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The restricted quantum double of the
Yangian
Curtis Wendlandt
Abstract. Let g be a complex semisimple Lie algebra with associated Yangian Yh̵g. In the mid-1990s,
Khoroshkin and Tolstoy formulated a conjecture which asserts that the algebra DYh̵g obtained by
doubling the generators of Yh̵g, called the Yangian double, provides a realization of the quantum
double of the Yangian. We provide a uniform proof of this conjecture over C[[h̵]]which is compatible
with the theory of quantized enveloping algebras. As a by-product, we identify the universal
R-matrix of the Yangian with the canonical element defined by the pairing between the Yangian
and its restricted dual.

1 Introduction

This article is a continuation of [41], which studied the Yangian double DYh̵g asso-
ciated with an arbitrary symmetrizable Kac–Moody algebra g through the lens of a
Z-graded algebra homomorphism

Φz ∶ DYh̵g → LYh̵g
⋀

z ⊂ Yh̵g[[z±1]].

Here, LYh̵g
⋀

z is a naturally defined Z-graded C[[h̵]]-algebra, described explicitly in
Lemma 4.5, and Yh̵g is the Yangian of g, defined over C[[h̵]]. This homomorphism,
called the formal shift operator, naturally extends the so-called shift homomorphism
τz on the Yangian, and has a number of remarkable properties. For instance, it induces
a family of isomorphisms between completions of DYh̵g and Yh̵g, realizes Yh̵g as a
degeneration of DYh̵g, and is injective provided g is of finite type or of simply laced
affine type. In addition, it was applied in [18] to characterize the category of finite-
dimensional representations of DYh̵g, for h̵ ∈ C× and g of finite type, as the tensor-
closed Serre subcategory of that of the Yangian consisting of those representations
which have no poles at zero.
In this article, we narrow our focus to the case where g is a finite-dimensional

simple Lie algebra, and apply these results in conjunction with those of the recent
article [17] to prove one of themain conjectures from thework [32] of Khoroshkin and
Tolstoy.Namely, we establish thatDYh̵g, which is defined by doubling the generators of
Yh̵g (see Definition 4.1), is isomorphic to the restricted quantum double of the Yangian
Yh̵g, where the prefix “restricted” indicates that all duality operations are taken so as to
respect the underlying gradings. As a consequence of this result and its proof, we find
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that Φz identifies the universal R-matrix of DYh̵g, which arises from the quantum
double construction, with Drinfeld’s universal R-matrix R(z) ∈ (Yh̵g⊗ Yh̵g)[[z−1]].
Our argument makes essential use of the constructive proof of the existence of R(z)
given in [17], which is independent from Drinfeld’s cohomological construction of
R(z) from the foundational article [6].

1.1 Main results

Let us now sketch our main results in detail. The two results alluded to above form
Parts (1) and (2) of the following theorem.

Theorem I There is a unique Z-graded Hopf algebra structure on DYh̵g over C[[h̵]]
such that the formal shift operator

Φz ∶ DYh̵g ↪ LYh̵g
⋀

z ⊂ Yh̵g[[z±1]]

intertwines the Hopf structures on DYh̵g and Yh̵g. Moreover:
(1) DYh̵g is isomorphic, as a Z-graded Hopf algebra, to the restricted quantum double

of the Yangian Yh̵g.
(2) Under the above identifications, the universal R-matrix R of DYh̵g satisfies

(Φw ⊗Φz)(R) = R(w − z) ∈ Yh̵g
⊗2[w][[z−1]].

This is a combination of the three main results of this article: Theorems 7.5, 8.4,
and 9.6. Part (1) is the statement of our second main result – Theorem 8.4 – and
is precisely the variant of the conjecture from [32, Section 2], which we establish
in the present article. Our approach to proving it is, in a certain sense, dual to the
strategy outlined in [32], which was brought to fruition for g = sl2. In more detail, our
argument hinges on the fact, proven in Proposition 7.1, that the universal R-matrix
R(z) of the Yangian gives rise to a C[[h̵]]-algebra homomorphism

Φ ‹z ∶ Ẏh̵g
⋆ → Yh̵g[[z−1]]

which is compatible with the Hopf algebra structure on Yh̵g and the co-opposite Hopf
structure on the dual Ẏh̵g

⋆ of the Yangian Yh̵g taken in the category of Z-graded
quantized enveloping algebras. That is, Ẏh̵g

⋆ is the restricted (or graded) dual of the
Drinfeld–Gavarini [7, 19] subalgebra Ẏh̵g ⊂ Yh̵g, defined in Section 5, and provides
a homogeneous quantization of the restricted dual t−1g[t−1] to the N-graded Lie
bialgebra g[t], as we prove in detail in Section 6 (see Theorem 6.7).
Using the construction of R(z) given in [17] and properties of Φz established in

[41], we deduce that the image of Ẏh̵g
⋆ under Φ ‹z is contained in the image of Φz . We

may thus compose Φ ‹z with Φ−1
z to obtain a C[[h̵]]-algebra homomorphism

ı̌ ∶= Φ−1
z ○Φ ‹z ∶ Yh̵g

‹ → DYh̵g,

where Yh̵g

‹ ∶= (Ẏh̵g
⋆)cop. In our first main result –Theorem 7.5 – we show that there is

a unique Z-graded Hopf algebra structure on DYh̵g for which both ı̌ and the natural
inclusion ı ∶ Yh̵g → DYh̵g are injective homomorphisms of gradedHopf algebras.This
is exactly the Hopf structure alluded to in the statement of Theorem I, and is such
that DYh̵g provides a homogeneous quantization of the restricted Drinfeld double
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772 C. Wendlandt

g[t±1] of g[t]. UsingTheorem 7.5, it is then not difficult to establish Part (1) above (i.e.,
Theorem 8.4) using the double cross-product realization of the restricted quantum
double (see Section 8.2).
Our third and final main result, Theorem 9.6, is a strengthening of Part (2) above.

Indeed, it outputs the Gauss decomposition for R while identifying each factor
appearing in this decomposition with the factors R±(z) and R0(z) of R(z), which
were studied in detail in [16, 17].

1.2 Motivation

Part (2) of Theorem I implies that R(z) can be recovered from the canonical element
defined by the pairing between Yh̵g and its restricted dual Yh̵g

⋆ ⊂ DYh̵g by applying
the injection Φ�z to its second tensor factor:

(1 ⊗Φ�z)(R) = R(z) ∈ Yh̵g
⊗2[[z−1]].

Here, we refer the reader toTheorem 9.6 for further details, which takes into account
the topological subtleties surrounding this statement. Obtaining this interpretation
of R(z) is in fact our original motivation for addressing the conjecture of [32,
Section 2], and brings the theory surrounding the universal R-matrix of the Yangian
to a more equal footing with that of the (extended, untwisted) quantum affine algebra
Uq(g

⋀) and the quantum loop algebraUq(Lg). The differences are, however, still quite
pronounced. Indeed, Uq(g

⋀) is itself nearly the quantum double of its (quantum Kac–
Moody) Borel subalgebra Uq(b+), and its universal R-matrix R lies in a completion
of Uq(b+) ⊗ Uq(b−). One then recovers the universal R-matrix RLg of Uq(Lg) as a
truncation ofR, and its z-dependent analogue is

RLg(z) ∶= (1 ⊗ Dz−1)(RLg) ∈ Uq(Lg)⊗2[[z]],
where Dz is given by theZ-grading onUq(Lg) (see [10, Section 9.4] or [14, Section 4],
for instance). Crucially,R can be constructed by computing dual bases with respect to
the pairing between Uq(b+) and Uq(b−), and was done explicitly by Damiani in [5].
In contrast, the Yangian Yh̵g is not of Kac–Moody type and does not arise as a Hopf
algebra from the quantum double construction applied to any analogue of Uq(b+).1
In addition, R(z) andRLg(z) exhibit significantly different analytic behaviour when
evaluated on finite-dimensional representations [17]. Nonetheless, the results of this
article further cement that there are very strong parallels to be drawn between the two
pictures. Indeed, one obtains theYh̵g-analogue of the above story by replacingUq(b+)
by Yh̵g,Uq(Lg) by the Yangian double DYh̵g, and Dz by the formal shift operator Φz .
It should be noted that it appears that this realization of R(z) has been antici-

pated for some time in the mathematical physics community; see, for instance, [40,
Section 5], which considers its super-analogue. The direction taken therein is,
however, based on both the conjecture from [32, Section 2] at the heart of the
present article, and on the infinite product formulas for the factors R± of R given

1We refer the reader to [42, Section 4] for a related construction of Y̵hg with respect to its deformed
Drinfeld coproduct, which does not endow Y̵hg with the structure of a Hopf algebra.
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[32, Section 5], which remain conjectural. Somemore discussion on this point is given
in Section 9.4.

1.3 Remarks

Let us now give a few brief remarks. First, it is essential that the Yangian double
DYh̵g is defined as a topological algebra over C[[h̵]] for the above results to hold true.
To expand on this, DYh̵g can be realized as the h̵-adic completion of a Z-graded
C[h̵]-algebra DYh̵g

j defined by generators and relations (see Remark 4.2). One
can further specialize h̵ to any nonzero complex number ζ to obtain a C-algebra
DYζg = DYh̵g

j/(h̵ − ζ)DYh̵g
j, whose category of finite-dimensional representations

was characterized in terms of that of the corresponding Yangian Yζ(g) in [18].Though
this category has a tensor structure which corresponds to theHopf structure onDYh̵g,
it is important to note thatDYζg is not a Hopf algebra overC, and in particular it does
not coincide with the (restricted) quantum double of Yζ(g) defined in any reasonable
sense.
That being said,DYζg admits a naturalZ-filtration corresponding to theZ-grading

on DYh̵g, and the expectation is that the formal completion of DYζg with respect to
this filtration coincides with the (restricted) quantum double of Yζ(g) taken in the
appropriate category of Z-filtered, complete topological Hopf algebras. This is in fact
the version of Part (2) of Theorem I conjectured in [32], and is consistent with the
situation that transpires in type A for the R-matrix realization of the Yangian, which
has been developed in great detail in the recent article [38]. For our purposes, it ismore
natural to work over C[[h̵]] within the framework of quantized enveloping algebras
first developed by Drinfeld [7], where we may study DYh̵g from the point of view
of quantization of Lie bialgebras. At the same time, many of our results are “global”
(in the sense of [20]) and admit an interpretation over bothC[h̵] andC, including the
realization of R(z) provided byTheorem 9.6 (see Appendix A).

1.4 Outline

The article is written so as to provide a complete picture, accessible to non-experts,
where possible. For this reason, we take great care to lay the foundation needed to
state and prove the results outlined in Section 1.1. The first three sections – Sections
2–4 – are intended to serve a preliminary role: Section 2 surveys the theory of Z-
graded topological C[[h̵]]-modules, algebras, and Hopf algebras, including homo-
geneous quantizations of graded Lie bialgebras. This theory plays a prominent role
throughout the article. In Section 3, we review the definition and main properties of
the Yangian Yh̵g, defined both over C[h̵] and C[[h̵]]. Notably, this includes a review
of the construction of the universal R-matrix R(z) carried out in [17]. Section 4 is
focused on the Yangian double DYh̵g and, in particular, on reviewing the main results
of [41] (see Theorems 4.6 and 4.8).
In Sections 5 and 6, we study theDrinfeld–Gavarini subalgebra Ẏh̵g of the Yangian,

itsC[h̵]-form, and its restricted dual Ẏh̵g
⋆ in detail.This includes a detailed proof that

Ẏh̵g
⋆ provides a homogeneous quantization of t−1g[t−1], equipped with the Yangian

Lie bialgebra structure (see Definition 6.1 andTheorem 6.7).
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The last three sections of the article contain its threemain results:Theorems 7.5, 8.4,
and 9.6. We refer the reader to Section 1.1 above, where these are outlined in detail.
Finally, in Appendix Appendix A, we explain how to translate the construction of
the universal R-matrix given in [17] for h̵ ∈ C× to the setting of the present article,
in which h̵ is a formal variable (see Proposition A.1, which appears in Section 3.6 as
Theorem 3.8).

2 Homogeneous quantizations

2.1 Topological modules

Recall that aC[[h̵]]-moduleM is separated if the intersection of the family of submod-
ules h̵nM is trivial, and it is complete if the natural C[[h̵]]-linear map

M → lim←

n
(M/h̵nM)

is surjective, where the inverse limit is taken over the set N of nonnegative integers.
In particular, M is both separated and complete if and only if the above map is
an isomorphism. If M is separated, complete, and torsion-free as a C[[h̵]]-module,
then it is said to be topologically free. This is equivalent to the existence of a C[[h̵]]-
module isomorphismM ≅ V[[h̵]] for a complex vector space V. Such an isomorphism
is specified by a choice of complement V ⊂ M to h̵M:

M = V ⊕ h̵M.

More generally, if M is any C[[h̵]]-module, then the space V = M/h̵M is called the
semiclassical limit of M. Similarly, the semiclassical limit of a C[[h̵]]-linear map
τ ∶ M → N is the C-linear map τ̄ ∶ M/h̵M → N/h̵N uniquely determined by the com-
mutativity of the diagram

M N

M/h̵M N/h̵N.

τ

τ̄

As the following elementary result illustrates, the semiclassical limit of a C[[h̵]]-
module homomorphism encodes important information about the original map.

Lemma 2.1 Let M, N, τ, and τ̄ be as above.
(1) Suppose that M is separated, N is torsion-free, and τ̄ is injective. Then τ is injective.
(2) Suppose that M is complete, N is separated, and τ̄ is surjective. Then τ is surjective.

The topological tensor productM⊗⋀N of twoC[[h̵]]-modulesM andN is the h̵-adic
completion of the algebraic tensor productM⊗C[[h̵]] N:

M⊗⋀N = lim←

n
(M⊗C[[h̵]] N)/h̵n(M⊗C[[h̵]] N).

If M and N are topologically free with M ≅ V[[h̵]] and N ≅ W[[h̵]], then M⊗⋀N is
topologically free and isomorphic to (V ⊗C W)[[h̵]].
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In this article, we shall say that M is a topological module over C[[h̵]] if M is a
C[[h̵]]-module which is both separated and complete. For any such module, we have

C[[h̵]]⊗⋀M ≅ M ≅ M⊗⋀C[[h̵]].

Similarly, by a topological algebraA overC[[h̵]], we shall alwaysmean thatA is aC[[h̵]]-
algebra which is both separated and complete as a module over C[[h̵]]. In particular,
the multiplicationm can be viewed as a C[[h̵]]-linear map

m ∶ A⊗⋀A → A.

A topological Hopf algebra H over C[[h̵]] is a topological C[[h̵]]-algebra equipped with
a counit ε ∶ H → C[[h̵]], a coproduct Δ ∶ H → H⊗⋀H, and an antipode S ∶ H → Hwhich
collectively satisfy the axioms of a Hopf algebra with all tensor products given by the
topological tensor product⊗⋀. By modifying these definitions in the expected way, one
obtains the notion of a topological coalgebra and bialgebra over C[[h̵]].
IfM andN are topologicalC[[h̵]]-modules andN ≅ W[[h̵]] is topologically free, then

the space ofC[[h̵]]-module homomorphisms HomC[[h̵]](M,N) is separated, complete,
and torsion-free. If, in addition,M is topologically free withM ≅ V[[h̵]], then one has

HomC[[h̵]](M,N) ≅ HomC(V,W)[[h̵]].

In particular, theC[[h̵]]-linear dualM∗ ∶= HomC[[h̵]](M,C[[h̵]]) of a topologically free
C[[h̵]]-moduleM ≅ V[[h̵]] satisfiesM∗ ≅ V∗[[h̵]].

2.2 Graded topological modules

Let us now turn toward the Z-graded analogues of the above definitions. Henceforth,
we view C[h̵] = ⊕k∈NCh̵k as an N-graded ring. For brevity, we shall denote its
N-graded quotient C[h̵]/h̵nC[h̵] by Kn , for each n ∈ N.

Definition 2.2 We say that a topological C[[h̵]]-module M is Z-graded if, for each
n ∈ N, M/h̵nM = ⊕k∈Z(M/h̵nM)k is a Z-graded Kn-module and the natural homo-
morphism

M/h̵n+1M → M/h̵nM

is Z-graded. If (M/h̵nM)k is trivial for k < 0, we say thatM is N-graded.

A C[[h̵]]-module homomorphism M → N between Z-graded topological C[[h̵]]-
modulesM and N is said to be Z-graded if the induced morphisms

M/h̵nM → N/h̵nN

are allZ-graded.More generally, it isZ-graded of degree a ∈ Z if each of these induced
morphisms is homogeneous of degree a.
The category of Z-graded topological modules is closed under the tensor

product ⊗⋀. Indeed, this follows from the elementary observation that, given two
C[[h̵]]-modulesM and N, one has

(M⊗⋀N)/h̵n(M⊗⋀N) ≅ (M⊗C[[h̵]] N)/h̵n(M⊗C[[h̵]] N) ≅ M/h̵nM⊗Kn N/h̵nN,
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776 C. Wendlandt

which can be equipped with the standard tensor product grading, providedM/h̵nM
and N/h̵nN are both Z-graded.

