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Non-Cohen–Macaulay Projective
Monomial Curves with Positive h-Vector

Victoria E. de Quehen and Leslie G. Roberts

Abstract. We find an infinite family of projective monomial curves all of which have h-vector with no

negative values and are not Cohen–Macaulay.

Let S = {m0, . . . , mp+1} be a sequence of integers with 0 < m0 < m1 < · · · <
mp+1, gcd({mi}) = 1 and Γ the monoid generated by the elements of S. Let k be

a field and R = k[ump+1 , tm0 ump+1−m0 , . . . , tmp ump+1−mp , tmp+1 ]. Then R is the ho-

mogeneous coordinate ring of the projective monomial curve C = Proj(R), and is

N-graded by assigning degree 1 to its algebra generators. The degree of the curve C

is mp+1. The Hilbert function HR of R is defined by HR(n) = dimk Rn. The differ-

ence sequence ∆HR is defined by ∆HR(0) = 1 and ∆HR(n) = HR(n) − HR(n − 1)

for n ≥ 1. The h-vector of R (or C) is defined to be the second difference sequence

∆2

R := ∆(∆HR). If R is Cohen–Macaulay then it is immediate that ∆2

R has no nega-

tive values (being the Hilbert function of R/(ump+1 , tmp+1 )). One might ask about the

converse.

Question 1 If R is the homogeneous coordinate ring of a projective monomial

curve and ∆2HR has no negative values, is R Cohen–Macaulay?

Counterexamples to Question 1 appear to be unknown, although a non-monomial

counterexample is given in [3, (b)p. 513]. In this note we give an infinite class of

counterexamples. Our proof is based on the algorithm for computing ∆HR which

we describe in the next paragraph. More details can be found in [2] or [1]. We

learned about the problem from Dilip Patil.

Let Θi be the set of all sums (repetitions allowed) of i elements of S and let

Mi := Θi \
(

⋃

j<i

Θ j

)

.

The set Mi is the set obtained from the set Θi by removing those integers which have

occurred in Θ j , for some j < i. Starting with M0 = Θ0 = {0}, M1 = Θ1 = S,

and noting that Θi+1 is the set of all sums of an element of S with an element of Θi ,

one can find the sets Mi recursively. In [1] it was shown that ∆HR(n) = #Mn (by

defining a ring gr(S) isomorphic to R/ump+1 which has Hilbert function H(n) = #Mn,
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# denoting cardinality). Furthermore R is Cohen–Macaulay if and only if addition of

mp+1 gives a map Mi → Mi+1 for all i ≥ 0.

For example, if S = {1, 3, 4} we get Macaulay’s non-Cohen–Macaulay example

R = k[u4, tu3, t3u, t4]. Here M0 = {0}, M1 = {1, 3, 4}, M2 = {2, 5, 6, 7, 8}, M3 =

{9, 10, 11, 12}. The sequence ∆HR(n) = #Mn starts out 1, 3, 5, 4 → and the h-vector

∆2HR is 1, 2, 2,−1, 0 →. The quickest way to see that R is not Cohen–Macaulay is

to observe that ∆2HR(3) = −1. But one might also observe that 4 + M2 = 4 +

{2, 5, 6, 7, 8} = {6, 9, 10, 11, 12} * M3 = {9, 10, 11, 12}. The simple test using the

h-vector seems to work in all familiar examples, but the results of this paper show

that it does not suffice in an infinite number of cases.

If n ∈ Γ, then there exists a unique integer i such that n ∈ Mi and we write

ordS(n) := i. An S-expression for n is a way of writing n as the sum of elements of S

and ordS(n) is the smallest cardinality of an S-expression of n. Order corresponds to

degree in the grading of R, so the two words can be used interchangeably.

Notation 2 Throughout, {a, b, c, . . .} is a set of integers whose elements are

a, b, c, . . . . If S and T are two sets of integers then S + T is {s + t|s ∈ S, t ∈ T}.

If S is a set and n is an integer then n + S is {n + s|s ∈ S}.

