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Abstract

A new linear and conservative finite difference scheme which preserves discrete mass
and energy is developed for the two-dimensional Gross–Pitaevskii equation with angular
momentum rotation. In addition to the energy estimate method and mathematical
induction, we use the lifting technique as well as some well-known inequalities to
establish the optimal H1-error estimate for the proposed scheme with no restrictions
on the grid ratio. Unlike the existing numerical solutions which are of second-order
accuracy at the most, the convergence rate of the numerical solution is proved to be of
order O(h4 + τ2) with time step τ and mesh size h. Numerical experiments have been
carried out to show the efficiency and accuracy of our new method.

2010 Mathematics subject classification: primary 65M06; secondary 65M12.
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1. Introduction

Through proper nondimensionalization and dimension reduction, the dynamics
of a rotating Bose–Einstein condensate (BEC) can be well described by the
following Gross–Pitaevskii (GP) equation with angular momentum rotation (AMR)
in dimensionless form [3, 20]:

i∂tψ = [− 1
2 ∆ + V(x) −ΩLz + β|ψ|2]ψ, x ∈ Rd, t > 0.

Here i =
√
−1, d = 2, 3, x = (x, y) ∈ R2 or (x, y, z) ∈ R3, t is the time variable and

ψ(x, t) is the unknown complex-valued wave function. Note that V(x) is a real-valued
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function related to the external trap potential and, in most experiments, it is chosen as
a harmonic potential, that is, as a quadratic polynomial. The dimensionless constant Ω

corresponds to the angular speed of the laser beam in experiments and β characterizes
the interaction (positive for repulsive interaction and negative for attractive interaction)
between particles in the rotating BEC. Moreover, ∆ is the Laplacian operator and Lz is
the z-component of the angular momentum defined as

Lz = −i(x∂y − y∂x) = −i∂θ,

where (r, θ) and (r, θ, z) are the two-dimensional (2D) polar coordinates and three-
dimensional (3D) cylindrical coordinates, respectively. In fact, since the first
experimental implementation of a quantized vortex in a gaseous BEC [18, 19], which is
relevant to superfluidity, theoretical and experimental advances in rotating BECs [6, 9]
have spurred great excitement in atomic physics and the computational and applied
mathematics community.

In this paper, we focus numerically on the 2D case

i∂tψ = [− 1
2 ∆ + V(x, y) −ΩLz + β|ψ|2]ψ, (x, y) ∈ R × R, 0 < t 6 T, (1.1)

subject to the (l1, l2)-periodic boundary conditions

ψ(x, y, t) = ψ(x + l1, y, t), ψ(x, y, t) = ψ(x, y + l2, t), (x, y) ∈ R × R, 0 < t 6 T,
(1.2)

and the initial condition

ψ(x, y, 0) = ψ0(x, y), (x, y) ∈ R × R, (1.3)

where ψ0(x, y) is a given (l1, l2)-periodic smooth complex-valued function. In addition,
it can be verified that the initial boundary value problem (1.1)–(1.3) possesses the
following mass and energy conservation laws:

M(ψ(·, t)) =

∫
D

|ψ(·, t)|2 dx dy ≡ M(ψ0), t > 0,

and

E(ψ(·, t)) =

∫
D

[1
2
|∇ψ|2 + V(x, y)|ψ|2 −Ωψ̄Lzψ +

β

2
|ψ|4

]
dx dy ≡ E(ψ0), t > 0,

whereD = [0, l1] × [0, l2] and ψ̄ refers to the complex conjugate of ψ.
The GP equation with AMR has been vigorously studied in theoretical analysis and

numerical simulations. For the derivation, well-posedness and dynamical properties,
we refer to the papers [13, 17], the book [20] and the references therein. Numerically,
various algorithms have been developed, including the finite difference method [3, 25],
the finite element method [14], the time-splitting pseudo-spectral method [23] and so
on. For the 1D GP equation including the nonlinear Schrödinger (NLS) equation, the
unconditional and optimal error estimates for conservative finite difference methods
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have been established by Chang et al. [7] and Guo [12]. Note that their proofs heavily
rely on the discrete conservative property and the discrete 1D version of the Sobolev
inequality

‖ f ‖L∞ 6 CD‖ f ‖H1 for all f ∈ H1(D) withD ⊂ R.

Such an inequality in 2D or 3D is no longer valid, which causes serious difficulty
in obtaining an a priori uniform estimate of the numerical solution. Thus, few error
estimates of the finite difference method are available in the literature for the 2D
GP equation with AMR. For the second-order finite difference method of the GP
equation with AMR, the first result about the error estimate was given by Bao and
Cai [3] with the aid of the cut-off technique [21]. Nevertheless, a weak condition
on the time-step size is involved in the corresponding error analysis. For Ω , 0, the
convergence rate in the discrete H1-norm is merely of order O(h3/2 + τ3/2), which is
not optimal according to the numerical results. Further introducing a lifting technique,
Wang et al. [25] established an optimal H1-error estimate for another Crank–Nicolson
finite difference scheme; the convergence rate, with no restrictions on the grid ratio, is
of order O(h2 + τ2).

Recently, there has been growing interest in high-order methods for solving partial
differential equations. It was shown that the high-order difference methods play an
important role in the simulation of high frequency wave phenomena. For example, it
is convenient to incorporate compact finite difference methods to achieve a high-order
scheme. There have been a few fourth-order compact schemes for the NLS equation,
which is a special case of the GP equation, as well as their convergence analysis. Liao
and Sun [16] established the maximum norm error estimate for linear Schrödinger
equations in 2D/3D. However, their analysis technique cannot be directly used in
nonlinear problems. Wang et al. [24] developed a new technique to analyse a compact
difference scheme for the 2D NLS equation and it was proved to be convergent,
with no constrains on the time-step size, at the order of O(h4 + τ2) in the discrete
L2-norm. Nevertheless, due to the introduction of the angular momentum rotation
term, this method [24] still cannot be directly extended for the analysis of the GP
equation (1.1)–(1.3).

To the best of our knowledge, the compact finite difference method has not
been applied to the GP equation with AMR and the existing finite difference schemes
are of second-order accuracy at most. Therefore, it is desirable to construct a high-
order scheme for the GP equation with AMR. In this paper, we first develop a
fourth-order conservative difference scheme for solving the initial boundary value
problem (1.1)–(1.3) and then prove that the proposed scheme is convergent at the order
O(h4 + τ2) in the discrete H1-norm, which is optimal according to the local truncation
error. The application of the lifting technique [25] removes the restriction on the mesh
ratio, which is needed to estimate the maximum norm boundedness of the numerical
solution of Bao and Cai [3]. Another aspect of this paper is that we have obtained
a higher order of spatial convergence using the fourth-order finite difference scheme.
Unlike the known analysis techniques [16, 24], the key strategy in the proof is the
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utilization of the circular matrix operation and the equivalences of several discrete
semi-norms for error estimates.

The remainder of the paper is organized as follows. In Section 2 some notation is
given and the fourth-order difference scheme is proposed. In Section 3 we introduce
some auxiliary lemmas for our error analysis. We discuss the existence of the
numerical solution and the discrete conservation laws in Section 4. In Section 5 the
convergence and stability of the proposed scheme are analysed. Numerical examples
are presented to show the efficiency and accuracy of our method in Section 6 and
concluding remarks are given in Section 7.

2. Notation and the fourth-order finite difference scheme

Numerically, we study the initial boundary value problem (1.1)–(1.3) in a finite
domain D × [0, T ]. We start with introducing some notation. For N ∈ N, let the
time step τ = T/N, tn = nτ, 0 6 n 6 N and denote Tτ = {tn = nτ | n = 1, 2, . . . , N − 1},
T ′τ = {tn = nτ | n = 0, 1, 2, . . . , N − 1} and T ′′τ = {tn = nτ | n = 0, 1, 2, . . . , N}. Given
a temporal discrete function {un | tn ∈ T ′′τ }, we denote δtun = (un+1 − un−1)/2τ, un̄ =

(un+1 + un−1)/2, tn ∈ Tτ and δ+
t un = (un+1 − un)/τ, tn ∈ T ′τ .

