
J. Plasma Phys. (2024), vol. 90, 805900602 © The Author(s), 2024.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.
doi:10.1017/S0022377824001326

Simulating nonlinear optical processes on a
superconducting quantum device

Yuan Shi 1,†, Bram Evert2, Amy F. Brown 3, Vinay Tripathi3, Eyob A. Sete2,
Vasily Geyko4, Yujin Cho4, Jonathan L. DuBois4, Daniel Lidar3,5,

Ilon Joseph4 and Matt Reagor2

1Department of Physics, Center for Integrated Plasma Studies, University of Colorado Boulder, Boulder,
CO 80309, USA

2Rigetti Computing, 775 Heinz Avenue, Berkeley, CA 94710, USA
3Department of Physics and Astronomy and Center for Quantum Information Science and Technology,

University of Southern California, Los Angeles, CA 90089, USA
4Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

5Department of Electrical and Computer Engineering and Department of Chemistry, University of
Southern California, Los Angeles, CA 90089, USA

(Received 18 June 2024; revised 20 September 2024; accepted 27 September 2024)

Simulating plasma physics on quantum computers is difficult because most problems of
interest are nonlinear, but quantum computers are not naturally suitable for nonlinear
operations. In weakly nonlinear regimes, plasma problems can be modelled as wave–wave
interactions. In this paper, we develop a quantization approach to convert nonlinear
wave–wave interaction problems to Hamiltonian simulation problems. We demonstrate
our approach using two qubits on a superconducting device. Unlike a photonic device,
a superconducting device does not naturally have the desired interactions in its
native Hamiltonian. Nevertheless, Hamiltonian simulations can still be performed by
decomposing required unitary operations into native gates. To improve experimental
results, we employ a range of error-mitigation techniques. Apart from readout error
mitigation, we use randomized compilation to transform undiagnosed coherent errors into
well-behaved stochastic Pauli channels. Moreover, to compensate for stochastic noise,
we rescale exponentially decaying probability amplitudes using rates measured from
cycle benchmarking. We carefully consider how different choices of product-formula
algorithms affect the overall error and show how a trade-off can be made to best utilize
limited quantum resources. This study provides an example of how plasma problems may
be solved on near-term quantum computing platforms.
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1. Introduction

The physics of plasmas is often multi-scale, multi-physics and highly nonlinear.
While classical computers have no trouble handling nonlinearity, the multi-scale and
multi-physics aspects make many plasma problems challenging even for classical
supercomputers. Simulations of larger systems with finer resolutions are restricted by
both the memory and time constraints of classical computers. In comparison, quantum
computers, which are still under development, in principle have an exponentially larger
memory, and thus have attracted substantial interest in recent years, including within
the plasma community (Dodin & Startsev 2021; Joseph et al. 2023; Koukoutsis et al.
2023). In addition to a larger memory, quantum computers support algorithms that
offer quadratic to exponential speedups over the best-known classical algorithms for
specialized problems, such as quantum search, Fourier transform and factoring. However,
whether quantum computers have the potential to offer a speedup for plasma problems
remains an open question. A major difficulty is that quantum algorithms typically rely on
unitary operations, and quantum computers are not naturally suited for general nonlinear
operations needed in plasma physics. Attempts have been made to develop schemes that
can handle nonlinear plasma problems on quantum computers (Joseph 2020; Engel, Smith
& Parker 2021; Liu et al. 2021; Lin et al. 2022). Many of these schemes rely on future
fault-tolerant quantum computers and thus cannot be tested on current noisy quantum
devices. While developing abstract algorithms for future quantum hardware is valuable,
performing concrete examples on current devices allows the community to build intuition
about how quantum computation works in practice and reveals potential gaps between
theoretical expectations and the reality of present-day capabilities.

In this paper, we show that small initial value problems that model the evolution
of nonlinear wave–wave interactions can be solved on current quantum hardware, after
employing a suite of error-mitigation techniques. Wave–wave interactions are a general
framework for weakly nonlinear dynamical systems (Zhakarov, L’vov & Falkovich 1992;
Nazarenko 2011; Davidson 2012). Many dynamical systems possess fixed points, which
correspond to equilibrium states of the system. When slightly perturbed away from a
stable fixed point, the system oscillates. Small-amplitude oscillations of fields are usually
called linear waves in plasma physics. At the linear level, the waves are decoupled
eigenmodes. However, at larger amplitudes, waves become coupled due to nonlinearities
of the system, leading to what are known as wave–wave interactions. For example,
laser–plasma interactions, such as Raman and Brillouin scattering, are often described
as three-wave interactions (Michel 2023), because they involve an incoming laser, an
outgoing laser and a mediating plasma wave. As another example, filamentation and
modulational instabilities of plasma waves can be described as four-wave interactions
(Michel 2023). In these instabilities, fluctuations of the laser amplitude depend on the laser
intensity. The instability is a four-wave process because the laser beats with its fluctuations
to produce side bands. Wave–wave interactions not only arise in laser–plasma interactions,
but also occur in magnetically confined plasmas (Nazarenko 2011; Hansen et al. 2017),
astrophysical plasmas (Bowen et al. 2018) and many other physical systems (Zhakarov
et al. 1992; Nazarenko 2011).

While plasma physics often treats wave–wave interactions classically, we note that these
nonlinear processes are intrinsically quantum. In fact, Raman (Raman & Krishnan 1928)
and Brillouin (Brillouin 1914) scattering were first studied in gases and solids as quantum
processes before these terms were borrowed by plasma physicists. For example, at the
quantum level, a single incoming photon can scatter into a single outgoing photon by
emitting a single phonon (Bowen & Milburn 2015). When there are many indistinguishable
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photons, the scattering probability amplitudes add up to determine the total scattering
probability, but the underlying three-wave interaction is not fundamentally different. In the
study of laser–plasma interactions, laser light is often treated as classical electromagnetic
waves. However, it is worth noting that from a quantum perspective, laser light is just
a special collection of photons known as a coherent state, for which photon number
distribution is Poissonian. In this regard, laser scattering from plasma is just a special
example of three-wave interactions. More generally, photons can occupy other quantum
states (Loudon 2000). For example, other important classes of quantum states are known as
squeezed states (Breitenbach, Schiller & Mlynek 1997), which are different from coherent
states because their probability distribution functions are not Poissonian. While laser
light may be approximated as classical electromagnetic waves, squeezed light cannot
be described by classical waveforms at all. If one attempts to assign a waveform to a
squeezed state, then the waveform would have to fluctuate from cycle to cycle, and yet its
Fourier transform must still have a narrow peak. To model quantum light interacting with
matter, one can no longer use a classical treatment of wave–wave interactions. To capture
quantum interference, which results from summing probability amplitudes rather than the
probabilities themselves, one must use a quantum treatment.

The high cost associated with modelling the exact quantum mechanical evolution
makes it desirable to develop quantum simulation capabilities for wave–wave interactions
induced by quantum light. At the same time, the intrinsic quantum nature of wave–wave
interactions makes it natural to study these nonlinear processes using a quantization
approach (Shi, Qin & Fisch 2017; Shi et al. 2021a; Shi, Qin & Fisch 2021b). After
promoting classical amplitudes to quantum creation and annihilation operators, the
nonlinear equations that are used to describe wave–wave interactions are derivable
as Heisenberg equations. By choosing a convenient basis, the Hamiltonian operators
can be converted to finite-dimensional Hamiltonian matrices, and we perform quantum
Hamiltonian simulations in the Schrödinger picture. The goal of the simulations is to
extract observables at some later time, which can be constructed using the quantum state
we evolve. In the limit of large occupation number, the quantized model reproduces linear
instabilities in classical plasmas (May & Qin 2023).

For quantum Hamiltonian simulations to be efficient, a number of criteria must be met.
One criterion is that the Hamiltonian matrices must have special properties. In our case, the
matrices are sparse, for which efficient quantum algorithms exist (Berry et al. 2007, 2014;
Low & Chuang 2017), at least for future error-corrected quantum computers. Another
criterion is that one must not be interested in the full information stored in the quantum
memory. In our cases, we are interested, for example, in the intensity of the backscattered
light, which involves just a few expectation values. Overall, the scheme we develop is
efficient for simulating how quantum light interacts with plasmas and can accelerate such
simulations on future error-corrected quantum computers.

We demonstrate our scheme on a current superconducting quantum device using a
two-qubit example. Our demonstration pushes the limit of what current hardware can
do and addresses important trade-off between different error sources for product-formula
algorithms. Rather than implementing black-box quantum Hamiltonian simulation
algorithms, which are not feasible on current devices and will only become more
efficient for larger system sizes, we simply decompose the requisite unitary operations
into elementary gates using a Cartan decomposition (Smith et al. 2020; Huang et al.
2023), which is the most efficient approach for two-qubit problems. For more qubits,
the number of two-qubit gates that Cartan decomposition requires grows exponentially,
so implementing larger problems on future devices requires different methods. In our
previous work, we have demonstrated that current devices can perform two-qubit time
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evolution using the exact unitary (Shi et al. 2021a), which is obtained by analytically
exponentiating the full Hamiltonian matrix. In principle, if one could perform the exact
exponentiation, then the problem is already solved. However, even when the exact unitary
was prescribed, we found that quantum devices had difficulties repeating the dense unitary
beyond a few cycles, unless one can drastically improve gate fidelity.

In this paper, we demonstrate the next level of quantum computation by assuming that
only certain parts of the exact unitary can be performed efficiently. More specifically,
since our Hamiltonian has two non-commuting terms, we assume that each term can be
exponentiated exactly. Then, we use product formulas to approximate the total unitary.
Product formulas are often known as Hamiltonian splitting in the plasma literature (He
et al. 2015; Morrison 2017), and are known as Lie–Trotter–Suzuki decomposition in the
quantum literature (Trotter 1959; Suzuki 1976). On future quantum computers, quantum
Hamiltonian simulations may still utilize product formulas, when the full Hamiltonian
cannot be simulated efficiently but its subparts can.