The examples: We did a systematic search for counterexamples to Question 1 us-

ing Mathematica programs based on the algorithm described above. We found no

counterexamples with p = 1 (projective monomial curves in P
3) or more generally

for S, an almost arithmetic progression (all but one element of S in an arithmetic

progression). (If S is an arithmetic progression, then R is Cohen–Macaulay, so no

counterexample is possible.) If p = 2, out of 91390 =
(

40

4

)

cases tested (all cases

up to degree 40, of which 5619 are ruled out by not having greatest common di-

visor 1), we found 230 counterexamples, the smallest degree being 20. If p = 3

the smallest degree of a counterexample is 12, for example S = {1, 2, 5, 8, 12}. For

p = 4, 5, 6, 7, 8 the smallest degree of counterexample is respectively 14, 16, 18, 20,

22. (Does this pattern continue? It seems unlikely. In any event enough further cases

were tested to show that 12 is the lowest degree of a counterexample.) If p = 2 one of

the degree 20 examples is S = {5, 9, 11, 20}. This is the first of our proposed infinite

family of counterexamples, sets Sx of the form {−1 + 6x, 3 + 6x, 5 + 6x, 8 + 12x} for

x an integer greater than or equal to 1. Curiously, of the 230 counterexamples with

p = 2 of degrees between 20 and 40, there are no counterexamples with degrees 21,

25, 26, 27, and only 2 of degree 33 (compared with 14 of degree 34 and 26 of degree

32), so the existence of counterexamples seems to be a bit delicate. Having the sum of

the second and third coordinates equal to the fourth seems to be part of what makes

our family work. However out of our original 230 counterexamples only 30 have this

feature. A further 30 have the sum of the first and second coordinates equal to the

fourth. These are obtainable from the previous 30 by interchanging t and u in the

corresponding ring R. There are two examples with the sum of the first and third

coordinates equal to the fourth.

For the rest of this paper let S = Sx as defined above. Then p = 2 and mp+1 =

m3 = 8 + 12x. The sets Mi decompose naturally into subsets according to the maxi-

mum number of copies of mp+1 in a minimal S-expression of an integer n ∈ Γ. Based
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on this idea we define sets (i, j) where 0 ≤ j ≤ min(i, 2x + 3) as follows:

(1) If 0 ≤ i ≤ 2x + 1, then

(a) (i, 0) = {(8 + 12x)i};

(b) (i, 1) = (8 + 12x)i − (9 + 6x) + {0, 4, 6};

(c) (i, 2) = (8 + 12x)i − 2(9 + 6x) + {0, 4, 6, 8, 12};

(d) (i, j) = (8 + 12x)i − j(9 + 6x) + {0, 4, 6, 8, 12, 6 j} for 3 ≤ j ≤ i.

(2) If i = 2x + 2, then

(a) If 0 ≤ j ≤ 2x + 1 then (i, j) is defined as in case (1).

(b) (2x + 2, 2x + 2) = (8 + 12x − 9 − 6x)i + {4, 6, 8, 12, 6 j} (same as (i, i) in

case (1) except that the smallest element is omitted).

(3) If i ≥ 2x + 3, then

(a) If 0 ≤ j ≤ 2x + 1 then (i, j) is defined as in cases (1) and (2).

(b) If j = 2x + 2 then (i, j) = (8 + 12x)i − j(9 + 6x) + {6, 8, 12, 6 j} (the two

smallest elements omitted from previous formulae).

(c) (i, 2x + 3) = {(8 + 12x)i − (9 + 6x) j + 12} (a singleton).

We sometimes refer to the (i, j) as blocks because (i, j) is (almost) a consecutive set

if the elements of {
⋃

j(i, j)} are listed by increasing magnitude. (This is illustrated

by Example 5 below.) The definitions of the (i, j) were formulated by studying the

Mi for various values of x, but so far they are just sets defined as above. We relate

them to the Mi by the following lemma.

Lemma 3 The sets (i, j) are pairwise disjoint, and Mi =
⋃

j(i, j).

Assuming Lemma 3, we can prove our main result.

