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PRIME SEGMENTS OF SKEW FIELDS

H. H. BRUNGS AND M. SCHRODER

ABSTRACT.  An additive subgroup P of a skew field F'is called a prime of Fif P does
not contain the identity, but if the product xy of two elements x and y in F is contained
in P, then x or y is in P. A prime segment of F is given by two neighbouring primes
Py D P,; such a segment is invariant, simple, or exceptional depending on whether
A(Py) = {a € Py | PjaP, C Py} equals P, P, or lies properly between P; and
P,. The set T(F) of all primes of F together with the containment relation is a tree
if | T(F)| is finite, and 1 < |T(F)| < oo is possible if F is not commutative. In this
paper we construct skew fields with prescribed types of sequences of prime segments
as skew fields F of fractions of group rings of certain right ordered groups. In particular,
groups G of affine transformations on ordered vector spaces V are considered, and the
relationship between properties of Dedekind cuts of ¥, certain right orders on G, and
chains of prime segments of F is investigated. A general result in Section 4 describing
the possible orders on vector spaces over ordered fields may be of independent interest.

1. Introduction. A subring B of a skew field F is called a valuation ring of F if
x € F\ B implies x~! € B. The pair (F, B) is then called a valued skew field. For any two
right (left) ideals 1), of Bwe have I} C L, or I, C I}, i.e. B is a chain domain with F as
skew field of quotients.

Two distinct completely prime ideals P, C P; of B are called a prime segment of B if
no further completely prime ideal of B lies between P; and P,. Prime segments can also
be defined directly for F without the introduction of B by considering certain subsets P
of F. These primes P of F are in one-to-one correspondence with the valuation subrings
B of F such that P = J(B), the maximal ideal of B.

A prime segment P, C P; C B of a skew field F falls into one of three categories:
It is invariant if the ring B = Bp, / P2, the factor ring of the localization Bp, of B on P,
modulo P,, is an invariant ring, i.e. all its one-sided ideals are two-sided and the ordered
semigroup of non-zero principal ideals of this ring can then be embedded into the ordered
group (R, +) of real numbers with addition as operation. If B is a nearly simple ring with
(0) and J(B) as its only proper ideals we say that the segment P, C P, is simple. Finally,
the prime segment is called exceptional if there exists a prime ideal Q of B between P;
and P, which is not completely prime. There are then no further ideals between P; and
Qand NQ" = P, (see [BBT] Theorem 6.2 and [BT 1]).

These cases are characterized directly for primes of F'in Theorem 2.6 without the use
of valuation rings.
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It follows from [G] (see also [BG]) that skew fields F finite dimensional over their
centers have invariant prime segments only. Valuation rings with invariant prime seg-
ments only are called locally invariant. Such rings are necessarily invariant in the rank
one case, but not otherwise (see also [BT]).

The existence of prime ideals in valuation rings which are not completely prime has
been an open question for some time (see for example: [P], [O], [BT1], [D2], [S], [S1],
[S2]). However, N. 1. Dubrovin has announced that he was able to overcome the diffi-
culties he encountered in [D2] and that he has constructed skew fields with exceptional
prime segments.

In Section 2 we discuss T(F), the partially ordered set of all primes of a skew field F,
see Lemma 2.4, and characterize prime segments of F. Unlike the commutative case, it
is possible to have 1 < |T(F)| < oo.

In order to construct valued skew fields (F, B) such that B has a prescribed sequence
of segments which are either invariant or simple, see Example 3.10, we discuss two
construction methods for F as a skew field of fractions of group rings over right ordered
groups in Theorems 3.2 and 3.7.

The principal one-sided ideals # (0) of the valuation ring B are parameterized by the
elements of the generalized positive cone P of a right ordered group and the correspon-
dence between ideals of B and ideals of P is worked out in Lemma 3.5, Theorem 3.6 and
Corollary 3.8.

The right cofinality type r-cofin(P;, P;) of a prime segment P, C P; of a valuation
ring B of F is defined as the cofinality type of the ordered set (M, <) of right ideals
I, I # P,, between Py and P, with I < I' if I D I'. Hence, r-cofin(Py, P;) = w, is the
minimal ordinal 3 such that there exists a well ordered subset N of M of order type 3 with
N cofinal in M, i.e. for every m € M there exists n € N with m < n. The left cofinality
type £-cofin(Py, P) of P, C P is defined similarly. Finally, one can also define the right
cofinality type, r-cofin(B), of B as the cofinality type of the ordered set of all non-zero
right ideals of B or equivalently of W, = {aB | 0 # a € B} withaB > bBifaB C bB,
and £-cofin(B) is defined similarly. It follows from the above remarks that for an invariant
or exceptional prime segment of a valuation ring B the right and left cofinality types are
both equal to wp. On the other hand we construct in Sections 3, 4 and 5 examples of
valuation rings with simple prime segments of arbitrary cofinality types w,. However,
we were not able to decide whether the right and left cofinality types always agree for
any segment or any valuation ring. A valuation ring B with r-cofin(B) # ¢-cofin(B) must
certainly satisfy the following condition

(*) MNixo) I # (0), where the intersection is taken over all non-zero ideals I of B.

Valuation rings B with (x) are called finally simple and it follows that Py, = N1,
I # (0), is a completely prime ideal of B with (0) C Pp, a simple prime segment whose
cofinality types agree with the cofinality types of B.

We recall that for a valued skew field (F, B)the set T = {aBb | a,b € B\ {0}} defines
a neighborhood basis of 0 for the coarsest ring topology 7z defined on F such that B is
open, see [S1] and [HA]. We call T the valuation topology of (F, B). This is a skew field
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topology (see [S1]). With the help of Cauchy filters one obtains the completion £ and B
of F and B respectively. The valuation topology of (¥, B) can be defined using the set of
non-zero two-sided ideals of B as neighborhood basis of 0 if and only if the condition ()
above does not hold. In this case T3 is a V-topology and (F, B) is a valued skew field,
see [K] and [M2].

However, Liepold in [L] proved on the one hand that £ is not a skew field if (*) holds
for (F, B) and if r-cofin(B) = {-cofin(B) = wyp, but on the other hand that for every
cofinality type wy > wp there exists an example of a valued skew field (F, B) with (x)
and r-cofin(B) = ¢-cofin(B) = w, and F is a skew field.

In Section 4 of this paper we construct particular right ordered groups G for which
Theorem 3.2 is applicable. These groups are groups of affine transformations on ordered
K-vector spaces ¥ and the right order is defined using Dedekind cuts C = (U, O) of V.
After obtaining a very general result—Theorem 4.1—about ordered vector spaces, the
connection between properties of the ordered field K, of V and of C on the one hand and
properties of the resulting right ordered group G and the valued skew field (¥, B) on the
other hand is explored; see Theorem 4.4 for conditions for (¥, B) to be finally simple,
Theorem 4.8 for conditions for (F, B) to have simple segments only, and Corollary 4.9
describes the nearly simple case. The general result in Corollary 4.7 shows that for the
valued skew fields so constructed there exists a completely prime ideal D of B such thata
prime segment P; D P, of Bis simple if D O P; and itis invariant if P, O D. Finally, the
cofinality types of the simple segments are all equal to the cofinality type of the ordered
field K. These results are illustrated by various examples in Section 5.

2. Primes and prime segments. Let F be a skew field. A subring B of F is called
a valuation (or total) subring of F if x € F\ B implies x~! € B. We call the pair (F, B) a
valued skew field. Since for any a # 0 # bin F we havea™'b € Bor b~ 'a € B we have
bB C aBoraB C bBand B is aright (and similarly a left) chain domain. We denote with
J(B) the maximal ideal of B.

We consider the chain of completely prime ideals of B and we say that two completely
prime ideals P; D P, D (0) in B define a prime segment if no further completely prime
ideal of B exists between P and P,.

THEOREM 2.1.  Let (F, B) be a valued skew field and P\ O P, be a prime segment
of B. Then exactly one of the following possibilities occurs:
(i) aP, = Pia foranya € P, \ Py;
(ii) There are no further two-sided ideals of B between P and P,;

(iii) There exists a prime ideal Q of B with Py D Q D P, and no further two-sided
ideal exists between Py and Q.

DEFINITION 2.2. A prime segment P; D P, of B is called invariant or of type i if
condition (i) in 2.1 holds, it is called simple or of type s if condition (ii) in 2.1 holds and
it is called exceptional or of type x if condition (iii) in 2.1 holds.
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REMARK. N. I. Dubrovin has announced that he has recently (i.e. 1992) constructed
skew fields with exceptional primes.

PROOF OF THEOREM 2.1. Assume that the condition (i) is not satisfied and hence
there exists an element z in Py \ P, with zP; # P,z. This implies that either P; € z7'P;z
or P; € zP\z™}, since otherwise zP; C Pyz C zP;. Therefore, there exists an element
x € Py withx ¢ z'Pizorx ¢ zP,z~!. We claim that there can not exist an ideal  of B
with x € TandN/I" C P, with n € N. Assume to the contrary that / is such an ideal. Since
z € Py \ P; and B is a chain ring, we have P C z7'P,, P, C Bz, P, C P;z~', P, C zB
and there exists an n € N with I C z~'P, N Bz N P,z~! N zB. Therefore, x" € > C
z7'P|Bz = z7'P,z and similarly x** € zP;z"!, and we obtain (zxz!)*" € P, which
implies zxz~! € B and zxz~! € Pj. Similarly, z~'xz € P;. However, this contradicts the
assumption that x ¢ z~!Pjz or x ¢ zP,z~! and the above claim is proved.

From this we conclude that P, is idempotent, since otherwise x € [ := P; and
NP} = P, leads to a contradiction. This follows since (by [BBT]) for any ideal I of
B the intersection () I" is completely prime and therefore for Py C I C P, we have
NI =p,.

Next we consider the ideal [y of B maximal with the property of not containing x.
It follows that [y C P;. There can be no two-sided ideal 7 in Bwith I, C I C Py,
since otherwise x € I and (I" = P, contradicting the above result. We conclude that
only the following possibilities remain: /o = P, and the segment P, D P, is simple
or Py D Iy D P, with P% = P; and there are no further two-sided ideals between P,
and /. In this case we obtain from 4 O Iy C C for two-sided ideals 4 and C of B that
A D Py C Cand AC D Py D Ly, ie. Iy = Q is prime and the segment P; D P, is
exceptional. =

We mention that valued skew fields (F, B) can also be defined through a valuation
map v from F onto a totally ordered set with maximal element oo, such that

wa) = oo ifandonly if a = 0,v(a +b) > min{v(a),v(b)} and
v(a) > v(b) implies v(ca) > v(ch) foralla,b,cin F.