For current devices, which do not yet support operational error correction, we show that
reasonable results can be obtained only after we employ a range of error-mitigation and
error-suppression techniques. First, we suppress the occurrence of errors by addressing
the highest performing two-qubit gates on the device. Rather than using an off-the-shelf
gate, we calibrate a

√
iSWAP (SQISW) gate (Abrams et al. 2020) which provides superior

performance and expressiveness (Peterson, Crooks & Smith 2020) for our problem.
Second, we mitigate readout errors, which occur if the qubit states are misclassified during
measurements. We experimentally measure the confusion matrix, which describes the
probability of preparing a qubit register in one state but classifying it in another state.
We estimate the true distribution of samples from a noisy one using iterative Bayesian
unfolding (Nachman et al. 2020). Third, we mitigate coherent gate errors, which occur
if the realized unitary gate systematically differs from the target unitary. Coherent errors
often arise from drifts in system parameters, so that gates calibrated at one time no longer
remain perfectly calibrated at a later time. Coherent errors are problematic because they
accumulate at each gate operation and can interfere constructively. To mitigate coherent
errors, we use randomized compilation (Wallman & Emerson 2016; Hashim et al. 2020).
When a unitary operation is called, the hardware implements it using a different but
equivalent gate sequence, sampled at random from a precompiled set of choices. This
technique converts coherent errors into stochastic errors, thereby suppressing constructive
interference between errors. Finally, to mitigate incoherent errors, which occur due to
both the random selection of gate sequences and intrinsic quantum decoherence on the
hardware, we employ an amplitude-rescaling technique (Ville et al. 2022). The technique
assumes that the probability of a pure quantum state decays exponentially to the fully
mixed state. We measure the decay rate using cycle benchmarking (Erhard et al. 2019),
and compensate for the decay by multiplying the probabilities with an exponential growth
factor. While this technique partially recovers signals, it also leads to an exponential
growth of error bars. The maximum simulation time and the maximum achievable gate
depth are reached when the error bars become comparable to the signal of interest.

Using error-mitigation techniques, we substantially extend the achievable simulation
depth, which is nevertheless still limited. After error mitigation, we can accurately measure
observables at a depth of about two hundred two-qubit gates, for a reasonable shot budget.
Two-qubit gates, which require longer hardware runtime and are more vulnerable to
decoherence, have significantly lower fidelity than single-qubit gates, and are the limiting
factor on current quantum devices. Given that errors grow with the gate depth, more
accurate results may be obtained for a targeted final time by reducing the time step size,
which in turn reduces the discretization error per step at the expense of increasing the
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accumulation of hardware errors. Alternatively, more accurate results may be obtained
by using a higher-order algorithm, which decreases the algorithmic error per step at the
expense of more gates per step, but allows the use of larger time step sizes. We carefully
consider different choices and show that a trade-off can be made to best utilize limited
quantum resources.

The paper is organized as follows. In § 2, we discuss classical models of laser–plasma
interactions and show how the model can be quantized and converted to a Hamiltonian
simulation problem for quantum computers. In § 3, we implement an exact two-qubit
problem on superconducting hardware, and show that error-mitigation techniques
meaningfully improve simulation results. In § 4, we investigate product-formula
approximations and discuss how to best utilize limited quantum resources.

2. Classical and quantum models of laser pulse compression

An important class of wave–wave interactions in plasma physics are laser–plasma
interactions. In this paper, we consider an example scenario where a plasma is used
for laser pulse compression (Malkin, Shvets & Fisch 1999), during which the intensity
of a seed laser pulse is amplified while its duration is shortened. Other laser–plasma
interaction scenarios, as well as other cases of wave–wave interactions, may be treated
in a similar fashion. We first describe how the problem is usually treated classically in
plasma physics, and then develop a quantized model that is amenable to simulations on
quantum computers.

2.1. Classical model
Laser amplification is often treated as a parametric process, where the signal and idler
waves grow by consuming a pump wave. When the pump energy is being replenished,
or when the pump energy dominates, one may approximate the pump amplitude a1
as a constant, in which case the seed amplitude a2 and the idler amplitude a3 grow
exponentially. However, when the pump amplitude is not held constant, the three-wave
nature of the underlying interaction becomes apparent. The interaction is often described
by the three-wave equations (Davidson 2012)

dta1 = ga2a3, (2.1a)

dta2 = −g∗a1a†
3, (2.1b)

dta3 = −g∗a1a†
2, (2.1c)

where dt is the advective derivative, g is the coupling coefficient, g∗ is its complex
conjugate and a† denotes the complex conjugate of a in the classical model. The
advective derivative is specific for each wave and is defined as dt = ∂t + vg · ∇ + μ,
where vg = ∂ω/∂k is the group velocity and μ is the damping rate of the wave. The
complex-valued amplitude a is the slowly varying envelope of the classical wave. The
amplitude is normalized such that n = |a|2 is proportional to the wave action density,
which is proportional to the number of photons in the wave.

Three-wave interactions satisfy a number of conservation laws. First, the equations
describe resonant interactions where both energy and momentum are conserved. For waves
with narrow bandwidth, their 4-momentum density is proportional to kμ = (ω/c,k).
Energy and momentum are conserved because the interaction satisfies the resonance
conditions kμ1 = kμ2 + kμ3 . Moreover, the interaction has two independently conserved
actions S2 = n1 + n2 and S3 = n1 + n3. These actions are constants of motion because
their advective derivatives are zero. The physical meaning of action conservation is that
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the three-wave interaction splits each pump photon into a seed and an idler photon. So,
whenever n1 decreases by one, both n2 and n3 increase by one, and vice versa.

The three-wave equations are partial differential equations that describe how the wave
amplitudes evolve in both space and time. If all amplitudes are initially uniform in space,
then they will remain uniform as they evolve in time. However, if the amplitudes are not
uniform, two competing effects change the envelopes of the waves. First, wave advection
transports the wave envelope in the direction of the group velocity. The advection is a
linear process, and the envelope remains unchanged in the co-moving frame. Second, the
three-wave interaction changes amplitudes locally. Since the interaction is nonlinear, the
change is faster where the amplitudes of the other two waves are larger.

Laser pulse compression is a special scenario where the competition between the two
effects leads to the amplification and shortening of the seed wave. At later stages of
pulse compression, the intensity of the seed far exceeds that of the pump. The large a2
induces an additional relativistic nonlinearity. The nonlinearity originates from the fact
that, in plasmas, photons are massive particles due to their interactions with free charges.
In unmagnetized plasmas, photons satisfy the dispersion relation ω2 = ω2

p + c2k2, where
the photon mass can be identified with the plasma frequency ωp = (e2ne/ε0me)

1/2. Here,
e is the electron charge and ne is the electron density. Because electrons oscillate in the
laser’s electric field, the effective electron mass me is replaced by γme when the electron
quiver speed vq becomes comparable to the speed of light c, where γ = 1/

√
1 − v2

q/c2.
As the seed pulse propagates, at places where the pulse is more intense, the photon mass
ωp ∝ γ −1/2 becomes smaller. A smaller ωp leads to a larger k at a fixed ω, which means
a larger group velocity vg = c2k/ω. Consequently, the more intense part of a2 moves at a
higher group velocity. If the envelope of a2 has initial modulations, then they will pile up
and grow. This process is known as relativistic modulational instability.

The modulational instability may be understood as a four-wave process, where the
laser beats with its modulations to produce side bands. In the weakly relativistic
limit, we can expand 1/γ � 1 − v2

q/(2c2). Since electrons respond primarily to the
electric field of the laser pulse, Newton’s equation me dvq/dt � eE becomes ṽq �
ieẼ/(meω) in Fourier space. Denoting the normalized laser amplitude by α = eẼ/(meωc),
then the average quiver speed is 〈v2

q/c
2〉 = 1

2 e2|Ẽ|2/(meωc)2 = 1
2 |α|2. Replacing ω2

p →
ω2

p/γ � ω2
p(1 − 1

4 |α|2), the photon dispersion relation is approximated. The dispersion
relation is derivable from the wave equation [∂2

t − c2∇2 + ω2
p(1 − 1

4 |α|2)]E = 0. In the
Wentzel–Kramers–Brillouin approximation, the complex wave is E(x, t) = A(x, t) eiθ ,
where θ = k · x − ωt, and the envelope A varies slowly in the sense that |∂tA/A| 
 ω
and |∇A/A| 
 k. Then, to leading order, the wave equation is approximated by [∂t + vg ·
∇ − iω2

p|α|2/(8ω)]A = 0. When focusing on the scalar amplitude A, because A ∝ α ∝ a,
the equation that describes the modulational instability of the seed pulse is

dta2 = iRa†
2a2a2, (2.2)

where dt is again the advective derivative and R = ω2
p/(8ω) is the coupling coefficient. For

relativistic modulational instability, R > 0 is a real number, which means iR|a2|2 is purely
imaginary. The above equation thus modulates the phase of the complex a2 in such a way
that a larger |a2| leads to a faster phase evolution.

Laser pulse compression is described by the combined equations (2.1) and (2.2). The
modulational instability only affects a2 because during laser pulse compression, the
peak values satisfy |a2| � |a1|, |a3|. Since the three-wave interaction is a phase-sensitive
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process, the modulational instability spoils the amplification process by introducing a
phase mismatch.

2.2. Quantum model
In the classical model, the amplitude a is a complex-valued function, and n = |a|2 is
proportional to the number of photons. This set-up naturally admits canonical quantization
for bosonic quantum fields [ai(x), a†

j (y)] = δij(2π)3δ(3)(x − y), where the indices i, j =
1, 2, 3, and the operators have spatial dependencies. Since we will later implement the
model on quantum hardware, which has a limited number of qubits, in this paper we
focus on the temporal problem with no spatial dependence. In this case, when damping is
negligible, the advective derivative dt → ∂t is reduced to a partial derivative in time, and
the operators satisfy the canonical quantization conditions

[ai, a†
j ] = δij. (2.3)

The quantization promotes normalized amplitudes to creation and annihilation operators,
and the Kronecker delta distinguishes the three types of waves in the system. For each
wave type, the number operator is ni = a†

i ai. The eigenstates of ni are the Fock states
|mi〉, namely ni|mi〉 = mi|mi〉, where mi = 0, 1, 2 . . . and |mi〉 = (a†

i )
mi |0i〉/

√
mi!. Here,

|0i〉 is the ground state of wave i, which is annihilated by ai|0i〉 = 0. More generally,
these quantum harmonic oscillators have the usual matrix elements ai|mi〉 = √

mi|mi − 1〉
and a†

i |mi〉 = √
mi + 1|mi + 1〉. Since we have three types of waves, it is convenient to

abbreviate the tensor-product state |m1〉 ⊗ |m2〉 ⊗ |m3〉 as |m1,m2,m3〉. This number basis
is natural for the quantized problem.