Theorem 4 For all integers x ≥ 1, Sx = {−1 + 6x, 3 + 6x, 5 + 6x, 8 + 12x} gives a

counterexample to Question 1. More explicitly, the corresponding homogeneous coordi-

nate ring R has h-vector 1 3 5 6 · · · 6 5 0 (with 6 in degrees 3 ≤ n ≤ 2x + 1) and is not

Cohen–Macaulay.

Proof From the definitions mp+1 + (i, j) = (i + 1, j), with the one exception i =

j = 2x + 2. Given Lemma 3, this means (with one exception) that ∆2HR(n) is the

number of elements in the new block (n, n) that appears in degree n. (0, 0) contains

1 element (namely 0); (1, 1) = {−1 + 6x, 3 + 6x, 5 + 6x} contains 3 elements, and

(2, 2) contains 5 elements. For 3 ≤ n ≤ 2x + 1, (n, n) contains 6 elements (and

since x ≥ 1, the interval 3 ≤ n ≤ 2x + 1 is non-empty). The block (2x + 2, 2x + 2)

contains 5 elements. The block (2x + 3, 2x + 2) contains 4 elements, so in passing

from (2x + 2, 2x + 2) to (2x + 3, 2x + 2) one element disappears. But, it is replaced

by the one element in (2x + 3, 2x + 3) so ∆2HR(2x + 3) = 0 and the h-vector of R is

1 3 5 6 · · · 6 5 0 → (with 6 in degrees 3 ≤ n ≤ 2x+1). In particular ∆2HR(n) has no

negative values. But R is not Cohen–Macaulay because adding mp+1 to (2x+2, 2x+2)

is not a map into (2x + 3, 2x + 2). In the language of [1, (1.6)], Γ has one unstable

element (8 + 12x)(2x + 2) − (9 + 6x)(2x + 2) + 4 = (−1 + 6x)(2x + 2) + 4 in degree

2x + 2.
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The proof of Lemma 3 now proceeds in steps. Steps 1–3 show that the blocks

(i, j) are pairwise disjoint. Step 4 shows that if n ∈ (i, j) then ordS(n) ≤ i. Steps 5

and 6 are the technical ingredients for showing in step 7 that the reverse implication

holds, i.e., if ordS(n) = i then n ∈ (i ′, j ′) with i ′ ≤ i, and j ′ an integer such that

0 ≤ j ′ ≤ min(i, 2x + 3). Lemma 3 is then proved in a brief final paragraph.

Step 1: First arrange the (i, j) in columns where, as we go down one step in each

column, i is increased by 1 and j is increased by 2. Thus if 0 ≤ i ≤ 2x + 3 column

i has (i, i) at the bottom and for i = 2ℓ even, (ℓ, 0) at the top, for i = 2ℓ + 1 odd,

(ℓ + 1, 1) at the top. Column i contains ℓ + 1 elements if 0 ≤ i ≤ 2x + 3. If i > 2x + 3

and i = 2ℓ is even, then (ℓ, 0) is at the top of column i and (ℓ + x + 1, 2x + 2) is at the

bottom. If i > 2x + 3 and i = 2ℓ + 1 is odd, then (ℓ + 1, 1) is at the top of column

i and (ℓ + x + 2, 2x + 3) is at the bottom of column i. If i > 2x + 3, then column i

contains x + 2 elements.

Example 5 To help the reader visualize this setup, we illustrate it with

S = {5, 9, 11, 20}

corresponding to x = 1. The columns have been shifted down as we proceed to

the right, so that each row contains elements with the same value of i. Thus, after

establishing Lemma 3, the rows turn out to be the Mi . The diagram is given twice,

once with the names (i, j), and a second time with the actual sets. The columns

begin at the left with column 0 and continue indefinitely to the right, with columns

up to 8 shown. Because of space limitations the second diagram is split in two, with

columns 0–4 in the first part and 5–8 in the second, the asterisk indicating where

the two halves fit together. The blocks with the largest interval of their column are

indicated in bold type (see step 3).

