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Abstract

Expectation values of one-particle and two-particle operators are evalu-
ated in the quasi-chemical equilibrium (pair correlation) approximation to
statistical mechanics. Certain reductions, corresponding to the ‘‘quenching”
of interactions by the Pauli exclusion principle, are carried out quite
generally. More specific reductions, which lead to immediately useful ex-
pressions, are possible on the assumption of extreme Bose-Einstein con-
densation of the correlated pairs.

1. Introduction

Some time ago, an approximation to statistical mechanics was suggested
based on the retention of dynamical pair correlations, retention of statistical
correlations of all orders, but omission of dynamical triplet and higher
correlations [9, 10]. This represents a natural extension of the independent
particle model, in which all dynamical correlations are ignored, and only
statistical correlations are retained. It was shown that this so-called “‘quasi-
chemical equilibrium approximation’ leads in a natural way to a chemical
equilibrium between single particles and correlated pairs; furthermore,
that under certain conditions the chemical equilibrium can shift suddenly
towards a large number of correlated pairs, all of which are in one eigenstate
of the pair correlation matrix. This phenomenon is closely analogous to a
Bose-Einstein condensation of the quasi-molecules. If the particles in
question are electrons in a metal, it is reasonable to expect that the transition
is one to a superconducting state, since it is well-known (6, 7, 11] that the
condensed ideal Bose-Einstein gas exhibits a Meissner effect.

The formalism of reference 1 has since been extended and simplified {2],
and a proof of Bose-Einstein condensation has been given, valid even under
conditions in which the “pairs’’ completely overlap and in which there need
not be any energy gap [8]. The relation of the quasi-chemical equilibrium
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approach, to the theory of superconductivity developed by Bogoliubov [5],
Valatin [12] and others [1] has been established [3].

In order to carry out self-consistent calculations with the quasi-chemical
equilibrium formalism, it is necessary to have simple expressions for expecta-
tions values of one-particle and two-particle operators. Reference [8] does
not cover this case, since it is concerned with the evaluation of the trace of
the statistical matrix itself (i.e., with the evaluation of the normalization
integral). We now consider averages of type

Trace J%)
1.1 -~
(1) > Trace (%)
and
Trace (K%)
1.2 K —_—_—
(1.2) &K Trace (%)
where J is a one-particle operator:
(1.3) J =kzk,]kkfa;:“k'
and K is a two-particle operator
(1.4) K =z lzKlm,l'm/ aj ay ay ay
mi'm’

Here the indices £, Z, etc. include both momentum and spin, the operators a
and e+ are the usual destruction and creation operators, satisfying Fermi-
Dirac anti-commutation rules.

+ +
(15) akam+a;”;ak=6km akam+ amakZa:a;"{_amaI: 0

Finally, % is the statistical matrix in the quasi-chemical equilibrium approxi-
mation, as defined in reference [2], equation (2.12).

The reduction of the rather complicated expressions (1.1), (1.2) is carried
out in two stages. The first stage, contained in section 2, consists of separating
the expressions into contributions from single particles, contributions from
correlated pairs, and contributions representing interactions between single
particles and particles within pairs. This part of the reduction is completely
géneral, and shows the ‘““quenching”’ of interaction strengths due to the Pauli
exclusion principle in a natural fashion. No assumption of Bose-Einstein
condensation is made in section 2.

The expressions derived in section 2, though generally valid, are still too
complicated for immediate use. Further reductions are possible under the
assumption that the pair correlations are completely Bose-Einstein condens-
ed, i.e., only one eigenstate of the pair correlation matrix contributes signi-
ficantly. Note that we need #zof assume that single particles are absent; on
the contrary, the single particles can form a Fermi sea, with the pairs made
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up only out of particles above this Fermi sea, without affecting the validity
of the formulae derived here. To this extent, then, we have gone beyond the
theories of references [5], [12] and [1]. There is a more important generaliza-
tion, however, included within our formalism. This refers to the nature of
the pair wave function. In references [5, 12, 1], the nature of the pair wave
function was severely restricted by the requirement: !

(1.6) p(k;s;, kys,) = 0 unless k, = —k; and s, = —s,

We shall refer to this special case as “simple” pairs. With such restrictions
on the pair wave function, gauge invariance of the formalism is destroyed,
since a gauge transformation applied to a wave function of type (1.6) leads
to a transformed wave function not of this type. It is thus impossible to
establish a Meissner effect tn these theories, without going beyond the original
formalism 2

The expressions derived in sections 3, 4 and 5 of the present paper are valid
for an arbitrary pair wave function ¢(k,s,, K,s;), not merely for ‘“‘simple”
pairs. In section 3 we establish a general algebra and show that the expecta-
tion values (1.1) and (1.2) can be written in terms of traces of certain
operators, in well-defined and limited combinations. In sections 4 and 5, we
use the special case of “‘simple” pairs to get explicit expressions for the
general case.

The application of these formulae to a gauge-invariant calculation of the
Meissner effect in the quasi-chemical equilibrium theory is containedin a
separate paper [4].