The corresponding valuation subring B of F is then equalto B, = {a € F | v(a) > v(1)}.

In the next result we will show that a valuation subring B of a skew field F is defined
through its maximal ideal P = J(B) considered as a subset of F which satisfies certain
properties.

THEOREM 2.3. A nonempty subset P of the skew field F is the maximal ideal of a
valuation subring B of F if and only if the following conditions hold:
(i) 1¢P;
(ii) a,b € Pimpliesa—b € P;
(iii) x,y € F,xy € P,x ¢ Pimplyy € P.
In that case, B= {x € F* | x™! ¢ P} U {0} and we say that P is a prime of F.

PROOF. If B is a valuation subring of F' with maximal ideal P, then 0 # x € B
implies either x € P, hence x™' ¢ P,orx € B\ Pandx~' € B\ P. Conversely, if
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0 # x € Fwithx™' ¢ Pthenx ¢ Bimplies x' € P, a contradiction, and we have
B = {x € F* | x' ¢ P}U {0}. The conditions (i) and (ii) obviously hold for P in
this case and to prove (iii) one observes that in both cases x ¢ B and x € B\ P one has
x“' €Bandy = x"'xy =y € P follows.

To prove the converse, we assume that the subset P of F satisfies the conditions (i),
(ii) and (iii) and we will show that B = {x € F* | x~! ¢ P} U {0} is a valuation subring
of F with maximal ideal P.

We observe first that 0,1 and —1 are elements of B since —1 can not be in P using
(i) and (ii) and hence —1 = (—1)"! ¢ P. Next, let a,b be elements in Banda™' ¢ P,
b~' ¢ P and hence (ab)™! = b~'a! ¢ P follows; i.e. ab € B.If x € F \ B and also
x' ¢ Bthenx™' € P,x € Pandx™! —x € P. Since | ¢ P and P is an abelian group,
wehave L +x7! ¢ P, 1 —x ¢ Pandx™' —x = (1 +x7')(1 — x) ¢ P—a contradiction
which shows that x € F\ B implies x~! € B.

To show that B is closed under addition we observe that a + b = a(l + a~'b) =
b(b~'a+1)andeithera 'bor b 'aisin B fora # 0 # b in B. Since B is multiplicatively
closed by the argument above, it remains to show that a in B implies 1 + a in B for
a # 0. Since a is in B we have a™' ¢ P. Assume 1 +a ¢ B. Then (1 +a)™' € P and
a(l+a)™!' = 1—(1+a)"! ¢ Pand therefore (1 +a)™! = afl(a(l + a)“) ¢ P a
contradiction, and 1 + a € B follows.

Next we show that P is contained in B: Assume a € P,a ¢ B. Thena™! € B by one
of the above arguments, anda = (a~')~! ¢ P—a contradiction. Finally, it will be shown
that the set U(B) of units of B equals B \ P. We have x € B\ P if and only if x ¢ P and
x~! ¢ P which is the case exactly if x! as well as x is in B. .

Associated with a valuation ring B of F with maximal ideal 7(B) = P is the surjective
mapping ¢ from Fto /U {oo} with 7/ = B/P = Band ¢(a) = a € B fora € B and
@p(a) = oo otherwise. Such a mapping is called a place which in turn can be defined by
certain properties, see [A]. Places are obtained through epimorphisms of Desarguesian
projective planes, see [M2] and [R].

For a prime P of F'we denote with B(P) = {x € F* | x~! ¢ P}U{0} the corresponding
valuation ring of F. It follows that J(B(P)) = P and B(J(B)) = B where P is a prime
and B a valuation ring of F. Further, P; O P, if and only if B(P;) C B(P,) for primes
Py and P, of F. In this case P, is a completely prime ideal in B(P,) and B(P,) is equal to
the localization B(P;)p, of B(P;) at P;. It follows that the set of primes of F contained in
a prime P of F is the set of completely prime ideals of B(P) and hence is totally ordered
by inclusion.

For any set of primes {P; | i € I} of F there exists the minimal valuation overring
B = B, with the intersection over all valuation rings B of F with B D B(P;) for all
i € I Hence there exists the maximal lower bound J(B) = P for the set {P; | i € I}
with respect to inclusion. We therefore say, (as in the commutative case, see [RI]) that
the partial order defined on the set of primes of F' by inclusion is a complete tree order
and we denote with T(F) the set of primes of /" with this partial order. The coarsest prime
of Fis P = {0}, with B(P) = F, which is also called the #rivial prime.
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We summarize the above discussion:

LEMMA 2.4. Let F be a skew field and T(F) = {P C F | P a prime} the set of
primes of F with the partial order defined by inclusion. Then the following properties
hold:
(a) The set {P'| P' C P} of primes contained in a fixed prime P is totally ordered.
(b) The union of any ascending chain of primes or the intersection of any descending
chain of primes is again a prime of F.

(c) For any set {P; | i € I} of primes of F there exists a greatest lower bound
Py € T(F). An upper bound exists for primes P, and P, only if Py C P, or
P, C P,

(d) For any pair of primes P D P’ there exists a prime segment P\ D P, of F with
POP DP D P

Since (b) follows directly from the defining properties (i)—(iii) of Theorem 2.3 it re-
mains to prove (d). Fora € P\ P’ let P; = (\P;, P; prime with P D P; D P' anda € P;
and P, = |J P}, P; primes witha ¢ P;butP D P; D P'. n

REMARK. The set T(K) for a commutative field K consists either of the trivial prime
{0} only or it is infinite. We have |T(K)| = 1 only for the algebraic extensions K of
a prime field GF(p), p a prime. All other fields either contain Q and extensions of the
infinitely many primes of Q or they contain a transcendental extension GF(p)(x) of GF(p)
which again leads to infinitely many primes of K. The situation is rather different for skew
fields F; in particular, there may not exist a prime P of F with PN F, = P, for a given
prime Py of a sub skew field Fy of F (see [BG], [CM]). As the quaternions over Q show,
there do exist skew fields with |7(F)| # 1 and finite. However we do not know which
finite tree graphs can be represented as a T(F) for certain skew fields F.

We return to segments P; D P, in 7(F) and show that the type of a segment can be
defined independently of any valuation subring B that contains P, and P, as ideals.

DEFINITION 2.5. Let P; D P, be primes of F with no further primes of F between
them. Then P; D P, is called a prime segment of F, and we denote with 4 the set
A=AP)) = {a epr; | PiaP, C P]}

We have the following result:

THEOREM 2.6. Let P D P, be a prime segment of the skew field F and let B D
J(B) D Pi D P, be a valuation subring of F that contains P\ and P, as ideals. Then
Py D P, is a prime segment of B and

(i) itis of typeiifand only if A = Py;
(ii) itis of type sifand only if A = Py;
(iii) it is of type X if and only if Py D A D P,. In this case A = Q, the exceptional
prime ideal of B properly between P, and P,.

PROOF. It follows from the above remarks that P; D P, is a prime segment of B. If
the segment is of type i we have aP; = Pja foralla € Py \ P, hence PyaP; C aP; C P,
since aj = a implies a = 0 forj € P; C J(B). It follows that 4 = P, in this case.
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If the segment is of type s, then PjaP; C P; is an ideal of B that is not contained in
P, fora € Py \P2 It follows that PyaPy = Py and 4 = P,.

We are left with the possibility that the segment is of type x and a prime ideal Q of B
exists with P; D O D P, and no further ideal exists between P, and Q. We have 4 O Q
and for a € P, \ Q we obtain Py DO PjaP; = P;(BaB)P; € Q since Q is prime and
neither P; nor BaB is contained in Q. Hence, 4 = Q follows in this case.

The reverse implications follow from what has been proved so far. n

It follows from this result that the type of a prime segment P; O P, does notdepend on
the particular valuation ring containing P; and P, as ideals. Hence, we can consider the
valuation ring B; = B(P1) D J(Bi) = P D P, and the valuation subring B} = B, /P,
of the quotient skew field F of B} which is equal to B(P,)/P,. The type of the prime
segment P D P, is equal to the type of the prime segment P, /P, D (0) of F}. If this
prime segmentis of type i then By is invariant and the value group associated with B} is a
subgroup H(P;, P») of (R, +), the real numbers with addition as operation. Occasionally,
we will label a prime segment of F not only with its type but also with its associated
group H in case it is of type i. Next we consider the (right) cofinality type of a prime
segment P; D P, which we can define as the cofinality type of the set of all right ideals
I of a valuation subring B D J(B) 2 P; D P, with Py O I D P, with respect to the
total order I; > L, if and only if [} C I,. Since the cofinality type of this set is equal
to the cofinality type of the set {aP, | a € P; \ P,} this definition is independent of B
and is also equal to the cofinality type of B as defined above; we denote this ordinal by
r-cofin(Py, P,), and {-cofin(Py, P,) is defined similarly.

If the prime segment P; D P, is invariant then its right as well as its left cofinality type
is wy. Since (| Q" = P», the same is true for an exceptional prime segment P, O Q D Ps.
We are interested in the cofinality types of a prime segment of type s. We will say that a
prime segment is of type s, if it is of type s with right cofinality type r-cofin(Py, P) =
wq and left £-cofin(Py, P7) = wg.

REMARK. We do not know whether in general r-cofin(Py, P;) = {-cofin(P;, P;) for
prime segments P; D P, of a skew field F.

We conclude this section by recalling the definition of the rank of a valuation ring B
of F. For each prime segment P, D P, of B we choose the prime P;, and the rank of B is
defined as the order type of the set of prime ideals so obtained which is totally ordered
under P < P'if and only if P’ C P. We note that this notion of rank agrees with the usual
notion if the rank is finite.

3. Group rings and localizations. W. Krull in [KR] observed that given any com-
mutative ordered group (4, P) with positive cone P one can construct a valued field (L, V)
with associated value group 4 where the valuation ring ¥ is the localization of the semi-
group ring K[P] with respect to the multiplicatively closed set S = {Zgr, € K[P] |
e # 0}. The field L is the field of quotients of K[P] and ¥ = K[P]S~' where K is an
arbitrary commutative field.
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In the non-commutative situation we consider groups G such that the group ring R[G]
is again a right Ore domain provided R is a right Ore domain ([PA], [SW], p. 26-27).
We recall that a subset S of an integral domain R is a right Ore set if S is multiplicatively
closed, does not contain the zero element and sSR N 7S # () for any r € R* = R\ {0} and
s € S. The ring R is called a right Ore domain if R* is a right Ore set in R.

