too sets of
linearly independent vectors in T̂ "2m such that

a« element T of O(q) such that

ViT'^Pt (»• = 1, • •-, s).
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(1.2.8) Corollary. If a, b are non-zero vectors such that q(a) = q(b), there
exists an element T of O(q) such that aT' = b.

(1.2.9) O+(2m, 2) is an irreducible group except when m = i'• = 1.

2. The Complex Clifford Groups

2.1 CG, (S'S, CT. Let V be a 2m-dimensional complex vector space with
basis elements v^ (A e T̂ "m). Writing the elements a, /?, • • • of 1̂ "2m as pairs
of elements of fr

m:

a={alla2), /? = (blt bt), • • •
we define

(2.1.1) Wavx= ( -

Write

(2.1.2) ^ ( a , ^ ) = a 2 - 6 1 .

Then <f> is related to the canonical skew form / by:

f(a, p) = <f>(a, P) + W, a),
and therefore / is the polar form of the quadratic form <f>(a, a).

We have

(2.1.3) WaW<*= ( -

(2.1.4) [Wa, W] = (~

(2.1.5) {Wa)*= ( -

Thus, the order of Wa(a =£ 0) is 2 or 4 according as <f>(a, a) = 0 or 1.

Definition. CG(2") is the group formed by the linear transformations
XWa (X eC*,ae -r~2m), &&(2m) the subgroup formed by the linear transfor-
mations i"Wa (k = 0, 1, 2, 3; a e y*2J and CT(V») the normalizer of CG(2»)
(or «"̂ (2™)) in GL(V).

As before, 'S'S is a fully invariant subgroup of CG: X« CG satisfies
X* = I if, and only if, X e 'S^S. (Notice that the subgroup formed by the
± Wa is not fully invariant.) <$<& has order 22m+2 and exponent 4, and its
commutator group is {—/}.

Let !Q(F) denote the abstract group with generators wx, • • •, w2m, v, and
defining relations

(2.1.6) ^ ==, »* = [wt, »] = 1, [»„ w,] = »"•, (*, / = 1, • • •, 2m),

where

^(«. /») = 2 *><&
is a non-degenerate skew form on 'ir

2m. Then <€<& ^ §(•?")• To prove this,
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choose vectors alt • • •, a2m as in the corresponding proof in I, § 3.1. Let
*i» ' ' '» *2m be integers such that kt == <f>(ait a<) (mod 2). Then t*^"1 , • • •,
i**mWa%mi n satisfy the defining relations for $$(F) and generate 'ti'S, so
that %<<$ £ §(F) as required.
2.2 Theorems 1 and 2 of I carry over verbatim to the present case. Theorem
3 becomes:

THEOREM 3'. Every automorphism y> of CG which leaves the scalars fixed is a
similarity over R0(i).
2.3 The structure of CT. The results of I, § 3.3 carry over to the present case,
except that (in general) 21 is not isomorphic to ASp.

THEOREM 4. Every automorphism of CG which leaves the scalars fixed has the
form

(2.3.1) xp {XWa) = Xi"(a) WaT\

where T e Sp(f). Conversely, if T e Sp(f) there exist g(a) such that (2.3.1) is an
automorphism.

PROOF. Write W( = We< (i = 1, • • •, 2m) where et is the «-th unit vector
in ^2m- Then Wlt • • •, W2m,il satisfy the defining relations (2.1.6) for
§(/). Suppose now that y> is an automorphism of CG which leaves the scalars
fixed and let

(2.3.2) y,(Wt) = XtW** (i = 1, • • •, 2m).

Let T be the transpose of the matrix with rows tlt • • •, t2m. By (2.1.5),

and therefore, by (2.1.3), y> has the form (2.3.1). By (2.1.4), T e Sp.
Conversely, consider the equations (2.3.2) when (2.3.3) holds and T e Sp.

By (2.1.5) and (2.3.3),

and since f(e(, £,) = f{tt, ts), (2.1.4) shows that

It follows from the defining relations (2.1.6) that (2.3.2) determines a unique
endomorphism of CG of the form (2.3.1). But since T is non-singular,
(2.3.1) is clearly a one-to-one mapping of CG onto itself and, therefore an
automorphism. This completes the proof of the theorem.

