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New Examples of Non-Archimedean
Banach Spaces and Applications

C. Perez-Garcia and W. H. Schikhof

Abstract. The study carried out in this paper about some new examples of Banach spaces, consist-

ing of certain valued fields extensions, is a typical non-archimedean feature. We determine whether

these extensions are of countable type, have t-orthogonal bases, or are reflexive. As an application we

construct, for a class of base fields, a norm ‖ · ‖ on c0, equivalent to the canonical supremum norm,

without non-zero vectors that are ‖·‖-orthogonal and such that there is a multiplication on c0 making

(c0, ‖ · ‖) into a valued field.

1 Preliminaries and Basic Lemmas

Throughout this paper K := (K, | · |) is a non-archimedean non-trivially valued field

that is complete with respect to the metric induced by the valuation | · | : K→[0,∞).

For fundamentals on non-archimedean valued fields and their valued field exten-

sions, see [1, 3]. Here we only fix some notations and recall some basic concepts

which will be involved in the paper.

By K[X] we mean the K-vector space of all polynomials with coefficients in K.

Also, K(X) denotes the (non-necessarily complete) field of rational functions over K

with the non-archimedean valuation, which extends the valuation on K, defined by

∣

∣

∣

λ0 + λ1 X + · · · + λn Xn

µ0 + µ1 X + · · · + µm Xm

∣

∣

∣
:=

max0≤i≤n |λi |

max0≤ j≤m |µ j |
,

where λi , µ j are in K and not all µ j equal to 0.

The set GK := {|λ| : λ ∈ K, λ 6= 0} is a multiplicative group of positive real

numbers, called the value group of K. We denote |K| := GK ∪ {0}.

The closed unit ball in K is BK := {λ ∈ K : |λ| ≤ 1}. Similarly, the open unit ball

in K is B−
K := {λ ∈ K : |λ| < 1}. BK is not only multiplicatively, but, due to the

strong triangle inequality (|λ + µ| ≤ max{|λ|, |µ|} for all λ, µ ∈ K), also additively

closed. Thus, BK is a commutative ring with identity. Further, B−
K is easily seen to be

an ideal in BK and, since each λ ∈ K with |λ| = 1 is invertible in BK , even a maximal

ideal. Thus, BK/B−
K is a field, called the residue class field of K and denoted by k. The

canonical map BK→k is written λ 7→ λ.
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Note All the vector and Banach spaces considered in this paper are over K.

The new examples of non-archimedean Banach spaces treated in this paper are

complete valued field extensions of K; we will focus on algebraically closed fields K

(see the end of this section).

A valued field extension L of K is a non-archimedean valued field containing K as

a subfield and such that the valuation of K is the restriction of the valuation of L (this

last one is also denoted by | · |).

A valued field extension L of K is called immediate if the value groups of K and L

are the same and their residue class fields are naturally isomorphic, or equivalently, if

for each a ∈ L, a 6= 0, inf{|a − λ| : λ ∈ K} < |a| ([2, Exercise 4.X and comments

after Theorem 4.57]).

We call (K, | · |) spherically complete if it has no proper immediate valued field

extensions, or equivalently, if each nested sequence of balls B1 ⊃ B2 ⊃ · · · in K has a

non-empty intersection [2, Theorem 4.47].

Now let L1 and L2 be two spherically complete immediate valued field extensions

of K. Then there is a bijective K-linear isometry L1→L2 that leaves K pointwise

fixed, but we cannot always choose this map to be a field homomorphism [2, Theo-

rem 4.59].

Despite this, we shall denote any spherically complete immediate valued field ex-

tension of K by K∨, and even call K∨ the spherical completion of K.

The field Q p of p-adic numbers (where p is a prime number) is spherically com-

plete (because it is locally compact, [3, Theorem 5.4]) and it is not algebraically

closed ([3, Corollary 16.4]). The completion Cp of the algebraic closure of Q p is alge-

braically closed [3, Corollary 17.2.(i)] and it is not spherically complete [3, Corollary

20.6]. The spherical completion of Cp is algebraically closed [2, Corollary 4.51] and

clearly it is spherically complete.