Definition 2.3 A topological algebra A is said to be Z-graded if it is graded as a
topological C[[h̵]]-module and the multiplication map

m ∶ A⊗⋀A → A

is a Z-graded homomorphism. Similarly, a topological Hopf algebra H is Z-graded if
it is Z-graded as a topological algebra and the structure maps

Δ ∶ H → H⊗⋀H, ε ∶ H → C[[h̵]], S ∶ H → H

are all Z-graded C[[h̵]]-module homomorphisms. Equivalently, a topological algebra
orHopf algebraH isZ-graded if the conditions of Definition 2.2 hold and eachH/h̵nH
is a Z-graded algebra or Hopf algebra over Kn , respectively.

Of course, one also has the notion of a Z-graded topological coalgebra and bialge-
bra, which are defined by making the obvious modifications to the above definition.
The prototypical example of a Z-graded topological module over C[[h̵]] is

M = V[[h̵]] where V = ⊕k∈ZVk is a Z-graded complex vector space. In this case, one
has

M/h̵nM ≅ V[h̵]/h̵nV[h̵],

which is naturally graded, as V[h̵] is graded with V[h̵]k = ⊕n≥0 h̵nVk−n , and h̵nV[h̵]
is a graded submodule.The assertion thatM isZ-gradedmay be recaptured as follows.
For each k ∈ Z, set

Mk ∶= lim←

n

V[h̵]k/h̵nV[h̵]k−n ≅ ∏
n∈N

h̵nVk−n ⊂ V[[h̵]].

Then eachMk is a closed subspace ofM satisfyingMk/h̵nMk−n ≅ (M/h̵nM)k , andM
contains theZ-gradedC[h̵]-module⊕k∈ZMk as a denseC[h̵]-submodule.Moreover,
the h̵-adic topology on this submodule coincides with the subspace topology, so M
is the h̵-adic completion of ⊕k∈ZMk . If, in addition, V is N-graded, then ⊕k∈ZMk
coincides with the polynomial space V[h̵] ⊂ V[[h̵]].
The below lemma provides an equivalent characterization of the definition of a

Z-graded topological module and algebra which generalizes this picture.

Lemma 2.4 A topologicalC[[h̵]]-moduleM isZ-graded if and only if it admits a dense,
Z-graded C[h̵]-submodule

MZ = ⊕
k∈Z

Mk ⊂ M

with each Mk a closed subspace of M and h̵nM ∩MZ = h̵nMZ for all n ∈ N.
If, in addition, M has the structure of a topological algebra, then it is Z-graded if and

only if the above conditions hold and MZ is a Z-graded C[h̵]-subalgebra of M.

If M is a Z-graded topological module, then the kth component Mk of MZ from
Lemma 2.4 is uniquely determined and recovered as the inverse limit
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Mk ∶= lim←

n
(M/h̵nM)k ⊂ lim←


n
M/h̵nM = M.(2.1)

Moreover, one has (M/h̵nM)k ≅ Mk/h̵nMk−n for all n ∈ N and k ∈ Z.
We further observe that, for each k ∈ Z, the system of linear projections πn ,k ∶

M/h̵nM → (M/h̵nM)k gives rise to a projection

πk ∶= lim←

n

πn ,k ∶ M → Mk

which restricts to the projection of MZ onto its kth homogeneous component. In
particular, a C[[h̵]]-linear map τ ∶ M → N between Z-graded topological modules is
graded if and only if πN

k ○ τ = τ ○ πM
k for each k ∈ Z.

We conclude this preliminary subsection with two corollaries of the above discus-
sion.The first shows that any topologically freeZ-gradedC[[h̵]]-module is of the form
described above Lemma 2.4.

Corollary 2.5 Suppose M is a Z-graded topologically free module over C[[h̵]], and let
V denote the Z-graded complex vector space M/h̵M = ⊕k∈ZMk/h̵Mk−1. Then

M ≅ V[[h̵]]

as a Z-graded topological C[[h̵]]-module. In particular, one has

MZ = ⊕
k∈Z

Mk ≅ ⊕
k∈Z

V[[h̵]]k ⊂ V[[h̵]], where V[[h̵]]k = ∏
n∈N

h̵nVk−n .

Proof This is a refinement of the elementary result, alluded to at the beginning
of the section, that M ≅ V[[h̵]] as a C[[h̵]]-module (see [26, Proposition XVI.2.4],
for instance). In more detail, an isomorphism of Z-graded topological modules
M ≅ V[[h̵]] is specified by choosing, for each k ∈ Z, a complement Vk ⊂ Mk to h̵Mk−1
inMk :

Mk = Vk ⊕ h̵Mk−1 .

Setting V ∶= ⊕k∈ZVk ⊂ MZ, we then have

V ≅ MZ/h̵MZ = M/h̵M,
Mk/h̵nMk−n ≅ Vk ⊕ h̵Vk−1 ⊕ ⋅ ⋅ ⋅ ⊕ h̵n−1Vk−n+1 ≅ V[h̵]k/h̵nV[h̵]k−n ,
M/h̵nM ≅ ⊕

k∈Z
Mk/h̵nMk−n ≅ ⊕

k∈Z
V[h̵]k/h̵nV[h̵]k−n = V[[h̵]]/h̵nV[[h̵]],

where the third line is an identification of Z-graded modules. Here, we note that
the second line follows from the definition of Vk and that M is a torsion-free
C[[h̵]]-module. Taking inverse limits, one finds thatM ≅ V[[h̵]] as Z-graded topologi-
cal C[[h̵]]-modules. ∎

Let us now shift our attention to the case where Ṁ = ⊕k∈N Ṁk is an N-graded
C[h̵]-module. Any such module is automatically separated, and so embeds into its
h̵-adic completion

M = lim←

n
(Ṁ/h̵nṀ),
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778 C. Wendlandt

which is an N-graded topological C[[h̵]]-module. Moreover, if Ṁ is a torsion-free
C[h̵]-module, then M is topologically free as a C[[h̵]]-module. Since Ṁk−n is trivial
for n > k, the submoduleMk ofM (see (2.1)) coincides with Ṁk and so, in the notation
of Lemma 2.4, one has Ṁ = MN. These observations, coupled with Corollary 2.5 and
that V[[h̵]]k = V[h̵]k when V is N-graded, yield the following.

Corollary 2.6 Let Ṁ be an N-graded, torsion-free C[h̵]-module. Then M is a topolog-
ically free N-graded C[[h̵]]-module. Moreover, we have

Ṁk = lim←

n
(Ṁk/h̵nṀk−n) = Mk for all k ∈ N.

Consequently, Ṁ coincides with MN and there is an isomorphism of N-graded C[h̵]-
modules

Ṁ ≅ V[h̵] = ⊕
k∈N

V[h̵]k , where V ∶= Ṁ/h̵Ṁ.

Note that if Ṁ is an N-graded C[h̵]-algebra or Hopf algebra, thenM is automati-
cally an N-graded topological algebra or Hopf algebra, respectively.

2.3 The restricted dual

For a given Z-graded complex vector space V = ⊕n Vn , we let V⋆ = ⊕n(V⋆)n ⊂ V∗

denote the restricted, or graded, dual of V, where

(V⋆)n = { f ∈ V∗ ∶ f (Vm) ⊂ Cm+n} ≅ (V−n)∗

and C is given the trivial grading with C0 = C and Cm = {0} for m ≠ 0. One can
similarly define the restricted dualM⋆ ⊂ M∗ in the category of Z-graded topological
C[[h̵]]-modules. In this subsection, we will recall some properties of this duality
operation in theN-graded setting which will be applied to construct the dual Yangian
in Section 6.
Suppose that M is an N-graded, topological C[[h̵]]-module with N-graded

C[h̵]-submoduleMN = ⊕k∈NMk as in Lemma 2.4. For each n ∈ N, let Jk denote the
h̵-adic completion of the ideal⊕k≥n Mk of MN. The gradation topology on M is the
topology associated with the descending filtration

M = J0 ⊃ J1 ⊃ ⋅ ⋅ ⋅ ⊃ Jn ⊃ ⋅ ⋅ ⋅ .

Equipped with this terminology, we may make the following definition.

Definition 2.7 The restricted dualM⋆ is defined to be the C[[h̵]]-submodule ofM∗
consisting of those f which are continuous with respect to the gradation topology:

M⋆ ∶= { f ∈ M∗ ∶ f (Jk) ⊂ h̵nC[[h̵]] ∀ n ∈ N and k ≫ 0}.

The restricted dual of any N-graded topological C[[h̵]]-moduleM is easily seen to
be separated, complete, and torsion-free. Let us now see that it admits a Z-graded
structure.
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For each a ∈ Z, let Homa
C[[h̵]](M,C[[h̵]]) ⊂ M⋆ denote the (closed) subspace

consisting of Z-graded C[[h̵]]-module homomorphisms f ∶ M → C[[h̵]] of degree a.
Equivalently,

Homa
C[[h̵]](M,C[[h̵]]) = { f ∈ M∗ ∶ f (Mk) ⊂ C[h̵]k+a ∀ k ∈ N}.

Then the sum∑a∈ZHoma
C[[h̵]](M,C[[h̵]]) is direct and the space

(M⋆)Z ∶= ⊕
a∈Z
Homa

C[[h̵]](M,C[[h̵]]) ⊂ M⋆

is a Z-graded C[h̵]-submodule ofM⋆.

Remark 2.8 Under the natural identification of M∗ with HomC[h̵](MN ,C[[h̵]]),
one has Homa

C[[h̵]](M,C[[h̵]]) ≅ Homa
C[h̵](MN ,C[h̵]) and (M⋆)Z coincides with the

graded dual (MN)⋆ ⊂ HomC[h̵](MN ,C[h̵]) ofMN taken in the category of Z-graded
C[h̵]-modules.

It is not difficult to prove that, for each n ∈ N, one has

h̵nM⋆ ∩ (M⋆)Z = h̵n(M⋆)Z and (M⋆)Z/h̵n(M⋆)Z ≅ M⋆/h̵nM⋆ .

Consequently, M⋆ coincides with the h̵-adic completion of (M⋆)Z and, by Lemma
2.4, is a Z-graded topological C[[h̵]]-module. We note that, although Definition 2.7
is strictly for an N-graded C[[h̵]]-moduleM, one can define the restricted dual in the
Z-graded setting precisely as the h̵-adic completion of the space (M⋆)Z.
If M is itself topologically free with M ≅ V[[h̵]] for a graded vector space

V = ⊕k∈NVn , then the natural homomorphismM⋆/h̵M⋆ → V⋆ is an isomorphism of
graded vector spaces. AsM⋆ is topologically free, Corollary 2.5 yields the following.

Corollary 2.9 Suppose thatM is a topologically freeN-gradedC[[h̵]]-module withM ≅
V[[h̵]] for a graded vector space V = ⊕k∈NVk . Then M⋆ is isomorphic to V⋆[[h̵]] as a Z-
graded topological C[[h̵]]-module.

We shall say that a topologically free N-graded C[[h̵]]-module is of finite type if
the graded components Vk of V ≅ M/h̵M from the above corollary are all finite-
dimensional complex vector spaces.
Now suppose that H is an N-graded topological Hopf algebra with coproduct Δ,

counit ε, antipode S, productm, and unit ι. Since these are allN-gradedC[[h̵]]-module
homomorphisms and C[[h̵]]⋆ ≅ C[[h̵]], taking transposes yields Z-graded maps

Δt ∶ (H⊗⋀H)⋆ → H⋆ , εt ∶ C[[h̵]] → H⋆ , S t ∶ H⋆ → H⋆

mt ∶ H⋆ → (H⊗⋀H)⋆ , ι t ∶ H⋆ → C[[h̵]]

which formally satisfy the axioms of a Hopf algebra. In particular, H⋆ is a topological
C[[h̵]]-algebra with unit εt and product given by restricting Δt . It is not, in general,
a topological coalgebra (or Hopf algebra) as mt does not necessarily have image in
H⋆⊗⋀H⋆. However, this is the case when H is of finite type, as we now explain.
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In general, for any two N-graded topological C[[h̵]]-modules M and N, there is a
canonical injective homomorphism of Z-graded topological C[[h̵]]-modules

γ ∶ M⋆⊗⋀N⋆ ↪ (M⊗⋀N)⋆ .

If M and N are topologically free with M ≅ V[[h̵]] and N ≅ W[[h̵]], then the
semiclassical limit of γ is the natural inclusion V⋆ ⊗C W⋆ ↪ (V ⊗C W)⋆ which is an
isomorphism provided the graded components of V orW are all finite-dimensional.
This observation, together with Lemma 2.1, implies the following proposition.

Proposition 2.10 Let M and N be topologically free, N-graded C[[h̵]]-modules and
suppose that either M or N is of finite type. Then γ is an isomorphism of Z-graded
topological C[[h̵]]-modules

γ ∶ M⋆⊗⋀N⋆ ∼
→ (M⊗⋀N)⋆.

Consequently, if H is a topologically free N-graded Hopf algebra of finite type, then H⋆

is a Z-graded topological Hopf algebra over C[[h̵]].

Remark 2.11 Henceforth, we shall simply write ⊗ for the topological tensor
product ⊗⋀. More generally, the use of the symbol ⊗ will always be clear from context
and will be clarified should any ambiguity arise.

2.4 Homogeneous quantizations

Let us now recall some basic constructions from the theory of quantum groups,
adapted to the graded setting.
A topological Hopf algebra H over C[[h̵]] is called a quantized enveloping algebra

if it is a flat deformation of the universal enveloping algebra U(b) of a complex Lie
algebra b as a Hopf algebra. Equivalently:

• The semiclassical limit H/h̵H of H is isomorphic to U(b) as a Hopf algebra.
• H is topologically free, and thus isomorphic to U(b)[[h̵]] as a C[[h̵]]-module.
If H = U h̵b is a quantized enveloping algebra with semiclassical limit U(b), then b

inherits fromU h̵b the structure of a Lie bialgebra with cocommutator δb ∶ b → b ∧ b ⊂
U(b)⊗2 given by the formula

δb(x) ∶= Δ(ẋ) − Δop(ẋ)
h̵

mod h̵U h̵b⊗ U h̵b ∀ x ∈ b,(2.2)

where ẋ ∈ U h̵b is any lift of x. We refer the reader to Propositions 6.2.3 and 6.2.7 of [4]
for a detailed discussion of this point.
Conversely, if (b, δb) is a Lie bialgebra, then a quantization of (b, δb) is a quantized

enveloping algebraU h̵bwith semiclassical limitU(b), such that δb coincides with the
cocommutator (2.2).
Now let us shift our attention to the graded setting. In what follows, we will say

that a Lie bialgebra (b, δb) is Z-graded if b = ⊕k∈Z bk is Z-graded as a Lie algebra,
and the cocommutator δb is a graded linear map of degree d, for some d ∈ Z. That is,
δb ∈ Homd

C(b, b⊗2).
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Definition 2.12 Let b be a Z-graded complex Lie bialgebra with cocommutator δb.
Then a homogeneous quantization of (b, δb) is a topological Hopf algebra U h̵b
satisfying:

(1) U h̵b is a quantization of (b, δb).
(2) U h̵b is Z-graded as a topological Hopf algebra, and the natural inclusion

b ↪ U(b) ≅ U h̵b/h̵U h̵b

is a Z-graded linear map.

Note that the last condition guarantees that the grading on U(b) inherited from
U h̵b coincides with that induced by the Lie algebra grading on b. In addition, since
the coproduct Δ is homogeneous of degree zero, (2.2) implies that the cocommutator
δb must be of degree d = −1.
We shall employ similar terminology to the above in the N-graded setting over

C[h̵]. Namely, if (b, δb) is an N-graded Lie bialgebra, then a homogeneous quantiza-
tion of (b, δb) over C[h̵] is a spaceUh̵b such that:

(1) Uh̵b is an N-graded torsion-free Hopf algebra over C[h̵].
(2) The semiclassical limit Uh̵b/h̵Uh̵b is isomorphic to U(b) as a graded Hopf

algebra, with the cocommutator δb given by (2.2).

Note that, by Corollary 2.6, such a quantizationUh̵b is isomorphic to U(b)[h̵] as an
N-gradedC[h̵]-module, and its h̵-adic completion is a homogeneous quantization of
b over C[[h̵]].

2.5 The Yangian Manin triple

The most well-known, nontrivial, example of a homogeneous quantization is the
Yangian Yh̵g associated with an arbitrary simple Lie algebra g over the complex
numbers. In this article, we shall encounter two other, closely related, examples: the
dual Yangian Ẏh̵g

⋆ and the Yangian double DYh̵g. Collectively, these three quantum
groups arise as a quantization of a restrictedManin triple structure on (t, t+, t−), where

t ∶= g[t±1], t+ ∶= g[t], and t− ∶= t−1
g[t−1].

