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1. Introduction

For any ξ ∈ Rn and a positive definite matrix A ∈ Rn×n, let |ξ|A :=
√〈Aξ, ξ〉,

where 〈·, ·〉 denotes the Euclidean inner product on Rn. Consider a second order
half-linear operator of the form

Qp,A,V (u) := −div
(
|∇u|p−2

A A∇u
)

+ V |u|p−2u

defined in a domain Ω ⊂ Rn, n � 2, and assume that the equation Qp,A,V (u) = 0
admits a positive solution in Ω. We are interested to find an optimal weight func-
tion W � 0 (see definition 2.29) such that the equation Qp,A,V −W (u) = 0 admits
a positive solution in Ω. Equivalently [19, theorem 4.3], we are interested to find
an optimal weight function W � 0 such that the following Hardy-type inequality is
satisfied: ∫

Ω

(|∇φ|pA + V |φ|p) dx �
∫

Ω

W |φ|p dx ∀φ ∈ C∞
0 (Ω). (1.1)

In some definite sense, an optimal weight W � 0 is ‘as large as possible’ nonnegative
function such that (1.1) is satisfied for all nonnegative φ ∈ C∞

0 (Ω).
The search for Hardy-type inequalities with optimal weight function W was orig-

inally proposed by Agmon, who raised this problem in connection with his theory of
exponential decay of Schrödinger eigenfunctions [1, p. 6]. In the past four decades,
the problem of improving Hardy-type inequalities has engaged many authors. In
particular, Hardy-type inequalities were established for a vast class of operators
(e.g., elliptic operators, Schrödinger operators on graphs, fractional differential
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equations) with different types of boundary conditions, see [2–4, 6, 8–10, 14, 22].
In [9], Devyver and Pinchover studied the problem of optimal weights for the
operator Qp,A,V . However, they managed to find optimal weights only in the case
where A is the identity matrix and V = 0. They proved (under certain assumptions)
that the p-Laplace operator, −div(|∇u|p−2∇u), admits an optimal Hardy-weight.
More specifically, it is proved that if 1 < p � n, then W = (p−1

p )p
∣∣∇G

G

∣∣p an opti-
mal Hardy-weight, where G is the associated positive minimal Green function with
singularity at 0. For p > n, several cases should be considered, depending on the
behaviour of a positive p-harmonic function with singularity at 0.

In the present paper we make a nontrivial progress towards the study of (1.1) in
the case where A is not necessarily the identity matrix, and V is a slowly growing
potential function. Our main result reads as follows.

Theorem 1.1. Let Ω ⊂ Rn, n � 2, be a domain and x0 ∈ Ω. Let Qp,A,V be a sub-
critical operator in Ω satisfying assumptions 2.8 in Ω. Suppose that Qp,A,V admits
a (nonnegative) Green potential, Gϕ(x), in Ω (see definition 2.22) satisfying

lim
x→∞

Gϕ(x) = 0;
∫

Ω

V Gϕ(x)p−1 dx < 0;
∫

Ω

|V |Gϕ(x)p−1 dx <∞,

where ∞ denotes the ideal point in the one-point compactification of Ω. Then
the operator Qp,A,V/cp

admits an optimal Hardy-weight in Ω, where cp = (p/
(p− 1))p−1.

As a corollary of the proof of theorem 1.1 we obtain the following result.

Corollary 1.2. Let Ω ⊂ Rn, n � 2, be a domain and x0 ∈ K � Ω. Let Qp,A,V be
a subcritical operator in Ω satisfying assumptions 2.8 with V � 0 in Ω. Suppose that
Qp,A,V admits a positive minimal Green function G(x) in Ω \ {x0} (see definition
2.22) satisfying

lim
x→∞

G(x) = 0, and
∫

Ω\K

|V ||G(x)|p−1 dx <∞, (1.2)

where ∞ denotes the ideal point in the one-point compactification of Ω. Then
the operator Qp,A,V/cp

admits an optimal Hardy-weight in Ω, where cp = (p/
(p− 1))p−1.

The paper is organized as follows. In § 2, we introduce the necessary notation and
recall some previously obtained results needed in the present paper. We proceed in
§ 3, with proving essential results needed for the proof of theorem 1.1, and then we
prove theorem 1.1 and corollary 1.2.

2. Preliminaries

Let Ω ⊂ Rn be a domain, and let 1 < p <∞. Throughout the paper we use the
following notation and conventions:

• For any R > 0 and x ∈ Rn, we denote by BR(x) the open ball of radius
R centred at x, and B+

R(0) = {x ∈ BR(0) : xn > 0}.
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• We write Ω1 � Ω2 if Ω2 is open in Ω, the set Ω1 is compact, and Ω1 ⊂ Ω2.

• C refers to a positive constant which may vary from line to line.

• Let g1, g2 be two positive functions defined in Ω. We use the notation g1 	 g2
in Ω if there exists a positive constant C such that

C−1g2(x) � g1(x) � Cg2(x) for all x ∈ Ω.

• Let g1, g2 be two positive functions defined in Ω, and let x0 ∈ Ω. We use the
notation g1 ∼ g2 near x0 if there exists a positive constant C such that

lim
x→x0

g1(x)
g2(x)

= C.

• The gradient of a function f will be denoted by ∇f .

• χB denotes the characteristic function of a set B ⊂ Rn.

• For any 1 � p � ∞, p′ is the Hölder conjugate exponent of p satisfying p′ = p/
(p− 1).

• For 1 � p < n, p∗ := np/(n− p) is its Sobolev critical exponent.

• For a real valued function W , we write W � 0 in Ω if W � 0 in Ω and
sup
Ω
W > 0.

• For a symmetric positive definite A ∈ L∞
loc(Ω, Rn×n), we denote Δp,A(u) :=

div(|∇u|p−2
A A∇u) is the (p, A)-Laplace operator.