To give an example of a non-algebraically closed and non-spherically complete

field is a more delicate subject. Let K := Cp. Let L be the completion of K(X).

Then L is the field of formal Laurent series in K constructed in Exercise 1.K of [2] for

ρ := 1. It is easily seen that there is no element in L whose square is equal to X, so

L is not algebraically closed. Also, as Cp is separable [3, Corollary 17.2.(iv)], then so

is K(X) and hence L is separable [3, Exercise 17.B]. Finally, since the valuation of L

is dense, it follows that L is not spherically complete [3, Theorem 20.5], and we have

the desired example.

Now let E = (E, ‖ · ‖) be a (non-archimedean) Banach space. For fundamentals

on non-archimedean Banach spaces we refer to [2]. Here we only fix some notations

and recall some basic concepts that will be involved in the paper.

By ‖E‖ we mean {‖x‖ : x ∈ E}. For a set X ⊂ E, ♯X and [X] are the cardinality

and the linear hull of X, respectively; X denotes the closure of X with respect to the

norm topology on E. For X,Y ⊂ E, Y \ X := {y ∈ E : y ∈ Y, y 6∈ X}. The distance

between two non-empty sets X,Y ⊂ E is dist(Y,X) := inf{‖y − x‖ : y ∈ Y, x ∈ X}.

For a ∈ E, instead of dist({a},X) we write dist(a,X).

By L(E) we mean the Banach space of all continuous linear maps E→E and by E ′

the Banach space of all continuous linear maps E→K. As usual E ′ ′ := (E ′) ′ and E is

called reflexive if the canonical map E→E ′ ′ is a surjective isometry. E is said to be of
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countable type if it contains a countable set whose linear hull is dense in E.

Let I be a non-empty set, let s := (si)i∈I ∈ R
I with si > 0 for all i ∈ I.

The space c0(I, s) := {(λi)i∈I ∈ KI : limi |λi | si = 0}, equipped with the norm

‖(λi)i∈I‖ := maxi∈I |λi | si , is a Banach space, which is of countable type if and only

if I is countable. When si = 1 for all i ∈ I, we write c0(I) instead of c0(I, s); if, addi-

tionally, I = N, then c0(N) is the well-known space c0 of all sequences in K tending

to 0.

Two elements x, y of E are orthogonal to each other (x ⊥ y) if dist(x, [y]) = ‖x‖,

or equivalently, if ‖λ x + µ y‖ = max{‖λ x‖, ‖µ y‖} for all λ, µ ∈ K. For two

subspaces D1,D2 of E we put D1 ⊥ D2 if x ⊥ y for all x ∈ D1, y ∈ D2. For D1 = [a],

a ∈ E, instead of [a] ⊥ D2, we write a ⊥ D2 (observe that a ⊥ D2 if and only if

dist(a,D2) = ‖a‖). We say that a subspace D1 is orthocomplemented in E if there

exists a subspace D2 such that D1 ⊥ D2 and D1 ⊕ D2 = E (where ⊕ means algebraic

direct sum), or equivalently, if there exists a continuous linear projection Q : E→D1

with ‖Q‖ ≤ 1.

Let t ∈ (0, 1]. A t-orthogonal system in E is a subset X = {ei : i ∈ I} of E \ {0}
such that if i1, . . . , in are distinct elements of I, then

(1.1) ‖λi1
ei1

+ · · · + λin
ein
‖ ≥ t max

1≤k≤n
‖λik

eik
‖ for all n ∈ N, λi1

, . . . , λin
∈ K.

If in addition ‖ei‖ = 1 for all i ∈ I, then X is called a t-orthonormal system.

A t-orthogonal system X is called a t-orthogonal base of E if in addition [X] = E

(or equivalently, if every x ∈ E can be written uniquely as x =
∑

i∈I λxi ei , λxi ∈ K).

All t-orthogonal bases in E have the same cardinality. When t = 1, we write “orthog-

onal” instead of “1-orthogonal” and in this case, by the strong triangle inequality for

‖ · ‖, we have that (1.1) is equivalent to

‖λi1
ei1

+ · · · + λin
ein
‖ = max

1≤k≤n
‖λik

eik
‖ for all n ∈ N, λi1

, . . . , λin
∈ K.