In this section, we briefly recall how this structure is defined.
The Lie algebra t = g[t±1] comes equipped with a nondegenerate, invariant bilinear

form ⟨ , ⟩ ∶ t⊗ t → C given by

⟨ f (t), g(s)⟩ ∶= −Rest( f (t), g(t)),(2.3)

where ( , ) is a fixed symmetric, invariant, and nondegenerate bilinear form on g,
which has been extended to a C[t±1]-valued bilinear form on t by C[t±1]-linearity.
The above form is a degree 1 element of the restricted dual (t⊗ t)⋆, as defined in the
beginning of Section 2.3. Namely, it vanishes on

(t⊗ t)k = ⊕
a+b=k

ta ⊗ tb
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for any k ≠ −1, and restricts to a nondegenerate pairing ta ⊗ t−a−1 → C for any a ∈ Z.
Moreover, one has the polarization

t = t+ ⊕ t− for t+ = g[t], t− = t−1
g[t−1]

with t+ and t− isotropic, graded Lie subalgebras of t, with gradings concentrated in
nonnegative and nonpositive degrees, respectively. Said in fewer words, this collection
of data gives rise to a restricted Manin triple (t, t+ , t−) (see Sections 5.2 and 5.3 of [2]).
Since each homogeneous component tk of t is finite-dimensional, there are dual

Lie bialgebra structures on t+ and t−, obtained as follows.The residue form (2.3) yields
isomorphisms of graded vector spaces

Res± ∶ t± ∼
→ t
⋆
∓

which are homogeneous of degree 1: Res±(t±,n) = (t⋆∓)n+1 for all n ∈ Z. Dualizing Lie
brackets then gives rise to honest, degree −1, Lie bialgebra cobrackets

δ± = [, ]t
t∓

∶ t± → t± ∧ t± .

Observe that the Casimir tensor Ωg ∈ (g⊗ g)g satisfies

([x ⊗ 1, Ωg], y ⊗ z)g⊗g = −(x , [y, z]) ∀ x , y, z ∈ g,

where (, )g⊗g = (, ) ⊗ (, ) ○ (2 3) ∶ g⊗ g⊗ g⊗ g → C. It follows readily from this
observation and the definition of Res± that δ+ and δ− are given explicitly on each
graded component by

δ+(xtk) = ∑
a+b=k−1

[x ⊗ 1, Ωg]tasb ∈ g[t] ⊗ g[s] = t+ ⊗ t+,

δ−(xt−k−1) = ∑
a+b=k

[x ⊗ 1, Ωg]t−a−1s−b−1 ∈ t−1
g[t−1] ⊗ s−1

g[s−1] = t− ⊗ t− ,

where we have used the natural identification of (g⊗ g)[t±1 , s±1]with g[t±1] ⊗ g[s±1],
and a, b take values in N. Since

(z − w)
k
∑
a=0

zawk−a = zk+1 − wk+1 ,

the linear map δ ∶= δ+ ⊕ (−δ−) ∶ t → t ∧ t is given by the formula

δ( f )(t, s) = [ f (t) ⊗ 1 + 1⊗ f (s), Ωg

t − s
] ∈ g[t±1] ⊗ g[s±1] ∀ f (t) ∈ g[t±1]

and defines a Lie bialgebra structure on the Lie algebra t such that (t+ , δ+) and
(t− ,−δ−) are Lie sub-bialgebras. This construction identifies t with the restricted
Drinfeld double D(t+) of the N-graded Lie bialgebra t+, as defined in [2, Section 5.4],
for instance.
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3 The Yangian revisited

3.1 The Lie algebra g

We henceforth fix g to be a finite-dimensional simple Lie algebra over the complex
numbers, with invariant form ( , ) as in Section 2.5. Let h ⊂ g be a Cartan subalgebra,
{α i}i∈I ⊂ h∗ a basis of simple roots, and {α∨i }i∈I the set of simple coroots, so that
α j(α∨i ) = a i j = 2(α i , α j)/(α i , α i) are the entries of the Cartan matrix A = (a i j)i , j∈I
of g. Let Δ+ ⊂ h∗ be the associated set of positive roots, and let Q = ⊕i∈I Zα i and
Q+ = ⊕i∈I Nα i denote the root lattice and its positive cone, respectively, where we
recall that N denotes the set of nonnegative integers. Set

d i j =
(α i , α j)
2

and d i = d i i ∀ i , j ∈ I.

We normalize ( , ), if necessary, so that the square length of a short root is 2.
In particular, we then have {d i}i∈I ⊂ {1, 2, 3}. Let {e i , f i}i∈I denote the Chevalley
generators of g, as in [24, Section 1.3], and set

h i = d i α∨i , x+i =
√

d i e i , x−i =
√

d i f i ∀ i ∈ I.

These normalized generators satisfy (x+i , x−i ) = 1 and h i = [x+i , x−i ] for all i ∈ I.

3.2 The Yangian

Wenow recall the definition of the YangianYh̵(g). Let Sm denote the symmetric group
on {1, . . . ,m}.

Definition 3.1 The Yangian Yh̵(g) is the unital associative C[h̵]-algebra generated
by {x±ir , h ir}i∈I,r∈N, subject to the following relations for i , j ∈ I and r, s ∈ N:

[h ir , h js] = 0,(3.1)

[h i0 , x±js] = ±2d i jx±js ,(3.2)

[x+ir , x−js] = δ i j h i ,r+s ,(3.3)

[h i ,r+1 , x±js] − [h ir , x±j,s+1] = ±h̵d i j(h ir x±js + x±js h ir),(3.4)

[x±i ,r+1 , x±js] − [x±ir , x±j,s+1] = ±h̵d i j(x±ir x±js + x±js x±ir),(3.5)

∑
π∈Sm

[x±i ,rπ(1)
, [x±i ,rπ(2)

, ⋅ ⋅ ⋅ , [x±i ,rπ(m)
, x±js] ⋅ ⋅ ⋅ ]] = 0,(3.6)

where in the last relation i ≠ j, m = 1 − a i j , and r1 , . . . , rm ∈ N.

The Yangian Yh̵(g) is an N-graded C[h̵]-algebra, with grading

Yh̵(g) = ⊕
k∈N

Yh̵(g)k

determined by deg x±ir = deg h ir = r for all i ∈ I and r ∈ N. Moreover, Definition
6.1 is such that Yh̵(g) provides an N-graded C[h̵]-algebra deformation of the
enveloping algebra U(t+), where we recall that t+ = g[t]. Indeed, the identification
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Yh̵(g)/h̵Yh̵(g) ≅ U(t+) is induced by the graded algebra epimorphism q ∶ Yh̵(g) ↠
U(t+) given on generators by

q ∶ x±ir ↦ x±i tr , h ir ↦ h i tr ∀ i ∈ I and r ∈ N.

In addition, the relations (3.1)–(3.6) imply that the assignment

x±i ↦ x±i0 , h i ↦ h i0 ∀ i ∈ I

determines a C-algebra homomorphism U(g) → Yh̵(g), which is injective as its
composition with q is the identity map 1U(g) on U(g). Henceforth, we shall identify
g with its image in Yh̵(g) without further comment.
To specify the standard Hopf algebra structure on Yh̵(g), we first note that Yh̵(g)

is generated as a C[h̵]-algebra by the set g ∪ {t i1}i∈I ⊂ Yh̵(g), where

t i1 ∶= h i1 −
h̵
2

h2
i0 ∀ i ∈ I.

More precisely, for each s > 0, x±i s and h i ,s+1 are determined by the recursive formulas

x±i s = ± 1
2d i

[t i1 , x±i ,s−1] and h i ,s+1 = [x+i s , x−i1].

Now let r ∈ n− ⊗ n+ denote the canonical tensor associatedwith the pairing ( , )∣n−×n+ ,
where n± = ⊕α∈Δ+ g±α is the Lie subalgebra of g generated by {x±i }i∈I. Equivalently, r
is the unique preimage of the identitymap under the natural isomorphism n− ⊗ n+

∼
→
EndC(n−), determined by ( , )∣n−×n+ . In addition, we set

ri ∶= [h i ⊗ 1, r] ∀ i ∈ I.

If x±α ∈ g±α are root vectors satisfying (x+α , x−α ) = 1, then one has the formulae

r = ∑
α∈Δ+

x−α ⊗ x+α and ri = − ∑
α∈Δ+

α(h i)x−α ⊗ x+α .

The following proposition describes the Hopf algebra structure on Yh̵(g), where
m ∶ Yh̵(g)⊗2 → Yh̵(g) denote the multiplication map.

Proposition 3.2 The Yangian Yh̵(g) is an N-graded Hopf algebra with counit ε,
coproduct Δ, and antipode S uniquely determined by the requirement that g is primitive
and that, for each i ∈ I, one has

ε(t i1) = 0, Δ(t i1) = t i1 ⊗ 1 + 1⊗ t i1 + h̵ri , S(t i1) = −t i1 + m(h̵ri).

In particular, Yh̵(g) is an N-graded Hopf algebra deformation of U(t+) over C[h̵].

The crux of the proof of this proposition lies in showing that Δ is an algebra
homomorphism. Though this is a consequence of [6, Theorem 2] and [8, Theorem 1]
(see also [22, Theorem 2.6]), a complete proof has only recently appeared in [21] (see
Theorem 4.9 therein).
The Yangian Yh̵(g) also admits aQ-grading compatible with the aboveN-grading;

that is to say, it is N × Q-graded as a Hopf algebra. This Q-grading arises from the
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adjoint action of the Cartan subalgebra h ⊂ g on Yh̵(g). Namely, one has Yh̵(g) =
⊕β∈Q Yh̵(g)β , where Yh̵(g)β is just the β-weight space

Yh̵(g)β = {x ∈ Yh̵(g) ∶ [h, x] = β(h)x ∀ h ∈ h} ∀ β ∈ Q .

3.3 Automorphisms

There are two families of (anti)automorphisms of Yh̵(g) which will play an especially
pronounced role in this article: the shift automorphisms and the Chevalley involution.
The former are a family {τc}c∈C ⊂ Aut(Yh̵(g)) which give rise to an action of the
additive group C on Yh̵(g) by Hopf algebra automorphisms. In more detail, τc is
defined explicitly by

τc(x±i (u)) = x±i (u − c) and τc(h i(u)) = h i(u − c) ∀ i ∈ I,(3.7)

where we have introduced the generating series x±i (u) and h i(u) in Yh̵(g)[[u−1]] by

x±i (u) = ∑
r∈N

x±iru−r−1 and h i(u) = ∑
r∈N

h iru−r−1 .

Replacing c by a formal variable z in (3.7), one obtains an N-graded embedding

τz ∶ Yh̵(g) ↪ Yh̵(g)[z](3.8)

called the formal shift homomorphism, where deg z = 1. Let us now turn to defining the
Chevalley involution, beginning with the following lemma.

Lemma 3.3 The assignments ω and ς defined by

ω(x±i (u)) = x∓i (u), ω(h i(u)) = h i(u),
ς(x±i (u)) = x±i (−u), ς(h i(u)) = h i(−u),

extend to commuting anti-involutions ω and ς of Yh̵(g). Moreover, ω and ς satisfy

τc ○ ω = ω ○ τc , τ−c ○ ς = ς ○ τc ∀ c ∈ C,
ε ○ ω = ε, (ω ⊗ ω) ○ Δ = Δop ○ ω, ω ○ S = S ○ ω,

ε ○ ς = ε, (ς ⊗ ς) ○ Δ = Δ ○ ς, ς ○ S−1 = S ○ ς.

This result, which has appeared in various forms in the literature (for instance,
[3, Proposition 2.9]), is readily established using Definition 6.1 and the relations of
Proposition 3.2. By the lemma, ω is an involutive Hopf algebra anti-automorphism of
Yh̵(g), which we call the Chevalley involution of Yh̵(g). On g ⊂ Yh̵(g), this recovers
the standard Chevalley involution, given by

ω(x±i ) = x∓i and ω(h i) = h i ∀ i ∈ I.

Similarly, under the identification Yh̵(g)/h̵Yh̵(g) ≅ U(t+), the semiclassical limit
ω̄ ∶ U(t+) → U(t+) of ω coincides with the anti-involution ofU(t+) uniquely extend-
ing the Lie algebra anti-automorphism

ω̄(xtr) = ω(x)tr ∀ x ∈ g and r ∈ N.(3.9)
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In addition, we note that the composite κ ∶= ω ○ ς is an involutive algebra automor-
phism of Yh̵(g), given explicitly by

κ(x±i (u)) = x∓i (−u) and κ(h i(u)) = h i(−u) ∀ i ∈ I.(3.10)

This automorphism is itself often called the Chevalley or Cartan involution of Yh̵(g),
though here we shall reserve the former terminology for ω.

3.4 Poincaré–Birkhoff–Witt theorem

An important foundational result in the theory of Yangians is the Poincaré–Birkhoff–
Witt theorem, which asserts the flatness of Yh̵(g) as an N-graded Hopf algebra
deformation of U(t+). It can be stated concisely as follows.

Theorem 3.4 The Yangian Yh̵(g) is a torsion-free C[h̵]-module, and thus provides
a flat deformation of Yh̵(g)/h̵Yh̵(g) ≅ U(t+) as a graded Hopf algebra over C[h̵]. In
particular, Yh̵(g) is isomorphic to U(t+)[h̵] as an N-graded C[h̵]-module.

As Yh̵(g) is an N-graded algebra deformation of U(t+), an isomorphism Yh̵(g) ≅
U(t+)[h̵] can be obtained by specifying an ordered, homogeneous, lift G ⊂ Yh̵(g) of
any fixed homogeneous basis of the Lie algebra t+. For our purposes, it will be useful
to specify a class of isomorphisms of this type with a number of useful properties.
For each β ∈ Δ+, we may choose i(β) ∈ I and Xβ ∈ U(n+)β−α i(β) ⊂ U(g) such that

x+β ∶= Xβ ⋅ x+i(β) ∈ gβ and x−β ∶= ω(x+β ) ∈ g−β(3.11)

satisfy the duality condition (x+β , x
−
β ) = 1, whereXβ acts on x+i(β) via the adjoint action

of g onU(g). In particular, we can (and shall) takeXα i = 1 for all i ∈ I, so that x±α i
= x±i .

For each k ∈ N, we then set

x+β ,k ∶= Xβ ⋅ x+i(β),k ∈ Yh̵(g)β and x−β ,k ∶= ω(x+β ,k) ∈ Yh̵(g)−β ,

where g now operates on Yh̵(g) via the adjoint action. This definition is such that
q(x±β ,k) = x±β tk for all β ∈ Δ+ and k ∈ N, and hence the set of elements

G ∶= ⋃
k∈N

{h ik , x±β ,k}i∈I,β∈Δ+

reduces modulo h̵ to the basis of t+ consisting of all Cartan elements h i tk and root
vector x±β tk . For each choice of total order ⪯ on G, the corresponding set of ordered
monomials

B(G) = {x1x2 ⋅ ⋅ ⋅ xn ∶ n ∈ N, x i ∈ G and x i ⪯ x j ∀ i < j}

is therefore a homogeneous basis of the C[h̵]-module Yh̵(g), and so defines an
isomorphism N-graded modules

νG ∶ Yh̵(g) ∼
→ U(t+)[h̵](3.12)

uniquely determined by the property that νG∣B(G) coincides with the restriction of
the quotient map q to B(G). We note that νG is automatically an isomorphism of
h-modules, and is thus Q-graded.
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We shall single out a subclass of isomorphisms of this type which are compatible
with Chevalley involutions and satisfy a triangularity condition. To make this precise,
we must first recall that Yh̵(g) admits a triangular decomposition, compatible with
the decomposition

g = n+ ⊕ h⊕ n−.

Let us defineY 0
h̵ (g) andY±h̵ (g) to be the unital associative subalgebras ofYh̵(g) gener-

ated by {h ir}i∈I,r∈N and {x±ir}i∈I,r∈N, respectively.These areN × Q-graded subalgebras
of Yh̵(g). The triangular decomposition of Yh̵(g) is then encoded by the following
proposition, which is a well-known consequence of Theorem 3.4.

Proposition 3.5

(1) Y±h̵ (g) is isomorphic to the unital, associative C[h̵]-algebra generated by the set
{x±ir}i∈I,r∈N, subject to relations (3.5) and (3.6) of Definition 6.1:

[x±i ,r+1 , x±js] − [x±ir , x±j,s+1] = ±h̵d i j(x±ir x±js + x±js x±ir),

∑
π∈Sm

[x±i ,rπ(1)
, [x±i ,rπ(2)

, ⋅ ⋅ ⋅ , [x±i ,rπ(m)
, x±js] ⋅ ⋅ ⋅ ]] = 0,

where all indices are constrained as in Definition 6.1. In particular, Y±h̵ (g) is an
N-graded, torsion-free C[h̵]-algebra deformation of U(n±[t]).

(2) The assignment h ik ↦ h i tk , for all i ∈ I and k ∈ N, extends to an isomorphism of
N-graded, commutative C[h̵]-algebras

ξ ∶ Y 0
h̵ (g) ∼
→ U(h[t])[h̵] = S(h[t])[h̵].

(3) The multiplication map

m ∶ Y+h̵ (g) ⊗ Y 0
h̵ (g) ⊗ Y−h̵ (g) → Yh̵(g)

is an isomorphism of graded C[h̵]-modules.

As a consequence of Part (1) of Proposition 3.5 and Corollary 2.6, one has Y±h̵ (g) ≅
U(n±[t])[h̵] as N-graded C[h̵]-modules. Following the procedure outlined at the
beginning of the section, let us fix an arbitrary total order ⪯+ on the union

G+ = ⋃
k∈N

{x+β ,k}β∈Δ+ = G ∩ Y+h̵ (g).