Besides, let J,K ∈ N, h1 = l1/J, h2 = l2/K, h = max{h1, h2}, x j = jh1, 0 6 j 6 J − 1,
yk = kh2, 0 6 k 6 K − 1 and the grid Th = {(x j, yk) | 0 6 j 6 J − 1, 0 6 k 6 K − 1}. To
approximate the periodic boundary conditions, we assume that x−1 = −h1, xJ = Jh1,

y−1 = −h2, yK = Kh2 and the extended discrete grid T E
h = {(x j, yk) | j = −1, 0, . . . , J;

k = −1, 0, 1, . . . ,K}. Given a grid function u = {u jk | (x j, yk) ∈ T E
h }, we denote

δ+
x u jk =

u j+1,k − u jk

h1
, δxu jk =

u j+1,k − u j−1,k

2h1
, δ2

xu jk =
u j−1,k − 2u jk + u j+1,k

h2
1

,

Ah1 u jk =
u j−1,k + 10u jk + u j+1,k

12
, Bh1 u jk =

u j−1,k + 4u jk + u j+1,k

6
,

where (x j, yk) ∈ Th. Difference operators δ+
y u jk, δyu jk, δ

2
yu jk,Ah2 u jk, Bh2 u jk are

similarly defined.
A matrix in the form

A =


a0 a1 . . . an−1

an−1 a0 . . . an−2
...

...
. . .

...
a1 a2 . . . a0


is called a circulant matrix [11]. Since the matrix A is determined by the entries in the
first row, the matrix may be denoted as

A = C(a0, a1, . . . , an−1).
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To approximate the Laplacian operator and the rotation operator, we introduce the
following matrices: in x-direction,

Dx
2 =

1
h2

1

C(−2, 1, 0J−3, 1), Dx
1 =

1
2h1

C(0, 1, 0J−3,−1), Dx
+ =

1
h1

C(−1, 1, 0J−2),

Dx
− =

1
h1

C(1, 0J−2,−1), Ax
2 =

1
12

C(10, 1, 0J−3, 1), Ax
1 =

1
6

C(4, 1, 0J−3, 1),

Bx
2 = (Ax

2)−1, Bx
1 = (Ax

1)−1, X = diag(x0, x1, . . . , xJ−1);

and in y-direction,

Dy
2 =

1
h2

2

C(−2, 1, 0K−3, 1), Dy
1 =

1
2h2

C(0,−1, 0K−3, 1), Dy
+ =

1
h2

C(−1, 0K−2, 1),

Dy
− =

1
h2

C(1,−1, 0K−2), Ay
2 =

1
12

C(10, 1, 0K−3, 1), Ay
1 =

1
6

C(4, 1, 0K−3, 1),

By
2 = (Ay

2)−1, By
1 = (Ay

1)−1, Y = diag(y0, y1, . . . , yK−1),

where 0m is a row vector with m zero elements. Note that Dw
2 , Aw

2 , Aw
1 , Bw

2 , Bw
1 are

symmetric circulant matrices, Dw
1 is an antisymmetric circulant matrix, Dw

+,D
w
− are

circulant matrices and w = x or y.
Let Vh = {u = (u jk) | (x j, yk) ∈ Th} be a space of grid functions. For u ∈ Vh, we

introduce the discrete version of the Laplacian operator, the gradient operator and the
rotation operator in the matrix form as

∇2
hu jk = (Dx

2u + uDy
2) jk, ∆hu jk = (Bx

2Dx
2u + uDy

2By
2) jk,

∇hu jk = ((Dx
+u) jk, (uDy

+) jk)>, Lh
z u jk = −i(XuDy

1By
1 − Bx

1Dx
1uY) jk,

where (x j, yk) ∈ Th. For any two grid functions w, v ∈ Vh, we define discrete inner
products and discrete (semi-)norms, respectively, as

(w, v) = h1h2

J−1∑
j=0

K−1∑
k=0

w jkv̄ jk, ‖w‖ =
√

(w,w), |w|h =
√
−(∆hw,w),

‖w‖1,h =
√
‖w‖2 + ‖∇hw‖2, ‖w‖p =

p

√√√
h1h2

J−1∑
j=0

K−1∑
k=0

|w jk|
p, 1 6 p <∞,

‖w‖∞ = max
(x j,yk)∈Th

|w jk|, ε(w) =
1
2
|w|2h + h1h2

J−1∑
j=0

K−1∑
k=0

(V jk|w jk|
2 −Ωw̄ jkLh

z w jk).

In fact, it can be verified that

‖∇hw‖ =
√

(∇hw,∇hw) =

√
(Dx

+w,Dx
+w) + (wDy

+,wDy
+)

=

√
−(Dx

+Dx
−w,w) − (wDy

+Dy
−,w) =

√
−(Dx

2w + wDy
2,w)

=

√
−(∇2

hw,w).
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Throughout the paper, let C be a generic positive constant independent of h and τ;
the notation p . q means that there exists a constant C such that |p| 6 Cq. To introduce
some lemmas for error estimates, we first make the following assumptions.

Assumption 2.1. For the external trapping potential V(x, y) and the rotation speed Ω,
we assume that there exists a constant µ > 0 such that

V(x, y) ∈ C(D), V(x, y) > 1
2µ

2(x2 + y2) for all (x, y) ∈ D, |Ω| < 1
3µ.

Assumption 2.2. For the regularity of the exact solution ψ, we assume that

ψ ∈ C3([0,T ]; L∞(D)) ∩C2([0,T ]; W2,∞(D)) ∩C0([0,T ]; W6,∞(D) ∩ H1
p(D)).

2.1. Fourth-order compact approximation of spatial derivatives

Lemma 2.3 [16]. Let g(x) ∈ C6([x j−1, x j+1]) and ζ(λ) = 5(1 − λ)3 − 3(1 − λ)5; then

g′′(x j−1) + 10g′′(x j) + g′′(x j+1)
12

=
g(x j+1) − 2g(x j) + g(x j−1)

h2
1

+
h4

1

360

∫ 1

0
[g(6)(x j − λh1) + g(6)(x j + λh1)]ζ(λ) dλ.

Lemma 2.4. Let g(x) ∈ C5([x j−1, x j+1]) and ζ̄(λ) = 4(1 − λ)3 − 3(1 − λ)4; then

g′(x j−1) + 4g′(x j) + g′(x j+1)
6

=
g(x j+1) − g(x j−1)

2h1

+
h4

1

144

∫ 1

0
[g(5)(x j − λh1) + g(5)(x j + λh1)]ζ̄(λ) dλ.

Proof. Taylor’s formula with the integral remainder yields the result and we omit the
details here for brevity. �

For the discretization of the second- and first-order derivatives ψxx and ψx of the
(l1, l2)-periodic function ψ(x, y, t), we derive from Lemmas 2.3 and 2.4 that

Ah1ψxx(x j, yk, tn) = δ2
xψ(x j, yk, tn) + (ηx

2)n
jk, (x j, yk) ∈ Th,

Bh1ψx(x j, yk, tn) = δxψ(x j, yk, tn) + (ηx
1)n

jk, (x j, yk) ∈ Th,

that is,

ψxx(x j, yk, tn) =A−1
h1
δ2

xψ(x j, yk, tn) +A−1
h1

(ηx
2)n

jk, (x j, yk) ∈ Th,

ψx(x j, yk, tn) = B−1
h1
δxψ(x j, yk, tn) + B−1

h1
(ηx

1)n
jk, (x j, yk) ∈ Th,

where

(ηx
2)n

jk =
h4

1

360

∫ 1

0
[ψ(6)

x (x j − λh1, yk, tn) + ψ(6)
x (x j + λh1, yk, tn)]ζ(λ) dλ,

(ηx
1)n

jk =
h4

1

144

∫ 1

0
[ψ(5)

x (x j − λh1, yk, tn) + ψ(5)
x (x j + λh1, yk, tn)]ζ̄(λ) dλ.
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The corresponding matrix form of the above equations is

Ax
2ψ

n
xx = Dx

2ψ
n + (ηx

2)n ⇒ ψn
xx = Bx

2Dx
2ψ

n + Bx
2(ηx

2)n, (2.1)
Ax

1ψ
n
x = Dx

1ψ
n + (ηx

1)n ⇒ ψn
x = Bx

1Dx
1ψ

n + Bx
1(ηx

1)n, (2.2)

where ψn
xx = (ψn

xx(x j, yk)), ψn
x = (ψn

x(x j, yk)), ψn = (ψn(x j, yk)), (ηx
2)n, (ηx

1)n ∈ Vh.