Analogously we write “orthonormal” instead of “1-orthonormal”.

Each Banach space with an orthogonal base {ei : i ∈ I} is isometrically isomor-

phic to c0(I, s), with si := ‖ei‖ for all i, in particular, isometrically isomorphic to

c0(I) in the case in which the base is orthonormal.

1.1 New Examples of Banach Spaces

If L is a complete valued field extension of K, then the valuation on L makes it nat-

urally into a Banach space. This fact generates a new class of examples of Banach

spaces. For a ∈ L \ K, let K(a) be the smallest subfield of L containing K and a and

let K(a) be the closure of K(a) in L. Clearly K(a) is a Banach space with the norm

induced by the valuation of L.

The main result of this paper, Theorem 2.1, provides an answer when K is al-

gebraically closed to the natural questions whether K(a) is of countable type, has

a t-orthogonal base (t ∈ (0, 1]) and, as a consequence, whether K(a) is reflexive

(Corollary 3.3). An application of this theorem is given in Corollary 3.5.

https://doi.org/10.4153/CMB-2011-133-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-133-2


824 C. Perez-Garcia and W. H. Schikhof

Note Unless explicitly stated otherwise, from now on we assume that K is alge-

braically closed and that L, a, K(a), and K(a) are as described above.

The following lemmas will be used in the next section to prove Theorem 2.1.

Lemma 1.1 Let λ1, . . . , λn and µ1, . . . , µn be elements of L such that |λi −µi | < |µi |
for each i ∈ {1, . . . , n}. Then

∣

∣

n
∏

i=1

λi −
n
∏

i=1

µi

∣

∣ <
∣

∣

n
∏

i=1

µi

∣

∣ .

Proof The proof follows directly from the observation that | λi

µi
− 1| < 1 for each

i ∈ {1, . . . , n} and that {λ ∈ L : |λ− 1| < 1} is a multiplicative group.

Lemma 1.2 Let a ⊥ K, |a| = 1. Then for each polynomial

P = λ0 + λ1 X + · · · + λn Xn ∈ K[X]

and µ ∈ BK we have |P(µ)| ≤ max0≤i≤n |λi | ≤ |P(a)|.

Proof Only the second inequality needs a proof. We may assume λn 6= 0. By alge-

braic closedness there are ω1, . . . , ωn ∈ K such that P = λn (X−ω1) · · · (X−ωn) and

by assumption we have |a−ωi | ≥ |a| = 1 for all i, so that |P(a)| ≥ |λn|. By the same

token, we obtain |λ0 +λ1 a+· · ·+λn−1 an−1| ≥ |λn−1|, i.e., |λn−1| ≤ |P(a)−λn an| ≤
max(|P(a)|, |λn|) = |P(a)|, and we can proceed inductively.

2 Main Result

The main result of the paper is the following theorem, which provides an answer

to the natural questions whether K(a) is of countable type and whether K(a) has a

t-orthogonal base (t ∈ (0, 1]).

Theorem 2.1 For the Banach space K(a) we have the following.

(i) If dist(a,K) is not attained, then K(a) is of countable type and has a t-orthogonal

base for each t ∈ (0, 1), but has no orthogonal base.

(ii) If dist(a,K) is attained, but not in |K|, then K(a) is of countable type and has an

orthogonal base, but has no orthonormal base.

(iii) If dist(a,K) is attained and in |K|, then K(a) has an orthonormal base of cardi-

nality ♯k.

Proof (i) First we show that K(a) is of countable type. For that we prove that the

ring K[a] := [1, a, a2, . . .] is dense in K(a), which will be done in the next three steps.

(a) For every b ∈ K[a], b 6= 0 there is a µ ∈ K such that |b − µ| < |µ|. To see this,

let b = λ0 +λ1 a+ · · ·+λn an; we may suppose n ≥ 1, λ0, λ1, . . . , λn ∈ K, λn 6= 0. By

algebraic closedness there exist ω1, . . . , ωn ∈ K such that b = λn (a−ω1) · · · (a−ωn).