• For a real valued function u and 1 < p <∞, Ip(u) := |u|p−2u.

• ∞ denotes the ideal point in the one-point compactification of Ω.

• R+ denotes the interval (0, ∞).

• dΩ = dist(·, ∂Ω) : Ω → (0, ∞) is the distance function to ∂Ω.

• diam(Ω) denotes the diameter of Ω.

• supp(u) denotes the support of the function u.

• Hl, 1 � l � n, denotes the l-dimensional Hausdorff measure on Rn.

2.1. Gauss–Green formula

We continue with several definitions and results concerning the Gauss–Green
theorem [7].

Definition 2.1. Let D ⊂ Rn be an open set.

(i) We denote by M(D) the space of all signed Radon measures μ on D such
that

∫
D

d|μ| <∞.
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(ii) A vector field F ∈ L∞(D, Rn) is called a divergence measure field, written as
F ∈ DM∞(D), if div(F ) = μ ∈ M(D), i.e., there exists μ ∈ M(D) such that∫

D

φdμ = −
∫

D

∇φ · F dx ∀φ ∈ C∞
0 (D).

(iii) We say that a vector field F ∈ L∞
loc(D, Rn) belongs to DM∞

loc(D) if for any
open subset E � D, we have F ∈ DM∞(E).

Definition 2.2 cf. [7. and [11, section 5] ] Let D ⊂ Rn be an open set. A function
f ∈ L1(D) has a bounded variation in D if

sup
{∫

D

f div(φ) dx : φ ∈ C1
0 (D,Rn), |φ| � 1

}
<∞.

Denote by BV(D) the space of all functions f ∈ L1(D) having bounded variation.

Definition 2.3. Let D ⊂ Rn be an open set. A measurable subset E ⊂ Rn is said
to be a set of finite perimeter in D if χE ∈ BV(D).

Proposition 2.4 [11, theorem 5.9, p. 212]. Let E � Rn and let 0 � f ∈ BV(E) ∩
C1(E). Then, for a.e. t ∈ [0, ∞) the set {x ∈ E : f(x) > t} has finite perimeter. In
particular, for a.e. 0 � t1 < t2 the set {x ∈ E : t1 < f(x) < t2} has finite perimeter.

We proceed with the following Gauss–Green theorem of divergence measure fields
over sets of finite perimeter (see [7, theorems 5.2 and 7.2] and [9, proposition 3.1]).

Lemma 2.5. Let D ⊂ Rn be an open set. Suppose that F ∈ DM∞
loc(D) with

div(F ) = μ ∈ M(D). Let E � D be a set of finite perimeter satisfying

• ∂E = (
⋃

k∈N

Dk) ∪N,

• for each k ∈ N, Dk is (n− 1)- dimensional C1 surface, and Hn−1(N) = 0.

Then, ∫
E

div(F ) dx =
∫

∂E

F · �n dHn−1,

where �n is a classical outer unit normal to ∂E which is defined Hn−1-a.e. on ∂E.

2.2. Local Morrey spaces

In the present subsection we introduce a certain class of Morrey spaces that
depend on the index p, where 1 < p <∞.

Definition 2.6. Let q ∈ [1, ∞] and ω � Rn. For a measurable, real valued function
f defined in ω, we set

‖f‖Mq(ω) := sup
y∈ω

r<diam(ω)

1
rn/q′

∫
ω∩Br(y)

|f |dx.

We write f ∈Mq
loc(Ω) if for any ω � Ω we have ‖f‖Mq(ω) <∞.
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Next, we define a special local Morrey space Mq
loc(p; Ω) which depends on the

values of the exponent p.

Definition 2.7. For p �= n, we define

Mq
loc(p; Ω) :=

{
Mq

loc(Ω) with q > n/p if p < n

L1
loc(Ω) if p > n,

while for p = n, f ∈Mq
loc(n; Ω) means that for some q > n and any ω � Ω we have

‖f‖Mq
n;ω

:= sup
y∈ω

r<diam(ω)

ϕq(r)
∫

ω∩Br(y)

|f |dx <∞,

where ϕq(r) := log(diam(ω)/r)q/n′
and 0 < r < diam(ω).

For the regularity theory of equations with coefficients in Morrey spaces we refer
the reader to [18, 19].

We associate to any domain Ω ⊂ Rn an exhaustion, i.e. a sequence of smooth,
precompact domains {Ωj}∞j=1 such that Ω1 �= ∅, Ωj � Ωj+1 and

⋃∞
j=1 Ωj = Ω.

2.3. Criticality theory for Qp,A,V

Let 1 < p <∞, and consider the operator

Qp,A,V (u) := −Δp,A(u) + V Ip(u), (2.1)

defined on a domain Ω ⊂ Rn, n � 2, where Δp,A := div(|∇u|p−2
A A∇u) and Ip(u) :=

|u|p−2u. Unless otherwise stated, we always assume that the matrix A and the
potential function V satisfy the following regularity assumptions:

Assumption 2.8.

• A(x) = (aij(x))n
i,j=1 ∈ Cα

loc(Ω, Rn2
) is a symmetric positive definite matrix

which is locally uniformly elliptic, that is, for any compact K � Ω there exists
ΘK > 0 such that

Θ−1
K

n∑
i=1

ξ2i �
n∑

i,j=1

aij(x)ξiξj � ΘK

n∑
i=1

ξ2i ∀ξ ∈ Rn and ∀x ∈ K.

• V ∈Mq
loc(p; Ω) is a real valued function.

The associated energy functional for the operator Qp,A,V in Ω is defined by

QΩ
p,A,V (φ) :=

∫
Ω

(|∇φ|pA + V |φ|p) dx φ ∈ C∞
0 (Ω).