The work here applies to straightforward interactions between electrons,
of type (1.4). Interactions transmitted via phonons are not included. Exten-
sion of the formalism to include phonons explicitly is now under way, and
will be reported in a later publication.

2. Separation of Single-Particle and Pair Contributions

Throughout this section we use the notation of reference [2] and we shall
denote formulas of this reference by (I; - - ). Let us consider the numerator of
(1.1). Using equation (I; 2.12) and the fact that cyclic permutations leave
traces unaltered, we get

(2.1) Tr (J#%) = Tr(Jo exp (@) exp (Q)w)
= Tr (¥ exp (Q)o J @ exp(Q*))

Next, we use the same argument which led from (I; 3.2) to (I; 3.4) to write
(2.1) in the form

1 Here we have broken up the formal index % of (1.3)—(1.5) into a momentum k and a

spin coordinate s.
* More recent theories of the Meissner effect will be discussed in reference {4].
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(2.2) Tr (J%) = Tr (¥ w exp (P)] exp (P+)w)

It is desirable to rearrange the expression in such a way that, in the factor
multiplying the operator ¥, all creation operators are to the right, all
destruction operators to the left. We therefore use the commutation rule
(1.5) and the explicit expression (1.3) for J to rewrite (2.2) in the form:

(2.3) Tr (J%) =Tr {Vwexp (P)% Jiar (Or — areai)] exp (P¥)o}

We can now employ the ‘“quenching identity’’ of reference [2]; let F(a - - )
be an operator containing only destruction operators; let G(a*---) be an
operator containing only creation operators. Then

(2.4) Tr (¥ FG) = Tr (¥")(0|FG|0>

where F and G are obtained from F and G, respectively, by the replacements
ay — @, = (1 + u,)*a,

(2.5) af = af = (14 u) "%a;

As we shall see in a moment, the average number of particles in single-particle

state % is given by

14w,

Hence the factor (1 4 #,)~*%in equations (2.5) can also be written as
(1 — 7,)%. Thisis the “quenching’ of interaction strengths associated with
the Pauli exclusion principle. If a state % is already fully occupied, i.e.,
7, = 1, the quenching factor becomes zero, and this state can not appear iz

the product #@ in (2.4). The quenching identity (2.4) is proved in section 3
of reference [2].

We now apply (2.4) to (2.3), and use the commutation relations (1.5)
once more. Furthermore, we note that the trace of the statistical matrix
itself is given by formula (I; 3.10) as

(2.7) Tr (%) = Tr (¥"){0lexp (P) exp (P+)|0>
We then get for the ratio (1.1):
{Ojexp (P)J exp (P+)|0>

(2.6) i

(2.8) I>=ZJu+ Olexp (B oxp P05

where

(2.9) J=3 L afa, =3 Jaia
' & (U ) B(L T ) e 8 = 7w e G

The interpretation of (2.8) is clear: the first term is the contribution of the
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single particles, the second term is the contribution of the correlated pairs.
In this latter term, all the operators are “quenched” by the exclusion prin-
ciple. If we set J,;» = 6, the operator J is just the operator for the number
of particles in the system; the first term of (2.8) is then a sum over the %,,
thereby justifying our earlier interpretation of #,, (2.6), as the number of
single particles in state 4.

Exactly the same reductions can be carried out on two-particle operators
to obtain an expression for (K, equation (1.2) and (1.4). We shall only
quote the result here. We define the operator K™ by

(2.10a) Rv =3 RN, ata,,
ki’

mk,mk’ + Kkm ktm Kkm mk! T Kmk,k’m

(14 )" (1 4 uy,) "

This operator is, qualitatively speaking, the scattering of a particle within a
correlated pair, from state & to state &', due to interaction with the single
particles in the various states m. Furthermore, we introduce the quenched
interaction operator for particles within pairs

(2.10p) RJ, = Z i,

(2.11a) R= 3 R,.mwatdha,a,

k,m,k! m’

K
2.11b Rypirmr = kmkm!
(2.110) = T F ) (L ) (L + 1) (L )T

In terms of these, the expectation value (K», equation (1.2), reduces to:
<K> = ;2 (Kkm,km - Kkm.mk)ﬁk ﬁ'm
(Olexp (P)R™ exp (P+)|0)
(Olexp (P) exp (P+)[0)

<0lexp (P)K exp (P*)|0>
<0lexp (P) exp (P+)|0)

(2.12)

The first line of (2.12) is the conventional Hartree-Fock expectation value
over the single-particle distribution; the second line represents the inter-
action between single particles and particles within correlated pairs; and the
last line is the interaction between particles, both of which are members of
correlated pairs.

Although expressions (2.8) and (2.12) are simpler than the original for-
mulae, they are by no means directly amenable to calculation. The following
two sections are devoted to further reductions of these expressions for an
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important special case, namely that of Bose-condensed pair correlations.?