DEFINITION 3.1. A subset P of a group G is called a generalized positive cone of G
if the following conditions hold: PN P! = {e},PUP~! = G, PP C P.

We will write (G, P) for the group G with generalized positive cone P. Througha <, b
if and only if ba=! € P, a right order ‘<,’ is defined on G, i.e. <, is a (total) order on
G such that a <, b implies ac <, bc for all a, b, ¢ in G. Similarly, P defines a left order
‘<,” on G with a <, b if and only if a~'b € P. Conversely, given a right order ‘<,’
on G one obtains a generalized positive cone P = {a € G | e <, a} which in turn also
defines the corresponding left order (see [KO]). If in addition gPg~! = P for all g in G,
then <, and <, agree and (G, P) is an ordered group.

We say that a subset I1 of P is a right ideal of P if IIP C IT and left ideals and (two-
sided) ideals of P are defined similarly. A completely prime ideal Q of P is a proper
ideal, QO C P, of Psuch that pp’ € Q, p,p’ € P implies p or p’ in Q. If this last condition
holds for ideals of P rather than elements (i.e. Q,;Q, C Q for ideals Q;, Q, of P implies
Q) CQor Q) CQO), we say that Q) is prime. A completely prime ideal Q of P is always
prime, but the converse does not hold in general. If Q is prime but not completely prime,
it is called an exceptional prime. Observe that in any (G, P) the set P* := P\ {e} is a
completely prime ideal of P.

We consider the following situation: R is an integral domain, G a group, 0:G —
Aut(R) a group homomorphism from G into the automorphism group of R. With
R[G,0] = {Zgrg | g € G,r, € R} we denote the skew group ring where multiplication
is defined by rg = go,(r), see also [AT].

THEOREM 3.2.  Let R be a domain and (G, P) a group with generalized cone P
such that the skew group ring R[G, o] is a right Ore domain for the homomorphism
0: G — Aut(R). Then the following holds:

(i) S = {Zgry, € R[G,0] | g € P, r. # 0} is a right Ore set in Ry = R[P,0] =
{Zgrs € R[G,0] | g € P}.
(i) B = R\S~" is a valuation subring of F, the skew field of quotients of R[G, o].
(iii) The non-zero principal right ideals of B have the form gB for some g € P and
21B D gB if and only if g1 <, g» with respect to the left order induced by P
on G.

PROOF. (i) It follows from the properties of P that R, is a subring of R[G, o] and
that S is multiplicatively closed.

Fora € R} and s € S there exist by assumption elements b = Zg;r;, c = Zhjt; €
R[G, o] withab = sc # 0. Let go be the element minimal among all the g; and 4; with r; #
0and 4 # 0 with respect to the right order in G induced by P. Hence, b’ = Zgig;’! gt ()
and ¢’ = Zhigy' o .1 (4) are elements in Ry, one of &' or ¢’ is in Sand ab’ = sc’ # 0. If
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b' € S, we are done, otherwise ¢’ € S and again b’ € § follows, since ab’ € § in this
case. Next, we consider the principal right ideals of the ring B = R;S~!. The elements
of B have the form as~! fora € R}, s € S and we can assume a = Tgiri # 0. Let go
be minimal among all the g; with »; # 0 with respect to the left order induced by P and
51 = g 'a € S follows. Therefore as™' = gos;s~' and as™'B = goB, since s, and s are
units in B. The statement (iii) follows and also that B is a right chain domain.

To prove that B is a left chain domain we observe that any two elements in B can be
written with a common denominator, i.e. in the form as™!, bs~! forsin S, a,b € R).
Further we can write a = a’gy, b = b'g, fora’,b' € S, g1,g, € Pifa # 0 # b where
we use the right order induced by P. Therefore, Bas~! = Bgys~', Bbs~' = Bg,s~' and
Bgis~! D Bgys~!ifand only if g, >, g1 in G. .

COROLLARY 3.3.  IfR[G, 0] is a right and left Ore domain, then S is a right and left
Ore system of Ry and all non-zero left principal ideals of B have the form Bg for g in P
with Bgy D Bg if and only if g» >, g1.

In the above theorem the principal right ideals # (0) of B were described uniquely
through the elements of P. In general, we are led to the following:

DEFINITION 3.4. We say that the group (G, P) parameterizes the valued skew field
(F, B) if and only if the generalized cone P is a submonoid of B*, PN U(B) = ¢ = 1 and
every non-zero element » of B can be written in the form r = gyu; = upg; forg|,g, € P
and u;,u; € U(B). Here, B* = B\ {0}, and U := U(B) is the group of units of B.

It follows from this definition that the element » determines the elements g; and u;
uniquely.

Let (F, B) be a valued skew field parameterized by (G, P). We say that an ideal Q of
P is U-invariant if p € Q,u € U,up = p'v’ withp’ € P,u’ € U implies p’ € Q.
This definition is left-right symmetric, since pu = u"p” for u” € U, p” € P implies
u""'p = p"u'. It follows that for an U-invariant ideal Q of P we have p € Q if and
only if p’ € Q in the above equation up = p'u’. An ideal Q of P is called U-prime if
Q is U-invariant and 0,Q,; C Q for U-invariant ideals Q;,Q, C P implies Q; C Q or
O, CQ.

REMARK. A U-invariant ideal Q of P which is prime is also U-prime. We were
not able to decide whether conversely every U-invariant ideal of P which is U-prime is
necessarily prime.

LEMMA 3.5. Let (F,B) be a valued skew field parameterized by (G, P). Then:

(a) ¢(I) = IN P defines an inclusion preserving correspondence between the set of
right (left) ideals % (0) of B and the set of right (left) ideals of Q.

(b) The mapping ¢ also defines a correspondence between the set of non-zero ideals
of B and the set of all U-invariant ideals of P such that completely prime ideals in B
correspondto completely prime U-invariant ideals in P and prime ideals in B correspond
to U-prime U-invariant prime ideals in P.
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PrOOF. It follows from the assumption that (G,P) parameterizes (F,B) that
(I N P)B = I for a non-zero right ideal / of B and that (I'TB N P) = I1 for a right ideal IT
of B, which proves (a).

If I is a non-zero ideal of B then /NP = Qs anideal of Pandp € Q, u € U,
up = p'u',p’ € P,u' € Uimplies p’ € Q, ie. Q is U-invariant. By (a) we have
I = QB = BQ = BQB.

If conversely, Q is an U-invariant ideal of P then r = pju; € B and pb € QB,
p€Q,beB,p €P,u € Uimplies rpb = pjuipb = pip'uib € QB for p’ € Q,
uj € U. It follows that QB = BQB is an ideal ] of B and /N P = Q. The ideal I # (0)
of B is completely prime if and only if /N P = Q is completely prime in P. Finally,
if I # (0) is prime and Q;Q; C Q = I'N P for U-invariant ideals Q;,Q, of P then
(BQ4)(Q2B) C BOB = [ and BQ,; or ;B is contained in 7, hence Q; C Qor Q, C Q.
Hence, Q is U-prime.

Conversely, if Q is a U-prime U-invariant ideal and I, C I = QB for non-zero
ideals I) or I, then I} = BQ;, I, = Q,B for suitable U-invariant ideals 21, Q, of P. Then
BQ B C QB and Q,Q; C Q = QBN P. It follows that Q; or Q, is in Q and hence
or b isin /, i.e. I is a prime ideal of B. n

If we apply the Lemma 3.5 to the construction in Theorem 3.2 we obtain the following
result, where we assume that (G, P), R[G, o], R, S and B are given as in Theorem 3.2.

THEOREM3.6.  Assume that R[G, o] is a right and left Ore domain. Then the mapping
that sends I to INP defines a one to one correspondence between right (left) ideals # (0)
of B and right (left) ideals of P. Ideals I # (0) of B correspond to ideals Q of P and I is
prime or completely prime if and only if the corresponding property holds for Q).

PROOF. It follows from Theorem 3.2 and Corollary 3.3 that (F, B) is parameterized
by (G, P) and the statement about one-sided ideals follows from Lemma 3.5(a).

It remains to show that all ideals Q of P are U-invariant where U = U(B) is the
unit group of B. We have U = {sis3' | 51,52 € S} = {s7's2 | 51,52 € S}. For
s7lsop = p'sisy! for s1,82,53,54 € S we have sypss = s1p’s3 and we must show that
p’ € Qifand only if p is in Q. This will follow if we can show that sh = h's’ for s,s’ € S
implies & € Q if and only if ' € Q.

Lets =rg+gir +---+gur,beanelementin Swithr; € R, 79 # 0,e # g; € P and
assume h € P. Thenr;h = hr} forr, = o4(r;) € R; hence sh = roh+grih+- - -+g,ryh =
hry + gihr| + - - - + g,hr,,. Let ig be the index such that g; 4 = h’ is minimal among the
elements g; with r; # 0 with respect to the left ordering induced by P. Then sh = A's’
for an element s’ € S and h'pjy = h for a suitable element pj, € P. It follows that A’ € Q
if £ is in Q since Q is a left ideal and that ' ¢ Q if h ¢ Q since Q is a right ideal. Our
claim follows, ideals Q of P are U(B)-invariant and the statement in the theorem follows
from Lemma 3.5. L]

We consider next a construction of valuation rings which are extensions of given
valuation rings, see also [BT2], [M2].
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Let (Fo, By) be a valued skew field and (G, P) be a group with generalized positive
cone P. We assume that there exists an automorphism o: G — Aut(By) from G into the
automorphism group of By such that the skew group ring R := By[G, o] is a right Ore
domain with F as skew field of quotients. Further, consider the subring R, := By[P, 0] =
{Tgiri € R | g; € Pforalli} of R and the subset S} of R; consisting of all those elements
S gir; € R) for which at least one of the elements #; is a unit in By.

THEOREM 3.7.  Let (Fy, By), (G, P), 0 and R = By[G, o] and R, be given as above.
Then
(@) S, = {Xgri € Ry | ©riBo = Bo} is a right Ore system of Ry and B = R, S| is
a valuation subring of F.
(b) The principal right ideals of B have the form roB for ro in By and roB = ryB if
and only if roBy = roBo for ro, ry in By.