While the Schrödinger picture i∂t|ψ〉 = H|ψ〉 is more convenient for quantum
simulations, the connection between the quantum and classical models is more transparent
in the Heisenberg picture dta = i[H, a]. For three-wave interactions, equations (2.1) are the
Heisenberg equations from the cubic Hamiltonian

HT = iga†
1a2a3 − ig∗a1a†

2a†
3. (2.4)

A degenerate form of HT , where a1 = a2, commonly arises in optomechanical systems
(Aspelmeyer & Schwab 2008; Kong et al. 2018; Lake et al. 2020; Shang 2023). In our
case, a1 
= a2. The first term of HT annihilates a seed and an idler photon to create a pump
photon, while the second term of HT is the reverse process where a pump photon decays
into a seed and an idler photon. Although the Heisenberg equations for aj are formally
identical to the classical three-wave equations, the differences between the quantum
and classical systems become apparent when one calculates higher-order cumulants. For
example, because aj and a†

j do not commute, the Heisenberg equation for ni is different
from its classical counterpart (Shi et al. 2021a). Similarly, for the four-wave interaction,
(2.2) is the Heisenberg equation from the quartic Hamiltonian

HF = −R
2

a†
2a†

2a2a2, (2.5)

which is also known as the self-Kerr nonlinearity in the quantum literature (Kerr 1875).
Since R > 0 for the modulational instability, the negative sign in HF means that photons
tend to condense together, which leads to a lower energy of the system. In (2.5), the
operators are normal ordered a†

2a†
2a2a2 = n2

2 − n2, which is different from other orderings
such as a†

2a2a†
2a2 = n2

2. Different orderings differ by factors of the number operator n2.
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For our purposes, the ordering does not matter, because the total Hamiltonian also includes
the energy of the non-interacting harmonic oscillators H0 = ∑

j ωja
†
j aj = ∑

j ωjnj. In the
interaction picture of H0, these quadratic terms are trivially removed, and (2.4) and (2.5)
should be understood as three- and four-wave interactions in the interaction picture of H0.
Then, different orderings in (2.5) are equivalent up to a re-definition of ω2. Hence, it is
sufficient to consider normal-ordered operators.

To use quantum Hamiltonian simulations to solve the quantized wave–wave interaction
problems, we focus on the Schrödinger picture and use a basis that respects action
conservation. In classical wave–wave interactions, S2 = n1 + n2 and S3 = n1 + n3 are
known as the conserved wave actions. In the quantized model, [HT, S2] = [HT, S3] = 0,
and HF also commutes with S2 and S3. Therefore, it is convenient to use eigenstates of
S2 and S3 as the computational basis, which we call the action basis. For the laser pulse
compression problem, since we are primarily interested in the seed wave a2, we label the
action basis by

|φs2,s3
j 〉 = |s2 − j, j, s3 − s2 + j〉, (2.6)

where j is the number of photons in the seed wave and is bounded within the range
jmin ≤ j ≤ s2 with jmin = max(0, s2 − s3). In other words, the |φs2,s3

j 〉 basis spans a D =
min(s2, s3)+ 1 dimensional subspace of |m1,m2,m3〉, where m1 = s2 − j, m2 = j and
m3 = s3 − s2 + j. The bounds for j come from the fact that mi ≥ 0. The non-negative
integers s2 and s3 are eigenvalues of S2 and S3, namely S2|φs2,s3

j 〉 = s2|φs2,s3
j 〉 and

S3|φs2,s3
j 〉 = s3|φs2,s3

j 〉. In other words, the infinite-dimensional Hilbert space can be
decomposed as a direct sum of finite-dimensional subspaces, where each subspace is
labelled by a pair of quantum numbers (s2, s3).

In the action basis, the Hamiltonian becomes block diagonal. The total Hamiltonian that
governs the mixed three- and four-wave interaction problem is

H = HT + HF, (2.7)

where [HT,HF] 
= 0. The matrix elements of HT are HT |φs2,s3
j 〉 = igηs2,s3

j−1/2|φs2,s3
j−1 〉 −

ig∗ηs2,s3
j+1/2|φs2,s3

j+1 〉, where the reduced matrix element ηs2,s3
j−1/2 = √

(s2 + 1 − j)j(s3 − s2 + j) is
inherited from the creation and annihilation operators. Notice that HT only couples nearest
neighbours in the action basis. Moreover, since the annihilation operator terminates at
m = 0, the reduced matrix element vanishes for both bottom and top values of j. The
bottom values of j are either j = 0 or j = s2 − s3, and in both cases ηs2,s3

−1/2 = η
s2,s3
s2−s3−1/2 = 0.

The top value is j = s2, for which ηs2,s3
s2+1/2 = 0. In other words, in the |φs2,s3

j 〉 basis, the
matrix of HT is block tridiagonal, where each block is finite-dimensional, with no need
for artificial truncation. Within each block, HF|φs2,s3

j 〉 = −Rζj|φs2,s3
j 〉. The reduced matrix

element is ζj = 1
2 j( j − 1), which is non-zero only when j ≥ 2. This is intuitive because the

self-Kerr effect is a photon–photon nonlinearity, so at least two photons are needed to see
the effect. Because the matrix for HF is diagonal, one can easily exponentiate the matrix
analytically. Efficient quantum simulation algorithms also exist for diagonal Hamiltonian
matrices with a smooth structure (Welch et al. 2014).

Because H is block diagonal in the action basis, we can perform Hamiltonian
simulations separately in each (s2, s3) subspace. We span the wavefunction by

|φ(t)〉 =
∞∑

s2,s3=0

√
ps2,s3

s2∑
j=jmin

cs2,s3
j (t)|φs2,s3

j 〉. (2.8)

The time-independent ps2,s3 ≥ 0 is the probability that the state is within the (s2, s3)
subspace, and the total probability

∑
s2,s3

ps2,s3 = 1. Because different subspaces decouple,
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the wavefunction is normalized separately within each subspace
∑

j |cs2,s3
j |2 = 1. After

performing Hamiltonian simulations for the subspaces, which can be done in parallel, one
can sum their contributions using weights that are predetermined by initial conditions.

For plasma problems, the initial states are often tensor-product states |φ(t = 0)〉 =
|ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉, where the three waves are initially unentangled. For each wave,
|ψi〉 = ∑

m β
i
m|m〉 can be expanded in its Fock basis, where pi

m = |β i
m|2 is the probability

that the ith wave occupies its mth state. For example, for classical laser pulse compression,
the pump and seed lasers are initially in a coherent state |ξ〉c, where ξ = r eiθ is a complex
number. For the coherent state, the probability amplitudes are βm = exp(− 1

2 r2)ξm/
√

m!.
In this case, pm is a Poisson distribution, with 〈n〉 = r2 and 〈n2〉 = 〈n〉2 + 〈n〉, and
pm peaks near m ∼ r2. When m � 1, pm � exp(−r2)(er2/m)m/

√
2πm decays faster

than exponential. As another example, for interactions between quantum light, the
initial state may be a squeezed vacuum state |ξ〉q, for which β2m+1 = 0 for odd states
and β2m = (sech r)1/2(− 1

2 eiθ tanh r)m
√
(2m)!/m! for even states. In this case, 〈n〉 =

sinh2r and 〈n2〉 = 3〈n〉2 + 2〈n〉. The probability p2m monotonically decreases, and p2m �
sech r(tanh r)2m/

√
πm decays much slower than a coherent state but faster than an

exponential. In both examples, due to the superexponential decays of pm, it is sufficient
to keep track of a finite number of states in the Fock basis. Expanding the initial
tensor-product state in the action basis gives

√
ps2,s3 cs2,s3

j (t = 0) = β1
s2−jβ

2
j β

3
s3−s2+j. (2.9)

The simplest case is when only the pump wave is initially excited, which means that
the seed and idler waves are initially in the ground state β2

m = β3
m = δm,0. In this case,

ps2,s3 = |β1
s2
|2δs2,s3 and cs2,s3

j (t = 0) = δj,0. At later time, the wavefunction is spanned by
|φ(t)〉 = ∑∞

s=0 β
1
s

∑s
j=0 cs,s

j (t)|φs,s
j 〉. Another special case is when the idler is initially

in the ground state, namely β3
m = δm,0. In this case, ps2,s3 = |β1

s3
|2|β2

s2−s3
|2Θs2,s3 , where

the step function Θi,j = 0 when i < j and Θi,j = 1 when i ≥ j. The initial condition
is cs2,s3

j (t = 0) = δj,s2−s3 , and at a later time the wavefunction is spanned by |φ(t)〉 =∑∞
s2=0

∑s2
s3=0 β

1
s3
β2

s2−s3

∑s2
j=s2−s3

cs2,s3
j (t)|φs2,s3

j 〉. In both examples, the wavefunction initially
occupies the ground state, namely the j = jmin state, within each (s2, s3) subspace.

For plasma simulations, the observables of interest are often the wave amplitudes,
namely the expectation values 〈ni〉 for the three waves. Due to action conservation,
the three amplitudes are not independent. For given initial conditions, the conserved
actions are 〈S2〉 = ∑∞

s2,s3=0 ps2,s3 s2 and 〈S3〉 = ∑∞
s2,s3=0 ps2,s3 s3. Because the probabilities

ps2,s3 are time-independent, the expectation values 〈S2〉 and 〈S3〉 are constants of motion.
The amplitudes of the pump and idler waves are related to the amplitude of the seed
wave by

〈n1(t)〉 = 〈S2〉 − 〈n2(t)〉, (2.10a)

〈n3(t)〉 = 〈S3〉 − 〈S2〉 + 〈n2(t)〉. (2.10b)

To compute the seed amplitude, we use the orthonormality of the action basis, which gives
〈n2〉 = 〈φ|n2|φ〉 = 〈φ|∑s2,s3,j

√
ps2,s3 cs2,s3

j j|φs2,s3
j 〉 = ∑

s2,s3,j ps2,s3 |cs2,s3
j |2j.
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The amplitude can be computed in two steps:

〈ns2,s3
2 (t)〉 =

s2∑
j=jmin

j|cs2,s3
j (t)|2, (2.11a)

〈n2(t)〉 =
∞∑

s2,s3=0

ps2,s3〈ns2,s3
2 (t)〉, (2.11b)

where the first step computes the expectation value in each (s2, s3) subspace and the second
step performs weighted sums using predetermined probabilities. For interactions involving
quantum light, one may also be interested in observing higher-order cumulants, which can
be measured in similar ways.

