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Abstract. Relativistic modelling of rotational motion of extended bodies represents one of
the most complicated problems of Applied Relativity. The relativistic reference systems of IAU
(2000) give a suitable theoretical framework for such a modelling. Recent developments in the
post-Newtonian theory of Earth rotation in the limit of rigidly rotating multipoles are reported
below. All components of the theory are summarized and the results are demonstrated. The
experience with the relativistic Earth rotation theory can be directly applied to model the
rotational motion of other celestial bodies. The high-precision theories of rotation of the Moon,
Mars and Mercury can be expected to be of interest in the near future.

1. Earth rotation and relativity
Earth rotation is the only astronomical phenomenon which is observed with very high

accuracy, but is traditionally modelled in a Newtonian way. Although a number of at-
tempts to estimate and calculate the relativistic effects in Earth rotation have been un-
dertaken (e.g., Bizouard et al. (1992); Brumberg & Simon (2007) and references therein)
no consistent theory has appeared until now. As a result the calculations of different
authors substantially differ from each other. Even the way geodesic precession/nutation
is usually taken into account is just a first-order approximation and is not fully consistent
with relativity. On the other hand, the relativistic effects in Earth’s rotation are rela-
tively large. For example, the geodesic precession (1.9′′ per century) is about 3 × 10−4

of general precession. The geodesic nutation (up to 200 μas) is 200 times larger than the
accuracy goal of modern theories of Earth rotation. One more reason to carefully inves-
tigate relativistic effects in Earth rotation is the fact that the geodynamical observations
yield important tests of general relativity (e.g., the best estimate of the PPN γ using a
large range of angular distances from the Sun comes from geodesic VLBI data), and it
is dangerous to risk that these tests are biased because of a relativistically flawed theory
of Earth rotation.

Early attempts to model rotational motion of the Earth in a relativistic framework
(see, for example, Brumberg 1972) made use of only one relativistic references system to
describe both rotational and translational motions. That reference system was usually
chosen to be quite similar to the BCRS. This resulted in a mathematically correct, but
physically inadequate coordinate picture of rotational motion. For example, from that
coordinate picture a prediction of seasonal LOD variations with an amplitude of about
75 microseconds has been put forward.

At the end of the 1980s a better reference system for modelling of Earth rotation
has been constructed, that after a number of modifications and improvements has been
adopted as GCRS in the IAU 2000 Resolutions. The GCRS implements Einstein’s equiv-
alence principle and represents a reference system in which the gravitational influence of
external matter (the Moon, the Sun, planets, etc.) is reduced to tidal potentials. Thus,
for physical phenomena occurring in the vicinity of the Earth the GCRS represents a ref-
erence system, the coordinates of which are, in a sense, as close as possible to measurable
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quantities. This substantially simplifies the interpretation of the coordinate description
of physical phenomena localized in the vicinity of the Earth. One important application
of the GCRS is modelling of Earth rotation. The price to pay when using GCRS is that
one should deal not only with one relativistic reference system, but with several refer-
ence systems, the most important of which are the BCRS and the GCRS. This makes it
necessary to clearly and carefully distinguish between parameters and quantities defined
in the GCRS and those defined in the BCRS.

2. Relativistic equations of Earth rotation
The model which is used in this investigation was discussed and published by Klioner

et al. (2001). Let us, however, repeat these equations again not going into physical de-
tails. The post-Newtonian equations of motion (omitting numerically negligible terms as
explained in Klioner et al. 2001) read

d

dT

(
Cab ωb

)
=Fa + La(C,ω,Ωiner), (2.1)

Fa =
∞∑

l=1

1
l!

εabc MbL GcL , (2.2)

where T = TCG, C = Cab is the post-Newtonian tensor of inertia, ω = ωa is the angular
velocity of the post-Newtonian Tisserand axes (Klioner 1996), ML are the multipole
moments of the Earth’s gravitational field defined in the GCRS, and GL are the multipole
moments of the external tidal gravito-electric field in the GCRS. In the simplest situation
(a number of mass monopoles) GL are explicitly given by Eqs. (19)–(23) of Klioner et al.
(2001).