Definition 2.9. We say that u ∈W 1,p
loc (Ω) is a (weak) solution (resp. supersolution)

of Qp,A,V (u) = 0 in Ω if for any φ ∈ C∞
0 (Ω) (resp. 0 � φ ∈ C∞

0 (Ω))∫
Ω

|∇u|p−2
A A∇u · ∇φdx+

∫
Ω

V |u|p−2uφ dx = 0 (resp. � 0).
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It should be noted that the above definition makes sense due to the following
Morrey–Adams theorem (see, e.g., [19, theorem 2.4] and references therein).

Theorem 2.10 Morrey–Adams theorem. Let ω � Rn and V ∈Mq(p;ω).

(i) There exists a constant C = C(n, p, q) > 0 such that for any δ > 0∫
ω

|V ||u|p dx � δ‖∇u‖p
Lp(ω,Rn) +

C

δn/(pq−n)
‖V ‖pq/(pq−n)

Mq(p;ω) ‖u‖p
Lp(ω) ∀u ∈W 1,p

0 (ω).

(ii) For any ω′ � ω with Lipschitz boundary, there exists a positive constant C =
C(n, p, q, ω′, ω, δ, ‖V ‖Mq(p;ω)) and δ0 such that for 0 < δ � δ0∫

ω′
|V ||u|p dx � δ‖∇u‖p

Lp(ω′,Rn) + C‖u‖p
Lp(ω′) ∀u ∈W 1,p(ω′).

We denote the set of all positive solutions (resp., supersolutions) of Qp,A,V (u) = 0
in Ω by CQp,A,V (Ω) (resp., KQp,A,V (Ω)). We say that the operator Qp,A,V is
nonnegative (in short Qp,A,V � 0) in Ω if CQp,A,V �= ∅.

Remark 2.11. A weak (super)solution of the equation −Δp,A(u) = 0 in Ω is said
to be a (p, A)-(super)harmonic function in Ω.

It is well known that under assumptions 2.8 any positive solution of the equation
Qp,A,V (u) = 0 in Ω belongs to C1,α(Ω) (see, e.g. [19, remark 1.1]). Furthermore,
the following Harnack convergence principle holds true.

Proposition 2.12 Harnack convergence principle [13, proposition 2.7]. Let
{Ωk}k∈N be an exhaustion of Ω. Assume that {Ak}k∈N is a sequence of symmet-
ric and locally uniformly positive definite matrices such that the local ellipticity
constants do not depend on k, and {Ak}k∈N ⊂ L∞

loc(Ωk, Rn2
) converges weakly

in L∞
loc(Ω, Rn2

) to a matrix A ∈ L∞
loc(Ω, Rn2

). Assume further that {Vk}k∈N ⊂
Mq

loc(p; Ωk) converges weakly in Mq
loc(p; Ω) to V ∈Mq

loc(p; Ω). For each k, let vk

be a positive solution of the equation Qp,Ak,Vk
(u) = 0 in Ωk such that vk(x0) = 1,

where x0 is a fixed reference point in Ω1. Then there exists 0 < β < 1 such that, up
to a subsequence, {vk}k∈N converges weakly in W 1,p

loc (Ω) and in Cβ
loc(Ω) to a positive

weak solution v of the equation Qp,A,V (u) = 0 in Ω.

Definition 2.13. Let Ω ⊂ Rn be a bounded Lipschitz domain. A principal eigen-
value of Qp,A,V in Ω is an eigenvalue λ of the problem{

Qp,A,V (u) = λ|u|p−2u in Ω,
u = 0 on ∂Ω,

with a nonzero nonnegative u which is called a principal eigenfunction.

Proposition 2.14 [19, theorem 3.9]. Let Ω ⊂ Rn be a bounded Lipschitz domain,
and assume that A is a uniformly elliptic, bounded matrix in Ω, and V ∈Mq(p; Ω).
Then, the operator Qp,A,V admits a unique principal eigenvalue λ1(Ω). Moreover,
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λ1 is simple and its principal eigenfunction is the minimizer of the Rayleigh–Ritz
variational problem

λ1(Ω) = min
u∈W 1,p

0 \{0}

QΩ
p,A,V (u)

‖u‖p
Lp(Ω)

.

The following well-known Allegretto–Piepenbrink theorem (in short, the AP
theorem) connects between the nonnegativity of Qp,A,V and the nonnegativity of
its associated energy functional QΩ

p,A,V [19, theorem 4.3].

Theorem 2.15 AP theorem. The following assertions are equivalent.

(i) QΩ
p,A,V (φ) � 0 for all φ ∈ C∞

0 (Ω).

(ii) CQp,A,V (Ω) �= ∅.
(iii) KQp,A,V (Ω) �= ∅.

Definition 2.16. Assume that Qp,A,V � 0 in Ω. We say that Qp,A,V is subcritical
in Ω if there exists 0 � W ∈Mq

loc(p; Ω) such that Qp,A,V −W � 0 in Ω. We say that
Qp,A,V is critical in Ω if for all 0 � W ∈Mq

loc(p; Ω) the equation Qp,A,V −W (u) = 0
does not admit a positive solution in Ω.

Definition 2.17. Let ω be a bounded Lipschitz domain. We say that Qp,A,V satis-
fies the (generalized) weak maximum principle in ω if for any u ∈W 1,p(ω) satisfying
Qp,A,V (u) � 0 in ω and u � 0 on ∂ω, we have u � 0 in ω.

We say that Qp,A,V satisfies the strong maximum principle in ω if for any u ∈
W 1,p(ω) satisfying Qp,A,V (u) � 0 in ω and u � 0 on ∂ω, either u = 0, or u > 0
in ω.

Lemma 2.18 [19, theorem 3.10]. Let Ω be a bounded Lipschitz domain, and assume
that A is a uniformly elliptic, bounded matrix in Ω, and V ∈Mq(p; Ω). Then the
following assertions are equivalent.

(i) Qp,A,V satisfies the (generalized) weak maximum principle in Ω.

(ii) Qp,A,V satisfies the strong maximum principle in Ω.