The set of ordered monomials B(G+) inG+ is a basis of Y+h̵ (g), and thus gives rise to
an isomorphism of N × Q-graded C[h̵]-modules

ν+ ∶ Y+h̵ (g) ∼
→ U(n+[t])[h̵],

sending each ordered monomial in G+ to its image in Y+h̵ (g)/h̵Y+h̵ (g) ≅ U(n+[t]).
Using the Chevalley involution ω and its semiclassical limit ω̄ (see (3.9)), we then
obtain an isomorphism

ν− ∶= ω̄ ○ ν+ ○ ω ∶ Y−h̵ (g) ∼
→ U(n−[t])[h̵].
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Combining ν± with ξ from Part (2) of Proposition 3.5 outputs an isomorphism of
N × Q-graded C[h̵]-modules

ν ∶= m̄ ○ (ν+ ⊗ ξ ⊗ ν−) ○ m−1 ∶ Yh̵(g) ∼
→ U(t+)[h̵],(3.13)

where m̄ ∶ U(n+[t]) ⊗C U(h[t]) ⊗C U(n−[t]) ∼
→ U(t+) is the multiplication map,
which we extend trivially byC[h̵]-linearity. By construction, ν is compatible with the
underlying triangular decompositions on Yh̵(g) and U(t+) and satisfies

ν ○ ω = ω̄ ○ ν.

The definition (3.13) is such that ν = νG for any total order ⪯ on G which restricts to
⪯+, satisfies x+ ⪯ h ⪯ x− for all x± ∈ G ∩ Y±h̵ (g) and h ∈ Y 0

h̵ (g), and for which ω is a
decreasing function onG. We will denote the inverse of ν by μ:

μ ∶= ν−1 ∶ U(t+)[h̵] → Yh̵(g).

Note that, for any total order onG, one has μ(x) = ν−1
G (x) for all x ∈ G.

3.5 Quantization

As a consequence of Proposition 3.2 and Theorem 3.4, the Yangian Yh̵(g) provides
a homogeneous quantization of an N-graded Lie bialgebra structure on the Lie
algebra t+ over C[h̵], with cocommutator δ determined by the formula (2.2). By
Proposition 3.2, δ is uniquely determined by δ(g) = 0 and

δ(h i t) = ri − r21
i = [h i ⊗ 1, Ωg] = [h i t ⊗ 1 + 1⊗ h i s,

Ωg

t − s
] = δ+(h i t) ∀ i ∈ I,

and thus coincides with δ+ from Section 2.5. This recovers the following well-known
result, originally due to Drinfeld [6, Theorem 2]:

Theorem 3.6 Yh̵(g) is a homogeneous quantization of (t+ , δ+) over C[h̵].

As explained in Section 2.4, it follows immediately that the h̵-adic completion

Yh̵g ∶= lim←

n
(Yh̵(g)/h̵nYh̵(g))(3.14)

is a homogeneous quantization of (t+ , δ+) over C[[h̵]]. We refer the reader to
Definition 2.12 and Corollary 2.6 for a detailed discussion of this point.

Remark 3.7 Let Y±h̵g and Y 0
h̵ g denote the topological C[[h̵]]-algebras

Y±h̵g ∶= lim←

n

Y±h̵ (g)/h̵nY±h̵ (g) and Y 0
h̵ g ∶= lim←


n
Y 0

h̵ (g)/h̵nY 0
h̵ (g).

It follows from Corollary 2.6 and Proposition 3.5 that these are subalgebras of Yh̵g,
withY 0

h̵ g isomorphic toU(h[t])[[h̵]] ≅ S(h[t])[[h̵]] as anN-graded topologicalC[[h̵]]-
algebra, and Y±h̵g a topologically freeN-gradedC[[h̵]]-algebra with semiclassical limit
equal to U(n±[t]). By Part (3) of Proposition 3.5, the product m on Yh̵g gives rise to
an isomorphism of N-graded topological C[[h̵]]-modules

m ∶ Y+h̵g⊗ Y 0
h̵ g⊗ Y−h̵g ∼
→ Yh̵g,(3.15)
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where, following Remark 2.11, ⊗ should now be understood to be the topological
tensor product ⊗⋀ of C[[h̵]]-modules. For later purposes, we note that the product on
Yh̵g also gives rise to an isomorphism

Y−h̵g⊗ Y 0
h̵ g⊗ Y+h̵g ∼
→ Yh̵g

which can be realized as κ ○ m ○ (κ− ⊗ κ0 ⊗ κ+), where m is the isomorphism (3.15),
κ is the involutive automorphism of Yh̵g defined in (3.10) (extended by continuity),
and κχ ∶= κ∣Y χ

h̵ g
∶ Y χ

h̵ g
∼
→ Y�χ

h̵ g.

3.6 The universal R-matrix

We complete our survey of Yh̵(g) by reviewing the construction of the universal
R-matrix R(z) of the Yangian, whose existence and uniqueness was first established
by Drinfeld in [6, Theorem 3]. We shall, however, need a refined version of Drinfeld’s
theorem only recently proven in [17, Section 7.4], which reconstructs R(z) from the
factors in its Gauss decomposition

R(z) = R+(z)R0(z)R−(z).

Let us begin with a few preliminaries. For each positive integer n, let

Yh̵(g)⊗n[z; z−1]] = ⋃
k∈N

zk Yh̵(g)⊗n[[z−1]] ⊂ Yh̵(g)⊗n[[z±1]]

denote the algebra of formal Laurent series in z−1 with coefficients in Yh̵(g)⊗n .
Following [41, Section 4.2], we then introduce the subspace

Yh̵g
⋀

(n)
z ∶= ∏

k∈N
(Yh̵(g)⊗n)k z−k ⊂ Yh̵(g)⊗n[[z−1]],

where (Yh̵(g)⊗n)k is the kth graded component of the N-graded algebra Yh̵(g)⊗n .
This is a C-algebra isomorphic to the completion of Yh̵(g)⊗n with respect to its
grading. The C[z, z−1]-submodule of Yh̵(g)⊗n[z; z−1]] that it generates is a Z-graded
C[h̵]-algebra

L(Yh̵g
⋀

(n)
z ) ∶= ⊕

k∈Z
zk Yh̵g
⋀

(n)
z ⊂ Yh̵(g)⊗n[z; z−1]].(3.16)

Though for the moment we shall only be interested in the case where n = 2, such
formal series spaces will reappear in later sections. In addition to the above, we
shall make use of two functions Q+ → N. First, we have the standard additive height
function ht given by

ht(β) = ∑
i∈I

n i for each β = ∑
i∈I

n i α i ∈ Q+.

Second, we have an auxiliary function ν ∶ Q+ → N defined by

ν(β) =min{k ∈ N ∶ ∃ β1 , . . . , βk ∈ Δ+ with β = β1 + ⋅ ⋅ ⋅ + βk},(3.17)

where it is understood that ν(0) = 0.
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Let us now recall the construction of the factor R−(z). Fix a Cartan element

ζ ∈ h/ ⋃
β≠0
Ker(β),

where the union runs over all nonzero β ∈ Q+. We then introduce

R−β(z) ∈ (Y−h̵ (g)−β ⊗ Y+h̵ (g)β)[[z−1]] ∀ β ∈ Q+

by setting R−0 (z) = 1 and defining R−β(z) inductively in ht(β) using the formula

R−β(z) = h̵ ∑
p≥0

T(ζ)p

(zβ(ζ))p+1 ∑
α∈Δ+

α(ζ)Rβ−α(z)(x−α ⊗ x+α ),(3.18)

whereRγ(z) = 0 whenever γ ∉ Q+ and T(ζ) = ad(T(ζ) ⊗ 1 + 1⊗ T(ζ)), with T ∶ h →
Y 0

h̵ (g) the embedding determined by

T(h i) = t i1 ∀ i ∈ I.

Using the fact that, for each p ∈ N, T(ζ)pz−p−1 is a homogeneous operator on
L(Yh̵g
⋀

(2)
z ) of degree −1, one deduces from the recursive formula (3.18) that

R−β(z) ∈ h̵ν(β)L(Yh̵g
⋀

(2)
z )−ν(β) ⊂ z−ν(β)Yh̵(g)⊗2[[z−1]] ∀ β ∈ Q+.

As the set {β ∈ Q+ ∶ ν(β) ≤ k} is finite for any k ∈ N, we obtain a well-defined formal
series

R−(z) = ∑
β∈Q+

R−β(z) ∈ (Y−h̵ (g) ⊗ Y+h̵ (g))[[z−1]]

which by construction satisfies R−(z) ∈ 1 + h̵L(Yh̵g
⋀

(2)
z )−1 ⊂ Yh̵g

⋀
(2)
z .

By Theorem 4.1 of [17], R−(z) is independent of the choice of ζ ∈ h made above
and satisfies a number of remarkable properties. Notably, it intertwines τz ⊗ 1 ○ Δ and
the formal, deformed Drinfeld coproduct ΔD

z on Yh̵(g), as defined in [17, Section 3.4].
We will not make direct use of these properties here, and refer the reader to [17] for a
detailed treatment of R−(z).
Let us now recall the definition of the abelian R-matrix R0(z) ∈ Y 0

h̵ (g)⊗2[[z−1]]
from [17, Section 6]. Let B = (d i a i j) denote the symmetrization of the Cartan matrix
A. Given an indeterminate v, we let B(v) = ([d i a i j]v) ⊂ GLI(Q(v)) be the associated
matrix of v-numbers, where

[m]v = vm − v−m

v − v−1 .

Then it is known [16, Theorem A.1] that the auxiliary matrix

C(v) = (c i j(v)) = [2κ]v B(v)−1

has entries c i j(v) inN[v , v−1], where 4κ is the eigenvalue of the Casimir element of g
in the adjoint representation.
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Next, for each index i ∈ I, we introduce the series t i(u) ∈ h̵Y 0
h̵ (g)[[u−1]] and its

inverse Borel transform B i(u) ∈ h̵Y 0
h̵ (g)[[u]] by

t i(u) = h̵ ∑
r≥0

t iru−r−1 = log(1 + h̵h i(u)) and B i(u) = h̵ ∑
r≥0

t ir

r!
ur .

Note that t i1 coincides with the element of the same name introduced in Section 3.2.
From these data, we obtain an element L(z) ∈ (h̵/z)2Y 0

h̵ (g)⊗2[[z−1]] defined by

L(z) = T2κ ∑
i , j∈I

c i j(T)B i(∂z) ⊗ B j(−∂z)(−z−2),

where T is the shift operator T( f (z)) = f (z + h̵
2 ) on Yh̵(g)⊗2[[z−1]]. Equivalently,

T = exp( h̵
2

∂z) ∶ Yh̵(g)⊗2[[z−1]] → Yh̵(g)⊗2[[z−1]].

As L(z) ∈ h̵z−2Y 0
h̵ (g)⊗2[[z−1]] and Y 0

h̵ (g)⊗2 is torsion-free, there is a unique solu-
tion S(z) to the formal difference equation

L(z) = S(z + 2κh̵) − S(z) with S(z) ∈ z−1Y 0
h̵ (g)⊗2[[z−1]].

If g(z) ∈ z−1C[[z−1]] is the unique solution of −z−2 = g(z + 1) − g(z), then by
Proposition 6.6 of [17], we have

S(z) = T2κ

(2κh̵)2 ∑
i , j∈I

c i j(T)B i(∂z) ⊗ B j(−∂z) (g( z
2κh̵

)) ,(3.19)

where g(z/2κh̵) is viewed as an element of L(Yh̵g
⋀

(2)
z ). The abelian R-matrix R0(z) is

defined to be the formal series exponential of this solution:

R0(z) = exp(S(z)) ∈ 1 + z−1Y 0
h̵ (g)⊗2[[z−1]].

Equivalently, it is the unique formal solution in 1 + z−1Y 0
h̵ (g)⊗2[[z−1]] of the equation

R0(z + 2κh̵) = A(z)R0(z),

where A(z) = exp(L(z)). As T and h̵−2B i(∂z) ⊗ B j(−∂z) are homogeneous opera-
tors of degree zero on L(Yh̵g

⋀
(2)
z ), it follows from (3.19) that

R0(z) ∈ 1 + h̵L(Yh̵g
⋀

(2)
z )−1 ⊂ Yh̵g

⋀
(2)
z .

We are now in a position to introduce the universal R-matrix of the Yangian. Set
R+(z) = R−21(−z)−1 and define

R(z) ∶= R+(z)R0(z)R−(z) ∈ 1 + z−1Yh̵(g)⊗2[[z−1]].

The following result is the content of Theorem 7.4 of [17].

Theorem 3.8 R(z) is the unique formal series in 1 + z−1Yh̵(g)⊗2[[z−1]] satisfying the
intertwiner equation

τz ⊗ 1 ○ Δop(x) = R(z) ⋅ τz ⊗ 1 ○ Δ(x) ⋅R(z)−1 ∀ x ∈ Yh̵(g)(3.20)
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in Yh̵(g)⊗2[z; z−1]], in addition to the cabling identities

Δ⊗ 1(R(z)) = R13(z)R23(z),
1 ⊗ Δ(R(z)) = R13(z)R12(z)

in Yh̵(g)⊗3[[z−1]]. Moreover, R(z) has the following properties:
(1) It is unitary: R(z)−1 = R21(−z).
(2) For any a, b ∈ C, one has

(τa ⊗ τb)R(z) = R(z + a − b).

(3) R(z) is a homogeneous, degree zero, element of L(Yh̵g
⋀

(2)
z ), with

R(z) − 1 ∈ h̵L(Yh̵g
⋀

(2)
z )−1 = h̵z−1Yh̵g

⋀
(2)
z

and semiclassical limit given by

q⊗2 h̵−1(R(z) − 1) = Ωg

z + t − w
∈ (U(g[t]) ⊗ U(g[w]))[[z−1]].

The series R(z) is called the universal R-matrix of the Yangian, and is related to
the element RD(z) ∈ Yh̵(g)⊗2[[z−1]] introduced by Drinfeld in Theorem 3 of [6] by
R(z) = RD(−z)−1 (see Section 1.1 and Corollary 7.4 of [17]).

Remark 3.9 Strictly speaking, the results of [17] are stated with h̵ replaced by an
arbitrary nonzero complex number. However, it is easy to translate between the
numerical and formal h̵ settings via a homogenization procedure, and for the sake of
completeness we make this rigorous in Appendix Appendix A (see Proposition A.1).

The final result of this section shows that, in particular,R(z) is invariant under the
Chevalley involution ω of Section 3.3.

Corollary 3.10 The universal R-matrix R(z) satisfies

(ω ⊗ ω)R(z) = R(z) and (ς ⊗ ς)R(z) = R21(z) = (κ ⊗ κ)R(z).

Proof Set Rω(z) ∶= (ω ⊗ ω)R(z) and Rς(z) ∶= (ς ⊗ ς)R(z). Applying the anti-
automorphisms ω ⊗ ω and ς ⊗ ς to the intertwiner equation (8.3), while making use
of the relations of Lemma 3.3, we find that

τz ⊗ 1 ○ Δ(x) = Rω(z)−1 ⋅ τz ⊗ 1 ○ Δop(x) ⋅Rω(z),
τ−z ⊗ 1 ○ Δop(x) = Rς(z)−1 ⋅ τ−z ⊗ 1 ○ Δ(x) ⋅Rς(z)

for all x ∈ Yh̵(g). Hence, Rω(z) and Rς(−z)−1 = Rς
21(z) are both solutions of (8.3).

One verifies similarly that these both satisfy the cabling identities, and hence coincide
withR(z) by the uniqueness statement ofTheorem 3.8. Since κ = ς ○ ω, this completes
the proof of the proposition. ∎

4 The Yangian double

We now recall the definition and main properties of the Yangian double DYh̵g,
including a review of some of the results of [41]. These results, summarized in
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Theorems 4.6 and 4.8, will play an integral role in establishing in Sections 7 and 8
that DYh̵g is a homogeneous quantization of the Lie bialgebra t = g[t±1] isomorphic
to the restricted quantum double of the Yangian.

4.1 The Yangian double

The definition of the Yangian double DYh̵g is obtained by allowing the second index
of the generators in Definition 6.1 to take values in Z, while working in the category
of topological C[[h̵]]-algebras:

Definition 4.1 The Yangian double DYh̵g is the unital, associative C[[h̵]]-algebra
topologically generated by {x±ir , h ir}i∈I,r∈Z, subject to the relations (3.1)–(3.6) of
Definition 6.1. In terms of generating series

X±i (u) = ∑
r∈Z

x±iru−r−1 and Hi(u) = ∑
r∈Z

h iru−r−1 ,

these defining relations can be expressed as follows, for i , j ∈ I:

[Hi(u),H j(v)] = 0,
[h i0 ,X±j (u)] = ±2d i jX

±
j (u),

(u − v ∓ h̵d i j)Hi(u)X±j (v) = (u − v ± h̵d i j)X±j (v)Hi(u),
(u − v ∓ h̵d i j)X±i (u)X±j (v) = (u − v ± h̵d i j)X±j (v)X±i (u),

[X+i (u),X−j (v)] = δ i ju−1δ(v/u)Hi(v),
∑

π∈Sm

[X±i (uπ(1)), [X±i (uπ(2)), . . . , [X±i (uπ(m)),X±j (v)] ⋅ ⋅ ⋅ ]] = 0,

where δ(u) = ∑r∈Z ur ∈ C[[u±1]] is the formal delta function and in the last relation
i ≠ j and m = 1 − a i j .