3. A Commutator Algebra for Bose-condensed Pairs

Let us consider the evaluation of the second term in (2.8) for the special
case of Bose-condensed pair correlations. The operator P is given in general
by equations (I; 3.24) and (I; 3.25). The extreme Bose-Einstein condensation
means that we retain only one term in the sum (I; 3.25) so that P becomes,

explicitly:

(3.1) P = v%b4

with ¢

(3.2) b= 2% o*k, k)a,a,

k,x!
v is a constant, related to the chemical potential, (%, £') is the wave function
of the correlated electron pair, and 4 is a formal, labelling operator with
Bose-Einstein commutation rules:

(3.3) [A4,A+]_ =1
The pair wave function ¢(%, #’) is normalized in the usual way:
(3-4) 2 ek, k)P =1

kk!

We now insert these expressions into the numerator of the second term
in (2.8); using the commutation rule (3.3), we obtain:

N
(3.5) COlexp (P)] exp (P+)[0) = 3 — (0T (¢+)"10>

N=0 .

Next, we use the explicit expression (2.9) for J together with the commuta-
tion rule (1.5) to write:

(3.6)  <0[pNT(@H)¥|0> = <0|bN’[‘§, T (O — @) 1(64)N[0)

We observe that & commutes with all the a,, and b+ with all the ai . Thus the

3 In references [2] and [8] a method of Dyson, developed for spin-waves, was shown to be
extremely useful in reducing the complexity of the expression for the trace of the statistical
operator itself. Unfortunately, we have so far been unable to use the Dyson formalism for
expectation values. The trouble arises from the fact that closure is used (see reference [8], end
of section 2); infinite sums, representing closure expansions, then appear in exponentials,
and serious convergence difficulties arise. We have tried, without success so far, to modify
the Dyson formalism so as to overcome this difficulty. The alternative formalism given in the
next three sections solves the problem for the special case of extreme Bose-Einstein condensa-
tion, but more work is needed for the general case.

¢ In reference [2], the complex conjugate sign on ¢ was omitted by mistake. This makes no
difference normally, but would cause trouble in calculations involving magnetic fields, where
the pair wave function ¢ cannot be made completely real.
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operator a, in (3.6) can be transferred all the way to the left, the operator
ai all the way to the right, to give the result

(87) CORNT (V0> = tr (J)O[BY (BH)¥|0> — 3 T (Res |6V ()N (1,

where the symbol “tr”’ stands for a trace over the k-space:

(3-8) tr (J) = % I
and |1,> denotes a state with only one electron present, in state %, i.e.
(3.9) IL> = a{|0)
We observe that b gives zero when operating on the vacuum state from
the left
(3.10) 50> = 0
and also when operating on a one-particle state
(3.11) blL>=0

Hence we would like, if possible, to permute the b¥ and the (5+)¥ in (3.7),
so as to bring the factors b to the extreme right. Unfortunately, the operators
b do not obey Bose-Einstein commutation rules. Rather we have the com-
mutation relation (I; 3.26) which can be rewritten (for « = g) in the form

(3.12a) [, 5%] = 3 CHglk'> at o, — avaf) = 0,
where
(3.12b) CRlglR'> = gq)(k, R )p* (R, ')

Thus the very first commutation operation introduces a new type of
operator. Fortunately, however, the subsequent commutation operations
lead back to operators of the same types already encountered; for example,
the commutator [b, Q,] is an operator of the same #ype as b itself, only with
a different wave function instead of @(%, #’). We shall state the results first,
and prove them thereafter.

We define a sequence of wave functions ¢, (%, k') recursively by

(3.13a) Bollt, ) = p(k, &)
(3.13b) Falk, B') = 3 Chlgl >pus (K", ¥)

k!’

For example,

(3.14) Bl K) =3 ol K)o ', K )R, K)

ket
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@ is a similar structure with 2 factors ¢* and 3 factors ¢. In general, ¢,
has » factors ¢* interlaced within » 4 1 factors ¢, and is an antisymmetric
function of its arguments if ¢ is itself anti-symmetric:

(3.15) eu(k', k) = —@u(k, &)
Next we define operators b, in analogy to (3.2):
(3.16) b, = 2% ok (k, k')a,a,
Kk

and a sequence of operators (), by
(3.17) Qn = 2 <klg"Ik">(af ay, — ay.a})
k!

We note that @y, (3.12) is the first member of this set.

We now assert that the set of operators b,, b}, and Q, forms the basis of a
commutator ring, that is, an algebraic structure allowing the operations of
addition, subtraction, multiplication by scalars, and commutation, without
having to go beyond the ring. The basic commutation relations are:

(3.18a) (0n, b2] = Quimar
(3.18b) (07, Q] = 4byy
(3.18¢) (O, 03] = 4B,
(3.18d) [Qn> On] =0

Commutator rings are well known, in particular in connection with the
theory of Lie groups; the infinitesimal operations of the group form a com-
mutator ring, the Lie ring of the group. Unlike conventional Lie rings,
however, the present commutator ring has an infinite number of basis
elements.5

We now prove these commutation relations. Straightforward use of (1.5)
and (3.16), together with the antisymmetry of the functions g¢,, gives:
(3.19) (b, 0] = 3 @(k, K" )gn (R, k') (af 2y — arsaf)

kk’k!!
By using the expanded forms for the functions ¢,, of which (3.14) is the
simplest example, we see that the following identity holds:
(3.20) 2 Pk, B )n (R, k') = (RIg™ TR
k!