COROLLARY. Let g be an arbitrary function, T an arbitrary matrix. Then
(2.3.1) is an automorphism of CG if, and only if,
(2.3.4) g(a + fi)- g(a) - g(fi) == 2(<f,(aT', fiT) + <f>(a, fl)) (mod 4)

(a, fi< *•*,).
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PROOF. The proof of the theorem shows that (2.3.1) is an automorphism
if, and only if, it has the homomorphic property

A direct calculation shows that this is equivalent to (2.3.4).

THEOREM 5. In the notation of I, theorem 4,

PCT(2m) ~ %{2m)

CT(2m)/CG(2m) ~ 2t(2m)/3(2m) ~ Sp{2m, 2).

The isomorphism 21/Q; = Sp is an easy consequence of theorem 4. The rest of
the proof is not essentially different from that of I, theorem 5.

2.4 The commutator group of CT.

THEOREM 6. The commutator group CT' has the following properties:
(i) CT' is unitary;

(ii) CT' is a group over R0(i);
(iii) CT' is finite, and has scalar subgroup {ii} except when m = 1;
(iv) P(CT') = PCT except when m = 1,2.

PROOF. The method of I, theorem 7, proves (i), (ii), (iv) and shows that
the scalar subgroup S of CT' satisfies {—/} Q S Q {ii}. It remains to prove
only that ii e CT' when m > 1.

By I, (2.2.5), we can choose S,T e Sp such that

(«i + «m+i)5' = «„ («! + et)T = em+1.

Since m ^ 2, <f>{u, u) = 1 when u = et + em+1, 0 when u — e2, em+1,
ex + e2 • Therefore, by the proof of theorem 4, we can choose X, Y c CT such
that

XWei+E"+lX-1 = iWe%, yH/«i+^»y-i __ we"+K
Then

[X, W V H W ] = i[Y, Wei+e*] ( = -iWe*+e*+e"-»),

so that ii e CT' as required.

3. The Real and Semi-Real Clifford Groups

The "real" Clifford theory of the present section arises out of the fact that
the linear transformations Wa are real. Since the "real" and "complex"
theories are very similar, we shall omit those proofs which do not differ
essentially from the corresponding ones in section 2. The main point of di-
vergence in the "real" theory is that the symplectic group Sp(2m, 2) is
replaced by the orthogonal group O1(2w, 2). The "semi-real" Clifford theory,
which we develop simultaneously with the "real" theory, is an analogous
generalization in which Sp{2m. 2) is replaced by O2(2m, 2).
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Notation. Wt = We\ where st is the i-th. unit vector in ir
2m.

3.1 The groups CG{, 'S^t, CTt. Our previous definition of a real linear
transformation X on V (I § 3.1) can be restated as follows: X is real if it
commutes with the semi-linear transformation

(3.1.1) Pi-l.^X^^hvX-
X is called semi-real if it commutes with the semi-linear transformation

(3.1.2) p, = %>xWmW2m : 2 SJLvJL - 2 ( - 1 ) A - + 1 I A " X 4 * « -

We remark that a scalar XI is semi-real if, and only if, it is real. The real
(semi-real) elements of a linear group G form a subgroup which we call the
real (semi-real) subgroup of G.

(3.1.3) Definition. The real Clifford groups CG1(2
m), 1 ^ 1 (2 m ) , CT^V*),

and semi-real Clifford groups CG2(2
m) <#&2(2

m), CT2(2
m) are the real and

semi-real subgroups of CG(2m), <ifSP(2m), CT(2m) respectively.
Thus, <e'Sx{2m) is generated by the elements Wt (i = 1, • • •, 2m), '£&2(2

m)
by the elements Wt, Wm+i, (i = 1, • • •, m—1) and iWm, iW2m • <#&< is a
fully invariant subgroup of CGf and has scalar subgroup {—/}.

Let q(a) be the non-defective quadratic form (2.3.1) on T 2̂m- Let ®(q)
denote the abstract group with generators wl,wi, • • •, wim, w and defining
relations

w2 = [w, Wt] = 1, w\ = wa"- -(1 g i ̂
( [w,., Wj] = »"« ( l g i < / ̂  2w).