Since dist(a,K) = dist(a − ωi ,K) is not attained, there are µ1, . . . , µn ∈ K such that

|a − ωi − µi | < |µi | for each i ∈ {1, . . . , n}. By Lemma 1.1 we have |b − µ| < |µ|,
where µ := λn µ1 · · ·µn.
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(b) For each b ∈ K[a], b 6= 0 we have b−1 ∈ K[a]. In fact, by (a) there is a µ ∈ K

such that |b − µ| < |µ|. Then |µ−1 b − 1| < 1, so that

µb−1
= (1 − (1 − µ−1 b))−1

=

∞
∑

n=0

(1 − µ−1 b)n ∈ K[a].

(c) K[a] is dense in K(a). From (b) it follows that K(a) ⊂ K[a]. This, together

with the obvious inclusion K[a] ⊂ K(a), leads to K[a] = K(a).

Secondly we show that K(a) has for each t ∈ (0, 1) a t-orthogonal base. This

follows from what we have just proved and [2, Theorems 3.15.(iii), 3.16.(ii)].

Finally we show that K(a) has no orthogonal base. Suppose it has; we derive a

contradiction. This orthogonal base must be countable (because, as we proved be-

fore, K(a) is of countable type; so apply [2, Theorem 5.2]) and infinite (because, as K

is algebraically closed, K(a) and hence K(a) are infinite-dimensional vector spaces).

Let us denote this orthogonal base by {e1, e2, . . .}. Then K(a) is isometrically iso-

morphic to c0(N, s), with sn := ‖en‖ for all n ∈ N. By [2, Lemma 4.35.(ii)], [a] is

orthocomplemented in K(a) and hence in [1, a], which contradicts the hypothesis

of (i).

(ii) Let λ0 ∈ K be such that |a − λ0| = dist(a,K). Then K(a − λ0) = K(a) and

dist(a − λ0,K) = dist(a,K), so we may replace a by a − λ0; in other words, we may

assume that |a| 6∈ |K|. It suffices to show that {an : n ∈ Z} is an orthogonal base of

K(a).

First observe that |a|n 6∈ |K| for n ∈ N. Indeed, if |a|n = |λ| for some n ∈ N and

λ ∈ K, then by algebraic closedness there is a µ ∈ K with µn
= λ, so that |a| = |µ| ∈

|K|, which is a contradiction. Next we prove orthogonality of {an : n ∈ Z}. Let

x :=

m
∑

i=s

λi ai ,

where λs, . . . , λm ∈ K, not all 0. From what we have just proved it follows that

|λi ai | 6= |λ j a j | for all i, j ∈ {s, . . . ,m} unless i = j or λi = λ j = 0. Then

|x| = maxs≤i≤m |λia
i |, and orthogonality follows.

We proceed to show that x−1 ∈ [an : n ∈ Z], where x is as above. There is a unique

j ∈ {s, . . . ,m} with |x| = |λ ja
j |. Then

(λ ja
j)−1x = 1 + (λ ja

j)−1
∑

i 6= j

λia
i
= 1 + v,

where v ∈ [an : n ∈ Z], |v| < 1. Thus

(λ j a j) x−1
=

∞
∑

n=0

(−v)n ∈ [an : n ∈ Z],

implying x−1 ∈ [an : n ∈ Z]. Now continuity of the inverse map shows that

[an : n ∈ Z] is a field, hence must be equal to K(a). Then we obtain that {an : n ∈ Z}
is an orthogonal base of K(a).
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(iii) The proof here is somewhat more involved. Let λ0 ∈ K with |a − λ0| =

dist(a,K) ∈ |K|. Then K(a − λ0) = K(a) and dist(a − λ0,K) = dist(a,K), so we

may assume that a ⊥ K and |a| = 1. Let σ : k→BK be such that σ(u) = u for all

u ∈ k. Let

S := {as : s ∈ N∪{0}} ∪ {(a − µ)−m : µ ∈ σ(k), m ∈ N}.