Diagram of indices (i, j):
(0, 0)

(1, 1) (1, 0)
(2, 2) (2, 1) (2, 0)

(3, 3) (3, 2) (3, 1) (3, 0)
(4, 4)∗ ∗(4, 3) (4, 2) (4, 1) (4, 0)

(5, 5) (5, 4) (5, 3) (5, 2)
(6, 5) (6, 4)

Corresponding diagram of the sets (i, j):

{0}
{5, 9, 11} {20}

{10, 14, 16, 18, 22} {25, 29, 31} {40}
{15, 19, 21, 23, 27, 33} {30, 34, 36, 38, 42}

{24, 26, 28, 32, 44}∗

{45, 49, 51} {60}
∗{35, 39, 41, 43, 47, 53} {50, 54, 56, 58, 62} {65, 69, 71} {80}

{37} {46, 48, 52, 64} {55, 59, 61, 63, 67, 73} {70, 74, 76, 78, 82}
{57} {66, 68, 72, 84}

Step 2: The sets (i, j) in each column are pairwise disjoint. To see this, it is conve-

nient to replace the set (i, j) by the (possibly larger) set (i, j) ′ where if j = 0, 1 then

(i, j) ′ = (i, j) and if j ≥ 2 then (i, j) ′ = (8 + 12x)i − j(9 + 6x) + {0, 4, 6, 8, 12, 6 j}.
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(If j = 2 the element 6 j coincides with one of the other elements. To form the set

(i, 2) ′, first use this formula, then discard the duplicate.) As i increases by 1 and j

increases by 2 the integer (8 + 12x)i − j(9 + 6x) decreases by 10 and the 6 j term

(always the largest) increases by 12 (which after subtracting 10 is a net increase of

2). Since the integers 0, 4, 6, 8, 12 are in distinct congruence classes mod 10, the sets

(i, j) ′ corresponding to a particular column are pairwise disjoint, hence a fortiori so

are the sets (i, j) in that column.

Step 3: The sets (i, j) are pairwise disjoint. Let [i, j] be the set of all integers n

such that a ≤ n ≤ b, where a is the smallest integer of (i, j) and b is the largest.

([i, j] will be referred to as the interval of (i, j).) From the definition of the (i, j)

and the discussion in Step 2, we see that as we go down one step in a column the

intervals [i, j] get larger with the upper bound increasing by 2 and the lower bound

decreasing by 10 (or 6 in the bottom step of column 2x + 2, 4 in the bottom step of

columns i, i even with i > 2x + 2) except that the last interval [ℓ + x + 2, 2x + 3]

in column i (i = 2ℓ + 1 > 2x + 2) is a singleton which is contained in the previous

interval [ℓ + x + 1, 2x + 1] (the smallest element of the latter being two less than the

singleton). Notice that the parity of all integers in (i, j) is that of j, so all integers in

a block of column i are even if i is even and odd if i is odd. Therefore to show that

the (i, j) are disjoint it suffices to observe that the largest intervals in columns of the

same parity do not overlap. This is illustrated by the following table. LI(i) indicates

the largest interval in column i. The gap column is the smallest element of the largest

interval in column i minus the largest element in the largest interval of column i − 2.

i LI(i − 2) LI(i) gap

2 ≤ i ≤ 2x + 1 [i − 2, i − 2] [i, i] 12x − 6i + 10

2x + 2 [2x, 2x] [2x + 2, 2x + 2] 2

2x + 3 [2x + 1, 2x + 1] [2x + 2, 2x + 1] 2

i = 2ℓ ≥ 2x + 4 [ℓ + x, 2x + 2] [ℓ + x + 1, 2x + 2] 2

i = 2ℓ + 1 > 2x + 4 [ℓ + x, 2x + 1] [ℓ + x + 1, 2x + 1] 2

The gap in the first row is greater than 0 since in this row i ≤ 2x + 1. Since the

gaps are all positive Step 3 follows.