In fact, both sides of (3.20) are structures with equally many (n 4+ m +1)
factors ¢ and ¢* interlaced, the only free indices being & and £’. Combina-
tion of (3.19) and (3.20) proves (3.18a).

8 The Dyson formalism used in reference [8] is obtained by expanding the set of functions
@a(k, &’) in terms of a complete orthonormal set @,, such that ¢, is one of the @a.
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Next, we use (1.5) to get

(3.21) (b, Q] = 2¢/2 3 (R, K7)CR" Ig™ R D ay
k'l
By using the expanded forms, of ¢}, as well as of g™, we easily establish the
identity
(3.22) 2 @nlk, )R 1gMED = @Fym(k, F')

Xt

Both sides of (3.22) are structures with » - m factors ¢ interlaced between
# + m + 1 factors ¢*, the only free indices being 2 and &'. Combination of
(3.21) and (3.22) establishes (3.18b).

Since (3.18c) is simply the Hermitean conjugate equation to (3.18b), ne
separate proof is necessary. Finally

(3.23) (O Om] = 4 Z CRIGm IR <R g™ RS a

— 43 CRIgmE K g e e
kk'k’
The sums over %" lead to matrix elements of the product ¢g"¢g™ = ¢q™¢" =
g"*™, therefore (3.23) cancels term by term, and vanishes identically.

The commutation rules (3.18), which we have now established, allow us
to transform products &Y (b+)¥ = (5,)¥ (6¢)¥ into equivalent expressions in
which all the factors & are to the left, all the factors b,, to the right, and
all factors @, in the middle. For example:

(3.24) bbt = bfby + O,
and .
(3.25) %(b+)2 = (bg)%(bo)® + 405 Q10 + 8b by + 855D, 4 207 + 40,

According to (3.7), we are interested in the vacuum expectation value of
structures of this form, and in matrix elements of this form between one-
particle states. The relations (3.10) and (3.11) hold not only for the operator
b = b,, but for all the operators 4,. Hence, the only terms which contribute
to (3.7) are those made up out of factors Q, exclusively; for example, only the
last two terms of equation (3.25) make any contribution to (3.7).

Next, note that the operators Q, conserve the number of particles. In
particular, applying Q, to the vacuum state gives:

(3.26) Qal0) = —tr (g")[0>
Thus, the vacuum expectation Yalue of (3.25) is:
(3.27) <0163 (0+)3|0) = 2[tr (¢)]% — 4 tr (¢?)

where the symbol ““tr” is defined by (3.8). More generally, the vacuum ex-
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pectation value {O|bN (bHYN|0) is a multinomial in the quantities tr (g”). This
is the first main result of our commutator algebra.

Let us now consider the second term of (3.7). Direct application of the
definition (3.17) gives the result:

(3.28) Q> = 2152/ KGR N> — tr (g7)]1e>

This equation can be applied successively, for example

(3.29)  (Qu)*Le> = [tr (9)IILe>—4 tr (g) g<k'19fk>|1kf>+4k2’ SKIGHRD | Ler >
Using this equation in conjunction with (3.25), we obtain the result:

<lk’|bz(b+)2’1k> = <1k'l2Q§ + 4inlk>
(3-30) = {2[tr (9)]* — 4 tr (¢*)}0sr — 8 tr (q)<R'|qlR>
+ 16<k' g%k

We are interested, according to (3.7), in the sum of this over %2 and #/,
weighted with a factor J - Thus we obtain:

3 T (L0262 1> = (2(tr ()12 — 4 tr (¢*)} tr (J)

(3.31) ' — 8tr(g) tr (Jg) + 16 tr (Jg?)

The only thing of concern to us here is the structure of this expression. It is
a multinomial in the quantities tr (¢") and tr (J¢”), with the factors
tr (J¢") appearing only linearly. It is easily seen that this result holds for
arbitrary N in (3.7). Since tr (J) = tr (J¢°) is a special case of tr (Jg"),
the first term of (3.7) has the same structure. We have therefore established
the following theorem:

N
(3.32) ORI @ H)¥10> = 3 M, tr (Jq™)
n=0
where M, is a multinomial in the quantities tr (¢™).
An explicit evaluation of the multinomials M, is possible by means of our
algebra. For example, combination of (3.7), (8.27) and (3.31) gives, for
N =2,

(3.33) {0162 T (+)2|0> = 8 tr (g) tr (Jg) — 16 tr (Jg?)

i.e., in the notation of (3.38), M, = 0, M, = 8 tr (g), M, = —16. However,
this method of evaluation is extremeiy awkward; for example, the term pro-
portional to tr (J) always cancels out, but in this way of doing the evaluation
this cancellation is by no means obvious. We shall therefore use an indirect
method, described in the next section.
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4. Expectation Values of One-Particle Operators

Let us consider the special case of “‘simple”’ pairs, defined by the condition
(1.6) on the wave function ¢(k,s,, k,s,). We introduce the notation ¢(k)
for the non-zero values of this wave function, i.e.,

(4.1) pkt, —k|)=—p(—k|, kt)=9¢k)

Straightforward substitution into the definition (3.12b) shows that ¢ is now
a diagonal operator, with matrix elements:

(4.2) (Kslglk's") = —dy 0y lp (k)|

The traces which we were led to in section 3 then assume the forms:
(4.3) tr (¢") = (—1)" 2% |p(k)[>"

(the factor 2 arises because of the sum over spin indices), and

(4.4) tr (Jg*) = (—U"% it ur + Ty, ) lp ()2

Thus, if we can evaluate the expectation value of J, equation (2.8), for the
special case of “‘simple’ pairs, we can write the result entirely in terms of the
traces (4.3) and (4.4), and, expressed in ¢kat form, the result must be gener-
ally valid, according to the work of section 3. Thus, consideration of the
special case of “simple’ pairs allows us to bypass the detailed discussion of
the multinomials M, in equation (3.32).

To illustrate the method, we start with the vacuum expectation value
which appears in the trace of the density matrix, equation (2.7). Using
(3.1)—(3.3) and an expansion of both exponentials, we obtain
(4.5) <Olexp (P) exp (P1)|0> = 3 72 O 64)¥10)

Substitution of (1.6) and (4.1) into the definition (3.2) of b yields, for
“simple’’ pairs:

(4.6) b=2% §<P* (k) Bs
where

(4.7) k= Ay Gy

The operators f, commute with each other:
(4.8) (B Bl = 0

and the square of each g, vanishes identically:
(4.9) (B)2 = 0
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Substitution of (4.6) for & leads to

0[p¥ (B +)M0y = 2V 21 o* (k) ¥ (ky) - - - p* (k) p(ly) - -~ ¢ (ly)
(410) kyookyly o ly
<0lﬂklﬂk, T ﬂkNﬂztﬂz,, T ﬂle 0>

We now make use of the properties (4.8) and (4.9). According to (4.9),
no two k; can be equal, and the same is true of the set 1,. Furthermore, ac-
cording to (4.8), the order in which the k, and 1, appear is quite irrelevant.
Finally, the vacuum expectation value vanishes unless the configuration
{k,, k,, - - -, ky} ® agrees identically with the configuration {l;, 1, - -+, 1y}.
If this condition is satisfied, the vacuum expectation value on the right side
of (4.10) gives unity. Therefore we obtain:

(#11) 0[N (BN 0) = 2N(N!)zk Zk lp(ky) 2@ (ky) [ - - - lp(Knl)®

Lk
The sum is over different configurations, and the factor (IV!)2 is the number
of terms in (4.10) arising from any one configuration.

When we substitute (4.11) into (4.5), we get an expression containing a
factor N! for each term of the sum over N. We use the identity

(4.12) Nl = j;”dt il

together with the general identity

@13) 33 X(k)X(q) o X) = T 1+ X ()]

N=0 {k;---ky}

to obtain

(4.14) <0 lexp (B) exp (B+)]0> = f:dt et 1;[ (1 + 20t]p(K)[?)

Let us consider the logarithm of the infinite product in (4.14). It is
(4.15) g In [1 + 20f|p(k)|?] = 3 trln (1 — 2viq)

where we have used (4.2). We can therefore rewrite (4.14) as

(4.16) (Olexp (P) exp (P+)|0) = J.:o dtexp [—¢ + } trIn (1 — 2vg)]

Since the only operator which appears is ¢, and thus (4.16) involves only
the traces of ¢", this is precisely of the form which we have shown, in section
3, to be universally valid. Thus, although (4.16) has been derived in this section
Jor the special case of “simple’” pairs only, (4.16) is actually a general formula

¢ We shall use curly brackets to indicate a configuration, i.e., the setk,, - - -, ky irrespective
of the order in which the k’s appear, with the restriction that no two k’s can be equal.
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applicable to arbitrary pair wave functions p(ks, k's’). As a check, we observe
that (4.16) is identical with equation (3.10) of reference [8], which latter
equation was derived by means of the Dyson formalism. As a second check,
we may expand the quantity exp [} trIn (1 — 2v¢g)] in a power series in v,
and integrate (4.16) term by term. The term proportional to v then agrees
with equations (3.27) and (4.5).

The explicit form (4.16) also shows that it would have been very difficult
indeed to analyze themultinomials M, in (3.32) in detail. The algebraic
formulation of section 3 is well suited to elucidating the general structure of
the expressions which occur, but is not at all well suited to explicit evalua-
tion.

Next, we consider expectation values of one-particle operators for the
special case of “simple”” pairs. Using (4.6), we obtain

<Ole‘7(b+)NIO> =2V 2 z Z Jms, m’s’
ko ky

-1y m,s,m’,s
(4.17) (k) p*(K,) -+ - @*(ky)p(Ly) -« - (ly)
018 Bry " * * Bryy B Benry B, * B 10D

Let us analyze the vacuum expectation value on the right hand side of this
equation. First of all, the operator a,., gives zero on the vacuum state.
Hence N must be at least unity. Secondly, the state m’s’ must occur in one
of the operators f+; i.e., if s’ is an up-spin, m’ must be one of the 1,, if 5" is a
down spin, —m’ must be one of the 1,. One of the “pairs” created by the
operators g+ is thus broken by a,,.,.. Let us suppose that m, s is not identi-
cally equal to m’, s’. Then this mutilated pair is not restored, and the applica-
tion of pair destruction operators g, cannot lead back to the vacuum state.
Thus, the vacuum expectation value vanishes unless m = m’, s = s'. If
this condition ¢s satisfied, the subsequent analysis is the same which led
from (4.10) to (4.11), and we therefore obtain, for N = 1,

OBV J (B+)N |0y = 2V (N1)2 g Tmt,mt + Jmy,—m} ) lp(m)}?