Then

(3.1.5) yar, s ftfo) (,• = I , 2),

where y4, 5>2 are the canonical quadratic forms (2.3.3).
Write

wa = wa1... „ £ . ( a = ( a i ) . . % a2m) e ^ ^ ^

where wf< is interpreted as 1, w>( according as a, = 0, 1 e GF(2). Then

[wa, wa] =

where Q(a, ji) is the polar form (1.2.2) of y(a).
If q(a) and ^'(CE) =2*si««*<«y are non-defective quadratic forms on

~f~2m • then either y is equivalent to q', or q is equivalent to one of the forms
qlt q2 and q' to the other. In the first case, there exists a basis tlt • • •, t2m of
T̂ "2m such that

by (3.1.6), ze)'1, ZP'1, • • •, wttm, w satisfy the defining relations for ®(q') and
generate $t{q), so that $£(q') ~ ®(q). In the second case, ®(q') #S (? ) , for
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the equations ft (a) = 0 and qz(a) = 0 have 2">-1(2m + 1) and 21»-1(2m — 1)
solutions respectively, and therefore, by (3.1.6), ®(ft) a.nd®(q2) have differ-
ent numbers of elements of order 2.

By the same kind of argument, it is easy to prove that the equations

(3.1.7) wiwi) = vf'w'1 (i = 1, • • •, 2m)

determine an automorphism of ®(q) if, and only if,

(3.1.8) T*O(q),

where 7" is the transpose of the matrix with rows tlt • • •, t2m. Such an auto-
morphism has the form

(3.1.9) y,(wa) = w*(a)waT' (g(a) € GF(2)).

Conversely, (3.1.9) represents an automorphism of $£(q) if, and only if,

(3.1.10) g(<t + P)=g(a)+g(fi) + x(aT',fiT')+x{a,p.) (a,/* e y2m),

where

(3.1.H) *(«./*) = 2 ««/W

We remark that

X(a, a) = q(a), x{a, fi) + X(P, «) = <?(«, /*)•

3.2 The structure of CTt.
THEOREM 3*. Every automorphism y> of CG1 (CG2) which leaves the scalars

fixed has the form y>(X) = Y~YXY, where Y is a linear transformation over
RQ (a semi-real linear transformation over R0(i)).

PROOF. (Semi-real case) If Z is a linear transformation on V, we write
2 = pi-

1Zp2 = W£W-1ZWmW2m. By theorem 3', xp{X)=Y^XY
(X eCG2), where Y is a linear transformation over R0(i). Since X = X and
Y~lXY = T-1!?, TY-1 commutes with X. Therefore, by theorem 1,
TY-1 is a scalar XI. Applying ~ to the equation T = XY, we have Y = XT
= 1XY, so that IX = 1. Hence X has the form fifi*1, where /x e R0(i) (we may

take (i = i when X = — 1, p = (1 + A)-1 when X ^ — 1). Then (jx-W) =
JM~1Y' is semi-real, which gives the theorem.

THEOREM 4*. Every automorphism of CGf which leaves the scalars fixed
has the form

(3.2.1) y>(XWa) =

where T c O(qt). Conversely, if T e 0 ^ ) , there exist functions g(a) such that
(3.2.1) is an automorphism of CG( (i = 1, 2).
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THEOREM 6*. Let 91,(2™) denote the group of automorphisms of CGj(2
m)

which leave the scalars fixed, 3,- (2m) the group of inner automorphisms of CGt (2™).
Then

Cr,(2«)/CG,(2») s 2lj(2™)/&(2'») ~ O,.(2m, 2).

(* = 1. 2).

3.3 The commutator group of CTt. If XeCTf then

where T e Ofo). The X such that T e O"1"̂ ,) form a subgroup CTt of CTt of
index 2.

THEOREM 6*. The commutator group CT\ has the following properties:

(i) CT\ is unitary;
(ii) CT'X is a group over Ro, CT'2 a semi-real group over R0(i);

(iii) CT'f is finite, and has scalar subgroup {—•/}.
(iv) PiCT't) = P{CTt) except when i = I and m = 1, 2.

This theorem can be proved by the same methods as before ((i), (ii), (iii)
are almost immediate consequences of theorem 6). The exceptions in (iv)
are due to the facts that O1(2, 2) is a reducible group and that 01(4, 2)' ^
O+(4, 2).

CT\ stands in much the same relation to CTf as #3? to CG, and we shall
therefore write

<gy+ = CTit

the exceptional cases i" = 1, m = 1, 2 being excluded. We shall now prove
that the existence of a group <&& t which stands in a similar relation to CTt.

Consider the transvection

(3.3.1) (<X1( • • ' , »„„ ( V H . ' • ' . O^m)^ = («1, * ' ', «2m» «m+l. * ' *. O

on ^ m - Since ^ e O ^ ) n O(y2), we have

O(q() = 0+(qt) + TmO+(?<) (» = 1, 2).