The additional torque La depends on C, ω, as well as on the angular velocity Ωiner
describing the relativistic precessions (geodesic, Lense-Thirring and Thomas precessions).
The definition of Ωiner can be found, e.g., in Klioner et al. (2001). A detailed discussion
of La , its structure and consequences will be published elsewhere (Klioner et al. 2009a).

The model of rigidly rotating multipoles (Klioner et al. 2001) represents a set of formal
mathematical assumptions that make the general mathematical structure of Eq. (2.1)
similar to that of the Newtonian equations of rotation of a rigid body:

Cab =Pac P bd C
cd

, C
cd

= const, (2.3)
Ma1 a2 ...al

=Pa1 b1 Pa2 b2 . . . P al bl Mb1 b2 ...bl
, Mb1 b2 ...bl

= const, l � 2, (2.4)

where the orthogonal matrix Pab(T ) is assumed to be related to the angular velocity ωa

used in (2.1) as

ωa =
1
2

εabc P db(T )
d

dT
Pdc(T ). (2.5)

The meaning of these assumptions is that both the tensor of inertia Cab and the multipole
moments of the Earth’s gravitational field ML are “rotating rigidly” and that their rigid
rotation is described by the same angular velocity ωa that appears in the post-Newtonian
equations of rotational motion. It means that in a reference system obtained from the
GCRS by a time-dependent rotation of spatial axes, both the tensor of inertia and the
multipole moments of the Earth’s gravitational field are constant.

No acceptable definition of a physically rigid body exists in General Relativity. The
model of rigidly rotating multipoles represents a minimal set of assumptions that allows
one to develop the post-Newtonian theory of rotation in the same manner as one usu-
ally does within a Newtonian theory for rigid bodies. In the model of rigidly rotating
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multipoles, only those properties of Newtonian rigid bodies are saved which are indeed
necessary for the theory of rotation. For example, no assumption on local physical prop-
erties (“local rigidity”) is made. It has not been proved as a theorem, but it is rather
probable that no physical body can satisfy assumptions (2.3)–(2.5). The assumptions of
the model of rigidly rotating multipoles will be relaxed in a later stage of the work when
non-rigid effects are discussed.

3. Post-Newtonian equations of rotational motions in numerical
computations

Looking at the post-Newtonian equations of motion (2.1)–(2.5) one can formulate
several problems to be solved before the equations can be used in numerical calculations:

A. How to parametrize the matrix Pab?
B. How to compute ML from the standard models of the Earth’s gravity field?
C. How to compute GL from a solar system ephemeris?
D. How to compute the torque εabc MbL GcL out of ML and GL?
E. How to deal with different time scales (TCG, TCB, TT, TDB) appearing in the

equations of motion, solar system ephemerides, used models of Earth gravity, etc.?
F. How to treat the relativistic scaling of various parameters when using TDB and/or

TT instead of TCB and TCG?
G. How to find relativistically meaningful numerical values for the initial conditions

and various parameters?
These questions are discussed below.

4. Relativistic definitions of the angles
One of the tricky points is the definition of the angles describing the Earth orientation

in the relativistic framework. Exactly as in Bretagnon et al. (1997, 1998) we first define
the rotated BCRS coordinates (x, y, z) by two constant rotations of the BCRS as realized
by the JPL’s DE403:⎛⎝ x

y
z

⎞⎠ = Rx(23◦26′21.40928′′)Rz (−0.05294′′)

⎛⎝ x
y
z

⎞⎠
DE403

. (4.1)

Then the IAU 2000 transformations between BCRS and GCRS are applied to the coordi-
nates (t, x, y, z), t being TCB, to get the corresponding GCRS coordinates (T,X, Y, Z).
The spatial coordinates (X,Y,Z) are then rotated by the time-dependent matrix P ij to
get the spatial coordinates of the terrestrial reference system (ξ, η, ζ). The matrix P ij is
represented as a product of three orthogonal matrices:⎛⎝ ξ

η
ζ

⎞⎠ = Rz (φ)Rx(ω)Rz (ψ)

⎛⎝ X
Y
Z

⎞⎠ . (4.2)

The angles φ, ψ and ω are used to parametrize the orthogonal matrix Pab and therefore,
to define the orientation of the Earth in the GCRS. The meaning of the terrestrial system
(ξ, η, ζ) here is the same as in Bretagnon et al. (1997); this is the reference system in
which we define the harmonic expansion of the gravitational field with the standard
values of potential coefficients Clm and Slm .
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5. STF model of the torque