2 lp(ky) P loky) 2 - - lp(ky_y)I?

{ky Ry}

(4.18)

where the prime on the sum over configurations means that none of the k,
can equal m,
We substitute (4.18) into (3.5) and use (4.12) and (4.13) to obtain

(Olexp (P)J exp (P+)|0)

4.19 o |
(4.19) =J; dte—tg (Jmf,mt + J‘“‘*"""*)%tl‘p(m)lakl;l (1 + 2vt|p(k)|2]
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We can eliminate the awkward restriction on the indices 2 within the in-
finite product in (4.19), by multiplying and dividing by the factor
1 4 2vtjp(m)|2. This gives, together with (4.15), the identity
(Olexp (P)J exp (P+)|0) =f dtexp [—t + }trin (1 — 2v0ig)]
(1}

(4.20) 20t (m) 2

1 + 2vtjp(m)?
Let us introduce the k-space operator (k|h|k"> = (ks|h|k's’> by

z (jmT,mT + j—m},,—m,L)

—2viq kit
4.21 - 1 _ Qptym gn
(4.21) g El(v)q
For ‘“‘simple” pairs, this operator is diagonal since ¢ is diagonal, and is
given by
(4.22a) Kks|hlK's"> = 0y /0, o7
20t |p(k)|?

(4.22b) 5 = e ®)I®

1+ 2vtjp(k)[?

Equation (4.4) then shows that the sum over m in (4.20) is simply the trace
of the operator Jh. We therefore get

(4.23) (Olexp (P)J exp (B+)|0> = J:odt exp [—t+ 3 trIn (1 — 20tq)] tr (Jh)

(4.23) is the desired result, which is generally valid according to the argu-
ments of section 3.

Equations (4.23) and (4.16) are exact, and their substitution into (2.8)
gives an exact and explicit expression for the expectation value {J> of any
single-particle operator.

This expression involves the ratio of the integrals (4.23) and (4.16). If »
exceeds unity, as it does in the Bose-Einstein condensation region, both
integrals can be evaluated approximately by means of the saddle point
method. The case of (4.16) has been discussed in great detail in reference [8],
section 3. The value of ¢ for the saddle point is proportional to the volume
of the box.” The factor tr(JA) in (4.23) is a function of ¢, since £ enters into
the definition of the operator 4, (4.21). However, tr(J4) is a slowly varying
function of ¢ compared to the exponential factor, and therefore does not alter
the position of the saddle point to a first approximation. With this approxi-
mation, we see that the ratio of (4.23) to (4.16) can be replaced by tr (J4),
where 4 is to be evaluated with ¢ = ¢_,,. In this approximation, therefore,
(2.8) assumes the extremely simple ‘form:

(4.24) > = Zk g Ja + tr (Jh)

7 In fact, one can show quite generally that y,; = N,, where N, is the number of Bose-
condensed pairs.
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Unlike (4.23) and earlier formulae, (4.24) is only approximately true, and in
particular fails if the number of pairs is comparable to 1. However, when
(4.24) is valid, it is much simpler to use than (4.23) and gives equivalent
results. The only thing needed is the value of ¢ to use in %, equation (4.21).
This can be obtained by putting J equal to the number operator A4, i.e.,
Jww = 6. This leads to the condition

(4.25) N =237+ 2 (1 —f)h,

If the one-particle occupation numbers 7, are known, (4.25) involves only
one adjustable parameter on the right hand side, namely the ¢ which appears
in the operator 4. Thus (4.25) becomes an implicit definition of ¢.

We emphasize once more that (4.24) and (4.25) are not restricted
to ‘“simple” pairs, but are valid for arbitrary pair wave functions
ok, k') = p(ks, K's").

5. Expectation Values of Pair Operators

We now apply the same methods to the expectation value of pair opera-
tors, as given by equation (2.12). The first two lines of equation (2.12) rep-
resent no difficulty, since K, equation (2.10), has the structure of a single-
particle operator. Thus our main concern is the evaluation of the Jast term
in (2.12). We shall do this in two steps: (1) By use of the commutator algebra
of section 3, we shall determine the general structure of the contributing
terms, and (2) by special methods applicable to ‘“‘simple’ pairs, and sub-
sequent identification of the structures which appear, we shall arrive at our
explicit result.