Consider now the linear transformation

(3.3.2) Xmva ...A A , =u ( A ...A 0) + {-l)x"+1va ...A lt

on F(2"). Since

and

we have
-̂ m « CTt n CT2

and therefore
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CTt = CT++ XmC7? ( *=1 ,2 ) .
We define

(3.3.3) &y{ = <€&+ + (2-iX-m)Vf+ (» = 1, 2),

the exceptional cases being always excluded.
It is clear that <€^'i has the properties:

(i) the scalar subgroup of <€&~i is {—I);
(ii) PVft = PCT{.

We prove finally that 'fftf'\ is the only subgroup of CTt with these properties.
In fact, suppose that H C CTf satisfies (i) and (ii). By (ii), H' = CT\ and
therefore H = <&$"$ + Ytfy+, where Y = X2~\Xm. Since Y2 = A2/, we
have, by (i), X2 = ± 1 . Since XI is real or semi-real, X is real and so either
1 or — 1. Hence H = e£&~i as required.

4. The Projective Clifford Transform Groups

In the present section we prove that the projective Clifford transform
groups are not isomorphic to the corresponding affine classical groups. It is
sufficient to prove that PCG is not complemented in PCT (or in the real
and semi-real cases, that PCG (= PCGt) is not complemented in PCTt).
Certain cases of low dimension are exceptional and these are considered in
§§ 4.2, 4.3.

4.1 The general case.

THEOREM 7. (a) / / m ^ 2, PCG(2m) is not complemented in PCT(2m).
(b) If m ^ 3, PCG(2m) is not complemented in PCTt(2

m) (i = 1, 2). (c) / /
m — 3 and i = 2, or if m ^ 4 and i = 1, 2, PCG(2m) is not complemented in
PCT+(2m)

PROOF, (a) Suppose that the result were false. Then 9l(2m) would have a
subgroup H = {y>T\T e Sp}, where ipT has the form

WT{Wa) = fTmWar.

Since ysVr = Vsr.

(4.1.1) gST(a) = gT[a) + gs(aT) (a e<T2m; S,Te Sp),

and by (2.3.4),

(4.1.2) gT(a + fi)= gT(a) + gT{fi) + 2(<f>(aT', aT) + <f>(a, fl))

(Equality in (4.1.1), (4.1.2) means equality modulo 4.)
Since tn ^ 2, we can choose linearly independent vectors a, b, c, such

that /(«, b) = 1, /(«, c) = 0. Let T denote the symplectic transvection
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aT = a + /(«, a)a and write t(a) = gT(a). By (4.1.2), t(a) = t(b) +
t(a + b) + 2, and by (4.1.1) with S = T, 0 = gTt(b) = t(b) + t(a + b).
Hence

(4.1.3) t(a) = 2.

By I, (2.2.5), we can choose S e Sp such that aS' = a, cS' = a + c.
By (4.1.1) and since ST = TS, we have

<(c) + gs(cT) = gs(c) + t(cS'),

and therefore, since cT = c and c5 ' = a -f- c,

t(c) = *(a + c).

Since, by (4.1.2), *(a + c) = <(a) + t(c), we deduce that t(a) = 0. This
contradiction to (4.1.3) proves our result.

(b) We omit the proof, which closely follows that of (c).
(c) In the present proof we assume that m ^ 4; the outstanding case

m = 3, i = 2, will be dealt with in § 4.3. For a suitable choice of the quad-
ratic form q,<^'Si is isomorphic to the group $£(q) given by (3.1.4). It is
convenient to express the proof in terms of $t(q), and we shall use the nota-
tions (2.3.1), (2.3.2), (3.1.11).

Suppose that our result were false. Then the group of automorphisms of
®(q) would have a subgroup H = {y>T\T e O+(q)}, where y>T has the form

yT{wa) = whTia)war (hT(a) e GF(2)).

As in case (a),

(4.1.4) hST{a) = kT(a) + hs{aT'),

(4.1.5) kT(a + 0)= M « ) + M0) + X&T, pT) + x(a, /I).
Since m S; 3, we can choose linearly independent vectors a, b, c such that

q(a) = q(b) = 1, Q{a, b) = Q{b, c) = Q(c, a) = 0. Let T denote the
product of the (commuting) orthogonal transvections with "centres" a, b:

aT = a + Q{a, a)a + Q{a, b)b.

Writing t(a) = hT(a), we have as in case (a)

(4.1.6) *(a) = 1.

