SOME RESULTS AND PROBLEMS CONCERNING
CHORDAL PRINCIPAL CLUSTER SETS*

F. BAGEMIHL

To Professor Kivosu: NosHIrRo on the occasion of his 60th birthday

Let I" be the unit circle and D be the open unit disk in the complex plane,
and denote the Riemann sphere by 2. By an arc at a point { €I we mean a
continuous curve A: z=2z() (0=f<1) such that |z(#)| <1 for 0<¢< 1 and
l‘i_{rll z(¢) =¢. A terminal subarc of an arc 4 at ¢ is a subarc of the form z = z(¢)
(ty=t<1), where 0=<#<1. Suppose that f(z) is a meromorphic function in
D. Then A(f) denotes the set of asymptotic values of f; and if (T, then
C(f, ¢) means the cluster set of f at ¢ and C.(f, ¢) is the outer angular cluster
set of f at ¢ (see [13]). The principal cluster set of f at ¢ is the set

II(f, Q) = QCA(f, ¢),

where A ranges over all arcs at {. As is well known, this set is of importance,
and was introduced some time ago, in connection with the theory of boundary
correspondence under conformal mapping. More recently the set '

Hx(f» C) = QC\'(f: C)y

where X ranges over all chords of the unit circle at ¢, has received attention,
notably in the work of Meier [12], who has used this set, which we call the
chordal principal cluster set of f at ¢, in the formulation of his topological
analogue of Plessner’s theorem.

Because of the significance of the chordal principal cluster set in this
connection as well as others, the present paper is devoted to a more systematic
investigation of this set for its own sake as well as its relation to the principal
cluster set. |

It is evident to begin with that both TT(f,¢) and II«(f, ¢) are closed subsets
of 2, and that
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Any conditior;, then, that guarantees that II(f,¢) = C.(f, ¢) also ensures that
T1(f, O =TI+(f, &), and several general ‘conditions of this sort are known (see,
e.g., [10, p. 389]).

Let M be a closed subset of 2. Then Gross [11, p.‘21] has shown that
there exists a meromorphic function f in D and a point {1 such that
II(f,¢) =M; there is even a holomorphic function with this property [11, p.
22]. ‘

We first show (Theorem 1) that this assertion is still valid if T1(f¢) is
replaced by ITx«(f,¢). Then we prove (Theorem 2) that if N is a closed
subset of M, there exists a meromorphic function f(z) in D for which IT«(f, ¢)
=M and TII(f.¢) =N.

Suppose that there exist two chords, X; and X, at a point (=TI and a
function f(z) in D for which

Cx, (£, NCx,(f,0) = 9.

Then we say that ¢ is a chordally ambiguous point of . We prove (Theorem
3) that given an enumerable subset E of I, there exists a bounded holomorphic
function in D for which each point of E is a chordally ambiguous point of f.
Each point ¢ € E then is a point for which ITx(f, ¢) =¢, and f is, in particular,
a normal function (see [13]). We show (Theorem 4), however, that ‘‘most”
points (T, in a metrical as well as in a topological sense, are points at
which IIx(f, ¢) % ¢ for a normal meromorphic function f. We prove (Theorems
5, 6) that if, in addition, the set A(f) is “small” in a metrical sense, and f is
not identically constant, then “‘most” points (€T in a certain sense are such
that actually II.(f,¢) = 2. We also derive (Theorem 7) a sufficient condition
_for a normal holomorphic function f in D to satisfy IT«( f,C,)#«p at an indi-
vidual point (= I ‘ '

The next three theorems (Theorems 8, 9, 10) and corollaries thereto deal
with the existence of functions f with the property that II(f,¢) = (£, =S
for every ¢< I, where S may be certain subsets of 2.

Define the exceptional chordal principal cluster set of fat- ¢TI to be the

set

O = ch(f, ),
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where X ranges over all but at most one of the chords at {. This set is also
of importance in Meier’s work [12]. We prove (Theorem 11) a topological
analogue (and a generalization) of a metrical theorem [5, p. 32, Theorem 6]
involving TI5.

Finally, some problems are posed in the Remarks scattered throughout the
paper.

By a continuum we mean a nonempty, qlosed, connected subset of £; it
may consist of only a single point.