(iii) The equation Qp,A,V (u) = 0 admits a positive supersolution in W 1,p
0 (Ω) which

is not a solution.

(iv) The equation Qp,A,V (u) = 0 admits a positive supersolution in W 1,p(Ω) which
is not a solution.

(v) λ1(Ω) > 0.

(vi) For any 0 � g ∈ Lp′
(Ω), there exists a unique nonnegative solution in

W 1,p
0 (Ω) of Qp,A,V (u) = g.

Corollary 2.19. If there exists a weak positive (super)solution of Qp,A,V (u) = 0
in a domain Ω ⊂ Rn, then λ1(Ω′) > 0 for any bounded Lipschitz subdomain Ω′ � Ω.
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Definition 2.20. Let K0 be a compact subset of Ω. A positive solution u of
Qp,A,V (u) = 0 in Ω \K0 is said to be a positive solution of minimal growth in
a neighbourhood of infinity in Ω, and denoted by u ∈ MGA,V,Ω;K0 , if for any
smooth compact subset K of Ω with K0 � int(K), and any positive supersolution
v ∈ C(Ω \K) of Qp,A,V (w) = 0 in Ω \K, we have

u � v on ∂K =⇒ u � v in Ω \K.

If u ∈ MGA,V,Ω;∅, then u is called an Agmon ground state of Qp,A,V in Ω.

Lemma 2.21 [13, proposition 3.17]. Let V ∈Mq
loc(p; Ω), and suppose that Qp,A,V �

0 in Ω. Then for any x0 ∈ Ω the equation Qp,A,V (w) = 0 admits a unique (up to a
multiplicative constant) solution u ∈ MGA,V,Ω;{x0}.

Definition 2.22. A function u ∈ MGA,V,Ω;{x0} having a nonremovable singularity
at x0 is called a minimal positive Green function of Qp,A,V in Ω with singularity at
x0. We denote such a function by GΩ

Qp,A,V
(x, x0).

Lemma 2.23 [19, theorem 5.9]. Suppose that Qp,A,V � 0 in Ω. Then Qp,A,V is
critical in Ω if and only if the equation Qp,A,V = 0 admits a ground state in Ω.

Definition 2.24. A sequence {φk}k∈N ⊂ C∞
0 (Ω) is called a null-sequence with

respect to a nonnegative operator Qp,A,V in Ω if

(i) φk � 0 for all k ∈ N,

(ii) there exists a fixed open set B � Ω such that ‖φk‖Lp(B) 	 1 for all k ∈ N,

(iii) lim
k→∞

QΩ
p,A,V (φk) = 0.

Lemma 2.25 [19, theorem 4.15]. A nonnegative operator Qp,A,V is critical in Ω if
and only if Qp,A,V admits a null-sequence in Ω.

The next lemma shows that the energy functional QΩ
p,A,V is equivalent to a sim-

plified energy that does not explicitly depend on V and contains only nonnegative
terms.

Lemma 2.26 [20, lemma 3.4]. Let v ∈ CQp,A,V (Ω). Then, for any 0 � u ∈W 1,p
loc (Ω)

having compact support in Ω, and such that w := u/v ∈ L∞
loc(Ω), we have

QΩ
p,A,V (u) 	 QΩ

sim,p,A,V (w) :=
∫

Ω

v2|∇w|2A (w|∇v|A + v|∇w|A)p−2 dx. (2.2)

Remark 2.27. Lemma 2.26 is proved in [20] for the case V ∈ L∞
loc(Ω). However,

the proof is purely algebraic and therefore, holds for V ∈Mq
loc(p; Ω) as well.
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As a corollary of (2.2) and Hölder’s inequality we obtain the following.

Corollary 2.28. Let v ∈ CQp,A,V (Ω) ∩ C1,α
loc (Ω) and let X(w) :=

∫
Ω
vp|∇w|pA dx

and Y (w) :=
∫
Ω
|w|p|∇v|pA dx. Then, for any continuous function w ∈W 1,p(Ω)

having compact support in Ω, the following assertions hold true.

(i) QΩ
p,A,V (vw) 	 QΩ

sim, p, A, V (w).

(ii) QΩ
sim, p, A, V (w) �

{
CX(w) 1 < p � 2,

C[X(w) +X(w)2/pY (w)
p−2

p ] p > 2.

2.4. Optimal Hardy-weights

Let ∞ denote the ideal point in the one-point compactification of Ω. Let us define
the notion of an optimal Hardy-weight for the operator Qp,A,V .

Definition 2.29 [9]. Suppose that Qp,A,V is subcritical in Ω. We say that 0 �
W is an optimal Hardy-weight of Qp,A,V in Ω if the following two assertions are
satisfied:

(i) Criticality: Qp,A,V −W is critical in Ω.

(ii) Null-criticality with respect to W :
∫
Ω
|ψ|pW dx = ∞, where ψ is the

(Agmon) ground state of Qp,A,V −W in Ω.

Remark 2.30. Let us discuss definition 2.29. Suppose that Qp,A,V is subcritical
in a domain Ω containing x0, and let x0 ∈ K � Ω. Then, for any 0 � W ∈ C∞

0 (Ω)
there exists τ > 0 such that Qp,A,V −τW is critical in Ω (see, e.g. [21, proposition
4.4] and [19]). On the other hand, the ground state of Qp,A,V −τW , φ, satisfies

φ 	 GΩ
Qp,A,V

(x, x0) in Ω \K.

Therefore, there are infinity many weight functions 0 � W ∈ C∞
0 (Ω) such that

Qp,A,V −W is critical in Ω. Obviously, for such a weight W , the operator Qp,A,V −W

is not null-critical with respect to W .

Definition 2.31. We say that a Hardy-weight W is optimal at infinity in Ω if for
any K � Ω, we have

sup{λ ∈ R | Qp,A,V −λW � 0 in Ω \K} = 1.