Since m ^ 4, we can choose a vector d such that a, b, c, d are linearly
independent and Q(a, d) = Q(b, d) = 0, Q(c, d) = q(c). Then a, b, d and
a, b, c -\- d are linearly independent sets such that

Q(a, d) = Q{a, c + d), Q(b, d) = Q(b, c + d),
q(c +H) ( = q(c) + Q(c, d) + q{d)) = q(d).

Therefore, by (2.3.7) we can choose S e O(q) such that aS' = a, bS' = b,
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dS' = c + d. Since the transvection with centre a leaves a, b, d fixed, we
can suppose that S e O+(q). As in part (a), we deduce that t{d) — t(c + d)
and thence that t(c) = 0. Similarly, t(a + c) = 0 and therefore, by (4.1.5),
t(a) = t(c) + t(a+ c) = 0. This contradiction to (4.1.6) completes the
proof.

4.2 The exceptional cases. When considering the groups CTt we shall replace
#3?, by the isomorphic abstract group S(y), where q = q(a) is a conveniently
chosen quadratic form equivalent to q( (a). 91 denotes the group of automorph-
isms, 3 the group of inner automorphisms, of &(q). (?(«, ji) is the polar form
of q(a). Ta denotes the orthogonal transvection with centre a:

aT'a = a + Q(a,a)a (q(a)^0).
Notice that

TaTb = TbTa ifQ(a,b) = 0,

TaTb = Ta+bTa ifQ(a,b) = l.

We require several preliminary results.

LEMMA 1. The generators Vx, • • •, Vn_% and relations

(4.2.1) V* = (VtV^ = 1 (»•#/)

define the alternating group >An. (Coxeter and Moser [2], p. 67).

Suppose now that a, b, c, are linearly independent vectors such that

(4.2.2) q(a) = q(b) = q(c) = Q(a, b) = Q(b, c) = Q(c, a) = 1.

Consider the elements

S = TcTa, T = TbTa

of O+(q). Then ST = TcTa+b and
S3 = T3 = {ST)2 = / ,

so that {5, 1} ~ At.

LEMMA 2. Let

ft« automorphisms of ®(q) corresponding to S, T. Then {ys, ipT} ^ At if, and
only if,

(4.2.3) g(a) = 0 when Q{a, a) = Q{a, c) = 0;

(4.2.4) • h(a) = 0 when Q{a, a) = ^(« , 6) = 0;

(4.2.5) g(a + c)+ X(c, a) = h(a + b) + x(b, a),

where x(a> P) *'* ̂  bilinear form (3.1.11).

PROOF. By direct computation, we find that y>% = y>%. =
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and

(4.2.

(4.2.

only

6)

7)

if,

£ ( « ) -

h(a) -

\- g(aS') H

1- MaV) -

r g(«5'2)

f h(aT'2)

= 0;

= 0;

(4.2.8) k(a) + k{aT'S') = 0,

where k(a) = h(a) + g(aT'). It is in fact sufficient that each of these con-
ditions should hold for a set of vectors which span ir

2m • F ° r then each of
y>%, tp% and (IPSVT)2 leaves a set of generators of $£(q) fixed and so is the
identity.

Suppose first that (4.2.6) —(4.2.8) hold. With a as in (4.2.3), we have
« = aS' = aS'2, so that, by (4.2.6), 3g(a) = 0; hence (4.2.3) holds. (4.2.4)
is proved similarly. To prove (4.2.5), we choose /3 such that Q{fi,a) = •
<?(/*. *) = <?(/*. c) = 1. By (4.2.8), we have

(4.2.9) h(fi) + h(ji + c)= g(0 + a) + g{fl + c).

By (4.2.4), h(a + b + c) = 0. Adding h( a + b + c) to the left hand side
of (4.2.9) and then simplifying both sides with the help of (3.1.11), we get
the required formula (4.2.5).

Conversely, let the conditions of the lemma hold. When a = a or c,
(4.2.6) becomes g{a) + g(c) + g(a + c) = 0, which is a consequence of
(3.1.11). When^(a, a) — Q(a, c) = 0, (4.2.6) follows from (4.2.3). Similarly,
(4.2.7) holds when a = a or b and when Q(a, a) = Q(a, b) — 0. (4.2.8)
obviously holds when aT'S' = a, i.e. when Q(a, c) = Q(a, a + b) = 0.
When Q(a, a) = Q(a, b) = Q(a, c) = 1, (4.2.8) holds by the considerations
of the previous paragraph. When a = a, (4.2.8) becomes A(a) + h(b + c)
= g(c) + g(a + b); by (3.1.11), this reduces to h(a + b + c) =
g(a + b + c), of which both sides are zero by (4.2.3) and (4.2.4). We have
now verified that each of (4.2.6), (4.2.7) and (4.2.8) holds for a set of vectors
which span T 2̂m. s 0 that y>% = y% = (y>sy>T)z = 1 as required.