The relativistic torque requires computations with symmetric and trace-free cartesian
(STF) tensors ML and GL . For this project special numerical algorithms for numerical
calculations have been developed. The detailed algorithms and their derivation will be
published elsewhere (Klioner et al. 2009b). Let us give here only the most important for-
mulas. For each l the component Da = εabc MbL−1 GcL−1 of the torque in the right-hand
side of Eq. (2.1) can be computed as (Al = 4 l π l!/(2l+1)!!, a+

lm =
√

l(l + 1) − m(m + 1) )

D1 =
1
Al

(
l−1∑
m=0

a+
lm

(
−MR

lm GI
l,m+1 + MI

l,m+1 GR
lm

)
+

l−1∑
m=1

a+
lm

(
MI

lm GR
l,m+1 −MR

l,m+1 GI
lm

))
, (5.1)

D2 =
1
Al

(
l−1∑
m=0

a+
lm

(
−MR

lm GR
l,m+1 + MR

l,m+1 GR
lm

)
+

l−1∑
m=1

a+
lm

(
−MI

lm GI
l,m+1 + MI

l,m+1 GI
lm

))
, (5.2)

D3 =
2
Al

l∑
m=1

m
(
MI

lm GR
lm −MR

lm GI
lm

)
. (5.3)

The coefficients GR
lm and GI

lm characterizing the tidal field can be computed from
Eqs. (19)–(23) of Klioner et al. (2001) as explicit functions of the parameters of the
solar system bodies: their masses, positions, velocities and accelerations. A Fortran code
to compute GR

lm and GI
lm for l � 7 and 0 � m � l has been generated automatically with

a specially written software package for Mathematica. It is possible to develop a sort
of recursive algorithm to compute GR

lm and GI
lm for any l similar to the corresponding

algorithms for, e.g., Legendre polynomials.
The coefficients MR

lm and MI
lm characterizing the gravitational field of the Earth can

be computed as

MR
l0 =

l!
(2l − 1)!!

(
4π

2l + 1

)1/2

ME Rl
E Cl0 , (5.4)

MR
lm =(−1)m 1

2
l!

(2l − 1)!!

(
4π

2l + 1
(l + m)!
(l − m)!

)1/2

ME Rl
E Clm , 1 � m � l, (5.5)

MI
lm =(−1)m+1 1

2
l!

(2l − 1)!!

(
4π

2l + 1
(l + m)!
(l − m)!

)1/2

ME Rl
E Slm , 1 � m � l, (5.6)

where ME is the mass of the Earth, RE its radius, Clm and Slm are the usual potential
coefficients of the Earth’s gravitational field. If only Newtonian terms are considered in
the torque, this formulation with STF tensors is fully equivalent to the classical formu-
lation with Legendre polynomials (e.g., Bretagnon et al. 1997, 1998). If the relativistic
terms are taken in account, the only known way to express the torque is that with STF
tensors.

https://doi.org/10.1017/S174392130999024X Published online by Cambridge University Press

https://doi.org/10.1017/S174392130999024X


116 S. A. Klioner, E. Gerlach & M. H. Soffel

6. Time transformations
An important aspect of relativistic Earth rotation theory is the treatment of different

relativistic time scales. The transformation between TDB and TT at the geocenter (all
the transformations in this Section are meant to be “evaluated at the geocenter”) are
computed along the lines of Section 3 of Klioner (2008b). Namely,

TT =TDB+ΔTDB(TDB), (6.1)
TDB = TT −ΔTT(TT), (6.2)
TCG =TCB+ΔTCB(TCB), (6.3)
TCB =TCG−ΔTCG(TCG), (6.4)

so that
dΔTDB
dTDB

=ATDB + BTDB
dΔTCB
dTCB

, (6.5)

ATDB =
LB − LG

1 − LB
, (6.6)

BTDB =
1 − LG

1 − LB
= ATDB + 1, (6.7)

dΔTT
dTT

=ATT + BTT
dΔTCG
dTCG

, (6.8)

ATT =
LB − LG

1 − LG
, (6.9)

BTT =
1 − LB

1 − LG
= 1 − ATT , (6.10)

dΔTCB
dTCB

=F (TCB) =
1
c2 α(TCB) +

1
c4 β(TCB), (6.11)

dΔTCG
dTCG

=
F (TCG − ΔTCG)

1 + F (TCG − ΔTCG)
, (6.12)

where the functions α and β are given by Eqs. (3.3)–(3.4) of Klioner (2008b) and
Eq. (6.5) represents a computational improvement of Eq. (3.8) of Klioner (2008b). Clearly,
the derivatives dΔTCB/dTCB and dΔTCG/dTCG must be expressed as functions of
TDB and TT, respectively, when used in (6.5)–(6.8).