2.3. Exact dynamics
In the remaining part of this paper, we focus on a single subspace and drop the s2 and s3
superscripts to keep notations compact. When s2 = s3 = 0, the subspace is trivial because
D = 1 is one-dimensional. For non-trivial dynamics, either s2 or s3 must be positive.
Notice that although the underlying three- and four-wave interactions couple three and
four photons, the dimension of the subspace D = min(s2, s3)+ 1 can take any integer
value. The smallest non-trivial problem is D = 2, which requires a single qubit.

The exact dynamics involves two fundamental frequency scales g and R, from HT and
HF, respectively (equations (2.4) and (2.5)). When g = 0, the dynamics is trivial because
HF is diagonal: under the influence of HF alone, the occupation of |φj〉 remains unchanged,
and the dynamics is a pure phase precession. To change occupation numbers, a non-zero
g is needed. Hence, for non-trivial dynamics, we can always normalize time by τ = |g|t
and normalize the four-wave coupling by ρ = R/|g|. The Schrödinger equation becomes
i∂τc = Hc, where the vector c is the expansion coefficients such that |φ〉 = ∑D−1

l=0 cl|φk〉.
The index k = jmin + l, so c0 is the probability amplitude that the seed wave is in the lowest
occupied state and cD−1 is the probability amplitude that the seed wave is in the highest
occupied state. The normalized matrix elements Hk′,k = (1/|g|)〈φk′ |H|φk〉 are non-zero
only along the diagonal and first off-diagonal bands:

Hk,k = − 1
2ρk(k − 1), (2.12a)

Hk−1,k = eiθ
√

k(s2 + 1 − k)(s3 − s2 + k), (2.12b)

where eiθ = ig/|g| and Hk,k−1 = H∗
k−1,k. Notice that for the amplitude cl, the index k =

jmin + l may be shifted. For example, when s2 = 3 and s3 = 4, we have D = 4 and
jmin = 0, so k = l = 0, 1, 2, 3. On the other hand, when s2 = 4 and s3 = 3, even though
we still have D = 4, now jmin = 1, so k = l + 1 = 1, 2, 3, 4. In terms of l, we can
rewrite Hk−1,k = eiθ [l(D − l)(|s3 − s2| + l)]1/2, which is symmetric under s2 ↔ s3. The
three-wave interaction is a phase-sensitive process because when ϕ 
= ϕ′, |eiϕ + eiϕ′ | < 2.
Here, the phase ϕ contains a contribution from θ , as well as a dynamical phase, which
accumulates in time due to the diagonal four-wave interaction. If the relative phase
between two adjacent levels changes, then the population transfer between them is reduced.

Since the Hamiltonian H is time-independent, the exact dynamics is described by
the unitary evolution operator U(τ ) = exp(−iHτ), which can be obtained by direct
diagonalization and exponentiation, at least for small problem sizes. For size D = 4, the
exact behaviours of three examples are shown in figure 1. In all three examples, the
coupling phase θ = 0 and the constants of motion are s2 = 4 and s3 = 3, which means
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 1. Exact dynamics of mixed three- and four-wave interaction problems in a D = 4
dimensional Hilbert space with constants of motion s2 = 4 and s3 = 3. Starting from the ground
state, the probability amplitudes c are evolved in time, and the occupation probabilities Pl = |cl|2
(a–c) as well as the expected quanta in the three waves 〈ni〉 (d–f ) are computed on a classical
computer. When ρ = R/|g| = 0.1, three-wave interaction dominates; when ρ = 2, three- and
four-wave interactions compete; when ρ = 10, four-wave interaction dominates.

jmin = 1 and k = l + 1, so |φk〉 = |3 − l, 1 + l, l〉. All examples start the time evolution
from c0 = 1 and cl = 0 for l = 1, 2, 3 at τ = 0. This ground state of the computational
basis is by no means the ground state of the dynamical system. In fact, at τ = 0, there
are three photons in the pump wave a1 and one photon in the seed wave a2, while the
plasma wave a3 is initially unexcited. At small τ , the three-wave interaction consumes a1 to
produce a2 and a3, so the probabilities cascade from the ground state to higher states of the
computational basis. At larger τ , the pump is depleted, so the inverse process dominates,
where a2 and a3 merge into a1, and the probabilities cascade back to lower states. As can
be seen from figure 1, the upward and downward cascades of probabilities repeat, but the
dynamics is not periodic.

The dynamics is controlled by the dimensionless parameter ρ. When ρ 
 1, as shown
in figures 1(a) and 1(d), three-wave interaction dominates, which causes population
transfer between the three waves. In this case, the much weaker four-wave interaction
slowly accumulates phase mismatches that reduces the efficiency of population transfer,
which is manifested by the decreasing oscillation amplitudes of 〈n〉 in figure 1(d). Here,
the expected number of quanta in the three waves are calculated from the probability
amplitudes c by 〈n1〉 = ∑

l(s2 − j)|cl|2, 〈n2〉 = ∑
l j|cl|2 and 〈n3〉 = ∑

l(s3 − s2 + j)|cl|2,
where j = jmin + l, and the summation is over l = 0, . . . ,D − 1. From the above equations,
it is clear that 〈S2〉 = s2 and 〈S3〉 = s3 are exact constants of motion, as marked by
horizontal dashed lines in figure 1(d–f ). In the opposite limit ρ � 1, as shown in
figures 1(c) and 1( f ), four-wave interaction dominates. In this case, the phases of

https://doi.org/10.1017/S0022377824001326 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001326


12 Y. Shi and others

different |φj〉 precess at drastically different rates, which inhibits population transfer
because three-wave interaction requires phase matching. In this example (ρ = 10), the
0 ↔ 1 transfer is strongly suppressed, while the 1 ↔ 2 transfer, which accumulates
phase mismatch at a greater rate, becomes nearly impossible. Finally, in the intermediate
case ρ ∼ 1, as shown in figures 1(b) and 1(e), three- and four-wave interactions
compete, and the dynamics is more complicated. While four-wave interactions generate
phase mismatches that suppress population transfer, three-wave interactions change the
populations and affect how the phases are weighted. The intermediate cases are where
simulations are most needed for predicting the behaviour of the system.

The expectation value 〈n(τ )〉 can be measured efficiently using O(log D) circuits. Due to
action conservation, the three expectation values 〈n1〉 = s2 − 〈n2〉, 〈n2〉 = jmin + 〈O〉 and
〈n3〉 = s3 − s2 + 〈n2〉 are derivable from

〈O〉 =
2n−1∑
l=0

l|cl|2 = 2n − 1
2

−
n∑

j=1

2n−1−j〈φ|Z j|φ〉, (2.13)

where we embed the D-level system into the Hilbert space of n = �log2(D)� qubits.
We identify |l〉 = |φjmin+l〉 and map this state to |q1 · · · qn〉 when l = (q1 · · · qn)2, where
q = 0 or 1 and (q1 · · · qn)2 = 2n−1q1 + · · · 20qn is the binary representation of l. When
N = 2n > D, we pad the state vector with zeros, namely we set cl = 0 for l ≥ D. On
the right-hand side of (2.13), |φ〉 = ∑

l cl|l〉 is the quantum state, and Z j is the Pauli
σz gate acting on the jth qubit. By measuring n single-qubit Pauli strings 〈Z j〉 for
j = 1, . . . , n, (2.13) allows us to obtain 〈O〉 using n = O(log D) measurement circuits
with n steps of post-processing. To see why (2.13) holds, we start from O = ∑

l l|l〉〈l|.
In the computational basis, O = diag(0, 1, . . . ,N − 1) is a diagonal matrix, which
can be expanded in Pauli basis as O = ∑

l rlσ
n
l , where σ n

l is a tensor product of n
Pauli matrices. Explicitly, σ n

(q1···qn)2
:= ⊗n

i=1 σ3qi , where σ3q = I when q = 0 and σ3q = Z
when q = 1. Using the fact that tr(σ n

i σ
n
j ) = 2nδij, where δij is the Kronecker delta, the

expansion coefficient equals rl = 2−ntr(σ n
l O). To calculate the trace, we need diagonal

elements of σ n
l , and we denote its kth diagonal element by [σ n

l ]k. By induction, one can
show that [σ n

(q1···qn)2
](b1···bn)2 = ∏n

i=1(−1)qibi . Then, tr(σ n
(q1···qn)2

O) = ∑
k[σ

n
(q1···qn)2

]k[O]k =∑
b1,...,bn=0,1[σ n

(q1···qn)2
](b1···bn)2(b1 · · · bn)2 = ∑

b1,...,bn=0,1

∏n
i=1(−1)qibi

∑n
j=1 2n−jbj =

∑n
j=1

2n−jξj. To calculate the sum ξj = ∑
b1,...,bn=0,1

∏n
i=1(−1)qibi bj, one can show by induction

that if qi = 0 ∀i 
= j, ξj = 2n−1(−1)qj , otherwise ξj = 0. Consequently, only n + 1 traces
are non-zero. The first non-zero trace is when qi = 0 for all i, in which case σ n