DYh̵g is Z-graded as a topological C[[h̵]]-algebra, with grading induced by the
degree assignment deg x±ir = deg h ir = r for all i ∈ I and r ∈ Z.That is, if DYh̵gk denotes
the closure of the subspace ofDYh̵g spanned over the complex numbers bymonomials
in x±ir , h ir and h̵ of total degree k, then

DYh̵g ∶= ⊕
k∈Z
DYh̵gk

is a dense,Z-gradedC[h̵]-subalgebra ofDYh̵g satisfying the conditions of Lemma 2.4.
In particular, in the notation of Section 2.2, one hasDYh̵g = DYh̵gZ.

Remark 4.2 LetDYh̵g
j denote the C[h̵]-algebra generated by {x±ir , h ir}i∈I,r∈Z, sub-

ject to the defining relations (3.1)–(3.6). ThenDYh̵g
j is a Z-gradedC[h̵]-algebra, and

there is a natural algebra homomorphism

j ∶ DYh̵g
j → DYh̵g ⊂ DYh̵g.

The kernel of j is the graded ideal ∩n∈N h̵nDYh̵g
j, and DYh̵g can be recovered as the

h̵-adic completion of DYh̵g
j (see [41, Proposition 2.7]). Thus, j(DYh̵g

j) is a dense,
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Z-graded C[h̵]-subalgebra of DYh̵g. It is, however, a proper subalgebra of DYh̵g as
the graded components j(DYh̵g

j
k) are not closed in DYh̵g. Rather, one has

DYh̵gk = lim←

n
(DYh̵g

j
k/h̵nDYh̵g

j
k−n) ∀ k ∈ Z.

The above definition implies that DYh̵g is a Z-graded C[[h̵]]-algebra deformation
of the enveloping algebra U(t), where we recall that t = g[t±1]. Analogously to
the Yangian case recalled in Section 3.2, the identification DYh̵g/h̵DYh̵g ≅ U(t) is
induced by the graded C[[h̵]]-algebra epimorphism DYh̵g ↠ U(t) given by

x±ir ↦ x±i tr , h ir ↦ h i tr ∀ i ∈ I and r ∈ Z.
The Poincaré–Birkhoff–Witt theorem for DYh̵g, established in Theorem 6.2 of [41],
asserts that DYh̵g is a topologically free C[[h̵]]-module, and thus a flat deformation of
U(t):
Theorem 4.3 DYh̵g is a flat deformation of the Z-graded algebra DYh̵g/h̵DYh̵g ≅
U(t) over C[[h̵]]. In particular, DYh̵g ≅ U(t)[[h̵]] as a Z-graded topological
C[[h̵]]-module.

The notation for the generators of DYh̵gmay seem, on the surface, to conflict with
the notation used for generators in the Yangian associated with g. However, there is a
natural Z-graded C[[h̵]]-algebra homomorphism

ı ∶ Yh̵g → DYh̵g(4.1)

sending each generator of Yh̵(g) ⊂ Yh̵g to the corresponding element of DYh̵g,
denoted with the same symbol. By Corollary 4.4 of [41], ı is injective, and we shall
henceforth identify Yh̵g with ı(Yh̵g).

4.2 Automorphisms and root vectors

To each i ∈ I, we may associate series ẋ±i (u) and ḣ i(u) in DYh̵g[[u]] by setting
ẋ±i (u) ∶= x±i (u) −X±i (u) and ḣ±i (u) ∶= h±i (u) −H±i (u).

The following lemma is then a straightforward consequence of the defining relations
of DYh̵g, where ω and ς are as in Lemma 3.3.

Lemma 4.4 There are unique extensions of the anti-automorphisms ω and ς of Yh̵(g)
to anti-automorphisms of the C[[h̵]]-algebra DYh̵g such that, for each i ∈ I,

ω(ẋ±i (u)) = ẋ∓i (u), ω(ḣ i(u)) = ḣ i(u),
ς(ẋ±i (u)) = ẋ±i (−u), ς(ḣ i(u)) = ḣ i(−u).

Following the terminology from Section 3.3, we shall refer to the involution ω as
the Chevalley involution of DYh̵g.
The adjoint action ofh ⊂ DYh̵g onDYh̵g gives rise to a topologicalQ-grading on the

C[[h̵]]-algebra DYh̵g (cf. Corollary 6.5 and [41, Section 3.1]) with graded components
given by the weight spaces

DYh̵gβ ∶= {x ∈ DYh̵g ∶ [h, x] = β(h)x ∀ h ∈ h} ∀ β ∈ Q .
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That is to say, each of these subspaces is a closed C[[h̵]]-submodule of DYh̵g, and the
direct sum

DYh̵gQ ∶= ⊕
β∈Q
DYh̵gβ

is a Q-graded dense C[[h̵]]-subalgebra of DYh̵g whose subspace topology coincides
with its h̵-adic topology. Here, we have borrowed, and modified appropriately, the
terminology of Section 2.2. It should be emphasized that the word topological is key
in this statement, as the Q-graded algebra DYh̵gQ is a proper subset of DYh̵g.
We now introduce root vectors in DYh̵g of arbitrary degree, following the pro-

cedure used in Section 3.4. Recall from (3.11) that to each positive root β ∈ Δ+, we
attached an index i(β) ∈ I and an elementXβ ∈ U(n+)β−α i(β) . For each k ∈ Z, we then
set

x+β ,k ∶= Xβ ⋅ x+i(β),k ∈ DYh̵gβ and x−β ,k ∶= ω(x+β ,k) ∈ DYh̵g−β ,

where g operates on DYh̵g via the adjoint action. For k ∈ N, these elements are
identical to those introduced below (3.11). Moreover, we have

x±β tr = x±β ,r mod h̵ ∀ β ∈ Δ+, r ∈ Z.
It shall be convenient for us to organize the above elements into generating series
x±β (u) ∈ DYh̵g±β[[u−1]] and ẋ±β (u) ∈ DYh̵g±β[[u]] by setting

x±β (u) ∶= ∑
r∈N

x±β ,ru−r−1 and ẋ±β (u) ∶= −∑
r∈N

x±β ,−r−1u
r ∀ β ∈ Δ+.

4.3 The formal shift operator

We now shift our attention to recalling some of the main constructions of [41], subject
to our standing assumption that g is a finite-dimensional simple Lie algebra. To begin,
we introduce a number of relevant spaces built from the Yangian Yh̵(g), following
Sections 4.1 and 4.2 of [41] and Section 3.6 above. First, let

Yh̵g
⋀

= ∏
k∈N

Yh̵(g)k

denote the formal completion of Yh̵(g) with respect to its N-grading. This is a
topologically free C[[h̵]]-algebra containing Yh̵g as a subalgebra (see [15, Proposition
6.3] or [41, Lemma 4.1]).
Next, let LYh̵g

⋀

z and Yh̵g
⋀

z denote the subspaces L(Yh̵g
⋀

(1)
z ) and Yh̵g

⋀
(1)
z of the space

of Laurent series Yh̵(g)[z; z−1]] introduced in Section 3.6. That is,

Yh̵g
⋀

z = ∏
k∈N

Yh̵(g)k z−k ⊂ Yh̵(g)[[z−1]],

and LYh̵g
⋀

z is the Z-graded subalgebra of Yh̵(g)[z; z−1]] over C[h̵] defined by

LYh̵g
⋀

z = ⊕
n∈Z

znYh̵g
⋀

z .

The following lemma, established in [41, Proposition 4.2], provides a characterization
of the h̵-adic completion of LYh̵g

⋀

z .
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Lemma 4.5 The h̵-adic completion LYh̵g
⋀

z of LYh̵g
⋀

z is the subspace of Yh̵g[[z±1]]
consisting of formal series

∑
k∈Z

zk fk(z), fk(z) ∈ Yh̵g
⋀

z

with the property that, for each n ∈ N, ∃ Nn ∈ N such that

fk(z) ∈ (h̵/z)nYh̵g
⋀

z ∀ ∣k∣ ≥ Nn .

Moreover, LYh̵g
⋀

z is a topologically free Z-graded C[[h̵]]-algebra with

(LYh̵g
⋀

z)Z = LYh̵g
⋀

z .

The last statement of the lemma employs the notation from Lemma 2.4 and follows
from the fact that LYh̵g

⋀

z is a torsion-free Z-graded C[h̵]-algebra and that each
subspace zk Yh̵g

⋀

z is closed in Yh̵g[[z±1]], equipped with the h̵-adic topology, and thus
in LYh̵g
⋀

z .
Next, recall that τz is the formal shift homomorphism of the Yangian introduced

in (3.8), which we may view as a C[[h̵]]-algebra homomorphism
τz ∶ Yh̵g ↪ Yh̵g[[z]].

In addition, we set ∂(n)z = 1
n! ∂n

z for each n ∈ N, where ∂z is the partial derivative
operator with respect to z. The following theorem, which is a combination of a special
case of Theorems 4.3 and 6.2 of [41], introduces the so-called formal shift operator Φz
on DYh̵g.

Theorem 4.6 There is a unique homomorphism of C[[h̵]]-algebras

Φz ∶ DYh̵g → LYh̵g
⋀

z

with the property that Φz ○ ı = τz . Moreover:
(1) Φz is injective, and satisfies

Φz(ẋ±β (u)) = ∑
n∈N

(−1)nun ∂(n)z x±β (−z) ∀ β ∈ Δ+ ,

Φz(ḣ i(u)) = ∑
n∈N

(−1)nun ∂(n)z h i(−z) ∀ i ∈ I.

(2) The restriction of Φz to DYh̵g is a Z-graded C[h̵]-algebra homomorphism

Φz ∣DYh̵g ∶ DYh̵g → LYh̵g
⋀

z = ⊕
n∈Z

znYh̵g
⋀

z ⊂ Yh̵(g)[z; z−1]].

Remark 4.7 In the terminology of Section 2.2, Part (2) is equivalent to the assertion
that Φz is a Z-graded C[[h̵]]-algebra homomorphism. This is implied by Part (2) of
Theorem 4.3 in [41], which asserts that the composition Φz ○ j is a Z-graded algebra
homomorphism, where j is as in Remark 4.2.

By [41, Proposition 4.2(4)], the evaluation map

Ev ∶ LYh̵g
⋀

z → Yh̵g
⋀

, f (z) ↦ f (1),(4.2)
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is an epimorphism of C[[h̵]]-algebras. We may thus compose Φz with Ev to obtain a
C[[h̵]]-algebra homomorphism

Φ ∶= Ev ○Φz ∶ DYh̵g → Yh̵g
⋀

.

By Theorem 6.2 of [41], this homomorphism is injective. One of the main results of
[41] is that Φ induces an isomorphism between completions of DYh̵g of Yh̵(g). To
make this precise, let J ⊂ DYh̵g denote the kernel of the composition

DYh̵g
h̵↦0

→ U(g[t±1]) t↦1

→ U(g),

and define DYh̵g
⋀

to be the completion of DYh̵g with respect to the J-adic filtration

DYh̵g = J0 ⊃ J ⊃ J2 ⊃ ⋅ ⋅ ⋅ ⊃ Jn ⊃ ⋅ ⋅ ⋅ .
We then have the following analogue of [15, Theorem 6.2], which is a special case of
Theorem 5.5 in [41].

Theorem 4.8 Φ is injective and induces an isomorphism of C[[h̵]]-algebras

Φ
⋀

∶ DYh̵g
⋀

∼
→ Yh̵g
⋀

with inverse Γ uniquely extending the embedding ı ○ τ−1 ∶ Yh̵(g) → DYh̵g.

Remark 4.9 One subtle consequence of this result is that the natural homomorphism

DYh̵g → DYh̵g
⋀

is injective. Indeed, its composition with the isomorphism Φ
⋀

recovers the injection
Φ. Henceforth, we shall freely make use of this fact and view DYh̵g as a subalgebra
of DYh̵g
⋀

. We further note that the subspace topology on DYh̵g, with respect to the
h̵-adic topology on DYh̵g

⋀

, coincides with the h̵-adic topology on DYh̵g. Indeed, as
DYh̵g
⋀

≅ Yh̵g
⋀

is torsion-free, to see this it suffices to show that

h̵DYh̵g
⋀

∩DYh̵g = h̵DYh̵g.

This, however, follows immediately from the injectivity of the semiclassical limit of Φ,
established in [41, Theorem 6.2]. In particular, this discussion implies that DYh̵g is a
closed subspace of the topological C[[h̵]]-module DYh̵g

⋀

. Similarly, one deduces that
Φz(DYh̵g) is a closed subspace of LYh̵g

⋀

z .

To conclude this preliminary section on DYh̵g, we introduce the auxiliary C[[h̵]]-
algebra homomorphism

Γz ∶= Γ ○ Ev ∶ LYh̵g
⋀

z → DYh̵g
⋀

(4.3)

which has the property that Γz ∣Im(Φz) = Φ−1
z . This homomorphism shall play a promi-

nent role in the main result of Section 7 and its proof (see Theorem 7.5).

5 The Drinfeld–Gavarini Yangian

In this section and Section 6, we give a self-contained exposition to the dual Yangian
Ẏh̵g

⋆, which provides a homogeneous quantization of the graded dual t− = t−1g[t−1]
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to the Lie bialgebra t+ = g[t], as will be explained in detail in Section 6.The definition
of Ẏh̵g

⋆ takes as input the so-called Drinfeld–Gavarini subalgebra of the Yangian.The
goal of the present section is to introduce this subalgebra and survey some of its key
properties.

5.1 Quantum duality

To provide context, let us first briefly recall the general construction of the dual of a
quantized enveloping algebra, following [7, Section 7] and [19, Section 4.4] (see also
[11] and [1, Section 2.19], for example).
Suppose that U h̵b is a quantization of a finite-dimensional Lie bialgebra (b, δb),

where we follow the terminology and notation from Section 2.4. One would then like
to introduce a notion of duality which sendsUh̵b to a quantization of the Lie bialgebra
dual (b∗ , δb∗ = [ , ]∗b) to (b, δb).The first crucial observation is thatC[[h̵]]-linear dual
U h̵b

∗ = HomC[[h̵]](U h̵b,C[[h̵]]) ofU h̵b is not itself a quantized enveloping algebra (see
Lemma 2.1 of [19], in addition to [7, Section 7] and [1, Section 2.19]).The correct notion
of duality within the category of quantized enveloping algebras was introduced in [7,
Section 7]. One considers the C[[h̵]]-submodule

U h̵b
′ ∶= {x ∈ U h̵b ∶ (1 − ε)⊗nΔn(x) ∈ h̵nU h̵b

⊗n ∀ n ∈ N} ⊂ U h̵b,

where ε and Δ are the counit and coproduct, respectively, on the topological Hopf
algebraU h̵b, and all notation is as in Section 5.2 below.Then, by [19, Proposition 3.6],
U h̵b

′ is a quantized formal series Hopf algebra, with semiclassical limit isomorphic
as an algebra to the completion of the symmetric algebra S(b) = ⊕n∈N S

n(b) with
respect to its standard grading. In particular, this means that although Uh̵b

′ is not
in general a topological Hopf algebra over C[[h̵]] in the sense of Section 2.1, it is a
topological Hopf algebra with respect to the Jb-adic topology, where

Jb = h̵U h̵b ∩ U h̵b
′ = ε∣−1

U h̵b
′(h̵C[[h̵]]).

The subspace U h̵b
○ ⊂ (U h̵b

′)∗ consisting of continuous linear forms with respect to
this topology is then a quantization of (b∗, δb∗). This is the quantized enveloping
algebra dual of U h̵b.

Remark 5.1 Here, we note that U h̵b
○ can be equivalently defined as the h̵-adic

completion of the C[[h̵]]-module
(U h̵b

∗)× = ∑
n∈N

h̵−n
m

n
b ⊂ C((h̵)) ⊗C[[h̵]] U h̵b

∗ ,

wheremb ∶= { f ∈ U h̵b
∗ ∶ f (1) ∈ h̵C[[h̵]]}. That this produces a topological Hopf alge-

bra which can be identified with Uh̵b
○ is a nontrivial result, which is part of the

quantum duality principle. This was first announced in [7, Section 7], and proven in
detail in [19] (see Theorem 1.6 therein). We will not, however, need this equivalent
formulation in the present article.

In our setting, b = t+ = g[t] is not finite-dimensional, but rather an N-graded Lie
bialgebra b = ⊕n∈N bn with finite-dimensional graded components. As Yh̵g = U h̵b is a
homogeneous quantization of t+, the above construction remains valid, provided the
notion of duality is adjusted so as to respect the underlying gradings. In fact, one can
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replaceU h̵b
′ with anN-graded topological Hopf algebra Ẏh̵g overC[[h̵]] of finite type,

and U h̵b
○ with the restricted dual of Ẏh̵g, as defined in Section 2.3. The topological

Hopf algebra Ẏh̵g and its C[h̵]-form Ẏh̵(g) = (Ẏh̵g)N (see Section 2.2) are the focus
of the present section.

5.2 The Drinfeld–Gavarini subalgebra

Let us define Δn for any n ∈ N by setting Δ0 = ε, Δ1 = 1 = 1Yh̵(g) and

Δn ∶= (Δ⊗ 1⊗(n−2)) ○ Δn−1 ∶ Yh̵(g) → Yh̵(g)⊗n

for all n ≥ 2. We then define the C[h̵]-submodule Ẏh̵(g) ⊂ Yh̵(g) by

Ẏh̵(g) ∶= {x ∈ Yh̵(g) ∶ (1 − ε)⊗nΔn(x) ∈ h̵nYh̵(g)⊗n ∀ n ∈ N}.