Lemma 1. Let M be a closed subset of 2. Then there exists a sequence of

continua Kn (n=1,2,3, ...) such that M= O,K"'

Proof. The lemma is obviously true if M =¢ or M=82. Suppose that M
is a nonempty proper closed subset of 2. There is no loss of generality in
assuming that - & M. Then there is a neighborhood U of « such that MNT
= ¢, where U denotes the closure of U. Since the distance between M and U
is positive, if &1>0 is sufficiently small the closure of the open spherical cap
with radius ¢ about any point of M as center lies in 2 - U. 1 By the Heine-Borel
theorem, finitely many of these spherical caps suffice fo cover M ; denote them
by D}, D}~ .., Dh. We have

Mc LJD}
i=1

and

UDico-T.
j=1

Now the distance between M and the frontier of \UD} is positive, and so it is
j=1

again possible to find a positive eg<£2'- and a finite number of open sphefical

caps D}, D}, ..., D;, with radii & about points of M as centers such that
na 2
Mc UDj
j=1
and
UD;< UD;j.
=1 =1

Repeating the argument we obtain for every m>1 a set of open spherical caps
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v, DY, ..., Dn, with positive radii e,,,<5:’"T" about points of M as centers
such that
Mc D!
F=1
and

nm___ nme—1

UD"c u DF .
=1 =1

For every natural number m, let Twm= JE}" Then clearly
i=1

T13T23 oo e DT,,,D .

and
(1) M= r)le-

Let Py, P,, ..., Pm, ... be a sequence of parallels of latitude lying in
U and tending monotonically with m to » ®. For each j=1,2, ..., m,

let L} be an open arc of a circle of longitude such that L}cQ— Ty and L}
extends from a point on the frontier of D} to a point of P, if that is possible,
or to a point on the frontier of some D, with 2%j otherwise. Evidently the

set
ny
7u(UL)uP
J=1
is a continuum; call it K;. Now for each j=1,2, ..., n we define L} simi-

larly, except that we use the sets D} and P, instead of D} and P, and further
arrange it so that

(OL3)n(0L) =0,

=1 2=1
which is evidently possible. The set
T, U (UL; ) UP,
3=1

is a continuum which we call K,. Proceeding in this way by induction, we

define the continua K, K>, ..., Ku, .... We claim that M= NK,. How-
m=1
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0
ever, this is obvious in view of (1) and the facts that N\ Py = ¢ and that
m=1

(dL})ﬂ(dL})-—-—d: (r=s),
i=1 =1
and the lemma is proved.

TrEOREM 1. Let M be a closed subset of @ and ¢ be a point of I. Then
there exists a holomorphic function f(z) in D such that TI(f,¢) =M.

Proof. For convenience we may take {=1. Denote by B the circle

z- —21~ =—;—- Consider the enumerably many chords at ¢ with initial points

on B, which satisfy the conditions

n n

arg(z—1)=rc:!:~n—_—'_—1—2— (=0,1,2,...),

and arrange these chords in a sequence
(2) Xl,Xz,...,Xn,....

Between every pair of chords (2) that are neighboring in the geometrical sense,
we describe an arc 4 at 1, having no point in common with any chord (2), so
as to oscillate between the pair of chords X, X' in question in such a way that
any chord at 1 lying between X and X' intersects A4 in every neighborhood of

the point 1. Arrange the enumerably many arcs thus defined in a sequence

(3) Ay Aoy oo oy Any o oo
Let
(4) {ah,a)z,...,(!)n,...)

be the set of complex numbers whose real and imaginary parts are both rational.
For every n, define a continuous function g:4(z) on A4 in such a way that if
the two neighboring chords (2) between which 4. lies are X and X', and if X,
is any chord at 1 lying between X and X', then for every natural number £, in
every neighborhood of the point 1 the chord X, intersects the arc 4. in a point
at which the function g:s(2) assumes the value wi. According to Lemma 1,
there exists a sequence of continua K, Kz, ..., Ku, . .. such that M= fiK,..
For every n, define a continuous function gzn-1(2) on X» in such a way (sne;e [,
p. 1941 that Cy,(gzn-1, 1) = Kn. It follows from [7] that there exists a holo-
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morphic function f(z) in D such that, for every #,

lim( f(z) — g2al2)) =0, }im(f(z) — gan-1(2)) = 0.

1z]-1 z]=1
2ENp 1EXn

This implies that for every z,
Cx(f,1) = Ka,
whereas if X is any chord at 1 not in the sequence (2), then
Cxlf,1)= 2.
Evidently ITx(f, 1) = M, which was to be proved.