PROOF. To prove that S) is multiplicatively closed we consider sy = Xg;r;, 52 =
Thit; € Sy with g; <, gy for i < i’ and h; <, hy forj < j with the right and left order
determined by P. There exists ip minimal with r;, € U(By) and similarly jo minimal
with 4, € U(Bp). We consider the coefficient of g; 4;, in the product s1s; and g;,r;, k4,
contributes the summand o, (rig)tj, € U(Bo). Any other product g;h; = g;hj, must
satisfy either g; <, g;, and r;, 04,(r;) € J(Bo) or hj <, hj, and ¢; € J(Bo). It follows that
the coefficient of g h;, is a unit in By and 5157 € Sy, i.e. S} is multiplicatively closed.

To prove that S; satisfies the Ore condition, we choose 0 # a € Ry, s € S and by
assumption there exist ¢, b € By[G, o] with ac = sb # 0, ¢ = Zgic;, b = Zh;b; for g;,
hj € G and ¢;, b; € By. If g is the minimal element among all the g;, #; with ¢; # 0 or
b; # 0 with respect to the right order defined by P, thencg™!, bg™' € Bo[P, 0] = R;. We
have cg™! = Igicl, bg™! = Thib} and let £Boc; + ZBob; = Bowy, ¢; = ¢{'wo, b} = b/'wy
for ¢!/, b]’-' , wo € By. Finally, ac” = sb"” for ¢’ = Zglc!, b" = Zhib! and at least one of
c”,b"isin S;. If " € S; we are done, otherwise b” € S}, sb” € S; and ¢’ € S, follows;
Sy is a right Ore system of R;. The ring B = By[P, ]S exists and every element in B
can be written in the form as™! with a € R} = By[P, 0], a = ros; for s, s € Sy, ro € By.

It follows that as~'B = r,B, which proves the first part of (b) and also that B is a right
chain domain.

Any two elements in B can be written in the form s;7s~! and s,r,s™! for 51, 52,5 € S
and r1,r; € Rp and it follows that B is a left chain ring.

Finally, the units of B are of the form 5155 fors; € Sy and U(B)NBy = U(By) follows.
Therefore roB = r}B for ro, ry in By only if roBy = r{By. n

We will now assume that (Fy, By) is parameterized by (Gy, Py) and denote with Uy the
unit group U(By) of By. We then say that an ideal Q of Py is o-invariant if g4(p) = by =
p'u' forp € Q,p' € Py, u' € Uy implies p’ € Q forall g € G. If Q is also Up-invariant,
it follows that by = u"'p", u" € Uy, p" € P, implies p” € O as well.

COROLLARY 3.8. Let (Fo,Bo) be a valued skew field parameterized by (G, Py).
Assume that in the notation of Theorem 3.7 the ring R = By[G, o] is a right and left Ore
domain. Then:
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(a) (F,B)is a valued skew field parameterized by (Gy, Py);
(b) An ideal Q of Py is U = U(B)-invariant if and only if Q is Uy-invariant and
o-invariant.

To prove (a) we observe that now all conditions are left-right symmetric and S; is a
left as well as a right Ore system of R; = By[P, o]. Part (b) of Theorem 3.7 applies to
the left principal and the right principal ideals of B = R;S;! which shows that (G, Po)
parameterizes (F, B).

Proof of (b): If Q is U-invariant then Q is Up-invariant and o-invariant since both
Us and G are subgroups of U and g™ 'p = o,(p)g™! = plu/g™! forp € Q, g € G,
og(p) =p'v',p' € P,u' € Uy andp’ € Q follows.

If conversely Q is Up-invariant and o-invariant and sy 's; is an arbitrary element in
U, then s7lsop = asy! = plsas3! forp € Q,a € Ry, p' € P, 54,535 € S;. We have
sops3 = s1p’s4 and want to conclude that p’ € Q. This will follow if we can show that
sh = W's' fors,s’ € Sy and h,h' € Py implies h € Q if and only if &’ € Q.

This statement is similar to the statement in the proof of Theorem 3.6, but here we
deal with the different Ore system of the construction in Theorem 3.7; some additional
calculations are necessary. If s = Zg;r;, gi € P, ri € By, r; = piu; with p; € Py and
u; € Up and h € Py then u;h = hlu, for some u, € Uy, h] € Py and h, € Q if and only if
h € Qsince Q is Up-invariant. Since s € S; there exists an index ip with p;; = e € Py.
We have gip;h; = q;vig; for somev; € Uy, q; € Py and g,v; = g1 (pih)). If gj, is minimal
among the g; with respect to the left order induced by Py then sh = gj,s’ for some s’ € S,
and gj,bi, = g, for some b;, € Po. If h € Q then € Q, p;,h; € Qandgj, = h' € Q.
If conversely gj, = h' € Q, then g;,b;, = g, € Q, and p;h; = h] € Qsincep;, = e
and Q is o-invariant; and finally p = A € Q follows since Q is Up-invariant. [

EXAMPLE 3.9. For any given cofinality type w, there exists a commutative ordered
field (K, <) of cofinality type w,. (Such a field can be constructed by using a suitable
ordered group or see Section 5.) The additive group Gy := (K, +) with its ordering in
K then has cofinality w,. The field Fy = Q{{Go}} of generalized power series of Gy
over Q contains the valuation ring By of elements with support in Py, the positive cone
of Gy. For the ordered group G = (K>, -) of positive elements of K under multiplication
a homomorphism o: G — Aut(By) exists with og(pg) = gpo for g € G, po € Py. Since
G is a torsion free abelian group, R = By[G, o] is a right and left Ore domain (see also
Section 4) and (F, B)—in the notation of Theorem 3.7 and Corollary 3.8—is a valued
skew field parameterized by Gy and hence of cofinality type w,. The only ideals Q of Py
which are o-invariant are Py = Py \ {0} and Py itself and hence B is an almost simple
valuation domain of cofinality type wyq. ‘ n

Let (F, B) be a valued skew field and let / be the ordered index set such that {P; D P; |
i € I} is the set of prime segments of B. The order type of I is called the rank of B. We
define a mapping 7: I — {i,s,x} with 7(i) describing the type of the segment P, D P;,
occasionally we will specify the cofinality types in case 7(i) = s by writing wa, Swy, Instead
of's. We then say that (/,7) is the type of (F, B).
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In the next example we construct conversely for an arbitrarily given ordered index
set I and an arbitrary type function 7: I — {i,s} a valued skew field (F, B) of type (I,7)
where in addition the cofinality type w,, can also be prescribed in case 7(i) = s, ie.

7(i) = waSwa,

ExXAMPLE 3.10. Given a type (/,7) as defined above. Then there exists a valued skew
field (F, B) of type (I, 7).

For 7(i) = o, Sw,, We construct an ordered field K; of cofinality type w,, which can
be obtained as mentioned in 3.9 by using generalized power series rings over suitable
ordered groups with the field of rational numbers as coefficients.

For (i) = i we choose K; = R, the field of real numbers.

Next we form the lexicographically ordered group G = @®;¢; G; where G; = (K;,+)
and the lexicographically ordered group 4 = @4; with 4; = {id} = {1} e Rifr(})) =i
and 4; = (K7 0..), the multiplicative group of positive elements of K, if 7(i) = waSwa, -

If P is the generalized positive cone of G with respect to the lexicographical ordering
we set Bg = Q{{P}}, the generalized (Hahn-Neumann) power series ring, which is pa-
rameterized by P. Finally, we observe that 0: 4 — Aut(By) with 0,(g) = ag = (a;g;) if
a = (a;) € A, g = gi € P defines a homomorphism from 4 into the group of automor-
phisms of By.

Since 4 is an abelian torsion free group it follows that By[4, o] is a right and left Ore
domain and Theorem 3.7 and Corollary 3.8 can be applied in order to obtain a valued
skew field (F, B) which is parameterized by (G, P). To determine the type of (F, B) we
must determine the segments of g-invariant completely prime ideals of P (Lemma 3.5
and Corollary 3.8b)).

We claim: Any prime segment I[T" D IT of o-invariant completely prime ideals [T, I1
of Pis givenby IT' = IT'()) = {@ € P | o(a) < i} and 1 =11(}) = {B € P | o(B) < i}
for some i, where o(@) = min{i | gi # e, @« = (g)) € P}. We note that o(3Y) =
min{o(3),0(Y)} for 3,7 € P. From this it follows immediately that I''({) and T1(i) are in
fact completely prime ideals of P. Since aa((p,«)) = (a;p;) for (p;) € G, a = (a;) € A we
have o(g) = o(0,g) forall a € 4, g € P and IT'(j) and I1(;) are also o-invariant.

To show that there is no further o-invariant completely prime ideal Q between IT'(i)
and T1(7) assume that IT'(j) 2 ©Q D TI(i) and Q contains an element o = (g;) with g; = ¢;
forj <iandg; = p; € G, p; > e¢; = 0. If 7(§) = i it follows from the archimedean
property for R that for any 3 € IT'(i) there exists an n with n3 > a, n3 € Qand 3 € Q,
Q = IT'(i) follows since Q is completely prime.

We want to show that the prime segment I'T'(i) D I1(i) with 7(i) = i is in fact invariant.
First we show that no o-invariant prime ideal Q can exist with IT'({) D Q D I1(i) since
then there is v € I1'(i) \ Q, A(PY) = P(AY) is a o-invariant ideal of P with A(PY) € Q
but [4(PY)]" C Q for a suitable m. Hence, this segment is not exceptional. Finally, we
saw that for ¥ € TU'(i) \ T1(i), A(PY) is a o-invariant ideal properly between IT'(i) and
T1(7). Tt follows that the prime segment of B corresponding to IT'(i) O T1(i) is invariant.
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If 7({) = s then, as in the above argument, A(PY) is the smallest o-invariant ideal
containing v € IT'(i) \ I1(i) and 4(PY) = IT'(i) follows, i.e. T1'(i) D I1(i) corresponds to
a simple prime segment of B.

It remains to show that an arbitrary segment of o-invariant completely prime ideals
IT" D I is of the form IT'(}) D TI(i) for some i. Let « € IT' \ I1, and o(cx) = i for
some i follows. If there exists an element 8 € I1 with o(8) = i then o € A(PB) C I1
in case 7(i) = s and o € PB C II for suitable n in case 7({) = i—a contradiction
and IT C II(i) C IT'()) C IV’ follows, where the last containment is proved by again
considering the cases 7(i) = i and 7(i) = s separately.