By Lemma 3.2 and Proposition 3.5 of [27] (see also [19, Proposition 2.6], [20,Theorem
3.5], and [13, Lemma A.1]), Ẏh̵(g) is a subalgebra of Yh̵(g) which is commutative
modulo h̵:

[x , y] ∈ h̵Ẏh̵(g) ∀ x , y ∈ Ẏh̵(g).(5.1)

As the structuremaps 1, ε, and Δn are graded, Ẏh̵(g) inherits fromYh̵(g) the structure
of an N-graded algebra. We shall call Ẏh̵(g) the Drinfeld–Gavarini subalgebra of the
Yangian Yh̵(g). Its algebraic structure has been described in detail by Tsymbaliuk and
Weekes in Appendix Appendix A of [13], following the general results obtained in the
works [19, 20] of Gavarini. In this subsection, we review, and partially extend, this
description.
Let Rh̵(U(t+)) denote the Rees algebra associated with the standard enveloping

algebra filtration F● on U(t+):

Rh̵(U(t+)) = ⊕
n∈N

h̵nFn(U(t+)) ⊂ U(t+)[h̵].

Consider now the symmetric algebra S(h̵t+) ⊂ S(t+)[h̵] on h̵t+. Here, h̵ can be
viewed as a gradation parameter associated with the standard N-grading on the
symmetric algebra S(t+). Namely, S(h̵t+) ∩ h̵nS(t+) is precisely the nth symmetric
power Sn(h̵t+) = h̵nSn(t+), and S(h̵t+) ≅ S(t+) as an N-graded algebra. As U(t+) is
a filtered deformation of S(h̵t+) (that is, one has grU(t+) ≅ S(h̵t+)), Rh̵(U(t+)) is a
flat deformation of S(h̵t+) over C[h̵]. Let

q ∶ Rh̵(U(t+)) ↠ S(h̵t+)

be the natural quotient map, under the identification of Rh̵(U(t+))/h̵Rh̵(U(t+))
with grU(t+) ≅ S(h̵t+). In what follows, we shall be primarily interested in the loop
gradings on Rh̵(U(t+)) and S(h̵t+), inherited from the natural grading on U(t+)[h̵]
compatible with the N-grading on t+. Namely, one has

deg(h̵t+,k) = deg(h̵gtk) = k + 1 ∀ k ∈ N.

We shall denote the nth graded component of S(h̵t+) by Sn(h̵t+) so that

S(h̵t+) = ⊕
n∈N

Sn(h̵t+).
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Recall from Section 3.4 that νG denotes the graded C[h̵]-module isomorphism

νG ∶ Yh̵(g) ∼
→ U(t+)[h̵]

defined in (3.12), which depends on a fixed total order on the set G. We equip h̵G
with the induced ordering, for which multiplication by h̵ defines an isomorphism of
ordered sets G ∼
→ h̵G, and we let B(h̵G) ⊂ Yh̵(g) denote the corresponding set of
ordered monomials in h̵G. We further recall that μ ∶ U(t+)[h̵] → Yh̵(g) is the inverse
of the specific choice ν = νG defined in (3.13).
The following proposition is a consequence of Proposition 3.3 of [20] in addition

to Proposition A.2 andTheorem A.7 of [13] (see also [19, Section 3.5]).

Proposition 5.2 Let ν̇G denote the restriction of νG to Ẏh̵(g). Then:
(1) Ẏh̵(g) is an N-graded Hopf subalgebra of Yh̵(g).
(2) ν̇G is an isomorphism of N-graded C[h̵]-modules

ν̇G ∶ Ẏh̵(g) ∼
→ Rh̵(U(t+)).

(3) Ẏh̵(g) is generated as a C[h̵]-algebra by h̵μ(t+) and has basis B(h̵G).
(4) The composition q̇ ∶= q ○ ν̇G is an epimorphism of N-graded algebras which

descends to an isomorphism

Ẏh̵(g)/h̵Ẏh̵(g) ∼
→ S(h̵t+).

Proof of (2) and (3) These statements are a minor modification of the statement of
Theorem A.7 of [13]. For the sake of completeness, let us recall the main ingredients,
beginning with the proof that h̵G (and thus h̵μ(t+)) is contained in Ẏh̵(g), given in
Lemmas A.5 and A.6 of [13].
For each n ∈ N, x ∈ g, and i ∈ I, the formulas of Proposition 3.2 imply that

Δn(x) =
n
∑
a=1

x(a) and Δn(t i1) =
n
∑
a=1

t(a)i1 + h̵ ∑
a<b

rab
i ,

where y(b) = 1⊗(b−1) ⊗ y ⊗ 1⊗(n−b) ∈ Yh̵(g)⊗n for any y ∈ Yh̵(g) and, for each a < b,
B ↦ Bab is the algebra homomorphism Yh̵(g)⊗2 → Yh̵(g)⊗n given on simple tensors
by (x ⊗ y)ab = x(a)y(b). Since (1 − ε) projects Yh̵(g) onto Ker(ε), it follows readily
from these formulas that

h̵g ∪ {h̵t i1}i∈I ⊂ Ẏh̵(g).

We may now deduce that h̵G ⊂ Ẏh̵(g) as follows. By (5.1) and the above, Ẏh̵(g) is a
g-submodule of Yh̵(g) which is preserved by the operators {ad(t i1)}i∈I. Hence, the
elements

h̵x±ik = (±1)kad(Ti)k(h̵x±i ) and h̵h ik = [x+i , h̵x−ik]

necessarily belong to Ẏh̵(g) for each i ∈ I and k ∈ N, where Ti = (2d i)−1 t i1. As h̵x±α ,k
belongs to the g-submodule of Yh̵(g) generated by h̵x±ik , we can conclude that h̵G ⊂
Ẏh̵(g).
Since Rh̵(U(t+)) has basis given by the set of ordered monomials in h̵q(G), to

complete the proof of both Parts (2) and (3), it suffices to see that B(h̵G) spans Ẏh̵(g).
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This follows from the fact that B(G) is a basis of Yh̵(g) together with the crucial
Lemma 3.3 of [19] (see also [11, Lemma 4.12]). We refer the reader to the proof of
[13, Proposition A.2] for complete details. ∎
Proof of (1) We have already seen that Ẏh̵(g) is an N-graded subalgebra of Yh̵(g).
That it is a Hopf subalgebra of Yh̵(g) is a special case of Proposition 3.3 of [20],
which passes to completions and makes use of a modification of a technical result for
quantized formal series Hopf algebras established in [9, Proposition 2.1]. It is worth
pointing out that, in our specialized setting, it is possible to give a concise direct proof
that Ẏh̵(g) is a subcoalgebra of Yh̵(g) stable under the antipode S.
Indeed, by Proposition 3.2, one has Δ(h̵x) ∈ Ẏh̵(g)⊗2 for x ∈ h̵g ∪ {t i1}i∈I. As

Ẏh̵(g)⊗2 is a g-submodule of Yh̵(g)⊗2 stable under all operators ad(t i1 ⊗ 1 + 1⊗ t i1),
the inclusion Δ(h̵G) ⊂ Ẏh̵(g)⊗2 will hold provided Ẏh̵(g)⊗2 is preserved by the
operators ad(h̵ri). This is itself a consequence of the fact that ri ∈ g⊗ g, the inclusion
h̵g ⊂ Ẏh̵(g), that Ẏh̵(g)⊗2 is a g-submodule of Yh̵(g)⊗2, and the relation

[h̵ri , x ⊗ y] = [h̵ri , x(1)]y(2) + x(1)[h̵ri , y(2)] ∀ x , y ∈ Ẏh̵(g).

Hence, by Part (3), we can conclude that Δ(Ẏh̵(g)) ⊂ Ẏh̵(g)⊗2. A similar argument,
using the formulas of Proposition 3.2 and that Ẏh̵(g) is a g-submodule of Ẏh̵(g) stable
under the operators ad(S(t i1)), implies that S(Ẏh̵(g)) ⊂ Ẏh̵(g). ∎
Proof of (4) By Part (2), q̇ is an N-graded C[h̵]-linear epimorphism with ker-
nel h̵Ẏh̵(g), and thus gives rise to an isomorphism of graded vector spaces q̈ ∶
Ẏh̵(g)/h̵Ẏh̵(g) ∼
→ S(h̵t+). To conclude, it suffices to prove that q̈ is an algebra
homomorphism. By (5.1), Ẏh̵(g)/h̵Ẏh̵(g) is commutative, and so the linear map
h̵t+ → Ẏh̵(g)/h̵Ẏh̵(g) sending any h̵x ∈ h̵t+ to the image of h̵μ(x) in Ẏh̵(g)/h̵Ẏh̵(g)
uniquely extends to an algebra homomorphism p ∶ S(h̵t+) → Ẏh̵(g)/h̵Ẏh̵(g). Since
q̈ ○ p = 1, we can conclude that q is the inverse of p, and thus an algebra homomor-
phism. ∎
Recall from (3.14) thatYh̵g denotes the h̵-adically complete Yangian associatedwith

g, and let Ẏh̵g denote the h̵-adic completion of the Hopf algebra Ẏh̵(g):
Ẏh̵g ∶= lim←


n
(Ẏh̵(g)/h̵nẎh̵(g)).

As an immediate consequence of the above proposition and Corollary 2.6, we obtain
the following result.

Corollary 5.3 Ẏh̵g is a topologically free,N-graded topological Hopf algebra overC[[h̵]]
of finite type. Moreover:
(1) Ẏh̵g is a flat deformation of the N-graded algebra S(h̵t+) over C[[h̵]]. In particular,

Ẏh̵g ≅ S(h̵t+)[[h̵]] as an N-graded topological C[[h̵]]-module.
(2) Ẏh̵g is a topological Hopf subalgebra of the completed Yangian Yh̵g.
The statement that Ẏh̵g is of finite type reduces to the fact that the homogeneous

components Sn(h̵t+) of S(h̵t+) are all finite-dimensional complex vector spaces (see
below Corollary 2.9).
Henceforth, we will identify S(h̵t+) with the semiclassical limit of Ẏh̵(g) as an

N-gradedHopf algebra.We emphasize that this is a non-cocommutativeHopf algebra;
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in particular, it is not isomorphic to the standard symmetric Hopf algebra on h̵t+,
which we denote by S(h̵t+). However, Ẏh̵(g) and S(h̵t+) are filtered deformations of
Rh̵(U(t+)) and S(h̵t+), respectively, as we now explain. Consider the Hopf ideal

J ∶= h̵Yh̵(g) ∩ Ẏh̵(g) ⊂ Ẏh̵(g)(5.2)

Here, we note that it follows from Part (3) of the above proposition that, for each pair
of positive integers k, n ∈ N+, one has

h̵k Yh̵(g)⊗n ∩ Ẏh̵(g)⊗n = ∑
k1+. . .+kn=k

Jk1 ⊗ ⋅ ⋅ ⋅ ⊗ Jkn .(5.3)

In particular, Jk = h̵k Yh̵(g) ∩ Ẏh̵(g) for each k ∈ N, and so the associated gradedHopf
algebra grJ(Ẏh̵(g)) with respect to the J-adic filtration embeds inside the associated
graded Hopf algebra grh̵(Yh̵(g)) of Yh̵(g) with respect to the h̵-adic filtration. Since
Yh̵(g) is a torsion-free Hopf algebra deformation of U(t+) over C[h̵], we have
isomorphisms of graded Hopf algebras

grh̵(Yh̵(g)) = ⊕
n∈N

h̵nYh̵(g)/h̵n+1Yh̵(g) ≅ ⊕
n∈N

h̵nU(t+) = U(t+)[h̵],

grJ(Ẏh̵(g)) = ⊕
n∈N

Jn/Jn+1 ≅ ⊕
n∈N

h̵nFn(U(t+)) = Rh̵(U(t+)),

where the second isomorphism follows from the first and Proposition 5.2. In fact, the
module isomorphisms νG and ν̇G are filtered, and the above identifications can be
realized as the associated graded maps gr(νG) and gr(ν̇G), respectively.
The image of J under the quotient map q̇ is the Hopf ideal

J ∶= ⊕
n>0

Sn(h̵t+) ⊂ S(h̵t+)(5.4)

where Sn(h̵t+) denotes the nth symmetric power of h̵t+. This is also a Hopf ideal in
S(h̵t+), and one has a canonical isomorphism gr

J
S(h̵t+) ≅ S(h̵t+) of graded Hopf

algebras. Since the elements of μ(t+) are primitive modulo h̵Yh̵(g)⊗2, the subspace
h̵t+ = J/J2 of gr

J
S(h̵t+) consists of primitive elements, and we can conclude that

gr
J
S(h̵t+) ≅ S(h̵t+) ≅ gr

J
S(h̵t+)

as graded Hopf algebras.

Remark 5.4 Since Jk = h̵k Yh̵(g) ∩ Ẏh̵(g) for each k ∈ N, the closure of Ẏh̵(g) in the
quantized enveloping algebra Yh̵g coincides with the J-adic completion

Yh̵g
′ ∶= lim←


n
(Ẏh̵(g)/Jn) ⊂ Yh̵g.

This is precisely the quantized formal series Hopf algebra Uh̵b
′ from Section 5.1

associated withU h̵b = Yh̵g. As J surjects onto the ideal J from (5.4), the quotient map
q̇ induces an isomorphism of C[[h̵]]-algebras

Yh̵g
′/h̵Yh̵g

′ ∼
→ S(h̵t+)
⋀

∶= ∏
n∈N

Sn(h̵t+) ≅ lim←

n
(S(h̵t+)/Jn).
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5.3 Triangular decomposition

Proposition 5.2 implies that the triangular decomposition of Yh̵(g), reviewed in
Section 3.4, induces a triangular decomposition on Ẏh̵(g), with the N-graded
C[h̵]-algebras

Ẏ±h̵(g) ∶= Y±h̵ (g) ∩ Ẏh̵(g) and Ẏ0
h̵(g) ∶= Y 0

h̵ (g) ∩ Ẏh̵(g),

playing the roles of Y±h̵ (g) and Y 0
h̵ (g), respectively. In this subsection, we spell this out

explicitly. Let us set

t
±
+ ∶= n±[t] ⊂ t+ and t

0
+ ∶= h[t] ⊂ t+

and recall from Section 3.4 that ν± and ξ are the isomorphisms

ν± ∶ Y±h̵ (g) ∼
→ U(t±+ )[h̵] and ξ ∶ Y 0
h̵ (g) ∼
→ S(t0

+)[h̵]

defined above (3.13) and in the statement of Proposition 3.5, respectively. We further
recall from (3.17) that, for each β ∈ Q+, ν(β) ∈ N is defined by

ν(β) =min{k ∈ N ∶ ∃ β1 , . . . , βk ∈ Δ+ with β = β1 + ⋅ ⋅ ⋅ + βk}.

The following corollary provides an analogue of Proposition 5.2 for the subalgebras
Ẏ±h̵(g) and Ẏ0

h̵(g).

Corollary 5.5 Let ν̇± and ξ̇ denote the restrictions of ν± and ξ to Ẏ±h̵(g) and Ẏ0
h̵(g),

respectively. Then:
(1) ν̇± is an isomorphism of N-graded C[h̵]-modules

ν̇± ∶ Ẏ±h̵(g) ∼
→ Rh̵(U(t±+ )) ⊂ U(t±+ )[h̵].

(2) ξ̇ is an isomorphism of N-graded C[h̵]-algebras

ξ̇ ∶ Ẏ0
h̵(g) ∼
→ S(h̵t0

+)[h̵] ⊂ S(t0
+)[h̵].

(3) Ẏ±h̵(g) is a torsion-free, N-graded C[h̵]-algebra deformation of S(h̵t±+ ). In partic-
ular, there is an isomorphism of graded C[h̵]-modules

Ẏ±h̵(g) ≅ S(h̵t±+ )[h̵].

(4) Ẏ±h̵(g) is a Q-graded subalgebra of Ẏ±h̵(g) with

Ẏ±h̵(g)±β ⊂ Jν(β) ⊂ h̵ν(β)Y±h̵ (g)±β ∀ β ∈ Q+.

We note that each of these results follows readily from Propositions 3.5 and 5.2, in
addition to Corollary 2.6 in the case of Part (3). We leave the details as an exercise
to the interested reader. As a consequence of this corollary and Proposition 5.2, we
obtain the following analogue of Part (3) from Proposition 3.5.

Corollary 5.6 The multiplication map

ṁ ∶ Ẏ+h̵(g) ⊗ Ẏ0
h̵(g) ⊗ Ẏ−h̵(g) → Ẏh̵(g)

is an isomorphism of N-graded C[h̵]-modules.
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Remark 5.7 As in Remark 3.7, the above results can easily be lifted to the h̵-adic
setting using Corollary 2.6 (see also Corollary 5.3). We especially note that, for each
choice of the symbol χ, the h̵-adic completion

Ẏ
χ
h̵g ∶= lim←


n
Ẏ

χ
h̵(g)/h̵nẎ

χ
h̵(g)

is a topologically free N-graded C[[h̵]]-algebra of finite type, which provides a flat
deformation of the symmetric algebra S(h̵tχ

+) over C[[h̵]]. In addition, Ẏχ
h̵g embeds

inside the completed Yangian Yh̵g, and the multiplication map induces an isomor-
phism of N-graded C[[h̵]]-modules

ṁ ∶ Ẏ+h̵g⊗ Ẏ0
h̵g⊗ Ẏ−h̵g

∼
→ Ẏh̵g,

where ⊗ is now the topological tensor product ⊗⋀ over C[[h̵]] (see Remark 2.11).