LEMMA 3. Suppose that ®(q) is identified with <€(Si {according to some fixed
isomorphism) and that Xs, XT are elements of CTt such that

XTwaXr1 = y>T{wa).

Then {Xs.X^^A^

PROOF, W", wb, wc are elements ± W, ± Wy, ± Ww of CG such that
u, v, w are linearly independent and f(u, v) = f(v, w) = f(w, u) = 1. By
I, (2.2.5), we may suppose (after transforming by a suitable element of CT)
that u = em, v ~ e2m, w = em_1 + em + e2m.We may clearly also suppose
that {rps, %pT) ~ At. Then, by lemma 2 ((4.2.3) and (4.2.4)), Xs and XT
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commute with each element of CG which commutes with W", Wy, Ww—in
particular, with each element Wt = We'(i = 1, •••,»» — 1).

Let Mtf\ Ml'i be the eigenspaces of Wt corresponding to the eigenvalues
1, —1 respectively. Each of the 2m~1 intersections

»!• • t i» - l *1 . *« *l»-l

is invariant under the group G = {Xs, XT}, and since

Mt ... i = {Vu ... i n\,V({ ... i , , } ,

V is the direct sum
V= I Ml V. . ,w

<i . - - . '» i - i

It follows that each irreducible component of G has degree £S 2. On the other
hand, every faithful representation of At has an irreducible component of
degree 3. Hence G ^ At.

5.4 The exceptional cases (cont.). We now consider the exceptional groups in
turn.

(i) CT2(2). "g7^ is a quaternion group of order 8 and 02(2, 2) ~ 53. It
is well known that 91 ~ S4 and that $ (which corresponds to the normal sub-
group of S4 of order 4) is complemented in 91. It can be shown that CG is
complemented in C*(CT2) (though <i>'&2 is not complemented in ^^"5.).

(ii) CT{2), CT1(2). These groups do not require separate consideration
for PCTt C PCT = PCT2.

(in) C2"1(4). Since <€'&x(±) is isomorphic to the direct product of two copies
of ^^2(2) with the central elements identified, it is clear from case (i) that
^ ^ ( 4 ) has a group H of outer automorphisms of order 2(3!)2 = 72. Since
the order of O1(4, 2) is 72, H is a complement of $ in 91. It can be shown that
CG is complemented in C*(CT1).

In the cases which follow, we shall write ijk • • • for c4 + «y + c t + • " *
and correspondingly Tu... for 7"e<+e/+... (where the e's are the unit vectors
in TT2J.

(iv) Cra(4). In this case, O2(4, 2) £ S6, O2(4, 2) ~ A6. We may take
q(a) — qt(a) = a ^ + <x% + «2a« + «!•

The linear transformations

V\ = TtT2, V2 = T12iT2, V3 = T23lT2,

belong to 0+(q) and satisfy the defining relations (4.2.1) for As; for, if a, /?
are any two of the vectors 2, 4, 124, 234, then q(a) = Q(a, p) = 1. Let

V»4 : t»a -+ z^'(a) te;aK'« (» = 1, 2, 3)

be corresponding automorphisms of ft(q), and write git = g<(Cy). By lemma 2,
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the relations

V? = to)2 = 1 (**/)
impose 8 independent linear conditions on the 12 available parameters giS.
Hence there are 212~8 = 2* complements of PCG in PCT+.

Let G be one of these complements, N the normalizer of G in PCT2. Since
O+(q) acts irreducibly on ir

i, N n PCG = 1. On the other hand, since the
total number of complements is less than the index, 25, of G in PCT2, G is
a proper subgroup of N. It follows that N is a complement of PCG in PCT2.
Clearly, there are 2* complements of PCG in PCT2 and any two are con-
jugate in PCT2. PCT2 is isomorphic to the group of orthogonal affine trans-
formations a -> aT' -\- t (T e 02(4, 2), t e T^~t). By lemma 3, CG is not com-
plemented in C*(CT+).
(v) Cr(4)'. In this case, Sp(4, 2) s S6, S£(4, 2)' ~ 4 , . Although PCG
is not complemented in PCT (theorem 7), we shall prove that it is comple-
mented in P(CT').