The calculations are all straightforward using the above description of the largest

interval in each column, and the definitions of the (i, j). As one example we will

work through the i = 2ℓ ≥ 2x + 4 row. If i = 2ℓ is even and i ≥ 2x + 4 then the

largest interval in column i − 2 is [ℓ + x, 2x + 2] and the largest interval in column i

is [ℓ + x + 1, 2x + 2]. These intervals respectively have largest value (8 + 12x)(ℓ + x)−
(2x +2)(9+6x)+6(2x +2) and smallest value (8+12x)(ℓ+x +1)−(9+6x)(2x +2)+6

with difference (8 + 12x)(ℓ + x + 1) − (9 + 6x)(2x + 2) + 6 − (8 + 12x)(ℓ + x) + (9 +

6x)(2x + 2) − 6(2x + 2) = (8 + 12x) + 6 − 6(2x + 2) = 2. As an illustration, if x = 1,

i = 6, this yields ℓ = 3, blocks (5, 4), (4, 4) and difference 46− 44 = 2 in Example 5.

Step 4: Every element in (i, j) is the sum of i elements of S. This is obvious for

i = 0, 1. If i > 1 then it is immediate from the definitions that

(a) if j < i, then (i, j) ⊆ 8 + 12x + (i − 1, j) (recall that 8 + 12x = mp+1 = m3);
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(b) if i ≥ 1, (i, i) ⊆ (1, 1) + (i − 1, i − 1).

The claim of this step then follows by induction.

Step 5: 8 + 12x + (i, j) = (i + 1, j) with the exception that (8 + 12x)(2x + 2)− (9 +

6x)(2x + 2) + 4 ∈ (2x + 2, 2x + 2) but (8 + 12x)(2x + 3) − (9 + 6x)(2x + 2) + 4 =

(8 + 12x)(2x + 2)− (9 + 6x)(2x + 2) + 6(2x + 2) ∈ (2x + 2, 2x + 2) (this is the unstable

element referred to in the proof of Theorem 4. In Example 5, 20+24=44).

Step 6: For 1 ≤ i ≤ 2x + 3, (i, i) + (1, 1) ⊆
⋃

i ′≤i+1
(i ′, j ′). Recall that (1, 1) =

(8 + 12x) − (9 + 6x) + {0, 4, 6}. We check the claim for successive i. First of all

(1, 1) + (1, 1) = 2(8 + 12x) − 2(9 + 6x) + {0, 4, 6, 8, 10, 12}. The only element

in (1, 1) + (1, 1) that is not in (2, 2) is 2(8 + 12x) − 2(9 + 6x) + 10, which equals

8 + 12x ∈ (1, 0).

Similarly (1, 1) + (2, 2) = (8 + 12x) − (9 + 6x) + {0, 4, 6} + 2(8 + 12x) − 2(9 +

6x) + {0, 4, 6, 8, 12} = 3(8 + 12x) − 3(9 + 6x) + {0, 4, 6, 8, 10, 12, 14, 16, 18}. The

only elements in (1, 1)+(2, 2) but not in (3, 3) are 3(8+12x)−3(9+6x)+10 = 2(8+

12x)−(9+6x) ∈ (2, 1), 3(8+12x)−3(9+6x)+14 = 2(8+12x)−(9+6x)+4 ∈ (2, 1),

and 3(8 + 12x) − 3(9 + 6x) + 16 = 2(8 + 12x) − (9 + 6x) + 6 ∈ (2, 1).

Now suppose that 3 ≤ i ≤ 2x. Then (1, 1) + (i, i) = (8 + 12x) − (9 + 6x) +

{0, 4, 6} + (8 + 12x)i − (9 + 6x)i + {0, 4, 6, 8, 12, 6i} = (8 + 12x)(i + 1) − (9 +

6x)(i + 1) + {0, 4, 6, 8, 10, 12, 14, 16, 18, 6i, 6i + 4, 6(i + 1)}. The elements not in

(i + 1, i + 1) come from the 10, 14, 16, 18, 6i, 6i + 4 in the brackets. We have (8 +