Similarly,

ψn
yyAy

2 = ψnDy
2 + (ηy

2)n ⇒ ψn
yy = ψnDy

2By
2 + (ηy

2)nBy
2, (2.3)

ψn
y Ay

1 = ψnDy
1 + (ηy

1)n ⇒ ψn
y = ψnDy

1By
1 + (ηy

1)nBy
1, (2.4)

where

ψn
yy = (ψn

yy(x j, yk)), ψn
y = (ψn

y(x j, yk)), (ηy
2)n, (ηy

1)n ∈ Vh,

(ηy
2)n

jk =
h4

2

360

∫ 1

0
[ψ(6)

y (x j, yk − λh2, tn) + ψ(6)
y (x j, yk + λh2, tn)]ζ(λ) dλ,

(ηy
1)n

jk =
h4

2

144

∫ 1

0
[ψ(5)

y (x j, yk − λh2, tn) + ψ(5)
y (x j, yk + λh2, tn)]ζ̄(λ) dλ.

Using (2.1) and (2.3), we represent the action of the Laplacian operator as

∆ψn = ψn
xx + ψn

yy

= Bx
2Dx

2ψ
n + ψnDy

2By
2 + Bx

2(ηx
2)n + (ηy

2)nBy
2

= ∆hψ
n + Bx

2(ηx
2)n + (ηy

2)nBy
2. (2.5)

Then, for the rotation operator, we derive from the identities (2.2) and (2.4) that

Lzψ
n = −i(Xψn

y − ψ
n
xY)

= −i[X(ψnDy
1By

1 + (ηy
1)nBy

1) − (Bx
1Dx

1ψ
n + Bx

1(ηx
1)n)Y]

= −i(XψnDy
1By

1 − Bx
1Dx

1ψ
nY) − iX(ηy

1)nBy
1 + iBx

1(ηx
1)nY

= Lh
zψ

n − iX(ηy
1)nBy

1 + iBx
1(ηx

1)nY. (2.6)

2.2. Fourth-order linear finite difference method Now we can incorporate the
fourth-order compact approximations (2.5) and (2.6) into the initial boundary value
problem (1.1)–(1.3) in space and use a three-level linear difference method in time to
arrive at a full-discrete system:

iδtψ
n
jk = (− 1

2 ∆h + V jk −ΩLh
z )ψn̄

jk + β|ψn
jk|

2ψn̄
jk, (x j, yk) ∈ Th, tn ∈ Tτ, (2.7)

ψn ∈ Vh, tn ∈ T ′′τ , (2.8)
ψ0

jk = ψ0(x j, yk), (x j, yk) ∈ Th, (2.9)

where V jk = V(x j, yk). As a three-level scheme, the above scheme cannot start by itself.
We can compute the numerical solution at the first step by any explicit second-
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or higher-order time integrator, for example the following second-order modified Euler
method:

iδ+
t ψ

0
jk =

(
−

1
2

∆h + V jk −ΩLh
z

)
ψ1/2

jk + β|ψ1/2
jk |

2ψ1/2
jk , (x j, yk) ∈ Th, (2.10)

ψ1/2
jk = ψ0

jk − i
τ

2

[(
−

1
2

∆h + V jk −ΩLh
z

)
ψ0

jk + β|ψ0
jk|

2ψ0
jk

]
. (2.11)

In practical computation, the order of the execution of the scheme (2.7)–(2.11) is
aligned as follows. If ψ0 is directly given in (2.9), then ψ1 is obtained from (2.10)
and (2.11). If ψn−1, ψn for n = 1, 2, . . . ,N − 1 are obtained, then ψn+1 can be derived by
solving a linear system defined in scheme (2.7) as(

I − i
τ

2
∆h + iτV − iτΩLh

z

)
ψn+1 + iτβ|ψn|2 · ψn+1 =

(
I + i

τ

2
∆h − iτV + iτΩLh

z

)
ψn−1

− iτβ|ψn|2 · ψn−1

and the computational cost is apparently cheaper than the conservative Crank–
Nicolson finite difference method [3, 25], which is globally nonlinear and implicit
at each discrete time step, and a set of nonlinear algebraic equations has to be solved.

3. Some useful lemmas

To establish an optimal H1-error estimate for the approximate solution of the
proposed scheme, we need the following lemmas.

Lemma 3.1. For matrices Dw
2 ,D

w
1 ,D

w
+ and Dw

−,

Dw
+
>

= −Dw
−, Dw

2 = Dw
−Dw

+ = Dw
+Dw
−, Dw

1 = 1
2 (Dw

+ + Dw
−), w = x or y.

Proof. It can be directly verified by using the definition of the matrices Dw
2 ,D

w
1 ,D

w
+

and Dw
−. �

Lemma 3.2 [11]. For a real circulant matrix A = C(a0, a1, . . . , an−1), all eigenvalues of
A are given by

f (εk), k = 0, 1, . . . , n − 1,

where f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1 and εk = ei(2kπ/n).

Lemma 3.3. For circulant matrices Ax
2, A

y
2, A

x
1, A

y
1,

Ax
2 = FH

J Λ1FJ , Ay
2 = FH

K Λ2FK , Ax
1 = FH

J Λ3FJ , Ay
1 = FH

K Λ4FK , (3.1)

respectively, where FJ is the discrete Fourier transform matrix with elements (FJ) j,k =

(1/
√

J)e−i(2π jk/J), FH
J is the conjugate transpose matrix of FJ and FK , FH

K are defined
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similarly. Furthermore,

Λ1 = diag(λAx
2,0, λAx

2,1, . . . , λAx
2,J−1), λAx

2, j =
5
6

+
1
6

cos
2 jπ

J
, 0 6 j 6 J − 1,

Λ2 = diag(λAy
2,0
, λAy

2,1
, . . . , λAy

2,K−1), λAy
2,k

=
5
6

+
1
6

cos
2kπ
K
, 0 6 k 6 K − 1,

Λ3 = diag(λAx
1,0, λAx

1,1, . . . , λAx
1,J−1), λAx

1, j =
2
3

+
1
3

cos
2 jπ

J
, 0 6 j 6 J − 1,

Λ4 = diag(λAy
1,0
, λAy

1,1
, . . . , λAy

1,K−1), λAy
1,k

=
2
3

+
1
3

cos
2kπ
K
, 0 6 k 6 K − 1.

Proof. It follows from Lemma 3.2 that

λAx
2, j =

1
12
{10 + ei(2 jπ/J) + ei(2 jπ/J)(J−1)} =

1
6

(
5 + cos

2 jπ
J

)
.

Then λAy
2,k
, λAx

1, j and λAy
1,k

can be similarly obtained. Since Ax
2, A

y
2, A

x
1, A

y
1 are circulant

matrices [11], we have (3.1). Further, it may be verified that

1 6 λBx
2
, λBy

2
6 3

2 , 1 6 λBx
1
, λBy

1
6 3, (3.2)

which completes the proof. �

Lemma 3.4. For circulant matrices A, B ∈ RJ×J and C,D ∈ RK×K ,

AB = BA, CD = DC.

Proof. Noticing that A, B are circulant matrices [11] of order J,

AB = FH
J ΛAFJFH

J ΛBFJ = FH
J ΛAΛBFJ = FH

J ΛBΛAFJ = BA,

using the fact that FJFH
J = I. Similarly, we have CD = DC. �

Lemma 3.5 [10]. For any A ∈ CJ×J , B ∈ CK×K and u, v ∈ Vh, there exist identities

(Au, v) = (u, AHv), (uB, v) = (u, vBH).

Lemma 3.6. For u, v ∈ Vh,

(∆hu, v) = (u,∆hv), (Lh
z u, v) = (u, Lh

z v).

Proof. It follows from Lemmas 3.4 and 3.5 that

(∆hu, v) = (Bx
2Dx

2u, v) + (uDy
2By

2, v)
= (u,Dx

2Bx
2v) + (u, vBy

2Dy
2)

= (u, Bx
2Dx

2v + vDy
2By

2)
= (u,∆hv),

(Lh
z u, v) = −i(XuDy

1By
1 − Bx

1Dx
1uY, v)

= i(u, XvBy
1Dy

1) − i(u,Dx
1Bx

1vY)
= i(u, XvDy

1By
1 − Bx

1Dx
1vY)

= (u, Lh
z v),
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which yield

(Lh
z u, u) = (u, Lh

z u) ∈ R (3.3)

and this completes the proof. �

Unlike the analysis techniques [16, 24], we here utilize the circulant matrix
operation to prove the following equivalences of discrete semi-norms:

|u|h ∼ ‖∇hu‖, ‖∆hu‖ ∼ ‖∇2
hu‖.