The differential equations for ΔTDB and ΔTT are first integrated numerically for the
whole range of the solar system ephemeris (any ephemeris with DE-like interface can be
used with the code). The initial conditions for ΔTDB and ΔTT are chosen according to
the IAU 2006 Resolution defining TDB: for JDTT = 2443144.5003725 one has JDTDB =
2443144.5003725 − 6.55 × 10−5/86400 and vice versa. The results of the integrations
for the pairs ΔTDB and dΔTDB/dTDB, and ΔTT and dΔTT/dTT are stored with a
selected step in the corresponding time variable (TDB for ΔTDB and its derivative, and
TT for ΔTT and its derivative). A cubic spline on the equidistant grid is then constructed
for each of these 4 quantities. The accuracy of the spline representation is automatically
estimated using additional data points computed during the numerical integration. These
additional data points lie between the grid points used for the spline and are only used
to control the accuracy of the spline. The splines, precomputed and validated in this
way, are stored in files and read in by the main code upon request. These splines are
directly used for time transformation during the numerical integrations of Earth rotation.
Although this spline representation requires significantly more stored coefficients than, for
example, a representation with Chebyshev polynomials with the same accuracy, the spline
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representation has been chosen because of its extremely high computational efficiency.
More sophisticated representations may be implemented in future versions of the code.

7. Relativistic scaling of parameters
Obviously, there are two classes of quantities entering Eqs. (2.1)–(2.5) that are defined

in the BCRS and GCRS and, therefore, naturally parametrized by TCB and TCG,
respectively. The relevant quantities defined in the GCRS and parametrized by TCG are:
(1) the orthogonal matrix Pab and quantities related to that matrix: angular velocity
ωa and corresponding Euler angles ϕ, ψ and ω; (2) the tensor of inertia Cab ; (3) the
multipole moment of Earth’s gravitational field ML . In principle, (a) GL and (b) Ωa

iner are
also defined in the GCRS and parametrized by TCG, but these quantities are computed
using positions xA , velocities vA and accelerations aA of solar system bodies. The orbital
motion of solar system bodies is modelled in BCRS and parametrized by TCB. The
definition of GL is conceived in such a way that positions, velocities and accelerations of
solar system bodies in the BCRS should be taken at the moment of TCB corresponding
to the required moment of TCG with spatial location taken at the geocenter. Let us recall
that the transformation between TCB and TCG is a 4-dimensional one and requires the
spatial location of an event to be known.

7.1. Change of the independent variable of the equations

It is important to realize that the post-Newtonian equations of motion are only valid
if non-scaled time scales TCG and TCB are used. If TT and/or TDB are needed, the
equations should be changed correspondingly. In order to use TT instead of TCG, sim-
ple rescaling of the first and second derivatives of the angles entering the equations of
rotational motion should be applied :

dθ

dTCG
=(1 − LG )

dθ

dTT
, (7.1)

d2θ

dTCG2 =(1 − LG )2 d2θ

dTT2 , (7.2)

where θ is any of the angles ϕ, ψ and ω used in the equations of motion to parametrize the
orientation of the Earth. If TDB is used as the independent variable, the corresponding
formulas are more complicated:

dθ

dTCG
=(1 − LG )