Since any two of the vectors 1, 3, 123, 134, 1234 satisfy f(a, ji) = 1, the
elements

Vi — T3Tlt V2 = T123Tlt V3 = TXZiTlt Vt = 7*12347\

of Sp' satisfy the defining relations (4.2.1) for A6. (For the present case Ta

denotes the symplectic transvection aT'a = a -\- f(a, a)a.)
Let

y>t : W
a -> i^a) Wav'< (i = 1, 2, 3, 4)

be corresponding automorphisms of c&'&. Let ku be fixed integers such that
ktj= <f>(esV'it e^) (mod 2). By (2.3.4), g((e,) has the form ki} + 2gif. By a
slight modification of lemma 2, the relations

impose 11 independent linear conditions on the 16 available parameters
gu, so that there are 2s complements of PCG in P(CT). Hence P(CT) is
isomorphic to the group of affine transformations a -> a!T' + t (T e Sp' (4, 2),
t e y 4 ) . By the argument of the previous case (and since PCG is not com-
plemented in PCT) any two complements of PCG in P(CT') are conjugate
in PCT. By the argument of lemma 3, CG is not complemented in CT'.
(vi) C7\(8). In this case, 0^6, 2) ~ S8, 0:f(6, 2) ~ AB. We may take
?(«) = ?l(«) = *la4 + «2«5 + «3*6-

If a, (I are any two of the vectors 14, 125, 1236, 1356, 346, 2345, 2456,
then q(a) = Q(a, /?) = 1. Arguing as in case (iv), we conclude that there are
27 complements of PCG in PCTf and that any two are conjugate in PCT1.
PCT^ is isomorphic to the group of affine transformations a -*• aT' -f- t
{T e O+(6, 2), teTT,). CG is not complemented in C*(CTf).
(vii) CT2(8). In this case, 02(6, 2) is the cubic surface group of order
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51840, 0£(6, 2) its simple subgroup of order 25920. We may take q(a) =
2<=i (ai<-i + a2i-ia2< + a D - I* is required to prove that PCG is not com-
plemented in PCT% (see theorem 7, part (c)).

The orthogonal transvections

Ri = Tu, R2—Tlt R3 = 7\23456, Rt = T5, R5 = T5e, R6 = T3,

satisfy the defining relations for the cubic surface group given in Coxeter and
Moser [2], p. 122. Therefore the elements

"o — " '123456 •* 3 = •» 12456 •» 123456 >

Pi=TiT123iM (i = 1, 2, 5, 6),

generate O+(q). Suppose now, contrary to theorem 7, that PCG is comple-
mented in PCT%. Since

Pl^P*^ (P0P{)* = 1 (* = 1, 2, 5, 6),
it is possible to choose automorphisms

y>t : wa -> Z0«<(a) wapt' (i = 0, 1, 2, 5, 6)
so that

Vl = V? = ( W , ) 2 = 1 ( * = 1 , 2 , 5 , 6 ) .

By lemma 2, these relations impose 24 independent linear conditions on the
30 available parameters g^Ej), and therefore there are at most 26 comple-
ments of PCG in PCT%. Let G be one of these complements, N the normalizer
of G in PCT%. Since the index, 27, of G in PCT2 exceeds the total number of
complements, G is a proper subgroup of N. On the other hand, since O+(q)
acts irreducibly on 'f^.N n PCG = 1. It follows that N is a complement of
PCG in PCT2, contrary to theorem 7, part (b). This contradiction proves
our result.

5. The Elements of the Clifford Transform Groups

We shall determine an element X of CT which induces the automorphism
(2.3.1) of CG. If

then

(5.2) xwa = ;«<«> waT'x,
so that

(X, ft e "r m; (a1( a2) e r2m, (al t B2)T — (AltA2)).

Let 1 "̂T denote the subspace of "T2m formed by all vectors (a2, A2), where
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(a1( a2) runs over V2 m, By the argument of I. § 4.1, the solution of (5.3) is
unique apart from a scalar multiplier. The form of (5.3) now shows that there
is a fixed coset

(5.4) TTT>, = (4

of V r such that 1 ^ ^ = 0 unless (X, /*) e i^T.a- Therefore, apart from an
arbitrary scalar multiplier, we have

fa,^ = 0 when (A, f*)^WTtB.