We first use (3.1)—(3.3) to write:

oV
(1) <Olexp (P) K exp (P4)(0) = 3 7= ObY R (5+)¥|0

N=0

Next, we use the commutation relations (1.5) in the explicit form (2.11a) of
K in order to bring the operators a, to the left, the operators aj to the right.
In that position, the a, can be commuted through the factor 4V, and the af
through the factor (b+)¥. This leads to the equation

QIR BHMI0> = 3 (K — Kpy,u) CO16Y (04)V10)

k1

(5‘2) —2 gl (Kkl,k'l - Kkl,lk') <lk’,bN(b+)Nl lk>

+ z 'Kkl,k'l'<lk' ll'IbN(b+)N|lkll>

ELE,T
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The first two lines of (5.2) contain matrix elements of ¥ (b+)¥ which we
have encountered already, in section 3. For our present purpose, it is con-
venient to introduce the following operators in the two-particle space:

(5.3) CRlipaml B> = CRIGME U™y — <RIgME><Lig™ (k">

We note that p,, is the unit operator, properly antisymmetrized: we also
introduce the notation tr, for a trace over the two-particle space:

(5.4) tr, (K) = ;E;Kkz,kz
Then we get the identity
(5.5) tr, (Kan) = E (Kkl,k’l’ — Ky onr) CRlgrRD> g™’y

kLK,

Using the result of section 3, the first line of (5.2) has the structure
try (Bpoo) M,

where M is a multinomial in the quantities tr (¢™). Similarly, the second
line of (5.2) has the structure

% try (Kjbno)M;

where again each M, is a multinomial in the quantities tr (™).

It remains to explore the structure of the third line of (5.2). We use the
commutation relations of section 3 to rewrite 4¥ (b*)¥ in an equivalent form
in which all operators b} are to the left, all operators b, to the right, and
operators @, in the middle; equations (3.24) and (3.25) provide examples.
For one-particle matrix elements of ¥ (6+)¥, the only surviving terms were
the ones made up out of factors Q, entirely. Now, however, we need two-
particle matrix elements, and a new type of term enters; namely terms with
one factor b} to the left, one factor b, to the right, and any number of
factors Q in the middle. For example, in equation (3.25) only the very first
term gives zero matrix elements between two-particle states; all the other
terms contribute.

We use the general relations

(5.6) bl 1> = 2% gx (%, 1)10>
and A

(6.7) Qullel) = tr (g")|Le1,) — 2 kZ <Rlg™R 1> — Zt g F 51>

which follow directly from the definitions and the commutation relations
(1.5). Using (5.6) we get the identity

(5'8) <1k’ll'|b:Qr e chmllkll> = 2(P,,(k’, l')‘P:.(k: l)<0|Qr e Qc|0>
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where Q, - - - Q, denotes any sequence of factors Q. Substitution into the last
line of (5.2) shows that terms of this type lead to structures of the form

(@m Ko )M,

where M., is a multinomial in the quantities tr (¢7), and the matrix element
is defined by

(5.9) (Poms K‘Pn) = Z l,‘an(k: Z)Kkz,k'l'?’n(k'; )

IARS

On the other hand, it is easily seen from (5.7) that terms made up out of
factors Q exclusively, lead to traces try(Kp,,,) multiplied by multinomials in

tr (¢7).
Combining all the results so far, we get

(6.10)  COPYE(@H¥(0) = 3 [try (Rppm) MD, + (9., Ko, ) M3,

where the M{? are multinomials in the quantities tr (7). As an example of a
formula of this type, we quote a result easily obtained from the explicit
expressions (3.25), (5.2), (5.8), and (5.7):
<0[52K(b+)2|0> = 16(gp,, K‘Po) + 16(g,, K‘P1)

— 8tr (9)(po, Bpo)+ 16 try (Rpy)

At this point we leave the commutator algebra, and consider the special
case of “simple”’ pairs. Using equations (4.6)—(4.7) we obtain:

(5.11)

<O|bNK(b+)Nl0> = 2N Z 2 z Klm,l'm’

Ky ky K, Ky tmim
(5.12) p* (k) p* (ky) - - - ¢* (kn) p(Ky) - -+ p(ky)

O1Be, By * * Bry @ Gonm ar B, + * By 0D
We now analyze the vacuum expectation values which appear on the right

side of (5.12). There are two quite separate cases, depending upon whether
I’ and m' are ‘““associated”” or not. We call /' and m’ ‘“‘associated” if

(5.13) I'=—m’ and s, = —s,,  (Def. of association)

s being the spin index in each case. Since the operators g and B, create or
destroy a pair of associated states at a time, it follows immediately that, if
I’ and m’ are associated states, then / and m must also be associated states;
and vice versa. We now follow through these two cases separately:

1) I and m are associated, and so are I’ and m’:

The factor af a;; now equals 484, the signs depending on whether m has
up-spin (plus signs) or down-spin (minus signs). Similarly, &, a; = 4+ fim-
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By permutation of commuting operators, we can make ky = +m and
ky = +m’. Terms of this type then give the following contribution to (5.12):

Type 1 contribution to (5.12) = 2V(N!)2 z <p L(m, m’)p(m’)
5.14 ,
( ) Z, lp(Ky) 1% o (ky) (2 - - - I‘P(kN-l)l
{ky - ky_q

where the double prime on the sum means that none of the k;, may equal
either m or m’, and where L{m, m’) is defined by