Lemma 3.7. For any grid function u ∈ Vh, the following inequalities hold:

‖∇hu‖ 6 |u|h 6

√
6

2
‖∇hu‖. (3.4)

Proof. Using the definitions of ‖∇h·‖ and | · |h, we obtain from Lemmas 3.1, 3.4 and
3.5 that

‖∇hu‖2 = −(Dx
2u, u) − (uDy

2, u)
= (Dx

+u,Dx
+u) + (uDy

+, uDy
+)

and

|u|2h = −(Bx
2Dx

2u, u) − (uDy
2By

2, u)
= (Bx

2Dx
+u,Dx

+u) + (uDy
+By

2, uDy
+)

= (ΛBx
2
FJDx

+u, FJDx
+u) + (uDy

+FH
K ΛBy

2
, uDy

+FH
K ).

Comparing the above equations, and using inequalities (3.2) and the equations

FH
J FJ = I, FH

K FK = I, (3.5)

we immediately obtain inequalities (3.4). �

Lemma 3.8. For any grid function u ∈ Vh, the following inequalities hold:

‖∇2
hu‖ 6 ‖∆hu‖ 6 3

2‖∇
2
hu‖. (3.6)

Proof. The definitions of ‖∇2
h·‖ and ‖∆h·‖, along with Lemmas 3.1, 3.4 and 3.5, yield

‖∇2
hu‖2 = (Dx

2u + uDy
2,D

x
2u + uDy

2)
= (Dx

2u,Dx
2u) + (Dx

2u, uDy
2) + (uDy

2,D
x
2u) + (uDy

2, uDy
2)

= (Dx
2u,Dx

2u) + 2(Dx
+uDy

+,D
x
+uDy

+) + (uDy
2, uDy

2)
:= I + 2II + III,

‖∆hu‖2 = (Bx
2Dx

2u + uDy
2By

2, B
x
2Dx

2u + uDy
2By

2)
= (Bx

2Dx
2u, Bx

2Dx
2u) + (Bx

2Dx
2u, uDy

2By
2) + (uDy

2By
2, B

x
2Dx

2u)
+ (uDy

2By
2, uDy

2By
2)

= (Λ2
Bx

2
FJDx

2u, FJDx
2u) + 2(ΛBx

2
FJDx

+uDy
+FH

K , FJDx
+uDy

+FH
K ΛBy

2
)

+ (uDy
2FH

K Λ2
By

2
, uDy

2FH
K )

:= Î + 2ÎI + ÎII.
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From (3.2) and (3.5),

II 6 ÎI 6 9
4 II and similarly I 6 Î 6 9

4 I, III 6 ÎII 6 9
4 III.

Combining these inequalities immediately yields inequalities (3.6). �

Lemma 3.9. Under Assumption 2.1,

1
2

(
1 −

9Ω2

µ2

)
‖∇hu‖2 6 ε(u) . ‖∇hu‖2 + ‖u‖2. (3.7)

Proof. From Lemmas 3.1 and 3.5,

‖uDy
1‖

2 + ‖Dx
1u‖2 = 1

4 [‖u(Dy
+ + Dy

−)‖2 + ‖(Dx
+ + Dx

−)u‖2]

6 1
2 (‖uDy

+‖
2 + ‖uDy

−‖
2 + ‖Dx

+u‖2 + ‖D−−u‖2)

= ‖uDy
+‖

2 + ‖Dx
+u‖2

= −(uDy
2 + Dx

2u, u)

= ‖∇hu‖2. (3.8)

Under Assumption 2.1, from (3.2), (3.3), (3.5) and (3.8),

−Ω(Lh
z u, u) = Ωi(XuDy

1By
1 − Bx

1Dx
1uY, u)

= Ωi(uDy
1By

1, Xu) −Ωi(Bx
1Dx

1u, uY)
> −|Ω| · ‖uDy

1By
1‖ · ‖Xu‖ − |Ω| · ‖Bx

1Dx
1u‖ · ‖uY‖

> −
Ω2

2µ2 ‖uDy
1By

1‖
2 −

µ2

2
‖Xu‖2 −

Ω2

2µ2 ‖B
x
1Dx

1u‖2 −
µ2

2
‖uY‖2

= −
Ω2

2µ2 [(uDy
1(By

1)2, uDy
1) + ((Bx

1)2Dx
1u,Dx

1u)] −
µ2

2
(‖Xu‖2 + ‖uY‖2)

> −
9Ω2

2µ2 (‖uDy
1‖

2 + ‖Dx
1u‖2) − h1h2

J−1∑
j=0

K−1∑
k=0

µ2

2
(x2

j + y2
k)|u jk|

2

> −
9Ω2

2µ2 ‖∇hu‖2 − h1h2

J−1∑
j=0

K−1∑
k=0

V jk|u jk|
2 (3.9)

and

‖Lh
z u‖2 = ‖XuDy

1By
1 − Bx

1Dx
1uY‖2

6 2(‖XuDy
1By

1‖
2 + ‖Bx

1Dx
1uY‖2)

= 2[(X2uDy
1(By

1)2, uDy
1) + ((Bx

1)2Dx
1uY2,Dx

1u)]

. ‖uDy
1‖

2 + ‖Dx
1u‖2

6 ‖∇hu‖2. (3.10)

Along with the definition of ε(u), we derive (3.7) from (3.4), (3.9) and (3.10). �

https://doi.org/10.1017/S1446181119000026 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181119000026


[12] A new linear and conservative finite difference scheme for the GPE with AMR 215

Lemma 3.10. For the approximation ψn ∈ Vh, there exist the following identities:

Im(− 1
2 ∆hψ

n̄ + V · ψn̄ −ΩLh
zψ

n̄, ψn̄) = 0, (3.11)

Re
(
−

1
2

∆hψ
n̄ + V · ψn̄ −ΩLh

zψ
n̄, δtψ

n
)

=
1
4τ

[ε(ψn+1) − ε(ψn−1)], (3.12)

where “Im(s)” and “Re(s)” mean the imaginary part and the real part of a complex
number s, respectively.

Proof. The definition of ε(ψn) together with Lemma 3.9 gives

Im(− 1
2 ∆hψ

n̄ + V · ψn̄ −ΩLh
zψ

n̄, ψn̄) = Imε(ψn̄) = 0,

which is (3.11). From Lemma 3.6,

Re[−(∆hψ
n+1, ψn−1) + (∆hψ

n−1, ψn+1)] = 0,
Re[−(Lh

zψ
n+1, ψn−1) + (Lh

zψ
n−1, ψn+1)] = 0.

Using the above identities,

Re
(
−

1
2

∆hψ
n̄, δtψ

n
)

= −
1
8τ

Re(∆hψ
n+1 + ∆hψ

n−1, ψn+1 − ψn−1)

=
1
8τ

(|ψn+1|2h − |ψ
n−1|2h),

Re(V · ψn̄, δtψ
n) =

1
4τ

Re
[
h1h2

J−1∑
j=0

K−1∑
k=0

V jk(ψn+1
jk + ψn−1

jk )(ψ̄n+1
jk − ψ̄

n−1
jk )

]

=
1
4τ

h1h2

J−1∑
j=0

K−1∑
k=0

V jk(|ψn+1
jk |

2 − |ψn−1
jk |

2),

−ΩRe(Lh
zψ

n̄, δtψ
n) = −

Ω

4τ
Re(Lh

zψ
n+1 + Lh

zψ
n−1, ψn+1 − ψn−1)

= −
Ω

4τ
[(Lh

zψ
n+1, ψn+1) − (Lh

zψ
n−1, ψn−1)].

Adding the above equations yields (3.12). �

Lemma 3.11 [27]. For any grid function u ∈ Vh,

‖u‖∞ 6 C‖u‖1−d/4(‖∇2
hu‖ + ‖u‖)d/4

for d = 2, 3.

4. Existence of solution and conservation laws

In this section, we show that the proposed scheme is solvable and it possesses the
discrete mass and energy conservation laws.
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Lemma 4.1 (Browder fixed point theorem [5]). Let (H, 〈·, ·〉) be a finite-dimensional
inner product space, ‖·‖ the associated norm and g : H → H a continuous function. If

there exists α > 0 for all z ∈ H ‖z‖ = α, such that Re〈g(z), z〉 > 0,

then there exists a z∗ ∈ H, ‖z∗‖ 6 α such that g(z∗) = 0.

Theorem 4.2. The linearized equation system in scheme (2.7)–(2.11) is solvable.