Our argument shows that the first line of (5.5) depends only on (a2, A2),
and not directly on (ax, a2). It is easy to verify this independently.

It remains to determine the coset Wr.g- Let ^ r \denote the subspace of
y"2m formed by the vectors (a, 0) such that (a, 0)7'' has the form (A, 0).
Then, by (2.3.4),

(5.6) g(a) = 2h(a) (a**,),

where h(a) is a certain linear form on %T. Since the first line of (5.5) is
unaltered when we replace (ax, a2) by (ax + a, a2), it follows that each ele-
ment (Ao, /40) of i(r

Ti „ is a solution of the system of linear equations

(5.7) a • Ao - A • ft0 = h{P) Q3 = (a, 0) e * r ) .

It is clear that the rank of the system (5.7) is the dimension of °UT. On the
other hand, since %T is the kernel of the linear mapping (a1, a2) ->- (a2, A2)
of T̂ "2m onto VT, we have dim T^y + dim <^T = 2m. Therefore "WT.S *S

precisely the set of solutions of (5.7).

Arguing as in I § 4.1, we see that the matrix (^x,/*) ^ a s 2 r elements in
each row and column, where m + dT is the dimension of y T . Hence, by
theorem 2, if X is the linear transformation (5.5) we have

(5.8) X*X = 2*TI.

We now determine the elements of CT', ^^x and #.?Y
(i) CT[2m)'. We prove that, if T e Sp{2m, 2)', then

(5.9) (1 + iy*TX c CT.

Since the scalar subgroup of CT' is {*'/}, it is sufficient to prove that if
X-*X e CT' then X has the form i'{\ + ifT. Now det X^X = 1, and by
theorem 6, X e R0(i). Thus £ = PX*", where £ = det X. By (5.8), f# = 2d r 2".
From these two formulae it follows that X is an algebraic integer of R0(i) such
that Xl = 2dT. Since the principal ideal (2) of R0(i) is the square of the
prime ideal ((1 + i)), and since the units of R0(i) are the powers of i, X
has the required form i'(l + ifT.
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(ii) < ^ 1 ( 2 m ) . We prove that, if T e Ox{2m, 2) (m ^ 3), then

(5.10) 2-^J^Jj.

In fact, let k~xX e <€3~i, it is required to prove that k = ±2*"r. Since
reO1(2m, 2), 4>{aT, aT) + <f>(a, a) = 0. Hence, by (2.3.4), g(a) = 0
(mod 2) for all a. By (5.5), X is real. Since k~*X is real, A is also real. By
§ 3.3, det k~xX = ± 1 . Arguing as in the previous case, we get k = ;£2*dr
as required.

Comparing (5.10) with theorem 6* and (3.3.3), we get the (well known)
result that T e O\(2m, 2) if, and only if, dT is even.

(iii) cS^'2{2m). Let e denote the primitive eighth root of unity 2~*(1 -f- i).
We prove that, if T e O2(2m, 2), then there exist vectors s, t such that

(5-11) (s,eJT'=(t,em),

and that

(5.12) e*2-idrXe^Jr
2,

where

(5.13) k = g{(s, ej) + 2((s + em) • Ao + (t + ej • Mo) (mod 4).

In fact, let k~xX e ̂ ^^ Since k~*X commutes with the semi-linear trans-
formation (3.1.2), we have

and therefore, by (5.5), (em, em) e yT. Hence it is possible to choose s, t
so that (5.11) holds.

We remark that, by (2.3.4) with a = /? = (s, ej,

(5.15) g((s, e j ) = em-(s + t) (mod 2).

By (5.15) and (5.14) with (A, p) = (Ao, j*0), we have kk~x = *-*, where k
satisfies (5.13). Hence A = s~k/u, where /LI is real. Arguing as in the previous
case, we now deduce that /u = ± 2 * ^ which proves (5.12).

Comparing (5.12) with theorem 6 and (3.3.3), and using (5.15), we deduce
that T e Ot{2m, 2) if, and only if, dT + em • (s + t) is even.

References

[1] Bolt, Beverley, Room, T. G. and Wall, G. E., On the Clifford collineation, transform and
similarity groups. This Journal 2 (1960).

[2] Coxeter, H. S. M. and Moser, L., Generators and Relations for discrete Groups (Springer,
1957).

[3] Dieudonne, J., La Giomitrie des Groupes classiques (Springer, 1955).

University of Sydney.

https://doi.org/10.1017/S1446788700026380 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026380