We conclude that (F, B) is a valued field of type (Z, 7).

4. Right orders and primes of groups of affine transformations. In this section
we will construct a family of groups (G, P) with generalized cone P to which the con-
struction in Theorem 3.2 can be applied in order to obtain valued skew fields (F,B)
parameterized by (G, P) and the results in Theorem 3.6 hold. The type of (¥, B) can be
computed and conditions can be given so that B is finally simple, Theorem 4.4, or that all
segments are simple, Theorem 4.8. In Proposition 4.9 the cofinality types of the simple
segments of B are determined. The groups G which we will construct are groups of affine
transformations on an ordered K-vector space ¥ over an ordered field K. A first example
of this type for K = R and ¥ = R was given by Smirnov ([S]). The generalized cones P
of G are defined through Dedekind cuts of 7 and the types of the resulting valued skew
field (F, B) are very much influenced by the properties of these Dedekind cuts.

We recall the following definitions:

The pair (K, Px), where K is a field and Py is a subset of K is called an ordered field
if the following conditions hold:

(i) PxN—Pg = {0},

(i) PkU—Pkx =K,

(iii) Px + P C Px;

(iV) PK . PK (_: PK.

We then write a > b if and only if a — b € Pk for a,b € K and occasionally we will
write (K, <) instead of (K, Px).

Similarly, we say that (V, Py) is an ordered K-vector space if V is a K-vector space
with subset Py such that

(@) PyN—Py = {0};

(b) PyU—-Py=1V;

(c) Pr+Py =Py,

(d) PxPy = Py.

Here, (K, Px) is an ordered field and we write v < V' if and only if v/ — v € Py where
v/, v € V; we also use the notation (V, <) instead of (¥, Py).

The following result will be needed to define generalized positive cones for the groups

under consideration.
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Let (K, Px) be an ordered field, (V, Py) an ordered K-vector space and (V, Py) C
(V', Pyr) a proper extension of (V, Py), i.e. (V', Py) is an ordered K-vector space with
V' C V' and Py: NV = Py. We recall further that a pair (U, O) of subsets of the linearly
ordered set (V, <) is called a Dedekind cut of (V, <) ifand only if UUO = V and v < V'
forany v € U and any V' € O. The possibilities that U = @) or O = (), the empty set,
are not excluded. Two Dedekind cuts (U, O) and (U, O') of V are equal if and only if
U= U and O = O'. Every elementn € V'\ V defines a Dedekind cut (U, O,) of (V, <)
with U = {ve V| v<n}and 0, = {v € V| v > n}. It follows from the next result
that conversely any Dedekind cut (U, O) of (V, <) defines a proper extension of (V, Py).

THEOREM 4.1.  Let (K, Px) be an ordered field, (V, Py) an ordered K-vector space
and (U, O) a Dedekind cut of (V, <). Then there exists in the K-vector space extension
Vi = KB @ V with the one additional basis element (3 of V| a unique positive cone Py,
such that (V, Py,) is an extension of (V, Py) and vi < 3 < v, holds for all vi € U and
allv, € O.

PROOF. We define a subset

~-lyeo ife<o,

-veu ifc>0,}
v>0 ifc=0

P :{C,B‘f've Vi,ceK,veV

of V; and must show that P; = Py, satisfies the conditions (a)-(d) that define an ordered
K-vector space. It follows that 3 — v|, v, — 8 € P; forany v; € U, v, € O and that
Py NV = Py. To show the uniqueness, we assume that (¥, P}) is also an ordered K-
vector space with Py V = Pyand 3 — v, v, — 3 € P forall vi € Uand v, € O. Then
cf+ve P ifandonlyv e Py forc =0,—1lve Uforc>0and —1v e Oforc <0
where ¢ € K, v € V. 1t follows that P| = Py.

‘We show now that the conditions (a)-(d) hold for P;.

(a) The elementcB+v,c € K,v € V, is contained in Py N —P; if and only if ¢3 + v,
—cf — v € P,. For ¢ = 0 this implies v, —v € Py and v = 0. For ¢ > 0 this implies
—%v € U and —ﬁ(——v) = —%v € O—a contradiction. The case ¢ < 0 is treated
similarly.

(b) To show that Py U —P; = V; we consider an arbitrary element ¢3 + v in V).
For ¢ = 0 it follows that either v or —v is contained in Py and hence in P;. If ¢ > 0
then either -%v isin Uand ¢f +visin V| or —%v is in 0. We have —¢ < 0 and
-%v = —(l—c)(—v) € O in this last case and —¢3 — v € P; follows. The case ¢ < 0 is
treaded similarly.

(c) To show that P, + P; C P; we consider the sum of two arbitrary elements in P;:
(1f+v)H(c2B+v2) = (cr+e2)B+(1+v2). If ¢ > 0,¢, > O then — vy, —Lv; € Uand

we can assume that —évl < —évz and —cpv; < —cyv; follows. Since ¢; +¢; > 0 it is
enough to show that _(c_,}rcj(vl +1y) < —évz which holds if and only if —c,(v +v;) <
—(c;1 + ¢2)v; and this is correct since —cv; < —cv;. In the case ¢; < 0, ¢; < 0 one

has —L vy, —évz € O and we can assume that —évl < ——Clz-vz. With arguments similar

cy -
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to the ones used in the previous case one proves that _EIT"l < ”(T»lrcz_)(vl +v,), hence
— (cli—cz)(v. +v;) € O. If one of the coefficients equals zero, say ¢; = 0, then v +v, € Py
if c; = 0 and —é(vl +V,) € U for ¢; > 0 since —;1;V1 < 0 and —évz € U. The case
¢z < 0 can be treated similarly.

We are left with the case where the coefficients ¢; are non-zero, but have opposite
sign. We can assume that ¢; < 0 < ¢,. Then —évz € U and —%vl € O, hence
-évz < —évl and —cyv; > —cyvy. If in addition ¢; + ¢; = 0, then ¢; = —c¢; and
vy > —vq, va +v; > 0 follows. In case ¢ + ¢, > 0 the containment —@T]TC;—)(VI +w)eU
follows since —cyv; < —cjv, implies _(c|—’lrcz—)-(vl +1) < _EIZVZ' A similar argument
shows that in the case ¢; + c; < 0 the inequality —(C,Jl,_q)("l +vy) > —év; holds.

(d) Let0 #d € PcandceB+v € P.Ifc = Othendv € Py C Py and forc > 0
we have —%v € U which implies —é(dv) € U,dc > 0and dcf3 +dv € P;. A similar
argument can be applied if ¢ < 0. u

As above, let (K, Px) be an ordered field and (¥, Py) be an ordered K-vector space.
‘We consider the group

G={(a,v)|0<a€K,ve V}wit (a,v)(d,V) = (ad',aV +v)

as operation. Then e = (1,0) is the identity of G and (a,v)”™! = (a~!,—a"'v) for any
element (a,v) € G. This group can be considered as a group of K-linear affine transfor-
mations on ¥ and it is the semidirect product of its normal subgroup

H={(Q1,v)|veV}~(V,+) and the subgroup
L={(0)|0<aeKk}~Px\{0}).

In particular, we have (a, 0)(1,v) = (1,av)(a,0); i.e. 0,: H — H with o,(1,v) = (1, av)
defines an automorphism of H for every a € P \ {0}.

It follows that R[G] is a right and left Ore domain provided R is a right and left Ore
domain. This follows, as in the examples in the previous section, from the fact that
R[G] = R[H][L,0], H and L are torsion free abelian groups and hence their finitely
generated subgroups are direct sums of infinite cyclic groups. Hence, one can apply the
result that the Ore extension R[x, o], o an automorphism of R, is a right and left Ore
domain if R has these properties (See [PA], [AT], [WS)).

The group G is an ordered group under the lexicographical ordering, however, we are
more interested in the generalized positive cones that can be defined using Dedekind cuts
of V.

Let (U, O) be a Dedekind cut of (V, <). By Theorem 4.1 there exists an extension
Vi=Kn®Vwith(V,Py) D (V,P)andU={veV|v<nl,O={verV|n<v}
We define:

Py ={@,v)€G|an+v>n}

Froman+v > n,a > 0inK, followsn > a~'n—a~'vand P,NP,;' = {e},P,UP;' =G
and PP, C Py, i.e. (G, P,) is a group with generalized cone P;,.
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We note that the element 7 defines the cut (U, O) of (V, <), but that elements 7 €
Vi \ V,n # 1’ can define the same cut of (¥, <). We consider some special cases:

EXAMPLE 4.2. i) C= (V,¢),ie.v <ninV; forallv € V. We write P,, = P in
this case and obtain

Pixw={(a,v)€G|a>1lora= 1landv >0}

which is the positive cone of G which belongs to the lexicographical order of G.
ii) C = (¢, V), in which case we write P,, = P_,, and we obtain

P ={@v)eG|0<a<lora=landv >0}

This is a generalized cone of G which is invariant under conjugation and therefore defines
an order on G. In fact, it is the lexicographical order of G where however the order of
the group (K>, -) ~ {(a,0) | a € K>°} has been reversed.

ili) Lets € V be an arbitrary element and we define U = {v € ¥V | v < s}. To
C = (U, V \ U) belongs then the following

Py =Py ={(av)eCG|(@a—1)s+v>0or(a—1)s+v=0anda > 1}.

iv) Lets € V be an arbitrary element and we define U = {v € V' | v < s}. Then
s€0=V\Uandto C = (U,O) belongs

P,=P_={(av)eG|@—1s+tv>0or(@a—1)stv=0and0 <a <1},

The next result shows that only in the cases i) and ii) in Example 4.2 does P, define an
order for G.

LEMMA 4.3. (G, Py) is an ordered group if and only if n = %oo0.

PROOF. We saw in the examples i) and ii) that P, and P_, define orders for G.

Conversely, assume that there exist r and s in ¥ with » < 5 < sin V. Then for (a,v) =
(2, —r) we have 21 — r > 1, hence (2, —r) € P,,. However (1,s —r)(2,—r)(l,s —r)' =
(1,s — (2, —r)1,r —5) = (2,—s) ¢ P, since 2 — s < n and P,, does not define an
order on G. =

The construction described in Theorem 3.2 can be applied to R = Q, the field of
rationals, (G, Py) and o, = identity for all @ in G. One then obtains a valued skew field
(F, By) parameterized by (G, P,;) and the various types of ideals of B, are described by
the corresponding types of ideals of P, as is summarized in Theorem 3.6.