Proof. Note that the assertion for (2.10) is true. For a fixed n, (2.7) can be written as

ψn̄ = ψn−1 − iτ(− 1
2 ∆hψ

n̄ + V · ψn̄ −ΩLh
zψ

n̄ + β|ψn|2 · ψn̄),

ψn−1 ∈ Vh, ψn̄ ∈ Vh,

where |ψn|2 · ψn̄ = (|ψn
jk|

2ψn̄
jk). We define a mapping F : Vh → Vh as follows:

Fw = w − ψn−1 + iτ(− 1
2 ∆hw + V · w −ΩLh

z w + β|ψn|2 · w), (4.1)

which is continuous. Computing the inner product of (4.1) with w and taking the real
part, we obtain from Cauchy–Schwarz inequalities and Lemma 3.9 that

Re(Fw,w) = ‖w‖2 − Re(ψn−1,w) − τIm
(
ε(u) + βh1h2

J−1∑
j=0

K−1∑
k=0

|ψn
jk|

2|w jk|
2
)

= ‖w‖2 − Re(ψn−1,w)
> ‖w‖2 − ‖ψn−1‖ · ‖w‖

> 1
2 (‖w‖2 − ‖ψn−1‖2).

Hence, taking α =
√
‖ψn−1‖2 + 2 for ‖w‖ = α, we have Re(Fw, w) > 1. Thus, the

existence of ψn̄ follows from Lemma 4.1 and, consequently, the existence of ψn+1

is obtained. �

Theorem 4.3. The proposed scheme (2.7)–(2.11) is conservative in the sense that for
tn ∈ Tτ,

Mn = 1
2 (‖ψn+1‖2 + ‖ψn‖2) ≡ M0, (4.2)

En =
1
2

[ε(ψn+1) + ε(ψn)] +
β

2
h1h2

J−1∑
j=0

K−1∑
k=0

|ψn+1
jk |

2|ψn
jk|

2 ≡ E0. (4.3)

Proof. Computing the discrete inner product of (2.7) with ψn̄ and then taking the
imaginary part, we derive from the identity (3.11),

1
4τ

(‖ψn+1‖2 − ‖ψn−1‖2) = 0,

which yields (4.2).
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Similarly, computing the discrete inner product of (2.7) with 2τδtψ
n and then taking

the real part, we obtain from the identity (3.12),

1
2

[ε(ψn+1) − ε(ψn−1)] +
β

2
h1h2

J−1∑
j=0

K−1∑
k=0

|ψn
jk|

2(|ψn+1
jk |

2 − |ψn−1
jk |

2) = 0, tn ∈ Tτ,

that is,

1
2
ε(ψn+1) +

β

2
h1h2

J−1∑
j=0

K−1∑
k=0

|ψn+1
jk |

2|ψn
jk|

2 =
1
2
ε(ψn−1) +

β

2
h1h2

J−1∑
j=0

K−1∑
k=0

|ψn
jk|

2|ψn−1
jk |

2,

which gives (4.3). �

5. Error estimate of the scheme

In this section, we establish an optimal H1-error estimate for the proposed scheme,
without any constraints on the grid ratio. We define the local truncation error ηn ∈ Vh
by

ηn
jk = iδtφ

n
jk + ( 1

2 ∆h − V jk + ΩLh
z )φn̄

jk − β|φ
n
jk|

2φn̄
jk, (x j, yk) ∈ Th, tn ∈ Tτ, (5.1)

η0
jk = iδ+

t φ
0
jk + ( 1

2 ∆h − V jk + ΩLh
z )φ1/2

jk − β|φ
1/2
jk |

2φ1/2
jk , (x j, yk) ∈ Th, (5.2)

φ1/2
jk = φ0

jk − i
τ

2

[(
−

1
2

∆h + V jk −ΩLh
z

)
φ0

jk + β|φ0
jk|

2φ0
jk

]
, (x j, yk) ∈ Th, (5.3)

where

φn
jk = ψ(x j, yk, tn), φn̄

jk =
1
2

(φn+1
jk + φn−1

jk ), δtφ
n
jk =

1
2τ

(φn+1
jk − φ

n−1
jk ).

Lemma 5.1 (Local truncation error). If Assumptions 2.1 and 2.2 hold, then the local
truncation error of the proposed scheme satisfies the following inequalities:

‖ηn‖ 6 C(h4 + τ2), tn ∈ Tτ, (5.4)
‖η0‖ 6 C(h4 + τ2), ‖∇hη

0‖ 6 C(h4 + τ2), ‖η0‖∞ 6 C. (5.5)

The proof of this result is presented in Appendix A.
Let us now define an error function en ∈ Vh by

en
jk = φn

jk − ψ
n
jk, (x j, yk) ∈ Th, tn ∈ T ′′τ .

Then, for the convergence analysis for the proposed scheme, we have the following
theorem.

Theorem 5.2. If Assumptions 2.1 and 2.2 hold, then there are h0 > 0 and τ0 > 0 such
that for all 0 < h 6 h0 and 0 < τ 6 τ0, the error of the proposed scheme (2.7)–(2.11)
satisfies the inequalities

‖en‖ 6 C(h4 + τ2), tn ∈ T ′′τ , (5.6)
‖en‖∞ 6 C, ‖ψn‖∞ 6 C, tn ∈ T ′′τ , (5.7)

‖∇he2‖ 6 C(h4 + τ2). (5.8)
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Proof. Subtracting (2.7) and (2.10) from (5.1) and (5.2), respectively,

iδten
jk = (− 1

2 ∆h + V jk −ΩLh
z )en̄

jk + ξn
jk + ηn

jk, tn ∈ Tτ, (5.9)

iδ+
t e0

jk = η0
jk, (5.10)

where

ξn
jk = β|φn

jk|
2φn̄

jk − β|ψ
n
jk|

2ψn̄
jk

= β(|φn
jk|

2 − |ψn
jk|

2)φn̄
jk + β|ψn

jk|
2en̄

jk

= β(en
jkφ̄

n
jk + ψn

jkēn
jk)φn̄

jk + β|ψn
jk|

2en̄
jk. (5.11)

Here we use mathematical induction. From (1.3) and (2.9), we find that (5.6) and
(5.7) are apparently true when n = 0. Then it follows from (5.5) and (5.10) that

‖e1‖ = ‖−iτη0‖ 6 Cτ(h4 + τ2), (5.12)
‖∇he1‖ = τ‖∇hη

0‖ 6 Cτ(h4 + τ2), (5.13)
‖e1‖∞ = ‖−iτη0‖∞ 6 C, (5.14)

‖ψ1‖∞ 6 ‖φ
1‖∞ + ‖e1‖∞ 6 C,

which implies the validity of inequalities (5.6) and (5.7) when n = 1. Now we assume
that (5.6)–(5.7) are true for all 0 6 n 6 m − 1 (2 6 m 6 N); then, from (5.11),

‖ξn‖ 6 C(‖en+1‖ + ‖en‖ + ‖en−1‖), 1 6 n 6 m − 1. (5.15)

First, we need to prove that (5.6) is still true when n = m. Computing the inner
product of (5.9) with en̄ and taking the imaginary part, from (3.11), (5.4) and (5.15),

‖en+1‖2 − ‖en−1‖2 = 2τIm(ξn + ηn, en+1 + en−1)
6 2τ(‖ξn‖2 + ‖ηn‖2 + ‖en+1‖2 + ‖en−1‖2)
6 Cτ(‖en+1‖2 + ‖en‖2 + ‖en−1‖2) + Cτ(h4 + τ2)2,

that is,

‖en+1‖2 − ‖en−1‖2 6 Cτ(‖en+1‖2 + ‖en‖2 + ‖en−1‖2) + Cτ(h4 + τ2)2.

Summing all these inequalities with n changing from 1 to m − 1,

‖em‖2 + ‖em−1‖2 − ‖e1‖2 − ‖e0‖2 6 Cτ
m∑

l=1

‖el‖2 + CT (h4 + τ2)2.

Using (5.12), we rewrite the last inequality as

‖em‖2 6 Cτ
m∑

l=1

‖el‖2 + C(h4 + τ2)2.