(0···0)2 = I and
tr(O) = 2n−1(2n − 1). Second, when qi = δij for a given j, σ n

(0···1j···0)2 = Z j is a single-qubit
gate and tr(Z jO) = −2n−12n−j. When more than one q is non-zero, the trace is zero.
Therefore, we obtain O = 2−1(2n − 1)I − ∑n

j=1 2n−1−jZ j, from which (2.13) follows.
The exact quantum dynamics can be simulated efficiently using quantum Hamiltonian

simulations (Berry et al. 2007, 2014; Low & Chuang 2017), exploiting the fact that our
Hamiltonian matrix is 3-sparse. For example, the qubitization algorithm of Low & Chuang
(2017) requires O(1) ancilla qubits in addition to O(log D) qubits that encode the action
basis. The query complexity of the qubitization algorithm, namely the number of terms
one need to keep in the Jacobi–Anger expansion, is O(τ‖H‖max + log(1/ε)/ log log(1/ε)),
where ε is the desired precision and ‖H‖max is the matrix element with the largest
absolute value. For plasma pulse compression, one is typically interested in attaining
the maximum seed wave intensity. As shown in figure 1, the first peak of 〈n2〉 tends
to be the highest. So, it is usually sufficient to simulate the dynamics for the first few
oscillations. In other words, the maximum simulation time of interest is τ = O(1/|λ|max),
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where |λ|max is the eigenvalue of H that has the largest absolute value. Therefore,
the query complexity for the pulse compression problem is O(‖H‖max/|λ|max). In other
problems, such as simulating the chaotic regime of wave–wave interactions, one might
be interested in long-time dynamics, in which case the complexity may be higher. To
estimate ‖H‖max, using (2.12), the diagonal elements attain the maximum at the largest
k value, which is k = s2. When s2 → ∞, ‖Hk,k‖max � 1

2ρs2
2. For off-diagonal elements,

we express Hk,k−1 in terms of l. When s3 → ∞ at fixed s2, or s2 → ∞ at fixed s3, the
maximum is attained at l � D/2, where ‖Hk,k−1‖max � (D/2)

√|s2 − s3| + D/2. When
s2 = s3 → ∞, the maximum is attained at l � 2D/3 where ‖Hk,k−1‖max � 2(D/3)3/2.
Although ‖H‖max grows with D, the complexity remains O(1) because |λ|max also grows
with D at a similar rate. To estimate the eigenvalues, consider two limits. (i) Consider
the limit ρ → ∞. When s2 > s3, because jmin > 0, diagonal matrix elements dominate,
and the eigenvalues are λl � Hk,k → −∞, for l = 0, . . . ,D − 1. When s2 ≤ s3, because
jmin = 0, the first two diagonal elements are zero. The eigenvalues are λ0 � |H0,1|, λ1 �
−|H0,1| and λl � Hk,k for l = 2, . . . ,D − 1, where |H0,1|2 = (D − 1)(|s2 − s3| + 1) 
 ρ.
In both cases, |λ|max � ‖H‖max. (ii) Consider the limit ρ → 0. Due to the absence
of diagonal elements, the eigenvalues are either 0 or appear in ±λi pairs, where
i = 1, . . . , �D/2�. From the characteristic polynomial,

∑�D/2�
i=1 λ

2
i = ∑D−1

l=1 |Hk−1,k|2 =
1
12 D(D2 − 1)(D + 2|s2 − s3|). Because

∑�D/2�
i=1 λ

2
i ≤ �D/2�|λ|2max, we obtain a lower bound

|λ|max � [ 1
6(D

2 − 1)(D + 2|s2 − s3|)]1/2. Comparing with expressions for ‖Hk,k−1‖max, we
see ‖H‖max = O(|λ|max) when D → ∞. For both limits, as well as for intermediate ρ, the
complexity of quantum Hamiltonian simulation is O(‖H‖max/|λ|max) = O(1), so the pulse
compression problem can be simulated efficiently.

3. Implementing exact dynamics with error mitigation

The classical three- and four-wave interaction problems, when restricted to the temporal
case with no spatial non-uniformity, are in fact not difficult to solve on classical computers.
However, the quantum problem, which becomes important, for example, when the pump
is in a squeezed state, becomes challenging for classical computers if the number of
photons is large. The exact diagonalization of the 3-sparse D × D Hamiltonian takes
O(D) steps and O(D2) memory. For joule-class lasers typically used in plasma physics,
the number of photons is of the order of 1019, so exactly solving the quantum problem
on classical computers is likely challenging. On the other hand, solving the quantum
problem on future quantum computers will be efficient, which requires O(log D) qubits
and O(1) complexity. However, fault-tolerant quantum computers are not yet available. To
push the limit of current devices and identify avenues for near-future improvements, we
perform experiments on a superconducting device, using product-formula algorithms to
approximate the exact dynamics.

We perform two-qubit experiments on Rigetti’s Aspen-M-3 processor (Caldwell et al.
2018), which is a superconducting device with multiple transmon qubits at a fixed topology
with hardwired qubit–qubit couplings. The device is routinely calibrated to support
single-qubit gates, as well as two-qubit gates like CZ and parametric XY(θ ) gates. Each
experiment is specified as a sequence of unitary operations, and each 4-by-4 unitary matrix
is decomposed using Cartan decomposition into at most three two-qubit SQISW gates,
sandwiched between single-qubit gates (Huang et al. 2023). The total gate sequence is
executed on the hardware with the device initialized in the ground state. At the end of
the gate sequence, the states of the two qubits are measured. The whole process of an
experiment takes a few microseconds to run on hardware, with the overall time being
dominated by a passive reset delay. We repeat each experiment for M = 50 000 times
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FIGURE 2. Occupation probabilities in a test problem with parameters ρ = 2, θ = 0, s2 = 4 and
s3 = 3. The blue lines are exact solutions from a classical computer, and the coloured symbols
with error bars are results from the quantum device. When asked to enact the final unitary
(black), the device performance is acceptable but not ideal. However, when asked to perform
time evolution (orange), results on the device degrade to noise level after a few oscillations. The
results are significantly improved using error-mitigation techniques (red), but the error bars grow
exponentially.

to accumulate statistics for the final states, so that the shot noise, which scales as
O(1/

√
M) ∼ 0.4 %, is small compared with other sources of errors. At the end of M

repeated experiments, we obtain a single data point along the time history of the evolution.
Because projective measurement destroys quantum states, to obtain the next point along
the time history, the simulation has to restart from the beginning in the form of a different
experiment, which has its own sequence of unitary operations and is repeated another M
times.

3.1. Implementation on a superconducting device
As the first test of the quantum device, we use it to enact the exact unitary operator.
In figure 2, the solid blue lines are the exact occupation probabilities of the four states
in our computational basis, which are computed using exact exponentiation on classical
computers. The test problem uses parameters ρ = 2, θ = 0, s2 = 4 and s3 = 3, which
are identical to those of figure 1(b,e). The exact solutions serve as references for results
on the quantum device. This first test is the simplest task that a quantum hardware can
perform: for each time τ = NΔ, we compute the unitary exactly on a classical computer.
The sequence of unitary operations for this experiment is thus constituted of just a single
unitary, U(NΔ), and the results are shown in figure 2 as the black dashed lines. As can be
seen from the figure, even when enacting a single dense unitary on the device, the fidelity
is far from perfect. The important point is that because each time step uses the same gate
depth, the performance does not degrade with τ , except perhaps at the very beginning
where most population remains in the ground state and the unitary is near identity. In this
test, because the gate sequence is so short, decoherence is not a leading cause of infidelity.
Instead, most infidelity comes from coherent gate errors, in the sense that each gate realizes
a slightly different unitary than what is intended.

In this simplest test, another source of error is readout, for which we have already
corrected using an iterative Bayesian unfolding technique (Nachman et al. 2020). On the
device level, the dispersive readout process is a scattering experiment, where a microwave
pulse, whose frequency is off-resonant from the qubit transition frequency, is injected
to interact with the qubit. The amplitude and phase of the returned microwave pulse
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depend on the state of the qubit, and therefore enables a measurement of the qubit states.
During the readout process, the state of the qubit may change, for example, due to intrinsic
decoherence or induced interactions from the readout pulse. As a consequence, the true
probability pi that qubits are in state i may differ from the measured probability mi.
The vectors m and p are related by a response matrix R by m = Rp, where R is also
called the confusion matrix, which is ideally close to the identity matrix. In practice,
the matrix R is constructed during calibrations, which prepare known quantum states
using single-qubit gates, assuming they are ideal, and then immediately measure the
qubit states. Due to statistical noise, directly inverting the matrix to find p = R−1m often
leads to artefacts, including p /∈ [0, 1] and

∑
i pi 
= 1. These artefacts can be removed

using iterative Bayesian unfolding pn+1
i = ∑

j(mjRjipn
i /

∑
k Rjkpn

k), where n is the iteration
number. When the iteration converges, the denominator

∑
k Rjkpk = mj cancels with the

numerator. Because the marginalized probability
∑

j Rji = 1 for all i, pn+1
i = pn

i converges
to a stationary true value. In practice, starting from the initial guess p0 = m, a few
iterations are usually sufficient. Without readout error mitigation, results differ only
slightly from the black dashed lines in figure 2, which suggests that the leading error
is not readout error but rather coherent gate errors.

As the second test, we perform time evolution using the exact unitary U(Δ), and the
results are shown by the orange dashed lines in figure 2. In this set of experiments, U(Δ)
is compiled to native gates, and the gate sequence is repeated N times to enact UN(Δ).
Because of the repetition, as τ = NΔ increases, the gate depth increases linearly. The
accumulation of errors leads to a degradation of fidelity, as can be seen from figure 2.
The oscillation amplitudes decrease and p(τ ) deviates further from the true solution as τ
increases. At even larger τ values, the quantum states become fully scrambled, so p →
1/4 approaches the fully mixed value for the four quantum states. Because UN(Δ) has
a larger depth than U(NΔ), the device performs worse in this test (orange lines) than in
the previous test (black lines) as expected. The UN(Δ) results improve noticeably from
Shi et al. (2021a) primarily because of the SQISW gate, which has significantly shorter
duration and higher fidelity than the two-qubit gate used in our previous work.

3.2. Improving results with error suppression and mitigation
Because product formulas require even larger gate depth, we need to improve the results
for the exact unitary before moving on to the next test. The dominant source of error on the
quantum processor are two-qubit gate errors, which are typically an order of magnitude
larger than single-qubit gate errors. On the Aspen architecture, this is not only due to a
significantly longer two-qubit gate time, but also because activating the two-qubit gate
requires tuning one of the qubits away from its optimal operating point so the qubit
becomes more sensitive to flux noise (Didier 2019), which leads to a higher dephasing
rate for the qubit.