(
dTT

dTDB

∣∣∣∣
xE

)−1
dθ

dTDB
, (7.3)

d2θ

dTCG2 =(1 − LG )2

(
dTT

dTDB

∣∣∣∣
xE

)−2
d2θ

dTDB2

−(1 − LG )2

(
dTT

dTDB

∣∣∣∣
xE

)−3
d2TT

dTDB2

∣∣∣∣
xE

dθ

dTDB
, (7.4)

where the derivatives of TT with respect to TDB should be evaluated at the geocenter
(i.e., for x = xE ). These relations must be substituted into the equations of rotational
motion to replace the derivatives of the angles ϕ, ψ and ω with respect to TCG as appear,
e.g., in Eqs. (7)–(9) of Bretagnon et al. (1998). It is clear that the parametrization with
TDB makes the equations more complicated.
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7.2. Origin of the numerical parameters
The values of the parameters naturally entering the equations of rotational motion must
be interpreted as unscaled (TCB-compatible or TCG-compatible) values. If scaled (TT-
compatible or TDB-compatible) values are used, the scaling must be explicitly taken into
account. The relativistic scaling of parameters read (see, e.g., Klioner 2008a):

GMTT
A = (1 − LG )GMTCG

A , GMTCG
A = GMTCB

A ,

GMTDB
A = (1 − LB )GMTCB

A , (7.5)
XTT = (1 − LG )XTCG , xTDB = (1 − LB )xTCB , (7.6)
V TT = V TCG , vTDB = vTCB , (7.7)
ATT = (1 − LG )−1 ATCG , aTDB = (1 − LB )−1 aTCB , (7.8)

where GMA is the mass parameter of a body, x, v, and a are parameters representing
spatial coordinates (distances), velocities and accelerations in the BCRS, respectively,
while X, V , and A are similar quantities in the GCRS.

Now, considering the source of the numerical values of the parameters used in the
equations of Earth rotation, we can see the following.

a. The position xA , velocities vA , accelerations aA and mass parameters GMA of the
massive solar system bodies are taken from standard JPL ephemerides and are TDB-
compatible.

b. The radius of the Earth comes together with the potential coefficients Clm and
Slm from a model of the Earth’s gravity field (e.g., GEMT3 was used in SMART). These
values come from SLR and dedicated techniques like GRACE. GCRS and TT-compatible
quantities are used to process these data. Therefore, the value of the radius of the Earth
is TT-compatible. Obviously, Clm and Slm have the same values when used with any time
scale. The mass parameter GME of the Earth, coming with the Earth gravity models, is
also TT-compatible.

c. From the definitions of MR
lm and MI

lm given above and formulas for GL given by
Eqs. (19)–(23) of Klioner et al. (2001), it is easy to see that the TCG-compatible torque
given by Eq. (2.2) can be computed using TDB-compatible values of mass parameters
GMTDB

A , positions xTDB
A , velocities vTDB

A and accelerations aTDB
A of all external bodies,

TDB-compatible value of the mass parameter of the Earth GMTDB
E , and the value of the

Earth’s radius formally rescaled from TT to TDB as RTDB
E = (1−LB ) (1−LG )−1 RTT

E .
Denoting the resulting torque by Fa

TDB, it can be seen that the TCG-compatible value
is Fa

TCG = (1 − LB )−1 Fa
TDB.

d. The values of the Earth’s moments of inertia Ai , i = 1, 2, 3 can be represented as
GAi = GME R2

E ki , where ki is a factor characterizing the distribution of matter inside
the Earth. Clearly, the factors ki do not depend on the scaling. Therefore, the moments
of inertia can be scaled as

ATT
i = (1 − LG )3 ATCG

i . (7.9)

The last question is how to interpret the values of the moments of inertia Ai =
(A,B,C) and the initial conditions for the angles ϕ, ψ and ω and their derivatives
given in Bretagnon et al. (1998). Obviously, the initial angles at J2000 are independent
of the scaling. For the other parameters in question it is not possible to clearly claim if
the given values are TDB-compatible or TT-compatible. Arguments in favor of both in-
terpretations can be given. A rigorous solution here is only possible when all calculations
leading to these values are repeated in the framework of General Relativity. In this paper
we prefer to interpret the SMART values of Ai , ϕ̇, ψ̇ and ω̇ as being TT-compatible.
Therefore, if TDB is used as independent variable, the values of the derivatives should
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be changed accordingly. For any of the angles one has

dθ

dTDB
=

(
dTT

dTDB

∣∣∣∣
xE

)
dθ

dTT
. (7.10)

8. Geodesic precession and nutation
In the framework of our model geodesic precession and nutation are taken into account

in a natural way by including the additional torque that depends on Ωa
iner in the equations

of rotational motion:

La = εabc Cbd ωd Ωc
iner −

d

dT

(
Cab Ωb

iner
)
. (8.1)

The first term of the additional torque reflects the fact that the GCRS of the IAU
is defined to be kinematically non-rotating (see Soffel et al. 2003). The second term
has been usually hidden by the corresponding re-definition of the post-Newtonian spin
(Damour, Soffel & Xu 1993; Klioner & Soffel 2000). It can be demonstrated that this
second term must be explicitly taken into account to maintain the consistency between
dynamically and kinematically non-rotating solutions. Further details will be published
elsewhere (Klioner et al. 2009a). Using the additional torque La in Eq. (2.1) is a rigorous
way to take geodesic precession/nutation into account.

The standard way to account for geodesic precession/nutation that was used up to
now by a number of authors can be described as follows: (1) solve the purely Newto-
nian equations of rotational motion and consider this solution as a relativistic one in a
dynamically non-rotating version of the GCRS and (2) add the precomputed geodesic
precession/nutation to it. The second step is fully correct since the geodesic preces-
sion/nutation is by definition the rotation between the kinematically and dynamically
non-rotating versions of the GCRS and it can be precomputed, because it is fully inde-
pendent of the Earth rotation. The inconsistency of the first step comes from the fact
that in the computation of the Newtonian torque the coordinates of the solar system
bodies are taken from an ephemeris constructed in the BCRS. However, the dynami-
cally non-rotating version of the GCRS rotates relative to the BCRS with angular ve-
locity Ωa

iner(T ). This means that the BCRS coordinates of solar system bodies should
be first rotated into “dynamically non-rotating coordinates”, and only after that rota-
tion those coordinates can be used to compute the Newtonian torque. For this reason
this procedure does not lead to a correct solution in the kinematically non-rotating
GCRS (see Fig. 1). We will call such solutions in this paper “SMART-like kinematical
solutions”.

On the other hand, there are two ways to obtain a correct kinematically non-rotating
solution: (1) use the torque given by Eq. (8.1) in the equations of motion, (2) compute
the geodesic precession/nutation matrix, apply the geodesic precession/nutation to the
solar system ephemeris, integrate (2.1) without La with the obtained rotated ephemeris
(the correct solution in a dynamically non-rotating version of the GCRS is obtained
in this step), apply the geodesic precession/nutation matrix to the solution. We have
implemented both ways in our code and checked explicitly that they give the same
solution (to within about 0.001 μas over 150 years). It is interesting to note that the
rotational matrix of geodesic precession/nutation (that is, the matrix defining a rotation
with the angular velocity Ωa

iner) cannot be parametrized by normal Euler angles. We have
used, therefore, the quaternion representation for that matrix.
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Figure 1. Scheme of the two ways to obtain a kinematically non-rotating solution from a purely
Newtonian one, and an illustration of the relation between the correct kinematically non-rotating
solution and SMART-like kinematical solutions. “GP” stands for geodesic precession/nutation.
Each gray block represents a solution. A solid line means: add precomputed geodesic preces-
sion/nutation into a solution to get a new one. A dashed line means: recompute a solution with
indicated change in the torque model.

9. Overview of the numerical code
A code in Fortran 95 has been written to integrate the post-Newtonian equations of

rotational motion numerically. The software is carefully coded to avoid numerical insta-
bilities and excessive round-off errors. Two numerical integrators with dense output –
ODEX and Adams-Bashforth-Moulton multistep integrator – can be used for numerical
integrations. These two integrators can be used to crosscheck each other. The integrations
are automatically performed in two directions – forwards and backwards – that allows
one to directly estimate the accuracy of the integration. The code is able to use any type
of arithmetic available with a given current hardware and compiler. For a number of
operations, which have been identified as precision-critical, one has the possibility to use
either the library FMLIB Smith (2001) for arbitrary-precision arithmetic or the pack-
age DDFUN that uses two double-precision numbers to implement quadrupole-precision
arithmetic (Bailey 2005). Our current baseline is to use ODEX with 80 bit arithmetic.
The estimated errors of numerical integrations after 150 years of integration are below
0.001 μas.