This, together with the Gronwall inequality [15], yields (5.6) for n = m. Then

‖en‖ 6 C(h4 + τ2), 0 6 n 6 m. (5.16)
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Next, we need to show that (5.7) is also true when n = m. From inequality (3.10),

‖Lh
z en‖2 6 C‖∇hen‖2

= −C(∇2
hen, en)

6 C‖∇2
hen‖ · ‖en‖

6
1

4ε2 ‖∇
2
hen‖2 + ε2C2‖en‖2

6

(
1
2ε
‖∇2

hen‖ + εC‖en‖

)2

,

that is,

‖Lh
z en‖ 6

1
2ε
‖∇2

hen‖ + εC‖en‖ for all ε > 0. (5.17)

We now utilize the lifting technique [25] to prove the boundedness of ‖em‖∞. It follows
from (5.9) and Assumption 2.1 that for n = 1, 2, . . . ,m − 1,

‖∆h(en+1 + en−1)‖ 6 C(‖δten‖ + ‖en+1 + en−1‖ + ‖Lh
z (en+1 + en−1)‖ + ‖ξn‖ + ‖ηn‖).

(5.18)

Considering each term in the right-hand side of (5.18) and using (5.4) and (5.15)–
(5.17),

‖δten‖ 6 Cτ−1(‖en+1‖ + ‖en−1‖) 6 Cτ−1(h4 + τ2),
‖en+1 + en−1‖ 6 ‖en+1‖ + ‖en−1‖ 6 C(h4 + τ2),

‖Lh
z (en+1 + en−1)‖ 6

1
2ε
‖∇2

h(en+1 + en−1)‖ + εC‖en+1 + en−1‖

6
1
2ε
‖∇2

h(en+1 + en−1)‖ + εC(h4 + τ2),

‖ξn‖ + ‖ηn‖ 6 C(h4 + τ2).

Substituting these estimates into (5.18) and taking ε = C, one can obtain from (3.6),

‖∇2
h(en+1 + en−1)‖ 6 Cτ−1(h4 + τ2), n = 1, 2, . . . ,m − 1. (5.19)

Therefore, starting with Lemma 3.11 and using inequalities (5.16) and (5.19),

‖en+1 + en−1‖∞ 6 C‖en+1 + en−1‖1/2(‖∇2
h(en+1 + en−1)‖ + ‖en+1 + en−1‖)1/2

6 Cτ−1/2(h4 + τ2), n = 1, 2, . . . ,m − 1.

The last inequality also implies that

‖en+1‖∞ − ‖en−1‖∞ 6 ‖en+1 + en−1‖∞

6 Cτ−1/2(h4 + τ2), n = 1, 2, . . . ,m − 1,
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and, summing all such estimates with n changing from 1 to m − 1,

‖em‖∞ + ‖em−1‖∞ − ‖e1‖∞ − ‖e0‖∞ 6 C(m − 1)τ−1/2(h4 + τ2)
6 CTτ−3/2(h4 + τ2).

This, together with inequality (5.14), gives

‖em‖∞ 6 C[1 + τ−3/2(h4 + τ2)].

On the other hand, by using the inverse inequality [22],

‖em‖∞ 6 Ch−1‖em‖ 6 Ch−1(h4 + τ2).

Therefore, with no constraints on the time-step size, it is always true to have

‖em‖∞ 6 C, ‖ψm‖∞ 6 ‖φ
m‖∞ + ‖em‖∞ 6 C.

This implies that (5.7) is true for n = m; thus, the validity of (5.6) and (5.7) for tn ∈ T ′′τ
is proved by induction.

Finally, we present the proof of (5.8). Noticing that e0
jk = 0, we rewrite (5.9) for

n = 1 as

i
2τ

e2
jk =

1
2

(
−

1
2

∆h + V jk −ΩLh
z

)
e2

jk + ξ1
jk + η1

jk. (5.20)

Computing the inner product of (5.20) with 2e2 and taking the real part,

ε(e2) = −2Re(ξ1, e2) − 2Re(η1, e2).

This, along with inequalities (3.7), (5.4), (5.6) and (5.15), yields

‖∇he2‖2 6 C(‖ξ1‖2 + ‖η1‖2 + ‖e2‖2) 6 C(h4 + τ2)2,

which completes the proof. �

Further, in the following, we make higher temporal regularity assumption on the
solution of the problem (1.1)–(1.3).

Assumption 5.3. For the exact solution ψ, we assume that

ψ ∈ C4([0,T ]; L∞(D)) ∩C3([0,T ]; W2,∞(D)) ∩C1([0,T ]; W6,∞(D) ∩ H1
p(D)).

Then we have the following result.

Theorem 5.4. If Assumptions 2.1 and 5.3 hold, then there are h0 > 0 and τ0 > 0 such
that for all 0 < h 6 h0 and 0 < τ 6 τ0, the error of the proposed scheme satisfies the
inequality

‖en‖1,h 6 C(h4 + τ2), tn ∈ T ′′τ .
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Proof. With Assumptions 2.1 and 5.3, by utilizing (A.8) in Appendix A, we have the
following result on the local truncation error:

‖δtη
n‖ 6 C(h4 + τ2), n = 2, . . . ,N − 2. (5.21)

Then the boundedness of the approximate solution can now be utilized to establish
semi-norm estimates of the nonlinear term ξn in (5.9). Invoking (5.7) and (5.11), we
first estimate

‖δ+
x ξ

n‖ 6 C(‖δ+
x en+1‖ + ‖δ+

x en‖ + ‖δ+
x en−1‖ + ‖en+1‖ + ‖en‖ + ‖en−1‖),

‖δ+
y ξ

n‖ 6 C(‖δ+
y en+1‖ + ‖δ+

y en‖ + ‖δ+
y en−1‖ + ‖en+1‖ + ‖en‖ + ‖en−1‖)

and these inequalities lead to the estimate

‖∇hξ
n‖ 6 C(‖∇hen+1‖ + ‖∇hen‖ + ‖∇hen−1‖ + ‖en+1‖ + ‖en‖ + ‖en−1‖), tn ∈ Tτ.

(5.22)

Computing the inner product of both sides of (5.9) with 4τδten and taking the real part,
we obtain from identity (3.12) that

ε(en+1) − ε(en−1) = −4τRe(ξn, δten) − 4τRe(ηn, δten), n = 2, . . . ,N − 1.

These equations can be summed with n ranging from 2 to m. Now, using the identity

2τ
m∑

l=2

(ηl, δtel) = −2τ
m−1∑
l=2

(δtη
l, el) + (ηm, em+1) + (ηm−1, em) − (η1, e2) − (η2, e1)

and then replacing m by n,

ε(en+1) + ε(en) − ε(e2) − ε(e1) = −4τ
n∑

l=2

Re(ξl, δtel) + 4τ
n−1∑
l=2

Re(δtη
l, el)

− 2Re[(ηn, en+1) + (ηn−1, en) − (η1, e2) − (η2, e1)]. (5.23)

Before estimating the right-hand terms, we first derive from Lemma 3.1, (3.2) and
(3.5),

|(ξl,∆hel)| = |(ξl, Bx
2Dx

2el + elDy
2By

2)|

6 |(ξl, Bx
2Dx

2el)| + |(ξl, elDy
2By

2)|

= |(Dx
+ξ

l, Bx
2Dx

+el)| + |(ξlDy
+, e

lDy
+By

2)|

6 1
2‖D

x
+ξ

l‖2 + 1
2‖B

x
2Dx

+el‖2 + 1
2‖ξ

lDy
+‖

2 + 1
2‖e

lDy
+By

2‖
2

= − 1
2 (Dx

2ξ
l + ξlDy

2, ξ
l) + 1

2 ((Bx
2)2Dx

+el,Dx
+el) + 1

2 (elDy
+(By

2)2, elDy
+)

6 1
2‖∇hξ

l‖2 + 9
8 [(Dx

+el,Dx
+el) + (elDy

+, e
lDy

+)] = 1
2‖∇hξ

l‖2 + 9
8‖∇hel‖2. (5.24)

Let us now estimate each term in the right-hand side of (5.23). For this, we use the
triangle and Cauchy inequalities, along with inequalities (3.10), (5.4), (5.6), (5.15),
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(5.21), (5.22) and (5.24), to arrive at the estimates

|Re(ξl, δtel)| =
∣∣∣∣∣Re

(
ξl, i

(1
2

∆h − V + ΩLh
z

)
el̄ − iξl − iηl

)∣∣∣∣∣
6

1
2
|Im(ξl,∆hel̄)| + |Im(ξl,V · el̄)| + |Im(ξl,ΩLh

z el̄)| + |Im(ξl, ηl)|

6
1
4
‖∇hξ

l‖2 +
9
16
‖∇hel̄‖2 +

1
2
‖ξl‖2 +

1
2
‖V‖2∞‖e

l̄‖2

+
|Ω|

2
‖ξl‖2 +

|Ω|

2
‖Lh

z el̄‖2 +
1
2
‖ξl‖2 +

1
2
‖ηl‖2

6 C(‖∇hel+1‖2 + ‖∇hel‖2 + ‖∇hel−1‖2) + C(h4 + τ2)2, 2 6 l 6 n,

|Re(δtη
l, el)| 6 1

2‖δtη
l‖2 + 1

2‖e
l‖2 6 C(h4 + τ2)2, 2 6 l 6 n − 1,

|2Re[(ηn, en+1) + (ηn−1, en) − (η1, e2) − (η2, e1)]|

6 C(‖ηn‖2+ ‖en+1‖2+ ‖ηn−1‖2 + ‖en‖2 + ‖η1‖2 + ‖e2‖2 + ‖η2‖2 + ‖e1‖2)

6 C(h4 + τ2)2.

Substituting these estimates into (5.23) and using inequalities (3.7), (5.6), (5.8)
and (5.13) yield

‖∇hen+1‖2 6 Cτ
n+1∑
l=1

‖∇hel‖2 + C(h4 + τ2)2, n = 2, . . . ,N − 1.