Then S is a subset of K(a) and, since k is infinite, we have ♯S = ♯k. We now establish

(a)–(d) below, which will show that S is an orthonormal base of K(a).

(a) S is an orthonormal system.

(b) [S] is a subring of K(a).

(c) For each β ∈ K, (a − β)−1 ∈ [S].

(d) K(a) ⊂ [S].

Proof of (a) Clearly each member of S has length 1. Take a linear combination

Φ :=

s
∑

r=0

ξr ar +

m
∑

i=1

n
∑

j=1

λi j (a − µi)
− j

(where s ∈ N∪{0}, m, n ∈ N, ξr, λi j ∈ K, µi ∈ σ(k)). For orthonormality of S it

suffices to show, assuming |Φ| < 1, that all |ξr| and |λi j | are < 1. Via (downward) in-

duction on n we only need to prove that all |ξr| and all |λin| are < 1 for r ∈ {0, . . . , s},

i ∈ {1, . . . ,m}.

To obtain polynomials, we multiply Φ by L(a) := (a − µ1)n · · · (a − µm)n, which

does not change the absolute value, as |L(a)| = 1. The assumption |Φ| < 1 turns

into

(2.1) |V1(a) + V2(a)| < 1,

where V1,V2 ∈ K[X]. In fact, for x ∈ L,

V1(x) :=
(

s
∑

r=0

ξrx
r
)

L(x), V2(x) :=

m
∑

i=1

n
∑

j=1

λi jLi j(x),

where Li j(x) := (x − µi)
n− j

∏

l 6=i(x − µl)
n.

Let r ∈ {0, . . . , s}. If ξr 6= 0, the degree of V1 is ≥ mn, whereas V2 has degree

< mn. Thus, ξr is a coefficient of the polynomial V1 + V2, so that by Lemma 1.2 we

have |ξr| ≤ |V1(a) + V2(a)| < 1. So all |ξr| are < 1 and |V1(a)| < 1, hence (2.1)

reduces to |V2(a)| < 1. Choose q ∈ {1, . . . ,m}. Then since

|Li j(µq)| =

{

1 if q = i, j = n,

0 otherwise,

we find by Lemma 1.2 that 1 > |V2(a)| ≥ |V2(µq)| = |λqn|, so that |λ1n|, . . . , |λmn|
are all less than 1.
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Proof of (b) It suffices to show that S . S ⊂ [S]. For µ ∈ σ(k) and m ∈ N the identity

a(a − µ)−m
= (a − µ)1−m + µ (a − µ)−m

shows that aS ⊂ [S]. Then a2S = aaS ⊂ a[S] = [aS] ⊂ [S], and so on, proving that

arS ⊂ [S] for each r ∈ N∪{0}. It remains to be shown that (a−µ1)−m1 (a−µ2)−m2 ∈
[S] for m1,m2 ≥ 1, µ1, µ2 ∈ σ(k). If µ1 = µ2, this is clear, so suppose µ1 6= µ2. We

use induction with respect to n := m1 + m2. If n = 2 (so m1 = m2 = 1), the formula

(2.2) (a − µ1)−1(a − µ2)−1
=

1

µ1 − µ2

(

(a − µ1)−1 − (a − µ2)−1
)

does the job. For the step n − 1 → n, observe that we have, using (2.2),

(a − µ1)−m1 (a − µ2)−m2 =

1

µ1 − µ2

(

(a − µ1)−1 − (a − µ2)−1
)

(a − µ1)−m1+1(a − µ2)−m2+1,

which is a linear combination of the elements (a − µ1)−m1 (a − µ2)−m2+1 and

(a − µ1)−m1+1(a − µ2)−m2 , and these are in [S] by the induction hypothesis.

Proof of (c) If |β| > 1, we have (a − β)−1
= −β−1

∑∞
n=0(β−1 a)n ∈ [S], so let

|β| ≤ 1. Then there is a µ ∈ σ(k) with |β − µ| < 1 and

(a − β)−1 − (a − µ)−1
= (β − µ) (a − µ)−2

(

1 −
β − µ

a − µ

)−1

= (β − µ) (a − µ)−2
∞
∑

n=0

(β − µ)n(a − µ)−n ∈ [S].