The next result gives the conditions under which B, is finally simple, i.e. has a nonzero
minimal ideal.
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THEOREM 4.4.  The following conditions are equivalent:
a) B, is finally simple;
b) There exists a minimal ideal Quyip in Py,
¢) There exist elements r,s € V withr < n < s and an element V' in V such that for
anyvin V thereis an a in K withv < av'.

PROOF. As we noted before, the equivalence of a) and b) follows from Theorem 3.6.

To prove that b) implies c) we notice that it follows from Examples 4.2i) and ii) that
there exist7,s € V' with r < 5 < s if P, has a minimal ideal Qp;,. Next, let (a, w) be an
arbitrary fixed element in Qp,. Since by the above observation r < n < s for some 7,
s € V, there exists an element v/ in ¥ with v/ > (a — 1)y +w > 0. Let v be an arbitrary
element in ¥ with v > 0. Then P,(1,v)P; 2 Qmin 3 (@, w) and therefore

(a,w) = (a1, vi)(1,v)(a2,v2) = (@1a2,a1v2 + ayv+v;) for some (ay, V1), (a2,V2) € Py,

From this we obtain

V> (a—n+w=(aa— Dn+av+av+y

=a[(az — Dn+v]+[(ar — Dn+vi]+ay

and v > a,v follows since a; € K>, (a;,v;) € P,,. Therefore a;!v' > v and this proves
that b) implies c).

Conversely, assume that condition c) holds. Then there exists an element d in ¥ with
d>s—r>0andd > V. We claim that P,(1,d)P, is a minimal ideal of P,. To prove
this we show that for any element (a, v) € P, there exist elements (a1, v1),(a2,v2) € Py
with (1,d) = (a1, v1)(a,v)(az,v2). In V we define an element r; as follows:

d d d
ry=r ifr+§>nandr| :=r+§ ifr+—2—<7].

Thenr <y <r+ ‘2—’. By assumption for the element %(arl —r; +v) € Vthere is an
>0 . i 2
xek with xv' > —(ar; —r; +v)
a

and therefore (by d > v') xd > %(arl —ry+v), hence a(x+ l)% > 9d > ar)—r+vsince

a>0and 5d > 0. We have (x + 1, —xry) € Py since (x+1—1)p—xry =x(n—r1) >0,
and (u, w) := (E(;LT)’ X — mv+d) € P, since

1 x 1
—1)n+ - +d
(a(x+1) )’7 P LA

= (g +r — 11) + (—————a(x1+ 1)(7] — rl)) + a(x1+ 1)(a(x+ l)g —ary+r — v)

which is > 0 since each of the three terms in this sum is > 0. Finally, we have (1,d) =
(u, w)(a, v)(x + 1, —xr)) which proves the last claim and the theorem. n
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The condition c) in Theorem 4.4 consists of two parts: 7 is bounded or equivalently,
the cut defined by 7 is neither (¢, V) nor (V, ¢), and ¥ has a maximal K-archimedean
class. Here we say that two elements 0 < vy,v, € V are in the same K-archimedean
class if there exist a; € K> with v, < a;v; and v; < a,v,. With [v] we denote the class
ofvfor 0 <v €& V,and we set [--v] = [v].

The next result provides information about ideals of P, generated by one element.

THEOREM 4.5. i) Let (a;,v) # (a2,v2) be two distinct elements in P:; =P, \
{(1,0)}. Then P,(a1,vi)P, = P,(az,v2)P, if and only if there exists an element s in V
withn < s < am+v; fori = 1,2 and the two elements (a; — 1)y +v, and (a — 1)n+v;
are contained in the same K-archimedean class of V' = Kn+ V.

ii) Iffor a = (a,v) € Pynos € V exists with n <s < an+v then Pya = aP, =
Ppab,.

PROOF. We can assume that n < a;n+v; < ayn+vs.

To prove i) we assume first that P,(a;,v1)P, = Py(a2,Vv2)P, and hence (a;,v) €
Py(az,v2)Py. Therefore (ai,vi) = (u,w)(az, v2)(x,y) = (uarx,uary + uv, + w) for
(u,w), (x,y) € P,. We have:

D@w—n+w>0
2) (= Dn+y>0;
3) uaxx = ay;
4) uazy+uv, +w = v and
5) axn + vy > ajn +v; by assumption.
We multiply 2) by ua, and obtain
6) (uaxx — uaz)n + uazy > 0 and with 1) we have (uaxx — 1)n +uayy + uv, +w >
(uay; — u)yn +uv,.
Using 3) and 4) we get (a; — 1)n +v; > u((az — I+ vz) Le.

cllar — Dp+vi]1 > [(@— Dn+vy] with ¢ =u"' € K0

The other inequality needed to show that (a; — 1)n+v; and (a; — 1)n+v; are in the same
K-archimedean class is given by 5) with ¢; = 1.
To show that there exists s in ¥ with n < s < a;n+v; we multiply 5) by u and add it
to 6):
uayn + uvy + (uaxx — uax)n + uazy > u(an +vy).

Using 3) and 4) we obtain a;n + v — w > u(a;n + vy). Hence, (1 — u)(a1n +vi) > w.
From 1) we obtain (1 — ) < w and therefore we have
7) (= <w < (1 —u)an+w).
Since n < ajn +v; we conclude from 7) that | —u« > 0. By dividing 7) by 1 —u it
follows thatp < s < a;n+v fors = li—uw € Vsince 7 ¢ V. To prove the converse we
assume that there exists 0 < ¢, € K with

(a— Dn+vy <cl(ap — n+vy] and ¢ > 1 because of 5).
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In addition we assume that there exists s € V with
& n<s<amtv.
We prove next that s can be chosen in such a way that not only 8) holds but also the
following inequality:
9) (@ — Dn+vy < Man+vy —s)forsome 0 < A € K.
To see this we consider two cases:

FIRST. (a1 — Dy +vi < @5 (ayn+v, — s) and 9) is satisfied for A = ”"1“1

SECOND.  10) (a; — g+ vy > % (@ + v, — ).

Then we replace s by the element s; = ”ﬁ—‘s — ﬁvl € V and we will show that both
8) and 9) hold for s, in place of s and A = 2. From 10) we obtain £l+—‘s — lvl > 2nand
hence s; > n From s < a7 + v; multiplied with “‘” and ‘“”vl =y + —vl follows
that —:l’:—ls Ev; < (a + ) + v, and therefore

11) 2s; < (a; + 1) +v; which can be rearranged to (a; — ) +v; < 2(a1n+v) — 1)
i.e. to 9) with A = 2 and s; instead of s.

Further, we obtain from 11) with 0 < (a; — 1)n + v; that

251 <(a+Dn+vi+(ar— Dnp+vi=2an+2v, ie s <amtvy.

Therefore n < s; < a;n+v; and from now on we will assume that s satisfies 8) and 9) for
some 0 < A € Kandin fact 1 < ) since by 8) we have 0 < ajn+v; —s < (a1 — )n+v;.

With
1 )\Cz —1
(u,w) = (/\_cz’ o S) €G and
x,y) = (a{l)\czal, a{l(/\czvl —XCps+ 5 — vz)) eG
we obtain

12) (a1, vi) = (u, w)(az, v2)(x,y). We will show that

13) (u,w) € Py and (x,y) € P,.
We have (u — D)y +w = (— - 1) ’\6202 s = Acz 1(s— n) > 0sincec; > 1,2 > 1
ands —n > 0.

Next we show that (x— 1)n+y > 0. From 7 < s we obtain a;n—s+v; < (a2 — )n+v;
and from (a; — Dn+v; < erf(a; — D +vi] < ca\(@m +vy — s) using 9) it follows that
ayn — s+t vy < caA(ajn + vy — s). Therefore,

alx—n+y]= az[(aglkczal —In+ a{'(Aczvl —Aexs+s — )]
=de(antvi—s)—(an—s+v) >0
by the previous inequality. Since a, > 0, it follows that (x — 1)p + y > 0 and that
(x,y) € P,. From 12) and 13) we conclude that (a;,v;) € P,(az,v2)P,. Since by as-
sumption ajn + v; < ayn + vy, we have 1 < aylayn + a;!(v, — vy), and therefore
(al_laz,al“‘(vz — vl)) € P, with (ay, vl)(af‘az,af‘(vz — vl)) = (a2, v»). It follows that
Py(a1,vi)P, = Py(az, v2)Py, which completes the proof of part i) of Theorem 4.5.
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To prove part ii) we assume that for « = (a,v) € P, no s exists in V' with an +v >
s > nbutan+v > n. We want to prove that «P,, C P, and assume to the contrary that
there exists an element 3 € aP,, 8 ¢ P,a. Then P3P, C P,aP, and fa”"' ¢ P, which
implies af~! € P,, a € P,j. Therefore, PP, C P,3P, and P,aP, = P,P,, a # [3.
We apply part i) to conclude that there exists an elements € V' withn <s <an+v,a
contradiction which proves aP,, C P,«a. The same type of argument proves P,a C aP,
and aP, = P, follows. n

We consider the set A = {(a,v) € P, | Is € V' : n < s < an+ v} and show that A
is a completely prime ideal of P,,, where we assume that 7 # +00 (see Example 4.2i),
ii); A = ¢ in these cases). If (a,v) € A and (x,y) € P, then (a,v)(x,y) = (ax,ay +v) and
a(xn+y)+v >an+v>s > forsomes € V. From (x,y)(a,v) = (xa,xv +y) follows
xan+xv+y=x(an+v)+y >xs+y>xn+y>nand(x,y)a,v) € Asincexs+y € V;
hence A is an ideal of P,,.

That A is completely prime follows from the next result.

LEMMA 4.6.  Every ideal Q of P, with Q C A is completely prime.