5.4 The adjoint and coadjoint actions

We now prove two lemmas concerning the Drinfeld–Gavarini subalgebra Ẏh̵(g)
which will play an important role in the main results and constructions of Sections 7
and 8. The first of these, Lemma 5.8, will be used to construct the quantum double of
the Yangian in Section 8.2.
Let ▼ ∶ Yh̵(g) ⊗ Yh̵(g) → Yh̵(g) and ▲ ∶ Yh̵(g) → Yh̵(g) ⊗ Yh̵(g) denote the left

adjoint action of Yh̵(g) on itself, and the right adjoint coaction of Yh̵(g) on itself,
respectively. That is,

▼ = m3 ○ (1⊗2 ⊗ S) ○ (2 3) ○ (Δ⊗ 1),
▲ = (1⊗ m) ○ (1 2) ○ (S ⊗ 1⊗2) ○ Δ3 .

The h̵-adic analogue of the below result, for a quantized enveloping algebra U h̵b with
Ẏh̵(g) replaced by U h̵b

′, was established in Propositions 4.3 and 4.4 of [1] (see also
Proposition A.5 therein).

Lemma 5.8 One has

▼(Yh̵(g) ⊗ Ẏh̵(g)) ⊂ Ẏh̵(g) and ▲ (Yh̵(g)) ⊂ Yh̵(g) ⊗ Ẏh̵(g).

Proof Since▼makes Yh̵(g) a left module, to prove the first inclusion, it suffices to
show that x ⋅ y ∶= ▼(x ⊗ y) ∈ Ẏh̵(g) for all x ∈ g ∪ {t i1}i∈I and y ∈ Ẏh̵(g). Since

x ⋅ y = [x , y] and t i1 ⋅ y = [t i1 , y] + m([y(1) , h̵ri]) ∀ x ∈ g, i ∈ I, y ∈ Ẏh̵(g),

this follows from the observation that h̵ri ∈ g⊗ h̵g ⊂ g⊗ Ẏh̵(g) and the fact that
Ẏh̵(g) is a g-submodule of Yh̵(g) stable under ad(t i1) for all i ∈ I.
As for the second inclusion, note that▲ is a homomorphism of right modules:

▲○ m = γ ○ (▲⊗ 1),(5.5)

where γ ∶ Yh̵(g)⊗2 ⊗ Yh̵(g) → Yh̵(g)⊗2 is the right action defined by

γ = m ⊗ m2 ○ (1⊗2 ⊗ S ⊗ 1⊗2) ○ (2 4) ○ (1⊗2 ⊗ Δ3).

https://doi.org/10.4153/S0008414X24000142 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000142


The restricted quantum double of the Yangian 805

This right action preservesYh̵(g) ⊗ Ẏh̵(g) ⊂ Yh̵(g)⊗2. Indeed, if y ∈ Yh̵(g), z ∈ Ẏh̵(g),
and x ∈ g, we have

γ(y ⊗ z ⊗ x) = y ⊗ [z, x] + yx ⊗ z ∈ Yh̵(g) ⊗ Ẏh̵(g),

and replacing x by t i1, for any i ∈ I, yields instead

γ(y ⊗ z ⊗ t i1) = y ⊗ ([z, t i1] + m([z(2) , h̵ri])) + yt i1 ⊗ z + y(1)(z(2) h̵ri − h̵r21
i z(2))

which again belongs to Yh̵(g) ⊗ Ẏh̵(g) as h̵r21
i , h̵ri ∈ (h̵g⊗ g) ∩ (g⊗ h̵g) and Ẏh̵(g)

is an ad(t i1)-stable g-submodule of Yh̵(g).
Since Yh̵(g) ⊗ Ẏh̵(g) is a right submodule of Yh̵(g)⊗2 under γ, the condition

(5.5) guarantees that ▲(Yh̵(g)) ⊂ Yh̵(g) ⊗ Ẏh̵(g) will hold provided it holds on g ∪
{t i1}i∈I. To conclude, it suffices to note that, for each x ∈ g and i ∈ I, one has

▲(x) = x ⊗ 1 ∈ Yh̵(g) ⊗ Ẏh̵(g),
▲(t i1) = t i1 ⊗ 1 + h̵(ri − r21

i ) ∈ Yh̵(g) ⊗ Ẏh̵(g). ∎

5.5 The R-matrix

The second lemma we will need concerns the universal R-matrixR(z) of the Yangian,
and will play a crucial role in identifying the dual Yangian as a subalgebra of the
Yangian double DYh̵g in Section 7. In what follows, all notation is as in Section 3.6.

Lemma 5.9 The factors R±(z) and R0(z) of the universal R-matrix R(z) have
coefficients in (Ẏh̵(g) ⊗ Yh̵(g)) ∩ (Yh̵(g) ∩ Ẏh̵(g)). Consequently,

R(z) ∈ (Ẏh̵(g) ⊗ Yh̵(g))[[z−1]] ∩ (Yh̵(g) ⊗ Ẏh̵(g))[[z−1]].

Proof Since Ẏh̵(g) is preserved by ad(t i1) for any i ∈ I and, for each α ∈ Δ+, the
simple tensor h̵x−α ⊗ x+α = x−α ⊗ h̵x+α belongs to the intersection of Ẏh̵(g) ⊗ Yh̵(g) and
Yh̵(g) ⊗ Ẏh̵(g), it follows from (3.18) and induction on ht(β) that

R−β(z) ∈ (Ẏh̵(g) ⊗ Yh̵(g))[[z−1]] ∩ (Yh̵(g) ⊗ Ẏh̵(g))[[z−1]] ∀ β ∈ Q+.

Consequently, both R−(z) and R+(z) = R−21(−z)−1 belong to the intersection of
(Ẏh̵(g) ⊗ Yh̵(g))[[z−1]] and (Yh̵(g) ⊗ Ẏh̵(g))[[z−1]]. It is thus enough to prove that

R0(z) ∈ (Ẏh̵(g) ⊗ Yh̵(g))[[z−1]] ∩ (Yh̵(g) ⊗ Ẏh̵(g))[[z−1]].

Recall from (5.2) that J = Ẏh̵(g) ∩ h̵Yh̵(g). Since h̵h i(u) ∈ J[[u−1]], the logarithm
t i(u) = log(1 + h̵h i(u)) and its Borel transform B i(u) both have coefficients in J.
Therefore, we have

h̵−1B i(u) ⊗ B j(−u) ∈ (Ẏh̵(g) ⊗ Yh̵(g))[[u]] ∩ (Yh̵(g) ⊗ Ẏh̵(g))[[u]] ∀ i , j ∈ I.

Since g(z/2κh̵) is divisible by h̵, it follows from (3.19) that the logarithm S(z) of
R0(z), and thusR0(z) itself, has coefficients belonging to the intersection of Ẏh̵(g) ⊗
Yh̵(g) and Yh̵(g) ⊗ Ẏh̵(g). ∎
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6 The dual Yangian

With Section 5 at our disposal, we are now in a position to introduce the dual Yangian
Ẏh̵g

⋆. After defining Ẏh̵g
⋆ and spelling out some of its basic properties in Sections 6.1

and 6.2, we prove in Sections 6.3 and 6.4 that it is a homogeneous quantization of the
Lie bialgebra (t− , δ−) defined in Section 2.5.We conclude in Section 6.5 by identifying
a family of generators for Ẏh̵g

⋆ and establishing a triangular decomposition.

6.1 The dual Yangian Ẏh̵g
⋆

ByCorollary 5.3, the h̵-adic completion Ẏh̵g of Ẏh̵(g) is anN-graded topologicalHopf
algebra of finite type. We may thus apply the machinery from Section 2.3 to obtain a
Z-graded topological Hopf structure on its restricted dual.
In more detail, by Proposition 2.10, the restricted dual Ẏh̵g

⋆, as defined in
Definition 2.7, is a Z-graded topological Hopf algebra over C[[h̵]] with product, unit,
coproduct, counit, and antipode given by the transposes

Δt ∶ Ẏh̵g
⋆ ⊗ Ẏh̵g

⋆ → Ẏh̵g
⋆ , εt ∶ C[[h̵]] → Ẏh̵g

⋆ ,
mt ∶ Ẏh̵g

⋆ → Ẏh̵g
⋆ ⊗ Ẏh̵g

⋆, ι t ∶ Ẏh̵g
⋆ → C[[h̵]], S t ∶ Ẏh̵g

⋆ → Ẏh̵g
⋆,

respectively, where Δ, ε, m, ι, and S are the coproduct, counit, product, unit, and
antipode of Ẏh̵g, respectively, and ⊗ is the topological tensor product overC[[h̵]] (see
Remark 2.11).

Definition 6.1 The topologicalHopf algebra Ẏh̵g
⋆ introduced above is called the dual

Yangian of g.

Explicitly, Ẏh̵g
⋆ is the subspace of the C[[h̵]]-linear dual Ẏh̵g

∗ consisting of those
f ∶ Ẏh̵g → C[[h̵]]which are continuous with respect to the gradation topology on Ẏh̵g.
It can be recovered as the h̵-adic completion of the Z-graded C[h̵]-algebra

(Ẏh̵g
⋆)Z ∶= ⊕

a∈Z
Ẏh̵g

⋆
a ≅ Ẏh̵(g)⋆,

where Ẏh̵(g)⋆ is the graded dual of Ẏh̵(g) over C[h̵] which, as explained in
Remark 2.8, coincides with (Ẏh̵g

⋆)Z under the natural identification of Ẏh̵g
∗ with

HomC[h̵](Ẏh̵(g),C[[h̵]]). Here, we have set

Ẏh̵g
⋆
a ∶= Homa

C[[h̵]](Ẏh̵g,C[[h̵]]) ≅ Homa
C[h̵](Ẏh̵(g),C[h̵]) ∀ a ∈ Z.

By Corollary 2.9, Ẏh̵g
⋆ is a flat deformation of the graded Hopf algebra

Ẏh̵g
⋆/h̵Ẏh̵g

⋆ ≅ S(h̵t+)⋆ .

In particular, the dual Yangian Ẏh̵g
⋆ is isomorphic to S(h̵t+)⋆[[h̵]] as a Z-graded

topological C[[h̵]]-module. Here, we recall that S(h̵t+)⋆ is the graded dual of the
N-graded Hopf algebra S(h̵t+) over C. As a vector space, one has

S(h̵t+)⋆ = ⊕
n∈N

S(h̵t+)⋆−n ,
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where S(h̵t+)⋆−n = Sn(h̵t+)∗ ⊂ HomC(S(h̵t+),C). We shall identify this Hopf algebra
with the enveloping algebra of the Lie algebra t− = t−1g[t−1] in Section 6.3 below.
Now let us make a few comments which concern the restricted dual Yh̵g

⋆ of the
full, completed, Yangian Yh̵g. Since Yh̵g is an N-graded topological Hopf algebra
over C[[h̵]], the formalism of Section 2.3 implies that Ẏh̵g

⋆ is a Z-graded topological
C[[h̵]]-algebra, which provides a flat deformation of the algebraU(t+)⋆ overC[[h̵]]. In
particular, there is an isomorphism of Z-graded topological C[[h̵]]-modules

Yh̵g
⋆ ≅ U(t+)⋆[[h̵]].

However, Yh̵g
⋆ is not itself a topological Hopf algebra over C[[h̵]] with respect to the

h̵-adic topology. It is, however, naturally a subalgebra of the topological Hopf algebra
Ẏh̵g

⋆. This is made explicit by the below result.

Proposition 6.2 The C[[h̵]]-linear map

Yh̵g
⋆ → Ẏh̵g

⋆ , f ↦ f ∣Ẏh̵g
∀ f ∈ Yh̵g

⋆,

is an injective homomorphism of Z-graded topological C[[h̵]]-algebras.

Proof Since Ẏh̵g is a Z-graded Hopf subalgebra of Yh̵g, the map f ↦ f ∣Ẏh̵g
respects

the underlying Z-graded algebra structures. Moreover, if f ∈ Yh̵g
⋆ vanishes on the

basis B(h̵G) from Proposition 5.2, then it vanishes on the basis B(G) of Ẏh̵(g) as
C[[h̵]] is torsion-free. This yields the injectivity. ∎
Remark 6.3 Let J be as in (5.2). Then, since J satisfies

Jn ⊂ ⊕
k≥n

Ẏh̵(g)k ∀ n ∈ N,

every f ∈ Ẏh̵g
⋆ is automatically continuous with respect to the J-adic topology on

Ẏh̵(g), and so uniquely extends to an element of the associated topological dual Yh̵g
○

toYh̵g
′ (see Section 5.1 andRemark 5.4). In this sense, the notion of duality considered

here is compatible with that for a general quantized enveloping algebra U h̵b outlined
in Section 5.1, despite the fact that we did not need to leave the category of topological
Hopf algebras over C[[h̵]] to define Ẏh̵g

⋆.

Remark 6.4 An alternative description of Ẏh̵g
⋆ using the formalism of Remark 5.1

can be found in [12, Section 3.1].

6.2 Chevalley involution and g-action

We now make a handful of simple observations which will play an important role in
the remainder of this article. In what follows, we shall freely make use of the fact that
Ẏh̵g

⋆ can be naturally viewed as a subspace of HomC[h̵](Ẏh̵(g),C[[h̵]]).
Since the Chevalley involution ω defined in Lemma 3.3 is an anti-automorphism

of the graded Hopf algebra Yh̵(g), it follows from the definition of Ẏh̵(g) (or,
alternatively, from Proposition 5.2) that it restricts to an anti-automorphism of the
gradedHopf algebra Ẏh̵(g), which we again denote by ω. Consequently, the transpose
ωt of ω, uniquely determined by

ωt( f )(x) = f (ω(x)) ∀ f ∈ Ẏh̵g
⋆ and x ∈ Ẏh̵(g),

https://doi.org/10.4153/S0008414X24000142 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000142


808 C. Wendlandt

is an involutive Hopf algebra anti-automorphism of Ẏh̵g
⋆. We call ωt the Chevalley

involution of Ẏh̵g
⋆.

Next, recall that the adjoint action of g on Yh̵(g) preserves the Drinfeld–Gavarini
subalgebra Ẏh̵(g). Since each graded component Ẏh̵(g)k is also a submodule, the
restricted dual Ẏh̵g

⋆ is a g-module equipped with the coadjoint action

(x ⋅ f )(y) = f (S(x) ⋅ y) ∀ x ∈ U(g), y ∈ Ẏh̵(g) and f ∈ Ẏh̵g
⋆.

We now introduce a topological Q-grading on Ẏh̵g
⋆ compatible with the above

action which is analogous to that obtained for DYh̵g in Section 4.2. For each β ∈ Q,
define the closed C[[h̵]]-submodule Ẏh̵g

⋆
β ⊂ Ẏh̵g

⋆ by

Ẏh̵g
⋆
β = { f ∈ Ẏh̵g

⋆ ∶ f (Ẏh̵(g)α) ⊂ C[[h̵]]α+β ∀ α ∈ Q},

where C[[h̵]]α is C[[h̵]] if α = 0 and is {0} otherwise. It is easy to see that Ẏh̵g
⋆
β is just

the β-weight space of Ẏh̵g
⋆ with respect to the g-module structure introduced above.

That is, one has

Ẏh̵g
⋆
β = { f ∈ Ẏh̵g

⋆ ∶ h ⋅ f = β(h) f ∀ h ∈ h}.

As Ẏh̵(g) is Q-graded as a Hopf algebra, the direct sum

Ẏh̵g
⋆
Q = ⊕

β∈Q
Ẏh̵g

⋆
β ⊂ Ẏh̵g

⋆

is a Q-graded C[[h̵]]-subalgebra of Ẏh̵g
⋆. Moreover, the counit, coproduct, and

antipode of Ẏh̵g
⋆ are all Q-graded, degree zero, maps. It is not difficult to prove that

Ẏh̵g
⋆
Q is a dense subalgebra of Ẏh̵g

⋆ whose subspace topology coincides with its h̵-adic
topology. Hence, we obtain the following result:

Corollary 6.5 Ẏh̵g
⋆ is Q-graded as a topological Hopf algebra over C[[h̵]].

6.3 Classical duality

Wenowwish to identify the graded dualS(h̵t+)⋆ of theN-gradedHopf algebra S(h̵t+)
with the enveloping algebra U(t−), where we recall that t− = t−1g[t−1].
To formulate this result optimally, we must first give a few preliminary remarks.