Remark 2.32. The definition of an optimal Hardy-weight in [8] includes the
requirement that W should be optimal at infinity. But, it is proved in [15] that
if Q−W is null-critical with respect to W in Ω, then Q−W is optimal at infinity.
The same proof applies under the assumptions considered in the present paper,
hence, in definition 2.29 we avoid the requirement of optimality at infinity.

The following coarea formula is a direct consequence of [9, proposition 3.1].
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Lemma 2.33 Coarea formula. Let Ω be a domain in Rn, n � 2, and G ∈ C1,α(Ω)
is a positive (p, A)-harmonic function in Ω∗ := Ω \ {0}. Assume that for any 0 <
t1 < t2 <∞, the set A := {x ∈ Ω∗ | t1 < G(x) < t2} is bounded. Let h ∈ C2(0, ∞)
be a positive function satisfying h′(s) > 0 for all s > 0, and denote v := h(G). Then
there exists C > 0 such that for any locally bounded real measurable function f such
that f(v) has a compact support in Ω∗, we have

∫
Ω∗
f(v)|∇v|pAdx = C

∫ h(supΩ∗ G)

h(infΩ∗ G)

f(τ)
((h−1)′(τ))p−1

dτ. (2.3)

Proof. Since G ∈ C1,α(Ω∗) and 1 < p, then |∇G|pA
|∇G| ∈ L1

loc(Ω
∗) and we may use the

(classical) coarea formula ([7, theorem 2.32]) to obtain for v = h(G)∫
Ω∗
f(v)|∇v|pA dx =

∫
Ω∗
f(h(v))|h′(G)|p |∇G|

p
A

|∇G| |∇G|dx =

∫
R+

f(h(t))h′(t)p

∫
{G=t}

|∇G|pA
|∇G| dHn−1. (2.4)

By (a generalized) Sard’s theorem for C1,α functions [5, theorem 1.2],

Hn−1 ({G = t} ∩ Crit(G)) = 0.

The fact that G ∈ C1,α and proposition 2.4 imply that (for a.e. t1 < t2) the set A :=
{t1 < G < t2} has a finite perimeter. In particular, ∇G �= 0 and �n is well defined on
∂A, Hn−1-a.e.. Let ∂+ = {x ∈ A : G(x) = t2} and ∂− = {x ∈ A : G(x) = t1}. The
Gauss–Green theorem (lemma 2.5) implies that

0 = −
∫
A
div(|∇G|p−2

A A∇G) dx =
∫

∂+

+
∫

∂−
|∇G|p−2

A A∇G · �n dHn−1

=
∫

∂+

|∇G|p−2
A A∇G · ∇G

|∇G| dHn−1 −
∫

∂−
|∇G|p−2

A A∇G · ∇G
|∇G| dHn−1

=
∫
{G=t2}

|∇G|pA
|∇G| dHn−1 −

∫
{G=t1}

|∇G|pA
|∇G| dHn−1.

In particular, for any t > 0,
∫
{G=t}

|∇G|pA
|∇G| dHn−1 = C. By (2.4),

∫
Ω∗
f(v)|∇v|pA dx = C

∫
R+

f(h(t))h′(t)p dt.

The change of the variable h(t) = τ then implies (2.3). �

The following theorem is proved in [9] for the case A = 1. However, it can be
easily checked that the validity of lemma 2.33 for a general matrix A satisfying
assumptions 2.8, gives rise to the following theorem.
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Theorem 2.34 [9, theorem 1.5]. Let ∞ denote the ideal point in the one point
compactification of Ω. Suppose that −Δp,A is subcritical in Ω, and admits a posi-
tive (p, A)-harmonic function G(x) in Ω∗ := Ω \ {0} satisfying one of the following
conditions (2.5),(2.6):

1 < p � n, lim
x→0

G(x) = ∞, and lim
x→∞

G(x) = 0, (2.5)

p > n, lim
x→0

G(x) = γ � 0, and lim
x→∞

G(x) =

{
∞ if γ = 0,
0 if γ > 0.

(2.6)

Define a positive function v and a nonnegative weight W on Ω∗ as follows:

(i) If either (2.5) is satisfied, or (2.6) is satisfied with γ = 0, then

v := G(p−1)/p, and W :=
(
p− 1
p

)p ∣∣∣∣∇GG
∣∣∣∣
p

A

.

(ii) If (2.6) is satisfied with γ > 0, then v := [G(γ −G)](p−1)/p, and

W :=
(
p− 1
p

)p ∣∣∣∣ ∇G
G(γ −G)

∣∣∣∣
p

A

|γ − 2G|p−2[2(p− 2)G(γ −G) + γ2].

Then the following Hardy-type inequality holds in Ω∗ :∫
Ω∗

|∇φ|pA dx �
∫

Ω∗
W |φ|p dx, ∀ φ ∈ C∞

0 (Ω∗), (2.7)

and W is an optimal Hardy-weight of −Δp,A in Ω∗. Moreover, up to a multiplicative
constant, v is the ground state of −Δp,A −WIp in Ω∗.

The following simple observation concerns the existence of optimal Hardy-weights
for a ‘small perturbation’ of an operator with a given optimal Hardy-weight.

Lemma 2.35. Assume that Qp,A,V is subcritical in Ω and admits an optimal Hardy-
weight W in Ω∗ := Ω \ {0}. Let V1 ∈Mq

loc(p; Ω) satisfy V1 � −εW for some 0 � ε <
1 and q > n/p. Then W + V1 is an optimal Hardy-weight for Qp,A,V +V1 in Ω∗.

Proof. Consider the function W + V1. Then, Qp,A,V +V1 − (W + V1)Ip = Qp,A,V −
WIp is a critical operator in Ω∗.