12x)(i + 1) − (9 + 6x)(i + 1) + 10 = (8 + 12x)i − (9 + 6x)(i − 1) ∈ (i, i − 1),

(8 + 12x)(i + 1)− (9 + 6x)(i + 1) + 14 = (8 + 12x)i − (9 + 6x)(i − 1) + 4 ∈ (i, i − 1),

(8 +12x)(i +1)− (9 +6x)(i +1)+16 = (8 +12x)i− (9 +6x)(i−1)+6 ∈ (i, i−1), and

(8+12x)(i+1)−(9+6x)(i+1)+18 = (8+12x)i−(9+6x)(i−1)+8 ∈ (i, i−1). If i = 3

then (8+12x)(i +1)−(9+6x)(i +1)+6i is the same as the 18 case just covered. If i = 4

then (8+12x)(i +1)−(9+6x)(i +1)+6i = (8+12x)(i−1)−(9+6x)(i−3)+4 ∈ (3, 1).

If i > 4 then (8 + 12x)(i + 1) − (9 + 6x)(i + 1) + 6i = (8 + 12x)(i − 2)− (9 + 6x)(i −
5) + 6(i − 5) ∈ (i − 2, i − 5). Finally (8 + 12x)(i + 1) − (9 + 6x)(i + 1) + 6i + 4 =

(8 + 12x)i − (9 + 6x)(i − 1) + 6(i − 1) ∈ (i, i − 1).

Now consider i = 2x + 1. Then (1, 1) + (2x + 1, 2x + 1) = (8 + 12x) − (9 +

6x) + {0, 4, 6} + (8 + 12x)(2x + 1) − (9 + 6x)(2x + 1) + {0, 4, 6, 8, 12, 6(2x + 1)} =

(8+12x)(2x+2)−(9+6x)(2x+2)+{0, 4, 6, 8, 10, 12, 14, 16, 18, 6(2x+1), 6(2x+1)+

4, 6(2x+2)}. The elements of (1, 1)+(2x+1, 2x+1) not in (2x+2, 2x+2) come from

the 0, 10, 14, 16, 18, 6(2x+1), 6(2x+1)+4. The 10, 14, 16, 18, 6(2x+1)+4 are handled

in the same way as the previous case, yielding an element of (2x+1, 2x). If x = 1 then

the 6(2x + 1) case coincides with the 18 case. If x > 1 then (8 + 12x)(2x + 2) − (9 +

6x)(2x+2)+6(2x+1) = (8+12x)(2x−1)−(9+6x)(2x−4)+6(2x−4) ∈ (2x−1, 2x−4).

Finally the 0 case. (8 + 12x)(2x + 2) − (9 + 6x)(2x + 2) = (8 + 12x)(2x − 1) − (9 +

6x)(2x − 2) + 6(2x − 2) ∈ (2x − 1, 2x − 2).

Now consider i = 2x + 2. Then (1, 1) + (2x + 2, 2x + 2) = (8 + 12x) − (9 + 6x) +

{0, 4, 6}+(8+12x)(2x+2)−(9+6x)(2x+2)+{4, 6, 8, 12, 6(2x+2)} = (8+12x)(2x+

3)−(9+6x)(2x+3)+{4, 6, 8, 10, 12, 14, 16, 18, 6(2x+2), 6(2x+2)+4, 6(2x+3)}. Of
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these elements only (8 + 12x)(2x + 3)− (9 + 6x)(2x + 3) + 12 ∈ (2x + 3, 2x + 3) so we

have to say where all the other elements are. Of the integers in brackets, 10,14,16,18,

and 6(2x + 2) + 4 all yield an element of (2x + 2, 2x + 1) as in the discussion of the

3 ≤ i ≤ 2x case, replacing i by 2x + 2 in the argument for 10, 14, 16, 18, 6i + 4. If

x = 1, (8 + 12x)(2x + 3) − (9 + 6x)(2x + 3) + 6(2x + 2) = 49 ∈ (3, 1). If x > 1,

(8+12x)(2x+3)−(9+6x)(2x+3)+6(2x+2) ∈ (2x, 2x−3) by the argument for 6i in the

3 ≤ i ≤ 2x case, replacing i by 2x+2. And (8+12x)(2x+3)−(9+6x)(2x+3)+6(2x+

3) = (8 +12x)(2x +3)− (9 +6x)(2x +1) ∈ (2x +3, 2x +1) leaving only 4,6,8. We have