PROOF. As for ideals in valuation rings (see [BBT]) it is enough to show that o € Q,
a € P,, implies a € Q. To see this assume o3 € Q, @, € P,, and assume §> € Q
implies § € Q. Either 3y = aand &@ = afy € Q, a € Qor ay = f3 for some
¥ € Q. Then Bafa = (Ba) € Q, hence B € Q, B = Bary € Qand B € Q. Next let
a = (a,v) € P, with (a,v)* = (az, (a+1)v) € Q. By assumption there exists s € ¥ with
n < s < a*n+(a+ 1)v. To finish the proof that (a,v) € P,(a,v)*P, C Q, we must show
by Theorem 4.5 (i) that there exists an elements; € V withn <s; < an+vand that there
exists ¢ € K>? with (a> — D)+ (a+1)v < c[(a— 1)n+v]. If s < an+v we are done with
s1 = 5. Otherwise we have an+v < s < a’n+(a+1)vandn < =+ < an+v follows and
we can sets; = . Finally, for c = a+1 we have @ —Dn+(@+1)y <cl(a—n+v].
Hence, (a,v) € Py(a, v)zP,, C Q is shown, which proves our claim. u

As above, we assume that 77 # +00 (see Lemma 4.3 for the case 7 & 00). Then A is
a completely prime ideal of P, and every one-sided ideal / O A of P, is two-sided since
it is either equal to A or contains elements « with a ¢ A and hence Py = aP,;, O A
by Theorem 4.5ii). If (F, B,)) is the valued skew field constructed as in Theorem 3.2 pa-
rameterized by (G, P,) and described before Theorem 4.4, then there exists a completely
prime ideal D of B, corresponding to the completely prime ideal A of P, and the fol-
lowing result holds:

COROLLARY 4.7.  Let ) # Fo00. Then there exists a completely prime ideal D # (0)
in By, such that any prime segment Py D P, of B, is invariant if and only if P, O D and
it is simple if and only if D O P).

The result follows from Theorem 3.6 and the above observation that all one-sided
ideals of P, containing A and hence all ideals of B,, containing D are two-sided and from
Lemma 4.6 which implies that all ideals of B, contained in D are completely prime. =
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In the next result we will describe the special situation in which all prime segments of
the constructed valuation ring are simple. Let K, V, C = (U, 0), V1 = Kn+V, (G, Py),
A, (F,By), D, be as above.

THEOREM 4.8.  The following conditions are equivalent:

a) All prime segments of B, are simple;

b) A= Py\{l1,0};

o) J(B,) = D;

d) V is dense in the ordered vector-space Vi = Kn+V;

e) The cut C = (U, O) of (V, <) determined by 1 has the following properties:
(e.1) Forevery) <r &V thereexistsu € Uwithu+r € O.
(e2) U={u €V |u<n}hasnolargestand O = {v € V' | n < v} has no

smallest element.

PROOF. That a), b) and c) are equivalent follows from Corollary 4.7. To prove that
b) implies d) we consider two elements ¢;n +v; € Vi, i = 1,2, withcjn+v) < cn+w
and must show that there exists s € ¥V with ¢ +v; < s < ¢an+v,. If in a first case both
0 < c1,¢2, thenn < c7lean + ¢ l(va — v1), 0 < ¢ ', and we can apply b) to obtain
s' € Vwithn < 5" < ci'exn + 7' (v2 — vi) which in turn leads to ¢ + vy < s =
cis'+vi<cm+vyands el

For the second case we assume that both ¢;,cy < 0. Then —c,n1 — v, < —¢jnp — vy
and there exists by the first case an s’ € V with —con — vy < s’ < —c1n — vi. Hence,
cntvi<s=—s <cntwandse V.

Finally, we assume that ¢; = 0 or¢; = 0 or ¢jc; < 0. We have ¢jn +v; < E%Cf-n +
KL’Z'—"Z < ¢am + v, and we are done if ¢; +¢; = 0. If 9%”2 # 0 then the coefficients of 7)
are either both greater 0 or both less than zero for one of the following pairs of elements:
(cin+vy, 8520+ 122y and (2527 + U322 ¢yn +v,). If we apply the first or second case
to this pair we obtain an element s € ¥ which lies between the two elements of this pair
and hence ¢1n +v; < 5 < ¢11 + vz, which proves that b) implies d).

Next we show that d) implies e): To prove (e.1) we consider an arbitrary element
with 0 < r € V and we will exhibit an elementu € U withu+r € O. Wehaven —r <17
and by d) an element u exists in ¥ withn —r <u <mn,henceu € U,u+r € O,i.e. (e.1)
follows. To show that U has no largest element, assume to the contrary that u,, is maximal
in U, hence u,, < 1 and by assumption d) an element s € V exists with u,, < s <17, a
contradiction. That the second statement of (e.2) holds is proved similarly.

To complete the proof of Theorem 4.8 we assume ¢) and will prove that b) holds. Let
(1,0) # (a,v) € Py, hence 11 < an + v and we must show that there exists s € V with
17 < s < an+v. We have 0 < (a — 1)n + v and will show that there exists w € V with
0<w<(a—1)n+v.Incasea —~ 1 = 0 we can choose w = 5. Ifa — 1 > 0, we have
—v < (a— 1)y, =% < n and by (e.2) there exists w; € V with ——*; < w; < n hence
w=(a— Dw +tvwillsatisfy0 <w < (@a—)p+v.If(@a—1) < 0,thenn < (,;—vn
and by (e.2) there exists wp, € V withnp < wy < (—a:}l—) For w = wy(a — 1) + v we have
O<w<(@a—1n+v.
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For the element 0 < w just found there exists by (e.1) an element u € U with u <
n < u+w. Finally, sincew < (a— 1)n+v, wehaven < u+w < n+(a—1)n+v =anty,
i.e.s = u+w € V satisfies the condition that shows that (a, v) € A and b) is proved. This
completes the proof of Theorem 4.8. L]

We single out the special case of Theorem 4.8 in which the valuation ring B, has a
single prime segment which is simple, i.e. B, is nearly simple with J(B,) and (0) as its
only proper ideals.

COROLLARY 4.9.  Thering B, is nearly simple if and only if the equivalent conditions
of Theorem 4.8 are satisfied and in addition the following condition holds:
(e.3) All positive elements of V are in the same K-archimedean class.

PROOF. If B, has only one ideal # (0), B, then by Theorem 3.6, P,(1,v)P, =
P,(1,v")P, forany v > 0,V > 0in ¥ and v and V' are in the same K-archimedean
class by Theorem 4.5(i).

Conversely, let us assume that the conditions in Theorem 4.8 hold and that there is
only one K-archimedean class of positive elements in V. Then for (a,v) € P, \ {e} we
have w, > (@ — 1)n +v > w; > 0 for some elements w; and w, in V. The assumption
implies kw; > w, for some 0 < k € K therefore kw; > (a— 1)n+v, and (a— 1)n+v and
wj are in the same K-archimedean class in K7+ V. Theorem 4.5(i) can be applied and we
have P,(a,v)P, = P,(1,w)P, which in turn is equal to P,(1,u)P, forany 0 <u € V.
So all (a,v) € P, \ {e} are in the same ideal of P,. Hence by Theorem 3.6, B, has only
one proper ideal # (0). ]

As a final result in this section we will determine the cofinality type of the simple
segments of the valuation rings B,, constructed above. We also recall that X is an ordered
field and we denote with wj its cofinality type.

PROPOSITION 4.10. Let Py D P, be a simple prime segment of B,,. Then its right
and left cofinality types are both equal to wg, the cofinality type of K.

PROOF. Let Q) D ©, be the completely prime ideals of P, corresponding to P; D
P, (Theorem 3.6) and A D Q, follows by Corollary 4.7. If (ap,vo) € Q; \ Q, then
Q = Py(ao, vo)P, and there exists an element s € V with < s < aon + vo. We show
next that the K-archimedean classes of w = (ap — 1)s + v and (ap — 1)1 + v as elements
of V7 agree. We observe that 0 < ag, s < aon + v and 57 < s implies

w=aps—s+vo=aps+n+(—n—s+w)
< ao(aon +vo) +s+ (=1 —s+wvp)
= (ao + D[(ao — 1)n +vo].
On the other hand, we conclude from 7 < s and s < agn + vy that
aol(ao — 1)1+ vo] = agn +s+ (s — aon + aovo)
< ags +(aon + vo) + (—s — aon + agvo)

= (1 +aop)[(ao — 1)s + o],
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i.e., (a0 — 1)n+vy < ay (1 +ap)w, which proves that w and (ag — 1)1 + v are elements
of the same K-archimedean class.

Let {ci}i<., be an wg-sequence of elements 0 < ¢;, cofinal in (K, <) and we consider
the sequence {c;w}i<,, for the element w € V constructed above. Since ¢;w, w and
(ao — D)y + v are all in the same K-archimedean class we have P,o;P,, = Q,, for
a; = (l,c;w) € Pyand o € Q \ Q; follows for i < wg. We claim that {aiPy | i <
wg}t ({Pyai | i < wpg}) is cofinal in the ordered set of all right (left) ideals L of P,
between Q) and Q) with L; > L, ifand only if L; C L, defining the order for such right
ideals; the order is defined similarly for left ideals. It then follows that wp is the right-
as well as the left-cofinality type of the segment P; D P, since wj is itself a cofinality
type.

Let a = (a, v) be an element in Q; \ ©,. We will show that there exist i, i, < wg with
a;, Py C aPy and Pya;, C Pyo. We have Q; = Py (a, v)P, and by Theorem 4.5 it follows
that w and (a — 1)1 +v are in the same K-archimedean class and hence (a — 1)n+v < cw
for some 0 < ¢ € K. There exists ij < wg withc < ¢;; and (@ — 1)n+v < cw < c;w
follows, which implies

an<cywtrn—v, n< a_ln+a*lc,-|w —alv
and therefore (a,v)~!(1,c;,w) = (@', a~'¢;;w — a~!v) € P,, which in turn implies

o, Py = (1, ey w)Py C (a,v)P, = aP,.

Similarly, there exists i < wg witha~!c < ¢;, and (a— 1)n+v < cw < ac;,w follows

which in turn implies n < a~'n—a~'v+c,w,ie (1,c,w)a,v)™! = (@}, —a v+e,w) €
P,. Therefore, Py, = Py(1,ci,w) C Pp(a,v) = P,a, which proves the above claim and
the proposition. =

5. Examples. In this section we consider various constructions and examples to
illustrate the results in the previous section. As in Section 4, we denote with K an ordered
field, with ¥ an ordered K-vector space, with G = {(a,v) | 0 < a € K,v € V}, and
(a,v)(@,V') = (ad’,aV' +v) as operation, the group of K-linear affine transformations of
V. Further, for any Dedekind cut C = C,, = (U, O) of V there exists an extension V; (as
ordered K-vector spaces) of V withp € Vi \ V,V; =Kn+VandU={veV|v<n},
O = {v € V| v>n}(see Theorem4.1). In addition,

P,={@weG|@—y+v>0}

is a generalized positive cone of G. Therefore, by Theorem 3.2, there exists a valued
skew field (F, B,) parameterized by (G, P,) such that the ideals of P, correspond to the
ideals # (0) of B,,, see Theorem 3.6. The set

A={(@v)eP,|Is€V: an+tv>s>n}
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is a completely prime ideal of P, and corresponds to a completely prime ideal D of B,
which separates the invariant segments of B, from the simple ones, see Lemma 4.6 and
Corollary 4.7.