Obviously, W + V1 � 0, and the ground state ψ of Qp,A,V −WIp in Ω∗ is the
ground state of Qp,A,V +V1 − (W + V1)Ip in Ω∗. Moreover,

∫
Ω∗

(W + V1)|ψ|p dx � (1 − ε)
∫

Ω∗
W |ψ|p dx = ∞,

implying that Qp,A,V +V1−(W+V1) is null-critical in Ω∗ with respect to W + V1. In
particular, W + V1 is an optimal Hardy-weight of Qp,A,V +V1 in Ω∗. �
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3. Optimal Hardy-weights for indefinite potentials

Lemma 2.35 obviously applies when V1 � 0. The main goal in the current section
is to obtain optimal Hardy-weights for a general subcritical operator Qp,A,V in a
domain Ω, without assuming V = 0 in Ω. In particular, we prove theorem 1.1.

First, we recall the following weak comparison principle [19, theorem 5.3].

Lemma 3.1 Weak comparison principle. Let Ω ⊂ Rn be a bounded Lipschitz domain.
Assume that A is a uniformly elliptic and bounded matrix in Ω, V ∈Mq(p; Ω)
and 0 � g ∈ L∞(Ω). Assume further that λ1(Ω) > 0, where λ1(Ω) is the principal
eigenvalue of the operator Qp,A,V . Let u2 ∈W 1,p(Ω) ∩ C(Ω) be a (weak) solution
of {

Qp,A,V (u2) = g in Ω,
u2 > 0 on ∂Ω.

If u1 ∈W 1,p(Ω) ∩ C(Ω) satisfies{
Qp,A,V (u1) � Qp,A,V (u2) in Ω,
u1 � u2 on ∂Ω,

then u1 � u2 in Ω.

In the following lemma we generalize the notion of Green potential for Qp,A,V .

Lemma 3.2. Assume that Qp,A,V is subcritical in Ω, and let 0 � ϕ ∈ C∞
0 (Ω). Then

there exists a positive function Gϕ ∈W 1,p
loc (Ω), such that Gϕ is a positive solution

of minimal growth at infinity and satisfies Qp,A,V (Gϕ) = ϕ in Ω.

Proof. / Fix 0 � ϕ ∈ C∞
0 (Ω), and let {Ωk}k∈N be a smooth exhaustion of Ω with

supp(ϕ) � Ω1. Lemma 2.18 implies that there exists a unique positive solution
Gk ∈W 1,p(Ωk) to the problem{

−Δp,A(w) + (V + 1
k )|w|p−2w = ϕ in Ωk,

w = 0 on ∂Ωk.

By the weak comparison principle (lemma 3.1), {Gk}k∈N is a monotone increas-
ing sequence of functions. Assume first that the sequence {Gk}k∈N is not locally
uniformly bounded in Ω, and let x1 ∈ Ω2 \ Ω1. By Harnack’s convergence principle
there exists a subsequence of {zk(x) := Gk(x)/Gk(x1)}k∈N which converges locally
uniformly to a positive solution G, of the equation Qp,A,V (u) = 0 in Ω. Therefore,
G is a positive solution of the equation Qp,A,V (u) = 0 in Ω which clearly has min-
imal growth in a neighborhood of infinity in Ω, i.e., G is a ground state. This is a
contradiction to the subcriticality of the operator Qp,A,V in Ω.

Consequently, Harnack inequality ([19, theorem 2.7]) implies that the sequence
{Gk}k∈N is locally uniformly bounded in Ω. By Harnack convergence principle and
the strong maximum principle, it converges locally uniformly (up to a subsequence)
to a positive solution, Gϕ, of the equation Qp,A,V (u) = ϕ in Ω. In fact, [16, theorem
5.3] implies that there exists 0 < α < 1 such that Gϕ ∈ C1,α

loc (Ω). �
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Definition 3.3. Let 0 � ϕ ∈ C∞
0 (Ω). A positive solution u ∈ Gϕ ∈ MGA,V,Ω,supp (ϕ)

that satisfies Qp,A,V (u) = ϕ in Ω, is called a Green potential of Qp,A,V in Ω with a
density ϕ.

We proceed with the following technical proposition (cf. [9, lemma 2.10]).

Proposition 3.4. Let f(t) ∈ C2(R+) satisfying f, f ′, −f ′′ > 0. Then, for all 0 �
u ∈ C1(Ω)

Qp,A,V (f(u)) = −Δ1D
p (f)(u)|∇u|pA + (f ′(u))p−1

×
(
−Δp,A(u) + V

(
f(u)
f ′(u)u

)p−1

|u|p−1

)

in the weak sense. Here −Δ1D
p f(t) := −(|f ′(t)|p−2f ′(t))′ is the one-dimensional

p-Laplacian.

Proof. By [9, lemma 2.10] (which clearly holds for the (p, A)-Laplacian), we have:

− Δp,A(f(u)) = −|f ′(u)|p−2 [(p− 1)f ′′(u)|∇u|pA + f ′(u)Δp,A(u)] (3.1)

in the weak sense. Since f ∈ C2, f, f ′, −f ′′ > 0 we have

−|f ′(u)|p−2(p− 1)f ′′(u)|∇u|pA = − d

dt
[|f ′(t)|p−1](u)|∇u|pA = −Δ1D

p (f)(u)|∇u|pA,

and together with (3.1) the proposition is proved. �

Remark 3.5. We remark that if f(t) = t
p−1

p , then

−Δ1D
p (f(t)) −

(
p− 1
p

)p
f(t)p−1

tp
=0, and cp :=

(
f(u)
f ′(u)u

)p−1

=
(

p

p− 1

)p−1

> 1.