We take a multi-pronged approach to minimizing two-qubit gate errors. First, the
Aspen-M-3 chip used in our experiment has ∼200 calibrated two-qubit gates available.
We require only one of these for this circuit and are thus able to select high-performing
candidates based on the reported fidelities. In our experiment, we perform this selection
manually, but this optimization can be performed by compilers and is often referred to
as addressing. Second, the Aspen chip offers both native CZ and XY(θ ) gates, thus
providing a choice of how to express our problem unitary. We observe that the XY family is
particularly expressive (Peterson et al. 2020), allowing the expression of our target unitary
using two XY(π/2) gates and single-qubit gates (Huang et al. 2023). The parametric
XY(θ ) gate is composed of two pulses with a swap angle of π/2 while the variable angle
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is achieved by a phase shift between the pulses (Abrams et al. 2020). However, we find
that by using SQISW as our native gate, we can discard the second pulse from the XY
gate, cutting the duration in half and reducing the two-qubit gate error by around 40 %.
Our native two-qubit gate is thus a 64 ns SQISW which is combined with single-qubit
rotations to produce highly expressive native cycles. Our target unitary is expressible in
either two or three of these clock cycles depending on parameters of the problem. Our
combined approach to native gate selection, which takes into account both the fidelity and
expressiveness of the native two-qubit gates, allows us to achieve sufficiently low error
rates so that it is possible to reach relatively large depths.

While our calibration and gate selection techniques suppress errors, setting the
fundamental performance ceiling of the circuit, a family of error-mitigation techniques
allows us to tailor the noise, and recover unbiased estimates of observables. As mentioned
earlier, a major source of error is coherent gate error. Coherent errors may be the result
of either control errors, which should have ideally been calibrated away, or crosstalk,
which are coherent errors caused by the state of nearby idling spectator qubits. Such
errors can be suppressed using dynamical decoupling (Tripathi et al. 2022; Zhou et al.
2023; Evert et al. 2024). We do not attempt this here because our circuit does not
have significant idle periods. Finally, we may suffer from unintended control errors from
neighbouring control signals. All three classes of errors are major contributors to infidelity
on current devices. Moreover, while long-term changes, such as temperature drifts that
affect the control electronics, can be removed by routine calibrations, current devices also
suffer from short-term and unpredictable changes. For example, chemical residues from
fabrication process or material defects can interact with the qubits, which changes qubit
frequencies and coherence times (Klimov et al. 2018; Müller, Cole & Lisenfeld 2019;
Cho et al. 2023). As another example, when the device is struck by cosmic rays, whose
energy is often higher than that of the superconducting gap, Cooper pairs are broken,
creating quaisparticles, and thus changing the qubit frequency (Vepsäläinen et al. 2020).
Due to these changes, a control pulse that is calibrated to enact a specific unitary for the
original set of qubit parameters will now deviate from the intended unitary operation.
The resultant coherent gate errors are particularly damaging because their behaviours are
difficult to predict. Rather than adding up systematic errors in a simple way, quantum
interference may cause the errors to transiently disappear, only to re-emerge at a later
time. In comparison, errors due to decoherence, or more specifically due to depolarizing
noise, behave in a much simpler and more predictable way: the depolarizing errors simply
lead to an exponential decay of the Bloch vector, which can be easily modelled once the
decay exponent is measured.

To mitigate coherent errors, we convert them into stochastic Pauli errors using a random
compilation technique (Wallman & Emerson 2016; Hashim et al. 2020). The technique
exploits the fact that the decomposition of a target unitary into elementary gates is not
unique. Suppose one has found a particular decomposition U = (

∏K
k=1 CkGk)C0, where

C are single-qubit gates and G are two-qubit gates. Then, a different but equivalent
decomposition can be constructed in two steps. First, the single-qubit gates are replaced by
C̃k = T k+1CkT c

k for k = 0, . . . ,K, where T k+1 is chosen at random from a subgroup of C
called the twirling group. An important property of the twirling group is that T G = GT ′.
In other words, a single-qubit gate in T can be commuted across two-qubit gates to become
another single-qubit gate. Due to this property, once T k is chosen, if one takes T c

k =
GkT †

kG†
k for k = 1, . . . ,K, then T c

kGkT k = Gk. Taking T c
0 = I to be the identity, one thus

finds another decomposition U = T †
K+1(

∏K
k=1 C̃kGk)C0. Second, to reduce unnecessary

single-qubit gate depth, the new single-qubit operations C̃k, for k = 1, . . . ,K − 1, and
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T †
K+1C̃K are compressed and simplified to elementary single-qubit gates. In this paper, the

two-qubit gate we use is the SQISW gate G = exp[−i(π/8)(X ⊗ X + Y ⊗ Y )], where X
and Y are Pauli matrices. Notice that the twirling does not directly touch the two-qubit
gates, which are hard to implement on hardware. The randomness of the compilation
is introduced solely from the intermediate single-qubit gates, which are easy to adjust.
Wallman & Emerson (2016) shows that if the Pauli twirling gates are chosen independently
and if hardware Pauli errors are also independent, then random compilation transforms
any gate errors into stochastic Pauli errors. In other words, as shown in the Appendix,
suppose the errors of a quantum channel, when represented by the Pauli-transfer matrix,
have off-diagonal components before twirling. Then, after twirling, the errors become
purely diagonal, which means coherent interference of errors is removed. Because our
native two-qubit gate is a non-Clifford gate, we cannot apply full Pauli twirling. Rather, we
use a pseudo-twirling technique which tailors a smaller subset of coherent errors using the
group of single-qubit rotations which can be successfully inverted by single-qubit gates.
This twirling group is less powerful than Pauli twirling, but still tailors the noise effectively
in most situations. The twirling is performed using the TrueQ software library (Beale
et al. 2020). In our experiments, we construct the logical circuit and compute 50 random
compilations. Each compilation has an identical pulse schedule, and thus an identical noise
model. The randomization of single-qubit gates is performed by updating angles of our
virtual Z gates. Such updates can be made with high efficiency, allowing a large number
of randomizations of the circuit to be executed in quick succession.

The final step of error mitigation is to compensate for the suppression of observables
using a rescaling technique (Ville et al. 2022). After twirling of a unitary operation U , the
noise channel becomes approximately E(ρ) = ∑

λPPρP†, where the summation is over
all tensor products of single-qubit Pauli operators P. The coefficient λP, called the Pauli
decay constant, is specific to the Pauli operator P but is independent of the unitary U that is
being performed. Because the λP values are bounded by their mean λ̄ as 2λ̄− 1 ≤ λP ≤ 1,
Ville et al. (2022) propose to use a single λ̄ value to correct for all Pauli errors. This
approximation becomes exact when the errors are fully depolarizing, which means that
all Pauli channels decay in the same way. In this case, the measured expectation value
Ẽ for any E of interest is given by a simple rescaling Ẽ = λ̄E, because the length of the
Bloch vector, which measures the purity of the state, shrinks by λ̄. For example, in our
two-qubit problem, the expected occupation of a state beyond its fully mixed value is
(p̃ − 1

4) = λ̄( p − 1
4), where p is the occupation probability for a pure state after one unitary

operation. Then, after N unitary operations, we can purify the probability by a rescaling
p = 1

4 + 1
λ̄N (p̃ − 1

4). In other words, after measuring the probability of a state, we subtract
the noise 1

4 and amplify the remaining signal exponentially by a rescaling factor (1/λ̄)N .
We provide justifications for using the simple rescaling technique in the Appendix. Notice
that while amplifying the signal, this purification procedure also amplifies statistical error
bars exponentially.

In practice, we estimate the mean value of Pauli decay constants λ̄ using cycle error
reconstruction (Erhard et al. 2019; Carignan-Dugas et al. 2023). Cycle error reconstruction
is a technique for measuring the Pauli infidelities of a dressed cycle with multiplicative
precision. A Pauli-twirled cycle results in a noise channel which is diagonal in the Pauli
basis. After the qubits are prepared in an initial state, the cycle of interest is repeated M
times and inverted to create an identity. By repeating the procedure at different values
of M, we can we extract a state-preparation and measurement (SPAM) robust error
rate for the initial state. The ensemble of error rates allow us to reconstruct the Pauli
error rates of the cycle and their orbital averages, as shown in the Appendix. Together,
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this set of measurements provides not only an overall measurement of the fidelity, but
structured information about the error channel which can be used in more advanced
error-mitigation techniques. The technique we use is scalable with the number of qubits,
provided that the noise is sparse, which is a reasonable assumption in superconducting
qubit architectures. Empirically, the result converges with the square root of the sampling
size. In our case, the gate of interest is the SQISW gate. For a system of two qubits,
it is affordable to perform cycle error reconstruction over all possible Pauli channels.
The SQISW is a non-Clifford gate, meaning that Pauli twirls cannot be inverted by a
following pair of single-qubit rotations. However, for the purposes of characterization,
this is not a problem. The inversions are propagated to the end of the benchmarking
circuit, and then inverted with a final SQISW gate. This procedure of measuring the
purification constant λ̄ is performed each time we run a batch of experiments on the
hardware.

After performing the above error-mitigation steps, the hardware results for our test
problem are shown in figure 2 by the dotted red lines. The mitigated results of the
second test now closely track the exact solutions, and the test performs even better
than the first test (black lines), which does not use any mitigation. While the mitigation
significantly improves the signals, without noticeably increasing the hardware overhead,
the price we pay is exponentially growing error bars. At even larger simulation depth, the
error bars will become comparable to the signals, beyond which the simulations need to
stop.

4. Testing product formulas with limited quantum resources

With sufficient simulation depth, we can now test the next level of quantum simulations,
without assuming that the exact unitary is known. Predicting the exact dynamics on
classical computers requires exact exponentiation of H , which becomes expensive for large
problem sizes. As a prototypical step of quantum simulation, we split H = HT + ρHF
into two non-commuting terms, where the normalized four-wave coupling ρ is pulled
out from the definition of HF. On future quantum computers, if the total Hamiltonian
cannot be simulated efficiently, but its components can, then product formulas may be
employed to approximate the exact dynamics. In our case, HF is diagonal, so it is trivial
to exponentiate on classical computers; HT is tridiagonal with zero diagonal elements,
so its spectrum appears in ±λ pairs. Otherwise, H is not intrinsically more difficult to
exponentiate than HT on classical computers. We do not expect a future quantum computer
to benefit from separating H into HT and HF when performing quantum Hamiltonian
simulations. Nevertheless, we perform the separation in order to test the performance of
product formulas on current quantum devices.