(8+12x)(2x+3)−(9+6x)(2x+3)+4 = (8+12x)(2x−1)−(9+6x)(2x−3)+6(2x−3) ∈
(2x−1, 2x−3), (8 + 12x)(2x + 3)− (9 + 6x)(2x + 3) + 6 = (8 + 12x)2x− (9 + 6x)(2x−
1) + 6(2x − 1) ∈ (2x, 2x − 1), and (8 + 12x)(2x + 3) − (9 + 6x)(2x + 3) + 8 =

(8 + 12x)(2x + 1)− (9 + 6x)(2x + 1) + 6(2x + 1) ∈ (2x + 1, 2x + 1). If x = 1 we need a

separate calculation for (8+12x)(2x+3)−(9+6x)(2x+3)+4 = 29 = 9+20 ∈ (2, 1).

Now consider i = 2x + 3. We have (1, 1) + (2x + 3, 2x + 3) = (8 + 12x) − (9 +

6x) + {0, 4, 6} + (8 + 12x)(2x + 3) − (9 + 6x)(2x + 3) + 12 = (8 + 12x)(2x + 4) −
(9 + 6x)(2x + 4) + {12, 16, 18}. But (2x + 4, 2x + 4) is empty so we have to find where

all three elements are. As in the 3 ≤ i ≤ 2x case we have (8 + 12x)(2x + 4) − (9 +

6x)(2x + 4) + 16 = (8 + 12x)(2x + 3) − (9 + 6x)(2x + 2) + 6 ∈ (2x + 3, 2x + 2) and

(8 + 12x)(2x + 4)− (9 + 6x)(2x + 4) + 18 = (8 + 12x)(2x + 3)− (9 + 6x)(2x + 2) + 8 ∈
(2x + 3, 2x + 2). For the 12 case we have (8 + 12x)(2x + 4) − (9 + 6x)(2x + 4) + 12 =

(8 + 12x)(2x + 1) − (9 + 6x)(2x) + 6(2x) ∈ (2x + 1, 2x).

This completes the proof of Step 6.

Step 7; Every element n ∈ Γ with ordS(n) = i occurs in
⋃

i ′≤i(i ′, j ′). To see this,

suppose we have such an n. Choose an S-expression for n of length i with as many as

possible copies of 8 + 12x, say n = a1 + a2 + · · ·+ ai− j + j(8 + 12x) with all aℓ ∈ (1, 1).

If j = i then n ∈ (i, 0). If
∑i− j

ℓ=1
aℓ ∈ (i − j, i − j) Step 7 follows from Step 5.

Otherwise suppose there is some integer k, 2 ≤ k ≤ i − j such that
∑k

ℓ=1
aℓ /∈ (k, k).

(k = 1 is impossible since a1 ∈ (1, 1).) Pick the smallest such k. Then by Step 6,
∑k

ℓ=1
aℓ ∈ (k ′, j ′) with either k ′ < k or k ′ = k and j ′ < k. If k ′ < k then by Step 4

we have an S-expression for n of length less than i. If k ′ = k and j ′ < k then by step

5, n can be rewritten as the sum of i elements of S with more than j copies of 8 + 12x,

both of which yield a contradiction. This completes the proof of Step 7.

We can now prove Lemma 3. Disjointness of the (i, j) was established in Step 3.

Step 7 says that Mi ⊆
⋃

i ′≤i(i ′, j). Suppose x ∈ Mi . Then x ∈ (i ′, j) for unique i ′, j.

If i ′ < i then by Step 4, x ∈ Mi ′ ′ for i ′ ′ ≤ i ′ (hence i ′ ′ < i). This is a contradiction,

and Lemma 3 follows. Hence also does Theorem 4.
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