Lemma 3.2 and proposition 3.4 imply:

Corollary 3.6. Assume that Qp,A,cpV is subcritical in Ω. For 0 � ϕ ∈ C∞
0 (Ω),

let Gϕ be a Green potential satisfying Qp,A,cpV (Gϕ) = ϕ in Ω, and let f(t) = t
p−1

p .
Then,

Qp,A,V (f(Gϕ)) = −Δ1D
p (f)(Gϕ)|∇Gϕ|pA + (f ′(Gϕ))p−1ϕ � 0. (3.2)

In particular, f(Gϕ) is a positive solution of the equation Qp,A,V −W (v) = 0, where

W =
Qp,A,V (f(Gϕ))
f(Gϕ)p−1

, and W =
(
p− 1
p

)p ∣∣∣∣∇Gϕ

Gϕ

∣∣∣∣
p

A

in Ω \ supp(ϕ).

The following lemma is a generalization of lemma 2.33 to the case V �= 0.
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Lemma 3.7. Assume that Qp,A,V is subcritical in Ω, and let Gϕ ∈ C1,α
loc (Ω) be a

Green potential (with respect to 0 � ϕ ∈ C∞
0 (Ω)), and assume that

lim
x→∞

Gϕ = 0;
∫

Ω

V Gp−1
ϕ dx < 0;

∫
Ω

|V ||Gϕ|p−1 dx <∞. (3.3)

Then, there exists 0 < Mϕ < sup
Ω
Gϕ such that for almost every 0 < t < Mϕ,

satisfying

supp(ϕ) � Ωt := {x ∈ Ω : Gϕ(x) > t},
there exists C > 0, independent of t, such that

C−1 �
∫

Gϕ=t

|∇Gϕ|p−1
A dσA � C, (3.4)

where dσA = |∇Gϕ|A
|∇Gϕ| dHn−1, Hn−1-a.e.

Proof. The assumption lim
x→∞

Gϕ = 0, and proposition imply that for a.e. t > 0

the set Ωt has finite perimeter. Furthermore, (3.3) implies that |V |Gp−1
ϕ ∈

M(Ω′). Finally, Sard’s theorem for C1,α-functions implies that the conditions in
Gauss–Green theorem (lemma 2.5) are satisfied in Ω′. Hence,∫

Ωt

(ϕ− V |Gϕ|p−2Gϕ) dx = −
∫

Ωt

div(|∇Gϕ|p−2
A A∇Gϕ) dx

= −
∫

∂Ωt

|∇Gϕ|p−2
A A∇Gϕ · �n dHn−1.

The assumptions lim
x→∞

Gϕ = 0, and
∫
Ω
V Gp−1

ϕ dx < 0 imply that there exists a

sufficiently small Mϕ > 0 such that for a.e 0 < t < Mϕ,∫
Ωt

(
ϕ− V |Gϕ|p−2Gϕ

)
dx �

∫
Ω

(
ϕ+ |V ||Gϕ|p−1

)
dx � C. (3.5)

Moreover, the assumption supp(ϕ) � Ωt implies

C−1 �
∫

Ω

ϕdx =
∫

Ωt

ϕdx �
∫

Ωt

(
ϕ− V |Gϕ|p−2Gϕ

)
dx.

Consequently, ∫
Ωt

(
ϕ− V |Gϕ|p−2Gϕ

)
dx 	 C,

and C does not depend on t. Sard’s theorem for C1,α functions implies that for
Hn−1-a.e. x ∈ ∂Ω′, |∇G(x)| �= 0. Furthermore, the definition of Ω′ implies that
Gϕ � t in Ω′, and hence, �n = − ∇Gϕ

|∇Gϕ| for Hn−1-a.e. x ∈ ∂Ω′. Therefore,

−
∫

∂Ωt

|∇Gϕ|p−2
A A∇Gϕ · �n dHn−1 =

∫
∂Ωt

|∇Gϕ|p−1
A

|∇Gϕ|A
|∇Gϕ| dHn−1 	 C.

�
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Remark 3.8. Th e assumption
∫
Ω
V Gp−1

ϕ dx < 0 in lemma 3.7 is needed for arguing
(3.5). In particular, the lemma still holds once assuming instead that V � 0 in Ω.

We proceed with the following lemma.

Lemma 3.9 cf. [9, propositions 5.1 and 5.5]. Let 0 � ϕ ∈ C∞
0 (Ω), and assume

that Qp,A,cpV is subcritical in Ω. Let Gϕ ∈ C1,α
loc (Ω) be a Green potential satisfying

Qp,A,cpV (Gϕ) = ϕ in Ω, and assume that

lim
x→∞

Gϕ = 0;
∫

Ω

V Gp−1
ϕ dx < 0;

∫
Ω

|V ||Gϕ|p−1 dx <∞.

Consider the function f(t) = t
p−1

p , and let

W :=
Qp,A,V (f(Gϕ))
f(Gϕ)p−1

.

Then Qp,A,V −W is critical in Ω, with a ground state f(Gϕ) and
∫
Ω
Wf(Gϕ)p dx =

∞. Hence, W is an optimal Hardy-weight for Qp,A,V in Ω.

Proof. Criticality: Notice that cp > 1. and therefore,Qp,A,V is subcritical in Ω [19,
Corollary 4.17]. Let Mϕ be given by lemma 3.7, and let K � Ω be a precompact
smooth subdomain satisfying suppϕ � K, max

Ω\K
Gϕ < Mϕ and Gϕ < 1 for all x ∈

Ω \K. Assume without loss of generality that inf
K
Gϕ � 1.

For each k ∈ N, consider the function φk(f(Gϕ)), where f(t) = t
p−1

p and

φk(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 0 � t � 1
k2 ,

2 + log t
log k

1
k2 � t � 1

k ,

1 1
k � t � k,

2 − log t
log k k � t � k2,

0 t � k2.

We claim that uk = φk(f(Gϕ))f(Gϕ) is a null-sequence of Qp,A,V −W in Ω. Indeed,
by (2.2), Qsim(w) 	 Q(wf(Gϕ)) = Q(u), where

Q(u) =
∫

Ω

(|∇u|pA + (V −W )|u|p)dx,

and

Qsim(w) =
∫

Ω

f(Gϕ)2|∇w|2A (w|∇(f(Gϕ))|A + f(Gϕ)|∇w|A)p−2 dx.