TueoreM 2. Let M and N be closed subsets of 2 with M2 N, and let ¢ be a
point of I. Then there exists a meromorphic function f(z) in D such that
(£, ) =M and TI(f, ) = N.

Proof. It will be convenient again to take {=1.. According to Lemma 1

there are sequences of continua K, (#=1,2,3,...) and L, (n=1,2,3,...)
such that |
M=K,
and
) N=0Ln.

Define the circle B and the sequences (2), (3) as in the proof of Theorem 1.

For n=1,2,3, ..., define B:,-, as the lower semicircular arc at 1, and B:s
n
n+1
internally tangent to I at 1. Define a continuous function %.(z) on B, in such

a way [7, p. 1941 that

as the upper semicircular arc at 1, of the circle of diameter 1+ that is

(6) Cplthn, 1) =Ly (n=1,2,3,...),

and suppose that the functions anlz) (n=1, 2, 3 ...) are defined as in the
proof of Theorem 1. Denote by ¢ z) the resulting continuous function defined
on (9) U (Uaa) 0 (U 50)

It is readily seen that there is no loss of generality in assuming that N
does not contain <« as an isolated point (cf. [2, p. 5]). Let vs (2#=1,2,3,...)
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be a sequence of :.complex numbers in N that is everywhere dense in N in the
sense that every isolated point of N occurs infinitely often as a term of the
sequerice. (In case N=¢, the sequence {».) is undefined and the rest of the
construction is unnecessary.) Clearly there will be no harm in our assuming
that the sequence {wn} has been redefined so as to contain the sequence {vn)
as a subsequence, because the resulting sequence is still enumerable and every-
where dense on 2.

Consider X, 4;, and Bi. It follows from the definition of ¢(z) that each
of these arcs contains a point at which ¢ assumes the value »;. Let J; be a
Jordan curve in D that contains these three points but contains no other point
6f ahy of the three arcs in question. Denote by 8, the positive distance between
Jiand T, and by X3, 4}, B; terminal subarcs of X;, 4., B, lying in the annulus
At 1-0:<]z]<1. It follows again from the definition of ¢(z) that each of the
arcs' Xi, 4y, By, Xs, 45, B: contains a point in the annulus 4, at which ¢ assumes
the value ».. We let J; be a Jordan curve in A, that contains these six points
but contains no other point of any of the Six arcs in question. Denote by 4.
the positive distance between /. and I, and by X, ,4;, B; terminal subarcs of
Xs, A3, Bs lying in the annulus A:: 1-0:<|z|<1. We proceed in this fashion
by induction, and then define the skeleton S to be the set

S=(XiU4UB)U (CJZ(X;U A UBD)U (OJn)-

n= n=1

On S we define the function ¢(z) to equal the constant ». everywhere on Jx
and to coincide with ¢(z) at every other point of S. Then it is evident that
¢:is continuous on S. :Consequently {(cf. [2]) there exists a meromorphic
function f(z) in-D such that

(7) lim|f(z) — ¢(2)| =0.

1211
Z_ER

This implies, in 'view of the proof of Theorem 1, that II«(f, 1) =M ;. and (5)
and (6) show that II(f,1)SN. Finally, (7) and the definition of ¢ on the

sequence {/J,} make it clear that for every arc Z at 1,
and hence I1(f,1) =N, which completes the proof.

Remark 1. 1t would be interesting to know whether Theorem 2 remains
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valid if the word ‘“meromorphic” therein is replaced by ‘‘holomorphic”. It is
clear from the proof of Theorem 2 that this is so in case N= ¢.

TuEOREM 3. Let E be an enumerable subset of I.  Then there exists a bounded
holomorphic function f(2) in D such that every point of E is a chordally ambiguous
point of f.

Proof. Let u(¢{) be a bounded nonnegative real-valued function of ¢TI
such that, at every point {,& E, the limits of #({) as ¢ approaches ¢, from
either side exist and are unequal (see, e.g., [14, p. 731). Let ut2) (2 D) be
the Poisson integral with respect to #({). Then [9, p. 62] #(2) is a bounded
harmonic function in D, and [15, p. 131] if ¢» € E, u(z) possesses distinct chordal
limits on any two distinct chords at {,. Let v(z) be a harmonic conjugate of
#(z) in D and set

f(z) = eu(z)fiv(z)

The function f(z) then evidently has the desired properties.