Proof of (d) Every element of K(a) can be written as P(a)Q(a)−1 for some poly-

nomials P,Q ∈ K[X], Q(a) 6= 0. By algebraic closedness we can decompose Q

into linear factors whose inverses are in [S] by (c). Then since [S] is a ring by (b),

P(a)Q(a)−1 ∈ [S].

3 Some Consequences and Final Remarks

As an immediate consequence of Theorem 2.1 we derive the next result.

Corollary 3.1 (i) For each t ∈ (0, 1) K(a) has a t-orthogonal base.

(ii) K(a) has an orthogonal base if and only if dist(a,K) is attained.

(iii) K(a) is not of countable type if and only if dist(a,K) is attained and in |K| and k

is uncountable.

Remark 3.2 To see that cases (ii) and (iii) of Corollary 3.1 really occur, choose

K such that k is uncountable. Let L be the completion of (K(X), | · |), and choose

a := X.
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Another consequence of Theorem 2.1 concerns reflexivity of K(a). Recall that a

set is small if it has a non-measurable cardinality [2, p. 31].

Corollary 3.3 K(a) is reflexive except when either (i) K is spherically complete, or

(ii) K is not spherically complete, dist(a,K) is attained and in |K|, and k is not small.

Proof Suppose K is spherically complete (case (i)). Since K is algebraically closed,

K(a) is an infinite-dimensional Banach space, so it is not reflexive [2, Theorem 4.16].

Now suppose that K is not spherically complete (case (ii)). If the remaining as-

sumptions of (ii) hold, then by Theorem 2.1(iii), K(a) is isometrically isomorphic to

c0(I) with ♯I = ♯k. As ♯I is not small, it follows from [2, Exercise 4.M] that K(a) is

not reflexive.

On the other hand, if K is not spherically complete and some of the remaining

assumptions of (ii) fail, then we have that either

• we are in case (i) or (ii) of Theorem 2.1 (so K(a) is of countable type, hence reflexive

by [2, Corollary 4.18]), or
• we are in case (iii) of Theorem 2.1 with k small (so, K(a) is isometrically isomorphic

to c0(I) with ♯I = ♯k and, as ♯I is small, K(a) is reflexive, by [2, Theorem 4.21.(iii)]).

Remark 3.4 To see that case (ii) of Corollary 3.3 really occurs, choose K non-

spherically complete and such that k is small. Then proceed as in Remark 3.2.

Also, as an application of Theorem 2.1 we obtain the following interesting fact.

Corollary 3.5 Suppose that K is not spherically complete. Then on c0 there exists an

equivalent norm ‖ · ‖ with ‖c0‖ = |K| such that

(i) there is a multiplication on c0 making (c0, ‖ · ‖) into a valued field;

(ii) no two non-zero vectors are ‖ · ‖-orthogonal.

Proof Let L := K∨ be the spherical completion of K and let a ∈ L \ K. Then

dist(a,K) is not attained, since L is an immediate valued field extension of K. So we

are in case (i) of Theorem 2.1, showing that K(a) is of countable type (and infinite-

dimensional, as K is algebraically closed), hence linearly homeomorphic to c0 ([2,

Theorem 3.16.(ii)]).

If λ, µ ∈ K(a), λ ⊥ µ with respect to the valuation | · | on K(a) and λ, µ 6= 0, then

λ µ−1 6= 0, λ µ−1 ⊥ K, which is not possible since, as K(a) is an immediate valued

field extension of K, 0 is the only element of K(a) that is orthogonal to K ([2, pp. 57,

162]).

Finally, let ‖ · ‖ be the norm on c0 inherited from | · | through the bijective linear

homeomorphism K(a)→c0. From the facts previously showed in this proof we obtain

that (c0, ‖ · ‖) satisfies the required conditions.

Problem Now let us drop the condition of algebraic closedness of K. Again, let L

be a valued field extension of K. Let a be in L \ K, a not algebraic over K. What

conclusions about K(a) of Theorem 2.1 and its corollaries remain valid in this more

general context?
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