4.1. Product formulas
For given problem parameters, we compile unitary matrices UT(τ ) = exp(−iHTτ) and
UF(τ ) = exp(−iHFτ) to native gates using a Cartan decomposition (Smith et al. 2020).
Then, we use UT and UF to approximate the exact U . To first order, we approximate a
single step with time step size τ = Δ using the formula

U1(Δ) = UT(Δ)UF(ρΔ), (4.1)

where the normalized four-wave coupling ρ appears as a scaling of time, which is
convenient on quantum computing platforms that support parametric compiling. The error
per step of the first order formula is O(Δ2), whose prefactor is proportional to the norm of
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the commutator [HT,HF]. To second order, we use the symmetric formula

U2(Δ) = UT

(
Δ

2

)
UF(ρΔ)UT

(
Δ

2

)
, (4.2)

whose error per step is O(Δ3). One could instead place UF on the outside. With either
placement, when repeating U2, the adjacent U of the same kind can be merged to
reduce the required number of operations. For example, using (4.2), we can simplify
U2

2(Δ) = UT(Δ/2)UF(ρΔ)UT(Δ)UF(ρΔ)UT(Δ/2). Implementing this unitary sequence
thus requires compiling three different unitary matrices UT(Δ/2), UT(Δ) and UF(ρΔ). In
a similar spirit, higher-order product formulas require more types of unitary operations.
For example, to third order, we use the product formula

U3(Δ) = UT

(
7Δ
24

)
UF

(
2ρΔ

3

)
UT

(
3Δ
4

)
UF

(
−2ρΔ

3

)
UT

(
−Δ

24

)
UF(ρΔ), (4.3)

whose error per step is O(Δ4). Notice that two of the six unitary operations above are
evolving backward in time. This feature is common for high-order product formulas: in
order to cancel higher-order errors, more operations are needed and the time step sizes
become increasingly constrained such that negative values become necessary. To achieve
even higher-order approximations, we use Suzuki’s symmetric recurrence formula (Suzuki
1990), which allows construction of Uk+2 from Uk by

Uk+2(Δ) = U2
k( pΔ)Uk[(1 − 4p)Δ]U2

k( pΔ), (4.4)

where p = 1/(4 − 41/(k+1)) > 1/4, so the middle step is an evolution backward in time.
Suzuki’s formula has a self-similar structure once it is fully expanded in terms of
elementary UT and UF operations. As the order k increases, Uk becomes increasingly
accurate with O(Δk+1) errors per step, but the required number of elementary operations
increases exponentially as O(5k/2−1), which incurs a significant computational cost. Thus,
in practice, high-order Suzuki formulas are rarely used and low-order formulas offer the
best compromise of accuracy versus speed.

With error-mitigation techniques, we are able to run experiments on the quantum device
for up to about 200 two-qubit gates. The gate depth is deep enough that we can begin to
compare results of different product-formula algorithms, which are shown in figure 3. In
this set of experiments, different product formulas are employed to reach the same final
simulation time τf = 3 at a fixed gate depth. We choose not to exhaust the maximum gate
depth such that error bars at the final time remain small.

With a fixed gate budget, because lower-order algorithms (equations (4.1) and (4.2))
require fewer unitary operations per step, they can afford to use smaller time step sizes.
In figure 3, both first-order (blue) and second-order (orange) algorithms yield results that
match closely with the exact solutions (dashed lines), which are obtained on a classical
computer by exact diagonalization and exponentiation of the total Hamiltonian matrix.
Moreover, results on the quantum device (filled symbols) closely match results when the
same product formula is used on a classical computer (open symbols).

In contrast, higher-order algorithms require significantly more unitary operations per
step, and thus can only afford to use a much larger Δ for a fixed total gate depth.
At third order (equation (4.3)), the time resolution is still sufficient to capture the
oscillatory dynamics, and results on hardware are close to expected results (figure 3,
green symbols). However, at fourth order (equation (4.4)), the coarse time step leads to
a large discretization error. Although product-formula results (figure 3, red symbols) on
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(a)

(b)

FIGURE 3. At a fixed gate depth, different product formulas are used for a test problem with
parameters ρ = 4, θ = 0, s2 = 3 and s3 = 3. For clarity, results from four cases are each split
in two separate panels. The exact results are obtained by exponentiating the total Hamiltonian
on a classical computer. Results of product formulas on a classical computer are shown by open
symbols, and results obtained on quantum devices are shown by filled symbols with error bars.
Because higher-order algorithms require more gates per step, for a fixed gate depth, they must use
larger time step sizes to reach the same targeted final time τf = 3, leading to larger discretization
errors.

a quantum device remain close to results on a classical computer, the product formula
no longer provides a good approximation to the exact dynamics, as can be seen from
the deviations of the open red diamonds from the black dashed lines. The approximation
becomes worse at even higher orders (not shown), which require exponentially more gates
per step.

It is worth emphasizing that product formulas indeed become more accurate at higher
orders, provided that the time step size Δ is fixed. In our tests, higher-order algorithms
perform worse because Δ is changed, such that the total gate depth does not exceed what
is viable on the quantum device. An analogy here is the run time on classical computers.
While higher order algorithms are more accurate at a fixed resolution, they require more
operations and therefore longer run time. When given a fixed run time, one is forced to use
a coarser resolution, in which case higher order algorithms may perform worse than lower
order algorithms.

4.2. Optimal use of limited quantum resources
On current quantum devices, which do not yet have operational error correction, the
maximum gate depth is limited. To make the best use of the limited quantum resources,
we can adjust the choice of algorithms and resolutions for a given problem. In our
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case, the pulse compression problem seeks to determine the final seed laser intensity at
the end of the interactions. The final time is set, for example, by the duration of laser
pulses or the time to traverse the size of the mediating plasma. As a test problem, we fix
τf = 1 with parameter values ρ = 4, θ = 0, s2 = 3 and s3 = 3. We perform Hamiltonian
simulation on the quantum device using product formulas to evolve quantum states, and
the measured occupation probabilities are post-processed to compute the expectation
values of the three waves using (2.13). We measure the error of the simulation by
ε = {(1/N)∑N

k=1[n(kΔ)− 〈n(kΔ)〉]2}1/2, where n is the exact result on a classical
computer and 〈n〉 is the expectation value obtained from the quantum hardware. In other
words, we define the overall error of the simulation to be the 2-norm between the exact and
measured time series, normalized by the number of time steps. The average error per step,
ε, receives higher contributions from later steps of the simulation. In the definition of ε, it
makes no difference whether we use n1, n2 or n3, because s2 = n1 + n2 and s3 = n1 + n3
are exact constants of motion. Notice that the error of 〈n〉 is different from, albeit correlated
with, the errors in the unitary U . The unitary error, which is also known as the process
infidelity, gives a more complete characterization of the hardware performance. But the
expectation-value error is of more interest to the pulse compression problem: it is the
same type of error that would typically be determined using a classical algorithm, and is
much easier to measure than full process tomography in experiments.

The overall error receives contributions from two fundamental sources. First,
algorithmic errors often arise when simulating a dynamical system with knowledge
of only the exact solutions of its non-commuting subsystems. Algorithmic errors are
unavoidable even on classical computers. In our test problem, we assume that the separate
three- and four-wave unitary can be implemented exactly, and then use product formulas
to approximate the total unitary. In this case, any finite time step size introduces a
discretization error εΔ, which can be reduced either by using higher-order formulas at
fixed Δ or by using the formula at a fixed order but with decreasing Δ. When using the
Suzuki formula, demanding errors to scale asΔq+1 per step requires Mq operations, which
grows exponentially with q. On the other hand, to reach a target final time τf , the number
of steps N = τf /Δ increases only linearly when decreasing Δ. The total algorithmic error
ε1 = O(τfΔ

q) can in principle be made arbitrarily small by increasing q and decreasingΔ.
However, in practice, given a limited run time, finite algorithm precision must be chosen.
The trade-off between using a larger q versus a smaller Δ is strongly influenced by the
second fundamental source of error: the hardware error. We measure hardware error by
εQ, the error per unitary operation, which is analogous to round-off errors on classical
computers. On future error-corrected quantum computers, it will be possible to suppress
εQ to arbitrarily small values. However, on current noisy devices, with only error mitigation
rather than error correction, εQ is substantial. Using randomized compilation, we transform
coherent errors into random Pauli errors, which contribute to depolarizing noise together
with intrinsic quantum decoherence. After error mitigation, the error for one operation
becomes independent from that for the previous operation, so the total hardware error
ε2 = O(NMqεQ) accumulates linearly with the number of operations in the worst-case
scenario. Because the algorithmic error ε1 is independent of the hardware error ε2, the
overall error is ε = ε1 + ε2. Notice that ε1 decreases with N, whereas ε2 increases with N,
so there is an optimal resolution Δ at which ε is minimized.

The trade-off between hardware and algorithmic errors is demonstrated by a suite of
experiments, whose results are shown in figure 4. We test the four product formulas using
a common test problem, whose parameters are ρ = 4, θ = 0, s2 = 3, s3 = 3 and τf = 1.
For each order of the product formula, the overall error first decreases with N due to the
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FIGURE 4. For a given problem, minimum error is obtained at the trade-off between algorithmic
errors and hardware errors. All test problems use common parameters ρ = 4, θ = 0, s2 = 3 and
s3 = 3. The targeted final time τf = NΔ = 1 is fixed, so a finer resolution Δ requires more
steps N, which means algorithmic errors decrease with N at the expense of accumulating more
hardware errors. An optimal resolution exists, where the overall error is minimized. At higher
order, the optimal N shifts towards lower resolution, and the minimum error does not improve
with the algorithm order.

reduction of algorithmic errors at finer resolution. However, when N exceeds an optimal
value N∗, the error starts to increase due to the accumulation of hardware errors. At small
N, the resolution is too coarse to resolve the dynamics, so the errors are O(1), which
are comparable to the signals. If N∗ had been larger, one would expect to see that ε for
higher-order algorithms is smaller and decreases at a steeper slope. In our tests, because
N∗ is not large enough, such a behaviour is not clearly observed. At large N, where the
accumulation of hardware errors dominates, ε increases roughly linearly with N for all
orders. Because higher-order algorithms use more operations per step Mq, higher-order
curves reside above lower-order ones in the log–log plots of ε, except between orders 1
and 2. Notice that although M1 = 2 and M2 = 3, after merging adjacent unitary operations
of the same type, as discussed after (4.2), the first-order sequence has 2N operations,
while the second-order sequence has 2N + 1 operations, which is only slightly larger. The
advantage of the second-order formula is not apparent because ε measures the error in
n rather than in U . On a classical computer, we observe a similar behaviour: at small
N, while the second-order formula has a smaller error in U , it has a larger error in n; at
large N, while the second-order formula has a larger error in U , it has a smaller error in
n. These behaviours are perhaps peculiar to our mixed three- and four-wave interaction
problem. At intermediate N, higher-order algorithms tend to have a smaller optimal N∗.
This behaviour can be understood from ε1 � C/Nq and ε2 � ABqN, where Bq comes from
the exponential scaling of Mq. The minimum of ε(N) is reached at N∗ = (1/B)(Rq)1/(q+1),
where R = BC/A. The function N∗(q) is not monotonic: it increases to a maximum before
decreasing as q1/q. When the hardware error is small compared with the algorithmic error,
R is large, in which case the maximum of N∗(q) is reached at a small q value. This means
that N∗ decreases with order, which is what we observe in our experiments.