Finally, using the discrete Gronwall inequality [15], we obtain ‖∇hen‖ 6 C(h4 + τ2),
n = 3, . . . ,N. Incorporating estimates (5.6), (5.8), (5.13) into the last inequality gives

‖en‖1,h 6 C(h4 + τ2), tn ∈ T ′′τ ,

which completes the proof. �

Similarly, we have the following stability result.

Theorem 5.5. If Assumptions 2.1 and 5.3 hold, then there are h0 > 0 and τ0 > 0
such that for all 0 < h 6 h0 and 0 < τ 6 τ0, the proposed scheme (2.7)–(2.11) is
unconditionally stable with respect to the initial data in the discrete H1-norm.

Remark 5.6. In fact, the existence of the discrete conservation laws is essential to
guarantee the convergence and unconditional stability of the proposed scheme [1, 8,
26] and it will not yield numerical “blow-up” for the approximate solution [26].

6. Numerical examples

In this section, results of some experiments are presented to verify the theoretical
analysis on convergence and conservation of mass and energy.
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Table 1. Temporal errors of the numerical solutions with t = 1, h = 1/32.

τ0 = 1/400 τ0/2 τ0/4 τ0/8
Ω = 0 ‖e‖1,h 0.0973 0.0259 0.0064 0.0014

Rate 1.94 2.01 2.08 *
‖e‖∞ 0.0048 0.0012 2.94e-004 6.82e-5
Rate 2.00 2.02 2.07 *

Ω = 0.5 ‖e‖1,h 0.0957 0.0254 0.0063 0.0014
Rate 1.93 2.01 2.08 *
‖e‖∞ 0.0048 0.0016 4.02e-004 9.32e-5
Rate 1.73 1.99 2.07 *

Ω = 0.9 ‖e‖1,h 0.0925 0.0247 0.0061 0.0014
Rate 1.93 2.01 2.08 *
‖e‖∞ 0.0059 0.0015 3.89e-004 9.09e-005
Rate 1.96 1.97 2.07 *

Example 6.1. We set D = [−2, 2]2, V(x, y) = (x2 + y2)/2 and β = 1. The initial
condition is taken as ψ0 = (2/

√
π)(x + iy)e−8(x2+y2). For comparison, the numerical

“exact” solution ψe is obtained by the proposed scheme with a very fine mesh and
a small time step, for example h = 1/128 and τ = 0.00001. Let e(τ, h) denote the error
of the numerical solution with time step τ and mesh size h. The convergence rate is
calculated using the following formula:

Rate =
ln(error1/error2)

ln(δ1/δ2)
,

where δl, errorl(l = 1, 2) are step size and the error with step size δl, respectively.
Convergence tests are presented in Tables 1 and 2 with different angular speeds

Ω, respectively. The accuracy of second order in time and fourth order in space is
clearly observed, which verifies the preceding theoretical analysis. For brevity, we
define the Crank–Nicolson finite difference method [3] as “CNFD” and denote the
proposed scheme (2.7)–(2.11) as “LCFD”. The comparison of the spatial convergence
rate between CNFD and LCFD is presented in Table 3 and the numerical results show
that our method has higher efficiency and accuracy.

Moreover, we further demonstrate the long-time behaviour by employing a larger
time period T = 10. As we can see from Figure 1, the errors of discrete mass and
energy reach machine accuracy for all the choices of Ω, which uniformly illustrate
the conservative properties of the proposed scheme. Notice that the small time step
τ = 0.001 is used in the simulation so as to guarantee that every iteration of BiCGSTAB
used for solving the linear system can converge to the desired tolerance. Otherwise,
the evolution of the errors may exhibit a slightly linear growth but with the ending
error at T = 10 of magnitude 10−12, which usually is also considered as a rigorous
conservation.
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Table 2. Spatial errors of the numerical solutions with t = 0.05, τ = 0.00001.

h0 = 4/32 h0/2 h0/4 h0/8
Ω = 0 ‖e‖1,h 6.9895e-004 4.4488e-005 2.7732e-006 1.6315e-007

Rate 3.96 4.00 4.12 *
‖e‖∞ 1.4387e-004 8.6196e-006 5.3437e-007 3.1465e-008
Rate 4.08 4.00 4.12 *

Ω = 0.5 ‖e‖1,h 6.9054e-004 4.4015e-005 2.7445e-006 1.6147e-007
Rate 3.96 4.00 4.12 *
‖e‖∞ 1.4268e-004 8.5519e-006 5.2969e-007 3.1196e-008
Rate 4.08 4.01 4.12 *

Ω = 0.9 ‖e‖1,h 6.8409e-004 4.3650e-005 2.7224e-006 1.6017e-007
Rate 3.95 4.00 4.12 *
‖e‖∞ 1.4173e-004 8.4978e-006 5.2596e-007 3.0981e-008
Rate 4.08 4.01 4.12 *

Table 3. Comparisons of spatial convergence rate with t = 0.05, τ = 0.00001,Ω = 0.3.

h0 = 4/32 h0/2 h0/4 h0/8
CNFD ‖e‖1,h 0.0075 0.0020 4.9496e-004 9.9510e-005

Rate 1.93 2.02 2.23 *
‖e‖∞ 0.0017 4.3523e-004 1.0454e-004 2.0955e-005
Rate 1.97 2.04 2.23 *

LCFD ‖e‖1,h 6.9386e-004 4.4202e-005 2.7559e-006 1.6213e-007
Rate 3.96 4.00 4.12 *
‖e‖∞ 1.4316e-004 8.5790e-006 5.3156e-007 3.1304e-008
Rate 4.08 4.01 4.12 *

Example 6.2. In this example, we consider the dynamics of vortex lattices in rotating
BECs. The initial datum is chosen as the L2-normalized ground state eigenvector of
the Gross–Pitaevskii operator

G0(v) = −∆v/2 + V0v −ΩLzv + β|v|2v

with V0(x, y) = (x2 + y2)/2. We compute this ground state using the backward Euler
centred finite difference (BEFD) method [4], which is also equipped in the GPELab
program [2]. The parameters are chosen as Ω = 0.7, β = 100 firstly and we solve
the problem on D = [−6, 6]2 with mesh size h = 12/128. Figures 2 and 3 display
the corresponding initial stationary vortex as well as the contour plots of the density
function |ψ|2 for the dynamics of vortex lattices simulated at different times by the
proposed scheme. It is clearly observed that during the dynamics the number of
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Figure 1. Evolutions of discrete mass and energy errors with different angular speeds Ω and h = 4/128,
τ = 0.001.

Figure 2. Vortex lattices of condensate ground state in a rotating BEC with β = 100.

vortices is conserved and the discrete mass and energy are also preserved to round-
off errors in Figure 4. We also present the comparison of different iterative methods
for solving the resulting linear system in Figure 4. For the simple Jacobi iteration, the
errors exhibit an apparent linear growth although the error magnitudes are still rather
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Figure 3. Contour plots of the density function |ψ|2 for the dynamics of vortex lattices in a rotating BEC
with β = 100 at different times.

small. For the BiCGSTAB iteration, the errors are just oscillating near the round-off

error with no drift observed. Consequently, it relies heavily on the choice of iteration
methods to demonstrate the exact conservation of physical quantities numerically.
However, to the best of our knowledge, there is no clear result about the criterion
to select an effective iteration method, which is worthy of being investigated.