Since the chordal principal cluster set is empty at a chordally ambiguous
point, and since a bounded holomorphic functién is normal, Theorem 3 implies
the existence of normal holomorphic functions f(z) in D for which there exist
points { € I' at which II«(f,¢) =¢. However, although there exists a normal
holomorphic function f(z) in D such that TI(f,¢) =¢ for every ¢TI (see [5,
p. 30, Theorem 3]), in a metrical as wéll as in a topological sense there cannot
be many points (& I" for a normal meromorphic function f(2) in D at which
I1«(f,¢) = ¢, This is shown by the following three theorems, which are im-
mediate consequences of the Lemma, Theorem 2, and Theorem 1 in [3] if we
observe that for the set Il:(f, ¢) considered there we have always II:(f,¢)
IT.(f, ¢

TueoreM 4. If flz) is a normal meromorphic function in D, then there exists
a residual subset Q of I' of measure 2r such that, for every (= Q, we have

L. f, O x 0.

Remark 2. 1t would be interesting to know whether the requirement that
the function be normal may be dropped in Theorem 4, at least for holomorphic
functions (cf. [5, p. 32, Question 71).

TaeoreM 5. If f(2) is a nonconstant normal meromorphic function in D for
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which A(f) is of linear measure zero, then there exists a residual subset R of T
such that, for every (& R, we have TIx(f, () = 2.

THEOREM 6. If f(2) is a nonconstant normal meromorphic function in D for
which A\f) is of harmonic measure zero, then there exists a residual subset S of
T of measure 2 such that, for every (€ S, we have IIx(f,¢) = Q.

TuEOREM 7. Let f(2) be a normal holomorphic function in D, and suppose
that ¢eT. If f is unbounded in some Stolz angle 4 at ¢, then TIx(f, <) = ¢.

Proof. If X is any chord at ¢, then o = Cx(f,¢), otherwise [4, p. 402,
Theorem 4] f would be bounded on 4. Hence, « & [1x(f, ¢).

Remark 3. Let u(2) denote the elliptic modular function in D. If ¢TI
and if ¢ is not one of the enumerably many vertices on I" of the modular
figure, is it true that u is unbounded in some Stolz angle at {? If so, it would
follow from Theorem 7 that, for every ¢ I', we have IT«(u, ¢) — II(xg, ¢) =¢,
which would answer [5, p. 33, Question 8].

TueoreM 8. There exists a holomorphic function f(z) in D such that I1(f,¢)
=TIx(f, &) = Q for every CT.

Proof. This theorem is an immediate consequence of [6, p. 1255, Corollary

2].

THEOREM 9. There exists a nonconstant holomorphic function f(z) in D such
that TI(f, Q) =IIx(f, &) ={} for every (& T.

Proof. Consider the holomorphic function fiz) constructed in [8, Theorem
1]. For every C& T, it is evident that (i) © & C,(f, ¢) for every chord X at ¢,
(ii) that © € C,(f, &) for every arc 4 at ¢, and (iii) that {)=Cx(f,¢) for
some chord X' at ¢; and the conclusion of the theorem follows.

CoroLLARY 1. Let we 2. Then there exists a nonconstant meromorphic

Sunction f12) in D such that T1(f, &) = I1x(f, ¢) ={w) for every C& 1.

Proof. Denote by g(z) the function considered in Theorem 9. If w= o,

4 —_ .3 — _—_—_,L- 1 =._1_..
let f(2) =g(2);. if w=0, let f(2) =z if %0, o, let f(2) “g(z)+°"

Remark 4. In view of Theorem 2, the following problem is suggested by
Corollary 1 and Theorem 8: Let M be a nonempty closed subset of 2. Does
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there exist a meromorphic function f(z) in D such that IT(f, ) =TI.(f, ) =M
for every (e I? Cf. Remark 5.

TuroreMm 10. There exists a nonconstant holomorphic function f(z) in D such
that T1.(f, ¢) = {0} for every (<= T.