While hardware errors are negligible in classical computers, current quantum devices
have significant hardware errors. These errors make the trade-off with algorithmic errors
a relevant issue. It is worth pointing out that when considering the effect of round-off
errors, such a trade-off also exists for classical computers, but, due to the high precision
available on today’s classical computers, this is far less consequential. In the small
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hardware error limit, R = BC/A → ∞, so N∗ monotonically decreases for q ≥ 1. At a
fixed q, N∗ increases with R, which means a smaller hardware error can support the use
of a finer resolution. On a typical classical computer, A ∼ 10−12 for our test problem,
so that N∗ ∼ 104, at which the total error ε ∼ 10−8 is negligible. In contrast, current
quantum hardware has error A ∼ 10−2, which means in our test problem, the hardware
can only support N∗ ∼ 101, for which the total error ε ∼ 10−2 is noticeable. In such a
scenario, there is no clear benefit of using higher-order product formulas because at a
given hardware error, such formulas favour the use of lower resolution. But when the
resolution becomes too low to resolve the dynamics, the overall error becomes worse
with increasing algorithm order. In our test, higher-order algorithms do not perform better
than a first-order algorithm at their respective optimal N∗. However, this may change on
future quantum devices where εQ becomes even smaller. Similar conclusions have recently
been reached for simulating the transverse-field Ising model and the XY model on noisy
quantum computers (Avtandilyan & Pogosov 2024).

5. Conclusion

In summary, we develop a quantization approach for solving nonlinear wave–wave
interaction problems on quantum computers. The approach becomes necessary when
simulating interactions of quantum light with plasmas. The mixed three- and four-wave
interaction problem serves as a non-trivial test for current quantum devices. We implement
product-formula algorithms using two superconducting qubits along with a suite of
error-mitigation techniques. The mitigated hardware error is small enough that we can
begin to compare different product formulas and perform interesting simulations on
quantum devices. In the future, when intrinsic hardware errors become even smaller, it may
become feasible to explore more sophisticated algorithms for more non-trivial problems.
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Appendix. Physically motivated error model

As discussed in § 3.2, we use twirling to convert coherent errors to depolarizing channels
and rescale probabilities to compensate for exponential decays. In this Appendix, we
provide justifications for these mitigation steps by investigating a physically motivated
error model. We use the technique of cycle error reconstruction to measure an empirical
error model of our gate under Pauli twirling. Although our native gate is non-Clifford, we
are able to propagate the two-qubit inversion to the end of the circuit, meaning that the
inversion appears only as a term in the SPAM coefficient of the decay. We perform the
cycle error reconstruction for 1-body errors, meaning that we estimate the nine two-qubit
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Pauli error rates (XX ,XY ,XZ , . . .) and the six single-qubit Pauli error rates (XI, IX , . . .).
However, not all of these error rates are individually observable. The entangling gate
induces orbitals of certain types of Pauli errors, meaning that we can only observe the
product of the decay fidelities rather than individual Pauli errors.

The reconstructed Pauli error rates characterize the effective noise model under Pauli
twirling with high accuracy. In order to determine a full Pauli error model, namely a model
with a probability for each type of Pauli error, a method of distributing the degenerate
error rates to their components is required. This can be achieved by simply assuming, for
example, that both Pauli errors contribute to the product equally (van den Berg et al.
2022). Alternatively, one can perform further characterization to isolate the marginal
effect of error channels (van den Berg & Wocjan 2024). The approach we take is to fit
an open-system simulation to the observed Pauli error rates.

Using physical values of qubit parameters, including qubit frequencies, anharmonicities,
a fixed coupling extracted from gate operation parameters and the parameters of our
calibrated pulse, we are able to represent the full two-qubit system using a Lindblad model,
as detailed in figure 5(a). In order to ensure the model replicates the system dynamics, we
simulate our calibrated SQISW gate, which is enacted by a flux pulse on the tunable qubit.
We adjust the qubit–qubit coupling to match our calibration. The determined coupling
is 8.1 MHz, which is consistent with the design value and the operation of the two-qubit
gates.

To simulate the effect of decoherence, we adjust damping (T1) and dephasing (T2) terms
in the Lindblad model, starting with the reported values on the device. The simulation
allows us to determine an effective superoperator for the SQISW gate. The errors, namely
the distance from the superoperator of an ideal gate, are shown in the left-hand panel of
figure 5(b). Using the simulation, we can also apply pseudo-twirling and Pauli twirling
to determine the twirled superoperators, whose errors are shown in the middle and the
right-hand panels of figure 5(b). The Pauli-twirled superoperator can then be transformed
to Pauli error rates via a Walsh–Hadamard transform, which is compared with the observed
error rates. Using reported coherence times, some important aspects of the observed Pauli
error rates are reproduced, as shown in the left-hand panel of figure 5(c). However, the
overall error rate is different and there are significant discrepancies in the error profile.

To improve our error model, we consider two additional effects. First, single-qubit
gates also contribute noise to the cycle. Because single-qubit gates are randomized under
twirling, we model this as a depolarizing error. Second, coherence decreases when qubits
are under modulation (Didier 2019). Thus we allow the coherence times of the model to
vary in order to match the observed error profile. The result is a closer match between the
simulated and the observed error profiles, as shown in the right-hand panel of figure 5(c).
The model converges on a significantly decreased T1 time for both qubits. While T1 is not
normally expected to decrease under modulation, other mechanisms, such as leakage or
two-level system loss, might have a similar effect during Pauli error reconstruction.

With a simulated error model in hand, we now have the ability to generate a Pauli error
model that both reproduces the empirically observed Pauli error rates and allows us to
decompose the errors into individual Pauli terms. While probabilistic error amplification
(and probabilistic error cancellation strategies make use of these decompositions (van
den Berg et al. 2022; Ferracin et al. 2022), our rescaling technique naively assumes
depolarizing noise which uniformly decreases observable values. Moreover, in the
characterization phase, we were able to use Pauli twirling by propagating the inversion of
the benchmark circuit, but this is not possible in algorithm circuits. Thus, for our problem
circuits, we use a pseudo-twirling technique which does not tailor noise as completely as
Pauli twirling.
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(a)

(b)

(c)

(d )

FIGURE 5. Modelling of our two-qubit SQISW gate reveals that errors become approximately
depolarizing noise after twirling. (a) The two-qubit system we use consists of a fixed qubit and
a tunable qubit, connected by a fixed coupler. We model the system using physical parameter
values. The SQISW gate is enacted by a flux pulse that modulates the tunable qubit. (b) We
compute errors in the Pauli transfer matrix for the SQISW gate. The error is entirely incoherent
with 1.3 % infidelity, but has a complex structure (left). After pseudo-twirling, the infidelity
does not change, but the error is simplified and symmetrized (middle). After Pauli twirling, the
same infidelity manifests only as errors along the diagonal (right). (c) After Pauli twirling, the
observed Pauli errors for the SQISW gate (red) are not entirely explained by the model when
using reported decoherence time T1 and T2 (left), which are measured when the gate is not
in action. Nevertheless, by tuning the decoherence times, Pauli error reconstruction using our
model (black) matches the observed errors (right). (d) We measure polarization of errors as the
diamond-norm distance from pure depolarizing channels of the same infidelity. Twirling reduces
noise polarization, which facilitates our error mitigation.

Using the physical noise model, we can now test the assumption that errors become
depolarizing after twirling. As a metric of polarization, we compare the diamond-norm
distance of the full superoperator, the Pauli-twirled superoperator and the pseudo-twirled
superoperator with a depolarizing channel of the same infidelity. By this metric, a
depolarizing channel would have a polarization of zero. As shown in figure 5(d), we
find that the bare channel has a polarization of 4.3 %, while the Pauli-twirled channel
has a polarization of 1.0 %. The pseudo-twirled channel has a polarization of 1.8 %,
meaning that, as expected, the pseudo-twirled channel is slightly less effective. The
residual polarization implies that our rescaling technique has a systematic error, which
depends on details of the problem, the observable and the noise. Nevertheless, we can
conclude that for our physical noise model, Pauli twirling is effective in achieving a more
depolarizing noise and that pseudo-twirling retains only moderately more polarization.
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In summary, we develop an approach to fitting a physical noise model to a Pauli
error reconstruction which can be efficiently measured. Fitting a physical noise model
to these observable error rates provides a method of inferring a full noise model based
on relatively few measurements. This model can be used for error-mitigation techniques,
for error diagnostics and for studying the effectiveness of different twirling groups. By
introducing even more effects into the simulation and constraining their values within
reasonable bounds, we expect that better agreement with observations can be achieved,
thus opening the door to further error-mitigation and error-suppression strategies. The
approach outlined in this Appendix is scalable to cycles of any size, provided that the noise
is relatively sparse. Both the Pauli noise reconstruction and simulation techniques become
intractable for subsystem sizes larger than a few qubits, emphasizing the importance of
limited crosstalk to the neighbourhood of a few qubits. Finally, we note that existing
probabilistic error amplification and probabilistic error cancellation techniques typically
rely on the circuit being executed with Pauli twirling, and work remains to generalize them
to non-Clifford entangling gates, such as our SQISW gate.
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