Several relativistic features have been incorporated into the code: (1) the full post-
Newtonian torque using the STF tensor machinery, (2) rigorous treatment of geodesic
precession/nutation as an additional torque in the equations of motion, (3) rigorous
treatment of time scales (any of the four time scales – TT, TDB, TCB or TCG – evaluated
at the geocenter can be used as the independent variable of the equations of motion
(TCG being physically preferable for this role), (4) correct relativistic scaling of constants
and parameters. All these “sources of relativistic effects” can be switched on and off
independently of each other.

In order to test our code and the STF-tensor formulation of the torque, we have
coded also the classical Newtonian torque with Legendre polynomials as described by
Bretagnon et al. (1997, 1998), and integrated our equations for 150 years with these two
torque algorithms. Maximal deviations between these two integrations were 0.0004 μas
for φ, 0.0001 μas for ψ, and 0.0002 μas for ω. This demonstrates both the equivalence of
the two formulations and the correctness of our code.

We have also repeated the Newtonian dynamical solution of SMART97 using the New-
tonian torque, the JPL ephemeris DE403, and the same initial values as in Bretagnon
et al. (1998). Jean-Louis Simon (2007) has provided us with the unpublished full ver-
sion of SMART97 (involving about 70000 Poisson terms for each of the three angles).
We have calculated the differences between that full SMART97 series and our numerical
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Figure 2. Differences (in μas) between the published kinematical SMART97 solution and the
correct kinematically non-rotating solution (with post-Newtonian torques, relativistic scaling
and time scaled neglected).

integration over 150 years. Analysis of the results and a comparison to Bretagnon et al.
(1998) have demonstrated that our integrations reproduce SMART97 within the full
accuracy of the latter.

10. Relativistic vs. Newtonian integrations
We have performed a series of numerical calculations comparing purely Newtonian

integrations with integrations where relativistic effects are taken into account. The same
initial conditions and parameters that we used to reconstruct the SMART97 solution
were used for all integrations (see below). The results are illustrated on Figs. 2–5. The
difference between the kinematical SMART97 solution and the consistent kinematically-
non-rotating solution obtained as described in Section 8 is shown in Fig. 2. Fig. 3 shows
the effects of the post-Newtonian torque. The effects of the relativistic scaling and time
scales are depicted in Fig. 4. Finally, Fig. 5 demonstrates the differences between a
SMART-like kinematical solution and our full post-Newtonian integration. A detailed
analysis of these results will be done elsewhere (Klioner et al. 2009b).

To complete the consistent post-Newtonian theory of Earth rotation the parameters
(first of all, the moments of inertia of the Earth) should be fitted to be consistent with
the observed precession rate. This task will be discussed and treated in the near future.

11. Relativistic effects in rotational motion of other bodies
The same numerical code can be applied to model the rotational motion of other

bodies. Especially, high-accuracy models of rotational motion of the Moon, Mercury and
Mars are of interest because of the planned space missions to Mercury and Mars, and the
expected improvements of the accuracy of LLR. Most of the changes in the code are trivial
and concern the numerical values of the constants. One important improvement of the
code is necessary for the Moon: the figure-figure interaction with the Earth must be taken
into account. Using the STF approach to compute the torque, this task is not difficult.

The relativistic effects in the rotation of Moon, Mars and Mercury may be significantly
larger than in the rotation of Earth. In Table 1 the amplitudes of geodesic precession
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Figure 3. The effect (in μas) of the post-Newtonian torque.

Figure 4. The effect (in μas) of the relativistic scaling and time scales.

body geodesic precession geodesic nutation
[ ′′ per century ] [ μas ]

Earth 1.92 153
Moon 1.95 154
Mercury 21.43 5080
Venus 4.32 85
Mars 0.68 567

Table 1. Magnitude of geodesic precession/nutation for various bodies

and nutation are given for several solar system bodies. One can see the large effects for
Mercury and Mars. Besides an early investigation of Bois & Vokroulicky (1995) suggests
that the effects of the relativistic torque for the Moon may attain 1 mas. Our approach
allows one to investigate the rotational motion of the Moon, Mars and Mercury in a
rigorous relativistic framework.
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Figure 5. Difference between a purely Newtonian integration rotated for geodesic preces-
sion/nutation in a SMART-like way (see Section 8) and our solution that includes all relativistic
effects discussed here.
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