(5.15) Limm) =Koy oyimt,-my — Komy,mtimt,—m}
— Kot cmy-mymt By mtom ) met

We now substitute (5.14) into (5.1), and use the identities (4.12), (4.13), and
(4.15) to get
(5.16) Type 1 contribution to (5.1) f dtexp[—t+ 4 trin (1 — 2vig)]T

where

. (201)% ¢* (m) ., (20t)* @(m’)
GI - T= 2 T sop(m) - ™ ™) T et

We must rewrite (5.17) as an expression of the right form to fit (5.10). For
the special case of ‘‘simple” pairs, the operator ¢ is given by (4.2). Hence
we have, remembering the definitions (3.13):

(20t)%
518) — 7 _ o(m 2ut)"tign (2vt)"¥p (m4,—m | )
(5.18) 1+2vt1¢(m)12¢( ) n§0( )i gre = Z pa(m?,
This is of the right form for the general case. We therefore introduce the
definition
2t
(519) p(k, ¥) = 3 (20" n(k, K) = 3 <k‘ VEL | k7, B)
"= 1— 2utg|
Direct substitution into (5.17) then yields the identity:
(5.20) T = (y, Ky) = Z’—o (20t) "+ +1(p,,, Kop,1)

The combination of (5.16) and (5.20) is exactly of the right form to agree
with the second term on the right hand side of (5.10). This concludes the
analysis of the type 1 contribution.

2) I and m are not associated, and neither are I’ and m', in (5.12).

In this case, the operator a,,a, breaks up two separate associated pairs,
and the vacuum expectation value on the right of (5.12) vanishes unless
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ata} restores these same two pairs. Thus the only non-vanishing contribu-
tions come from (i) / =1, m = m’, and (ii) I = m’, m = I’. Once this is
recognized, the usual arguments lead to the result:

Type 2 contribution to (5.12) = 2N(N!)2 3 lp(1)]? |p(m)|?
i,m
Bipyim — Bigmt) 2 o) - [ (ly_o)
(k- ky—p}

We substitute this contribution into (5.1), use the identities (4.12), (4.13),
and (4.15), and the relation (4.22b) to get

(5.21)

Type 2 contribution to (5.1) =

(5.22) = J-dt exp [—¢ + $trln (1 — 2vig)]T’
where

(5.23) T :l;n B P(R 1, 1 — B im, mi)

Consideration of the general form (5.3) now suggests the definition
(5.24a) CRUPIRT S = CRIBIR"S (ALY — <RI <UAlR")

so that

(5.24b) p= gl(zvt)"ﬂ'p,m,

With this definition, the quantity 7", (5.23), can be rewritten in the form
(5.25) T = tr, (Kp)

The combination of (5.22) and (5.25) is exactly of the right form to agree
with the first term on the right hand side of (5.10). This concludes the
analysis of the quantity (5.1). The final and exact result is:

<0lexp (P)K exp (P+)|0)
= [Tdtexp [—t + } trIn (1 — 2019)] (try (Rp) + (v, Ky))

Just as before, this integral can be approximated by the saddle point method
in the Bose-Einstein condensation region. Under those conditions, combina-
tion of (2.12), (4.16), (4.23), and (5.26) gives

(5.27) <KD =3 (Kiu — Kipu) ety + tr (RWA) + tr, (KP) + (v, Ry)

k1

(5.26

This, unlike (5.26), is only an approximation, but the error is of order
(volume)~! in the Bose-condensation region.

Equations (4.24) and (5.27) are the main results of this paper. They can be
used, among other things, for a completely gauge-invariant derivation of the
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Meissner-Ochsenfeld effect, in the quasi-chemical equilibrium theory of
superconductivity [4].

The function (&, '), (5.19), and the operator 4, (4.21), are easily seen to
be related by the identity

(5.28) kE w(k, B )p* (R, k') = —CRIA(L — R)[R

For the special case of “‘simple’’ pairs, the only non-vanishing values of y are
(5.29) pkt, —k})=—p(-k|, kt)=9ypk)

The general identity (5.28) then leads to

(5.30) p(k) = £ Vi (1 — k)

Quite apart from the sign ambiguity, the relation (5.30) cannot be general-
ized to arbitrary pair wave functions. % is a simpler structure than y in the
general case, and there is no hope of expressing y in terms of 4.

(5.28) does appear to allow expression of % in terms of an operator made up
from y. However, (5.28) leads to a quadratic equation for %, and the natural
sign ambiguity in the root of a quadratic equation makes real trouble here,
since both signs must actually be used.

We conclude that, in the general case, one can neither express y in terms of
&, nor % in terms of y, without encountering serious sign ambiguities and
other troubles. The basic quantity in the quasi-chemical equilibrium theory
is the pair correlation matrix with its eigenfunctions; in the extreme Bose-
Einstein condensation limit, the basic quantity is the eigenfunction ¢ (%, &)
of the condensed pairs. Only in terms of @(k, #’') can we obtain generally
valid, unambiguous expressions. The accidental relation (5.30), valid only for
“simple”” pairs, has misled some into attributing basic significance to the
quantities 4, and to the simple pairing condition (1.6), a basic significance
which they do not possess.
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