EXAMPLE 5.1.  For any given cofinality type w, there exist an ordered field (K, <) of
this cofinality type and an open Dedekind cut C of (K, <) with gap = {0}, i.e. C satisfies
the conditions e.2) and e.1) in Theorem 4.8¢).

To construct such a field K, let {i | i < wq} be the set of ordinals less than w,. We
consider R = Q[{x; | i < wg}], the polynomial ring in the variables x;, i < wq, and we
write x” for the monomialx?l'l .- -xZ:" where v = (ng, ny,ny,...,0,...),1 < wge, B € Ny,
and n; # O for only finitely many i. The set of multi exponents v forms an ordered abelian
semigroup N under component-wise addition and ordered lexicographically. R = Q[{x" |
v € N}] can then be considered as the semigroup ring with x"1x"2 = x"**2 and elements
p=Ycx",c, € Q,v €N,and ¢, # 0 for only finitely many v. The elementp # 0 in R
is called positive if the coefficient ¢, # 0, for v¢ minimal, is positive in Q. This defines
an order on R and its field L of quotients.

Let K = Q({xo — x; | i < wq}) be the subfield of (L, <) generated by the differences
X0 — Xi, I < wy, and the order induced by the order of L. In K we have the elements
Xi — X1 = (x0 — xi41) — (xo — x;) and x; — x;41 > 0. Since {x; | i < w,} is a zero-
sequence in L, the sequence {(x; — xi+1) | i < wq} is a zero-sequence in K. Hence,
{(c; —xi+1)7! | i < wa} is cofinal in K and since w, is a cofinality type, it follows, that
wq 1s the cofinality type of (K, <).

We have xo € L\ K and x, defines a Dedekind cut C = (U, O) of (K, <) with U =
{a € K| a<x},O0=1{acK|a>x} Wecheck conditions e.1) and e.2) in
Theorem 4.8 for this cut:

e.l) Forevery 0 < r € K there exists u € U with u+r € O. This holds because there
exists an index i} < wy with x;; — x;41 < 7, and then for u = xo — x;, € U we have
u+r>(xo—x;,)+2x;, —2x;,+1) = x0 + x;; — 2x;,+1 > X, i.e. u +r € O, which proves
e.l).

To prove e.2), i.e. that U has no largest and O has no smallest element, we take u € U,
v € O.Then 0 < xp — u, 0 < v — x9. We observe that {(x; — 2x;+1) | i < w,} is a zero-
sequencein L. Hence, there exists an index i} < wq Withx;, < xo—u, x;, —2x;,+1 < v—xy.
It follows, that the elements ' = xo — x;, € Uand v = 2(xg — x;,+1) — (xo — x;,) € O
satisfy the conditions # < »’ and v/ < v proving e.2) and the claim in Example 5.1. =

In the next example we use the field constructed above and Theorem 4.8 to construct
valuation rings of arbitrary rank (see the definition at the end of Section 2) and with
simple segments only.

EXAMPLE 5.2. Let (1, <) be an arbitrary (not necessarily finite) ordered index set,
wq a cofinality type. Then there exists a valued field (¥, B) such that B has simple prime
segments only which are all of cofinality type w, and B has rank equal to I* (the set /
with the inverse order of that of 7).

We distinguish two cases: a) [ has a largest element i,,; b) I does not have a largest
element.
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a) We choose for the given w, an ordered field K as constructed in Example 5.1.
For ¥ we choose the K-vector space K{I} of all K-valued functions f from / to K with
well-ordered support, i.e. {i € I | f(i) # 0} is well-ordered. For each element f # 0
in ¥V we define v(f) = min{i € I | f(i) # 0} and of = f (v(f)), the first non-zero
coefficient of /. An element / # 0 is then defined as positive if 3f > 0in K. Let C =
(U, O) be a cut of K that satisfies e.1) and e.2) and we define the cut C, = (U,,0y)
of ¥ such that the set {f € V | f(i) = 0 for i < in, f(in) € U} is cofinal in U,. If
r > 0in ¥ and v(r) < iy, then obviously there exists an f in the above set defining
U, withr+f € O,. If v(r) = i,, then such an element exists because C satisfies e.1). It
follows from the definition of U, and the property e.2) for C that C,, also satisfies .2). We
can apply Theorem 4.8 to obtain a valuation ring B,, with simple segments only. Every
simple segment has cofinality type w, by Proposition 4.10 and I* is the rank of B, by
Theorem 4.5 and the fact that  and K7 + V have the same K-archimedean classes in this
case. The valuation ring B, is finally simple if I has a smallest element.

b) If (/, <) has no largest element we take the ordered field K as before, however as
vector space we choose the ordered subspace W of the vector space ¥V = K{I} in a) of
all bounded elements /€ V, i.e. there exists ir € I with f(j) = 0 for allj > ir. Every
element ) € V' \ W defines then a cut C,, = (U;,0y) with Uy = {w € W | w < n},
0, = {w € W | n < w} that satisfies conditions e.1) and e.2) of Theorem 4.8. To see
this, let > 0 be in W with v(r) = jy. Pick iy > jp in I and an element ¥ € U, with
u(i) = n@) for i < iy, u(ip) < n(ip) and u(j) = 0. Thenu +r € O, so e.1) holds. If
u € Uy and v(n — u) = iy, then v/ with u'(i) = n(i) for i < iy and «/(j) = 0 otherwise
is an element in U; with ¥ < u'. Similarly one shows that for every v € O; we have
another v/ € O; with v/ < v, which completes the proof of €.2). As in a) one obtains a
valuation ring B, with the desired properties. L

Let (K, <) be any ordered field, C; a Dedekind cut of (K, <); then there exists (by
Theorem 4.1) the ordered K-vector space K[£] = K& + K. For every ordered index set
(1, <) one can consider the ordered K-vector spaces V = K{I} C V=K [€1{I} defined
as in Example 5.2a). The elements 7 € ¥\ ¥ define then Dedekind cuts for V.

It follows from Theorem 4.8e) that only the Dedekind cuts that satisfy conditions e.1)
and e.2) lead to valuation rings with simple prime segments only. On the other hand,
only the cuts (¢, V) = C_x and (V, ¢) = Ci of V lead to valuation rings with invariant
segments only, see Lemma 4.3, Theorem 4.5, and Lemma 4.6. In all other instances both
types of prime segments occur.

We consider the following

EXAMPLE 5.3. Let (K, <) be an ordered field, (/, <) an ordered index set, V; an
ordered K-vector space whose K-archimedean classes [v] are indexed by /7 and we as-
sume that 7 has a Dedekind cut C,, that satisfies conditions e.1) and e.2). Then V) is
densein Kn; +V; = V{ and we consider the lexicographical order for the vector spaces
V =V +L C V| +L where L is another K-vector space. Then n = 7; + 0 is an element
in ¥ + L, not contained in ¥ and defines a Dedekind cut C, of V. The elements of the
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corresponding P, have the form (a,v) = (a,f +g)witha € K,a > 0,ve V,f € V,
g € Landan+f+g > n. Hence,

Py={@f+g|am+f>m}U{af+g|an+f=n andg > 0}.

We claim: A = {(a,f+g) | an;+f > m }. That the right hand side is a subset of A follows
from the fact that ¥, is dense in V] by Theorem 4.8. Conversely, if an; +f = 1, and
s =fi +g| € V) satisfies an; +f+g > fi +g1 > ni, then f; = n; € V), a contradiction.
The invariant prime segments correspond to the prime segments of the subsemigroup

{(1,g) € P, | g > 0,g € L} of P, which is isomorphic to (L > 0, +). .
In the next example we discuss the cuts that don’t satisfy condition e.2) (see Exam-
ple 4.2(ii1)).

EXAMPLE 5.4. a) Let (K, <) be an ordered field, V" an ordered K-vector space and
s€V.ForCy = Cy = (Un,Or) With Uy = {veV|v<s}tand Oy = {v eV |s<
v} we have:

(i) Py=Pu={@vVeG|(@a—1)s+v>0o0ra>1land(a— l)s+v=0}and

(i) A=Ay ={(@,v) € P | (@a— D)s+v>0}.

(i) was already obtained (by Theorem 4.1) in Example 4.2(iii). Further, by Theorem 4.1
it follows that here (for n = s+) generally an+v > ain+v; in V' = Kn+V is equivalent
toas+v > ajs+v) oras+v = a;s+v; in Vand a > a; in K. That (ii) is true follows since,
on one side (a — 1)s + v > 0 implies an +v > as + v > n with as + v € V. Conversely,
if on the other side we would havea > 1 and (@ — 1)s +v = Obutan+v > s’ > g for
some s’ € V,thens’ > s and s’ < as +v = s follow, a contradiction which proves (ii).

The simple prime segments of P, and B,, respectively correspond to the K-archime-
dean classes [v] of non-zero elements v of ¥, and the invariant prime segments correspond
to the archimedean classes @ of elements a > 1 in (K, -).

If as a special, and very easy example, we choose K = Q, V' = Q, the rational num-
bers, then B, = By D J(B) D D D (0) is a finally simple ring with one invariant and
one simple segment.

If we choose K| = Q[[t, "']], the Laurent series ring over @, and order K; by defining
a>0ifa= Y, qit € K, qn, > 0,and V = K + K + K, ordered lexicographically,
then B+ will have two invariant prime segments corresponding to g forg € Q, g > 1
and 1! as the archimedean classes in (K>, 0) and three simple segments corresponding
to the three K;-archimedean classes of the form [v], 0 # vin V.

b) Let K and ¥ be as in a), but this time we consider the cut C,, = C;— = (Us—, Oy..)
forse VwithU_ ={veV|v<s}, O ={veV|s<v} Then

P, =P, =AU{(a,v)€G|0<a<land(a— 1)s+v=0} where
A={(@v)eG|(@a—1)s+v>0}.
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In this case we have (a, v) > (a1, v1) for elements in P, if and only if

astv>aistvy or astv=ais+v; and a<a.

The simple prime segments correspond to the non-zero K-archimedean classes [v] of V
and the invariant prime segments correspond to the archimedean classes a of elements a
in({faekK|1>a>0},).
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