Moreover, by corollary 2.28 we have

Qsim(w) �
{
CX(w) 1 < p � 2,

C
[
X(w) +X(w)2/pY (w)

p−2
p

]
p > 2,
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where

X(w) =
∫

Ω

|∇w|pAf(Gϕ)p dx, Y (w) =
∫

Ω

|w|p|∇(f(Gϕ))|pA dx.

By the (classical) coarea formula ([7, theorem 2.32]),

X(φk(f(Gϕ))) =
∫

Ω\K

f(Gϕ)p|φ′k(f(Gϕ))|p|f ′(Gϕ)|p|∇Gϕ|pA dx

=
∫ max

Ω\K
Gϕ

0

f(t)p|φ′k(f(t))|pf ′(t)p dt
∫

Gϕ=t

|∇Gϕ|p−1
A dσA.

By lemma 3.7, for a.e. 0 < t < max
Ω\K

Gϕ we have
∫

Gϕ=t
|∇Gϕ|p−1

A dσA 	 1. Moreover,

∫ max
Ω\K

Gϕ

0

f(t)p|φ′k(f(t))|pf ′(t)p dt = C(p)
∫ f(max

Ω\K
Gϕ)

0

|sφ′k(s)|p
s

ds

=
C(p)
logp k

∫ 1
k

1
k2

1
s

ds 	
(

1
log k

)p−1

.

Consequently, X(φn(f(Gϕ))) 	 (
1

log k
)p−1. By a similar calculation,

Y (φk(f(Gϕ))) =
∫

Ω\K

|φk(f(Gϕ))|pf ′(Gϕ)p|∇Gϕ|pA dx 	
∫ 1

0

|φk(f(t))|pf ′(t)p dt 	
∫ f(1)

0

|φk(s)|p ds
s

=
∫ 1/k

1/k2

(
2 +

log s
log k

)
1
s

ds+
∫ 1

1/k

1
s

ds 	
∫ 1

1/k

1
s

ds 	 log k.

It follows that Qsim(wk) = Qsim(φk(f(Gϕ))) → 0 as k → ∞, and therefore,

Q(uk) = Q(φk(f(Gϕ)f(Gϕ))) → 0 as k → ∞.

Let us specialize ε0 > 0 such that the set B = {x ∈ Ω : ε0/2 < f(Gϕ) < ε0} is
nonempty, bounded, and contained in Ω \K. Therefore,

∫
B

|uk|p dx =
∫

B

|φk(f(Gϕ))|pf(Gϕ)p dx 	 1. (3.6)

Thus, the sequence {uk} is a null-sequence, and in light of lemma 2.25, Qp,A,V −W

is critical in Ω.
Null-criticality: Let K � Ω be a precompact smooth subdomain as in the first

part of the proof.
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For almost every 0 < τ < 1 we consider the set Ωτ := {x ∈ Ω | τ < Gϕ < min
K

Gϕ}
which has finite perimeter. Recall that

W =
(
p− 1
p

)p |∇Gϕ|pA
Gp

ϕ
in Ωξ.

By the (classical) coarea formula and (3.4),∫
Ωτ

W (f(Gϕ))p dx =
(
p− 1
p

)p ∫
Ωτ

|∇Gϕ|pA
Gp

ϕ
(f(Gϕ))p dx

=
(
p− 1
p

)p ∫
R+

(
f(t)
t

)p

dt
∫

Gϕ=t

|∇Gϕ|p−1
A dσA 	 C

∫ min
K

Gϕ

τ

(
f(t)
t

)p

dt.

By letting τ → 0 we obtain that
∫
Ω\K

Wf(Gϕ)p dx = ∞. �

Remark 3.10. Remark 3.8 implies that lemma 3.9 still holds if one assumes V � 0
in Ω instead of the assumption

∫
Ω
V Gp−1

ϕ dx < 0.

Proof of theorem 1.1. Notice that cp > 1, and hence Qp,A,V/cp
is subcritical in Ω.

Let Gϕ be the Green potential of Qp,A,V , given by lemma 3.2. By lemma 3.9, the
operator Qp,A,V/cp

admits an optimal Hardy-weight in Ω. �

Proof of corollary 1.2. Notice that cp > 1, and hence Qp,A,V/cp
is subcritical in Ω.

Let Gϕ be the Green potential of Qp,A,V , given by lemma 3.2. By the minimal
growth property of Gϕ, for any x0 ∈ K � Ω, Gϕ � CG in Ω \K, and in particular,

lim
x→∞

Gϕ = 0,
∫

Ω

|V ||Gϕ|p−1 dx <∞.

By lemma 3.9 and remark 3.10, the operator Qp,A,V/cp
admits an optimal Hardy-

weight in Ω. �

Corollary 1.2 and the following remark give rise to new optimal Hardy-type
inequalities in the smooth case.

Remark 3.11. Let Ω ⊂ Rn be a domain and let Qp,A,V be a subcritical operator in
Ω satisfying assumptions 2.8. Assume further that V � 0 in Ω. Then, there exists
K � Ω and x0 ∈ intK � Ω, such that the operator Qp,A,V admits a positive solution
G(x) in Ω \ {x0} satisfying (1.2) in each of the following cases :

• A is a constant, symmetric, positive definite matrix; V ∈ L∞(Ω); Ω is a bounded
C1,α domain and λ1(Ω) > 0 [17].

• A is a constant, symmetric, positive definite matrix; V ∈ C∞
0 (Rn); Ω = Rn [12,

13].

In particular, theorem 1.1 can be applied in each of the latter cases.

Remark 3.12. Combining oheorem 1.1 and lemma 2.35, we obtain optimal Hardy-
weights for a wide family of operators Qp,A,V with indefinite potentials V .
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