Notice that the choice of the parameter β can directly impact the vortex lattice
structures of the condensate ground state. Basically, the increase in β will cause
more vortices and the lattice will thereby becomes more dense. As a consequence,
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Figure 4. Evolution of discrete mass and energy errors by solving the linear system with BiCGSTAB
iteration (left) and Jacobi iteration (right).

Figure 5. Vortex lattices of condensate ground state in a rotating BEC with β = 200.

high-order numerical methods are preferred for the sake of capturing the feather of
each vortex. In the additional example, we set β = 200 and display the corresponding
vortex lattice in Figure 5. Again our methods can resolve these lattice structures very
well with the discrete mass and energy being conserved precisely, as Figures 6 and 7
demonstrate. Meanwhile, the influence on numerical errors of conserved quantities of
different iteration methods is also revealed in Figure 7 for this example.

7. Conclusions

In this paper, we propose a new linear and conservative finite difference scheme
which preserves the discrete mass and energy for the 2D GP equation with AMR.
Our key strategy is using the circulant matrix operation and the equivalences of
several discrete semi-norms for error analysis. With no constraints on the time-step
size, we establish optimal H1-error estimates for the proposed scheme. Unlike the
existing finite difference methods, which are of second-order accuracy at the most, the
convergence rate of the approximate solution proved here is of order O(h4 + τ2). Two
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Figure 6. Contour plots of the density function |ψ|2 for the dynamics of vortex lattices in a rotating BEC
with β = 200 at different times.

Figure 7. Evolution of discrete mass and energy errors by solving the linear system with BiCGSTAB
iteration (left) and Jacobi iteration (right).

numerical examples are presented to illustrate the efficiency and accuracy of our new
scheme.

Work on optimal error estimates for Fourier pseudo-spectral methods for the 3D
GP equation with AMR is under way and future works may focus on the unconditional
maximum norm convergence of high-order accurate numerical schemes for the general
NLS/GP equations in higher dimensions.
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Appendix A.

Lemma A.1. For any grid function u ∈ Vh,

‖Bx
2u‖ 6 3

2‖u‖, ‖uBy
2‖ 6

3
2‖u‖, ‖Bx

1u‖ 6 3‖u‖, ‖uBy
1‖ 6 3‖u‖.

Proof. Using (3.2),

‖Bx
2u‖2 = (Bx

2u, Bx
2u) = ((Bx

2)2u, u) = (Λ2
Bx

2
FJu, FJu) 6 9

4 (FJu, FJu) = 9
4‖u‖

2,

that is, ‖Bx
2u‖ 6 (3/2)‖u‖. Similarly,

‖uBy
2‖ 6

3
2‖u‖, ‖Bx

1u‖ 6 3‖u‖, ‖uBy
1‖ 6 3‖u‖.

This completes the proof. �

Proof of Lemma 5.1. Considering the problem (1.1)–(1.3) at the point (x j, yk, tn),

i∂tψ(x j, yk, tn) + ( 1
2 ∆ − V jk + ΩLz)ψ(x j, yk, tn) − β(|ψ|2ψ)(x j, yk, tn) = 0 (A.1)

with (x j, yk) ∈ Th, tn ∈ Tτ. Then, using the Taylor expansion with integral remainder
and using (2.5) and (2.6),

∂tψ(x j, yk, tn) = δtφ
n
jk − (ηt)n

jk, (A.2)

∆ψ(x j, yk, tn) = ∆hφ
n̄
jk + [Bx

2(ηx
2)n̄] jk + [(ηy

2)n̄By
2] jk − ( η̃M)n

jk, (A.3)

ψ(x j, yk, tn) = φn̄
jk − ( η̃ )n

jk, (A.4)

Lzψ(x j, yk, tn) = Lh
zφ

n̄
jk − ix j[(η

y
1)n̄By

1] jk + iyk[Bx
1(ηx

1)n̄] jk + ix j( η̃y)n
jk − iyk( η̃x)n

jk, (A.5)

(|ψ|2ψ)(x j, yk, tn) = |φn
jk|

2φn̄
jk − |φ

n
jk|

2( η̃)n
jk, (A.6)

(x j, yk) ∈ Th, tn ∈ Tτ, (A.7)
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where the local truncation errors are

(ηt)n
jk =

τ2

4

∫ 1

0

[
∂3ψ

∂t3 (x j, yk, tn + τs) +
∂3ψ

∂t3 (x j, yk, tn − τs)
]
(1 − s)2 ds,

( η̃M)n
jk =

τ2

2

∫ 1

0

[
∂2

∂t2 ∆ψ(x j, yk, tn + τs) +
∂2

∂t2 ∆ψ(x j, yk, tn − τs)
]
(1 − s) ds,

( η̃)n
jk =

τ2

2

∫ 1

0

[
∂2ψ

∂t2 (x j, yk, tn + τs) +
∂2ψ

∂t2 (x j, yk, tn − τs)
]
(1 − s) ds,

( η̃y)n
jk =

τ2

2

∫ 1

0

[
∂3ψ

∂t2∂y
(x j, yk, tn + τs) +

∂3ψ

∂t2∂y
(x j, yk, tn − τs)

]
(1 − s) ds,

( η̃x)n
jk =

τ2

2

∫ 1

0

[
∂3ψ

∂t2∂x
(x j, yk, tn + τs) +

∂3ψ

∂t2∂x
(x j, yk, tn − τs)

]
(1 − s) ds

and (ηx
2)n

jk, (η
y
2)n

jk, (η
x
1)n

jk, (η
y
1)n

jk are defined in (2.1)–(2.4). Substituting (A.2)–(A.6) into
(A.1),

iδtφ
n
jk + ( 1

2 ∆h − V jk + ΩLh
z )φn̄

jk − β(|φn
jk|

2)φn̄
jk = ηn

jk, (x j, yk) ∈ Th, tn ∈ Tτ,

where

ηn
jk = i(ηt)n

jk −
1
2 [Bx

2(ηx
2)n̄] jk −

1
2 [(ηy

2)n̄By
2] jk + 1

2 ( η̃M)n
jk − V jk( η̃)n

jk + Ωix j[(η
y
1)n̄By

1] jk

−Ωiyk[Bx
1(ηx

1)n̄] jk −Ωix j( η̃y)n
jk + Ωiyk( η̃x)n

jk − β|φ
n
jk|

2( η̃)n
jk. (A.8)

It follows from Assumption 2.2, Lemma A.1 and (A.8) that

‖ηn‖ 6 C(‖(ηt)n‖ + ‖(ηx
2)n̄‖ + ‖(ηy

2)n̄‖ + ‖̃ηM‖ + ‖V‖L∞‖( η̃)n‖

+ ‖(ηy
1)n̄‖ + ‖(ηx

1)n̄‖ + ‖( η̃y)n‖ + ‖( η̃x)n‖ + ‖ψ‖L∞‖( η̃)n‖)

6 Ch4
(∥∥∥∥∥∂6ψ

∂x6

∥∥∥∥∥
L∞

+

∥∥∥∥∥∂6ψ

∂y6

∥∥∥∥∥
L∞

+

∥∥∥∥∥∂5ψ

∂x5

∥∥∥∥∥
L∞

+

∥∥∥∥∥∂5ψ

∂y5

∥∥∥∥∥
L∞

)
+ Cτ2

(∥∥∥∥∥∂3ψ

∂t3

∥∥∥∥∥
L∞

+

∥∥∥∥∥ ∂4ψ

∂t2∂x2

∥∥∥∥∥
L∞

+

∥∥∥∥∥ ∂4ψ

∂t2∂y2

∥∥∥∥∥
L∞

+ ‖V‖L∞
∥∥∥∥∥∂2ψ

∂t2

∥∥∥∥∥
L∞

+

∥∥∥∥∥ ∂3ψ

∂t2∂x

∥∥∥∥∥
L∞

+

∥∥∥∥∥ ∂3ψ

∂t2∂y

∥∥∥∥∥
L∞

+ ‖ψ‖L∞

∥∥∥∥∥∂2ψ

∂t2

∥∥∥∥∥
L∞

)
6 C(h4 + τ2), tn ∈ Tτ.

Similarly, from (5.2) and (5.3),

‖η0‖ 6 C(h4 + τ2), ‖∇hη
0‖ 6 C(h4 + τ2), ‖η0‖∞ 6 C,

which completes the proof. �
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