Proof. Let K be the circle |z|= —12— and consider the set S of all points

on the circle K of the form

1 ittty
Zz’é‘ei“,.l 2. )™

’

where 0. tit285 . . . is a ternary fraction in which each ¢ is either 0 or 2. For

every ze S, let X; be the chord extending from the point z to the point

C — eti(o. b1 626y )m E’ ]-v
where 0. b1 b:b; . . . is the binary fraction such that, for j=1,2,3, ...,

Tl =2

The set S is a perfect nowhere dense subset of K. Let Ai, A5, As, ... be the
enumerably many open subarcs of K that are complementary to S. Denote by
zm1, Zme the left and right end points of Ax as viewed by an observer at the
origin, and let u, be the midpoint of the arc Apn.

To every point ¢ of I, with the exception of an enumerable everywhere
dense subset V of I, there corresponds exactly one z& S such that X; is a chord
at ¢.

On the other hand, to every point (€ V there correspdnd exactly two
points, zm, zm, in S such that X;,, and X, are chords at {. The region whose

boundary is
AmU Xz, UX,,, U{C}

will be called 4;. Let J,» be an arc at ¢ whose initial point is #» and which,
except for um, lies in 4;; and let J» oscillate between X:,, and Xz, in such a
way that every chord at ¢ that intersects Am also intersects [, infinitely often
in every neighborhood of ¢. Also, for some ¢ & V, let J, be an arc at C that
lies in 4; but does not intersect any J» (m=1). We may choose each [n

(m=0) in such a manner that as z—¢ on Jm, [zl-1 monotonically.
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We now define a function g(z). For every ze S, let g(2) =0 on Xz. For
m=1,273, ..., define glz) =0 on J». Finally, let g(z)=1 on J,.

Denote by T the set of points on which g(z) has thus been defined. Then
it follows from the proof of [7, p. 190, Corollary 2] that there exists a holo-
morphic function f(z) in D such that

Lilr_l;ll(f(z) -g(2))=0

2T
uniformly. Clearly thén, for every { I, there exists at least one chord at ¢
on which f(z)>0 as z—%. Furthermore, it is readily seen that 0« Cx(f, ¢) for
every chord X at ¢. Hence, IIx(f,¢) ={0}. Finally, in view of the definition
of g(z) on Jy, f(2) is not identically constant.

CoroLLARY 2. Let we Q. Then there exists a nonconstant holomorphic
Sfunction f(z) in D such that IIx(f, ¢) = {w} for every ¢ T.

- Proof. This follows from Theorems 9 and 10.

Remark 5. Does there exist a nonconstant holomorphic (or meromorphic)
function fiz) in D such that II«(f,¢) = ¢ for every (e I'? This is related to
the‘following question: If f(2) is holomorphic (or meromorphic) in D, is it
true that [1x(f,¢) %¢ at almost every or at nearly evéry Plessner point of f?
(By almost every (nearly every) point of I” we mean every point of I" with
the exception of a set of Lebesgue measure zero (ﬁrét Baire‘category).) If
the answer to the second question is positive, then Plessner’s theorem or
Meier’s theorem [12, p. 330, Theorem 5] shows that the answer to the first

.question is negative. Cf. Remark 2.

CoroLLARY 3. Let w be a finite complex number. Then there exists a non-
constant holomorphic function f(z) in D such that, for every (& I” with at most
enumerably many exceptions, I1(f, ¢) = IIx(f, ) = {w}.

Proof. In view of the proof of Theorem 10, there exists a nonconstant
holomorphic function f(z) in D such that, for every (T, TI«(f, ¢) = {w} and
there exists at least one chord X at ¢ with Cx(f,¢) ={w}. Corollary 3 now
follows from the ambiguous-point theorem [1, p. 380, Theorem 2].

Remark 6. Does Corollary 3 remain valid if the phrase ‘‘with at most

enumerably many exceptions” is deleted?
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TureoreM 11. Let f(2) be a holomorphic function in D. Then TI5(f, ) x¢
for nearly every S T.

Proof. According to [12, p. 330, Theorem 8], for nearly every point ¢ T,
either TIx(f, ) =C(f,¢) or there is at most one chord at ¢ on which f is
bounded. Hence, since C(f, {) = ¢, either ITx(f, ¢)*¢, which implies that

T(f, O =9, or else o & I15(f, ¢), which again means that IT;(f,¢) =¢.

CorOLLARY 4. Let f(z) be a holomorphic function in D. Then TIF(f,0) *¢
Jfor almost every and nearly every {T.

Proof. This is an immediate consequence of Theorem 11 and [5, p. 32,
Theorem 6].
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