To begin, we note that the semiclassical limit of the Chevalley involution ωt of Ẏh̵g
⋆

coincides, by definition, with the transpose ω̇t of the automorphism ω̇ of S(h̵t+) given
on h̵t+ by

ω̇(h̵x) = h̵ω̄(x) ∀ x ∈ t+ ,

where ω̄ is as in (3.9). Similarly, the coadjoint action of g on Ẏh̵g
⋆ introduced in

Section 6.2 specializes to an action of g on S(h̵t+)⋆. By definition, this action is dual
to that of g on S(h̵t+) inherited from the adjoint action of g on Ẏh̵(g).
On the other hand, theChevalley involution ω̄ ofU(g[t±1]), defined as in (3.9)with

r taking values in Z, and the adjoint action of g on U(g[t±1]) both preserve U(t−).
The resulting involution and g-module structure on U(t−) will be compared to those
of S(h̵t+)⋆ described in the previous paragraph in (3) of Proposition 6.6.
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Consider now the standard symmetric algebra grading

S(h̵t+) = ⊕
n∈N

Sn(h̵t+),

where Sn(h̵t+) is the nth symmetric power of h̵t+, as in (5.4). Since S1(h̵t+) = h̵t+,
every linear functional f in (h̵t+)∗ trivially extends to an element of S(h̵t+)∗ satisfying
f (Sn(h̵t+)) = 0 for all n ≠ 1, which is contained in S(h̵t+)⋆ provided f ∈ (h̵t+)⋆.
That is, we have (h̵t+)⋆ ⊂ S(h̵t+)⋆. In addition, we have a homogeneous, degree zero,
isomorphism of graded vector spaces

Resh̵
− ∶ t− ∼
→ (h̵t+)⋆ , Resh̵

−(x)(h̵y) = Res−(x)(y) = ⟨x , y⟩ ∀ x ∈ t−, y ∈ t+ ,

where Res− and ⟨ , ⟩ are as defined in Section 2.5. With the above at our disposal, we
are now prepared to identify S(h̵t+)⋆ and U(t−).

Proposition 6.6 The restricted dual S(h̵t+)⋆ has the following properties:
(1) (h̵t+)⋆ is the Lie algebra of primitive elements in S(h̵t+)⋆, with bracket

[ f , g] = ( f ⊗ g) ○ h̵δ+ ∀ f , g ∈ (h̵t+)⋆ .

(2) Resh̵
− uniquely extends to an isomorphism of graded Hopf algebras

φ ∶ U(t−) ∼
→ S(h̵t+)⋆.

(3) φ is a g-module intertwiner commuting with Chevalley involutions.

Parts (1) and (2) of this proposition can be viewed as a variant of [25, Corollary 3.4]
applied to a restricted version of the setting in [25, Section 3E]. They can be seen as
a consequence of a graded generalization of (a special case of) Theorem 4.8 in [20].
It is not difficult to prove this variant directly using a fairly general argument, as we
illustrate below.

Proof of (1) An element f ∈ S(h̵t+)⋆ is primitive precisely when it satisfies

f (x y) = f (x)ε(y) + ε(x) f (y) ∀ x , y ∈ S(h̵t+).(6.1)

Since the counit ε of S(h̵t+) vanishes on J = ⊕n>0 S
n(h̵t+), it follows readily that f

must vanish on J2 = ⊕n>1 S
n(h̵t+). Moreover, the above condition gives f (1) = 2 f (1),

and hence f vanishes on C. It follows that f ∈ S1(h̵t+)⋆ = (h̵t+)⋆.
Conversely, if f ∈ (h̵t+)⋆, then Δ( f ) vanishes on Sn(h̵t+) ⊗ Sm(h̵t+) unless

n + m = 1, and on h̵t+ ⊗C andC⊗ h̵t+ the identity (6.1) trivially holds.This completes
the proof that the Lie algebra PrimS(h̵t+)⋆ coincides with (h̵t+)⋆ as a vector space. Let
us now prove that its bracket is given by

[ f , g] = ( f ⊗ g) ○ h̵δ+ ∀ f , g ∈ (h̵t+)⋆ .

Since [ f , g] ∈ (h̵t+)⋆, it is enough to establish this equality on h̵t+. By definition, we
have

[ f , g](h̵x) = ( f g − g f )(h̵x) = ( f ⊗ g)(Δ − Δop)(h̵x) ∀ h̵x ∈ h̵t+ .
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It thus suffices to prove that (Δ − Δop)∣h̵t+ − h̵δ+ has image in Ker( f ⊗ g). As Yh̵(g) is
a quantization of (t+, δ+), we have

(ΔYh̵(g) − Δ
op
Yh̵(g)

)(h̵μ(x)) − h̵2(μ ⊗ μ)δ+(x) ∈ h̵3Yh̵(g)⊗2 ∩ Ẏh̵(g)⊗2 ,

where we recall that μ = ν−1, with ν as in (3.13). Applying q̇⊗ q̇ and taking note of
(5.3), we obtain

(Δ − Δop)(h̵x) − h̵δ+(h̵x) ∈ ∑
n+m=3

Jn ⊗ Jm ⊂ Ker( f ⊗ g),(6.2)

which completes the proof of (1). ∎

Proof of (2) Consider now (2). By Part (1), Resh̵
− is an isomorphism of graded Lie

algebras t− ∼
→ PrimS(h̵t+)⋆ ⊂ S(h̵t+)⋆. By the universal property ofU(t−), it extends
uniquely to a homomorphism of graded Hopf algebras

φ ∶ U(t−) → S(h̵t+)⋆ ,

which is necessarily injective (by [37, Lemma 5.3.3], for instance). As the finite-
dimensional graded components U(t−)−n and S(h̵t+)⋆−n = Sn(h̵t+)∗ have the same
dimension for each n ∈ N, it follows that φ is an isomorphism. ∎

Proof of (3) If x ∈ t−, then φ(ω̄(x)) is the element of (h̵t+)⋆ determined by

φ(ω̄(x))(h̵y) = ⟨ω̄(x), y⟩ = ⟨x , ω̄(y)⟩ = ω̇t(φ(x))(h̵y) ∀ y ∈ t+,

where the second equality follows from the fact that the bilinear form ( , ) on g is
ω-invariant. As (h̵t+)⋆ is stable under ω̇t and U(t−) is generated by t−, we may
conclude that φ ○ ω̄ = ω̇t ○ φ.
Similarly, if x ∈ g and y ∈ t−, then φ([x , y]) ∈ (h̵t+)⋆ is determined by

φ([x , y])(h̵z) = ⟨[x , y], z⟩ = ⟨y, [z, x]⟩ = φ(y)(h̵[z, x]) ∀ z ∈ t+ .

On the other hand, since Jk is a g-submodule of S(h̵t+) for each k ∈ N, x ⋅ φ(y) also
belongs to (h̵t+)⋆. Moreover, we have

(x ⋅ φ(y))(h̵z) = φ(y) (S(x) ⋅ h̵z) = φ(y)(h̵[z, x]) ∀ z ∈ t+ ,

where we have used that S(x) ⋅ h̵z − h̵[z, x] ∈ J2 ⊂ Ker(φ(y)), which is proven
analogously to (6.2). Since g acts on bothU(t−) and S(h̵t+)⋆ by derivations andU(t−)
is generated by t−, the above computation proves that φ is a g-module homomor-
phism. ∎

6.4 Ẏh̵g
⋆ as a quantization

Since the dual Yangian Ẏh̵g
⋆ is a Z-graded topologically free Hopf algebra over

C[[h̵]] with semiclassical limit that, by Proposition 6.6, can be identified with U(t−)
as a graded Hopf algebra, it is a quantized enveloping algebra which provides a
homogeneous quantization of aZ-graded Lie bialgebra structure (t−, δ) on the graded
Lie algebra t− = t−1g[t−1].
The following theorem asserts that this Lie bialgebra structure on t− is precisely that

associated with the Manin triple (t, t+ , t−) from Section 2.5.
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Theorem 6.7 Ẏh̵g
⋆ is a homogeneous quantization of the Lie bialgebra (t−, δ−).

Proof In light of the above discussion, the definition δ− given in Section 2.5, and the
identification of Proposition 6.6, it is sufficient to prove that the Lie bialgebra structure
on t− ≅ (h̵t+)⋆ quantized by Ẏh̵g

⋆ has cobracket δ given by

δ( f )(h̵x ⊗ h̵y) = f (h̵[x , y]) ∀ x , y ∈ t+ , f ∈ (h̵t+)⋆ .

By definition, δ is given by the formula

δ( f ) ∶= h̵−1(mt( f̂ ) − mt
21( f̂ )) mod h̵Ẏh̵g

⋆ ⊗ Ẏh̵g
⋆,

where f̂ ∈ Ẏh̵g
⋆ is any lift of f ∈ (h̵t+)⋆ and m is the product on Ẏh̵g. For any two

elements x , y ∈ t+, we have

[μ(x), h̵μ(y)] − h̵μ[x , y] ∈ J2 ⊂ f̂ −1(h̵C[[h̵]]),(6.3)

which implies the desired result:

(δ( f )− f ○ h̵−1[, ])(h̵x ⊗ h̵y)
= f̂ ([μ(x), h̵μ(y)] − h̵μ[x , y]) mod h̵C[[h̵]] = 0. ∎

6.5 The dual triangular decomposition

Our main goal in this subsection is to establish a triangular decomposition for Ẏh̵g
⋆

dual to that for Ẏh̵g established in Corollaries 5.5 and 5.6 (see also Remark 5.7). Along
the way, we shall identify a family of generators for Ẏh̵g

⋆ (see Lemma 6.8).
For each choice of the symbol χ, consider the restricted dual Ẏχ

h̵g
⋆ of the

Z-graded topologicalC[[h̵]]-algebra Ẏχ
h̵g. By Corollaries 2.9 and 5.5, this is aZ-graded

topologically free C[[h̵]]-module with semiclassical limit equal to the graded dual

S(h̵tχ
+)
⋆ = ⊕

n∈N
S(h̵tχ

+)
⋆
−n

of the symmetric algebra S(h̵tχ
+). Moreover, by Remark 2.8, Ẏχ

h̵g
⋆ coincides with the

h̵-adic completion of the graded dual to Ẏ
χ
h̵(g) taken in the category of Z-graded

C[h̵]-modules.Now let π χ ∶ Ẏh̵g → Ẏ
χ
h̵gdenote theC[[h̵]]-linear projection associated

with the identification of Ẏh̵g with Ẏ+h̵g⊗ Ẏ0
h̵g⊗ Ẏ−h̵g established in Remark 5.7. That

is, we have

π+ = 1Ẏ+h̵ g ⊗ ε ⊗ ε, π0 = ε ⊗ 1Ẏ0
h̵g

⊗ ε and π− = ε ⊗ ε ⊗ 1Ẏ−h̵ g .

Taking the transpose of π χ yields a Z-graded embedding of C[[h̵]]-modules

(π χ)t ∶ Ẏχ
h̵g
⋆ ↪ Ẏh̵g

⋆, f ↦ f ○ π χ ∀ f ∈ Ẏχ
h̵g
⋆ ,

with image consisting of precisely those g ∈ Ẏh̵g
⋆ for which g ○ π χ = g. Note that if

h̵n g is contained in this image for some n ∈ N, then g itself is, and so the subspace
topology on (π χ)t(Ẏχ

h̵g
⋆) coincides with its h̵-adic topology. Furthermore, the semi-

classical limit of (π χ)t is the embeddingS(h̵tχ
+)⋆ ↪ S(h̵t+)⋆ induced by the projection

t+ = t++ ⊕ t0
+ ⊕ t−+ → t

χ
+ .
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We shall henceforth adopt the viewpoint that Ẏχ
h̵g
⋆ is a Z-graded topological

submodule of Ẏh̵g
⋆, with the above identification assumed. We further note that the

Chevalley involution ωt of Ẏh̵g
⋆ satisfies

ωt(Ẏ±h̵g
⋆) = Ẏ∓h̵g

⋆ and ωt ∣Ẏ0
h̵g
⋆ = 1Ẏ0

h̵g
⋆ .

Let us now identify a set of elements which generate Ẏh̵g
⋆ as a topological

C[[h̵]]-algebra. These generators are constructed so as to naturally correspond to the
coefficients of the DYh̵g-valued series ḣ i(u) and ẋ±β (u) defined in Section 4.2, and
such an identification will be made precise in the proof of Lemma 7.4 (see (7.2)).
Given β ∈ Q, let πβ ∶ Ẏ−h̵(g) → Ẏ−h̵(g)β denote the natural projection onto the

β-component of Ẏ−h̵(g). Since the C[h̵]-module isomorphism

ν̇ = ν∣Ẏh̵(g)
∶ Ẏh̵(g) ∼
→ Rh̵(U(t+)) ⊂ U(t+)[h̵]

is Q-graded and respects the underlying triangular decompositions, we have

ν̇(π−α i (Ẏ−h̵(g))) ⊂ ⊕
k∈N

C[h̵] ⋅ h̵x−i tk ⊂ h̵t+[h̵] ∀ i ∈ I.

We may thus compose ν̇ ○ π−α i with Resh̵
−(x+i t−k−1) ∈ (h̵t+)⋆, as defined above

Proposition 6.6, for any fixed k ∈ N. This outputs a degree −k − 1 element

X+i ,−k−1 ∶= Resh̵
−(x+i t−k−1) ○ ν̇ ○ π−α i ∈ Ẏ−h̵g

⋆ ⊂ Ẏh̵g
⋆ ,(6.4)

where we work through the identification of Homa
C[h̵](Ẏ−h̵(g),C[h̵]) with the ath

component Homa
C[[h̵]](Ẏ−h̵g,C[[h̵]]) of Ẏ−h̵g

⋆ (see Remark 2.8). We now enlarge this
family of elements to a generating set for the C[[h̵]]-algebra Ẏh̵g

⋆ using the coadjoint
action of g on Ẏh̵g

⋆ and the Chevalley involution ωt from Section 6.2. For each i ∈ I,
β ∈ Δ+, and k ∈ N, we introduce the degree −k − 1 elements

hi ,−k−1 = −x−i ⋅X+i ,−k−1 ,

X+β ,−k−1 ∶= Xβ ⋅X+i(β),−k−1 ∈ Ẏh̵g
⋆
β , X−β ,−k−1 ∶= ωt(X+β ,−k−1) ∈ Ẏh̵g

⋆
−β ,

where i(β) ∈ I and Xβ ∈ U(n+)β−α i(β) are as in (3.11). In the same spirit as in
Section 4.2, we organize these elements into generating series in Ẏh̵g

⋆[[u]] by setting

hi(u) ∶= −∑
r<0

hi ,ru−r−1 and X±β(u) ∶= −∑
r<0

X±β ,ru−r−1

for each i ∈ I and β ∈ Δ+. We then have the following lemma.

Lemma 6.8 The dual Yangian Ẏh̵g
⋆ is topologically generated as a C[[h̵]]-algebra

by the coefficients of {X±β(u)}β∈Δ+ and {hi(u)}i∈I. Moreover, their images under the
quotient map Ẏh̵g

⋆ ↠ Ẏh̵g
⋆/h̵Ẏh̵g

⋆ ≅ U(t−) are given by

hi ,r ↦ h i tr and X±β ,r ↦ x±β tr ∀ i ∈ I, β ∈ Δ+ and r < 0.

Proof As Ẏh̵g
⋆ is a flat deformation of the algebraU(t−) overC[[h̵]] and the elements

h i t−k−1 and x±β t−k−1 generate t− = t−1g[t−1] as a Lie algebra, it is sufficient to prove the
second assertion of the proposition.
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That the element X+ir coincides with x+i tr modulo h̵Ẏh̵g
⋆ is an immediate

consequence of its definition and the identification of U(t−) with Ẏh̵g
⋆/h̵Ẏh̵g

⋆ ≅
S(h̵t+)⋆ provided by Part (2) of Proposition 6.6. The remaining equivalences now
follow from the definitions of h i and x±β (see (3.11)) and Part (3) of Proposition 6.6,
which implies that the quotient map Ẏh̵g

⋆ ↠ U(t−) is a g-module homomorphism
intertwining Chevalley involutions. ∎

Let us now turn toward establishing a triangular decomposition for the dual
Yangian Ẏh̵g

⋆. Following the notation from Section 5.3, let us introduce the Lie
subalgebras tχ

− of t = t−1g[t−1] by setting

t
±
− ∶= t−1

n±[t−1] ⊂ t− and t
0
− ∶= t−1

h[t−1] ⊂ t− .

Thebelowproposition provides a strengthening of the h̵-adic analogues of Proposition
3.2 andTheorem 4.2 (i) from [32].

Proposition 6.9 Ẏ±h̵g
⋆ and Ẏ0

h̵g
⋆ are C[[h̵]]-subalgebras of Ẏh̵g

⋆. Moreover:

(1) Ẏ±h̵g
⋆ is a flat deformation of the Z-graded algebra U(t∓− ) over C[[h̵]]. In particular,

there is an isomorphism of Z-graded topological C[[h̵]]-modules

Ẏ±h̵g
⋆ ≅ U(t∓− )[[h]].

(2) Ẏ0
h̵g
⋆ is commutative and isomorphic to U(t0

−)[[h̵]] ≅ S(t0
−)[[h̵]] as a Z-graded

topological C[[h̵]]-algebra.
(3) Ẏ±h̵g

⋆ and Ẏ0
h̵g
⋆ are topologically generated as C[[h̵]]-algebras by the coefficients of

{X∓β(u)}β∈Δ+ and {hi(u)}i∈I, respectively.

Proof One can deduce that Ẏχ
h̵g
⋆ is a subalgebra of Ẏh̵g

⋆ using properties of the
Yangian coproduct, as in [32, Proposition 3.2]. We shall give an alternate simple proof
of this fact in Section 7.3 which illustrates that it follows naturally from properties of
R(z) (see Corollary 7.7 and Remark 7.8).
Let us complete the proof of the proposition assuming Corollary 7.7, which,

as explained in Remark 7.8, also implies that the coefficients of {X∓β(u)}β∈Δ+ and
{hi(u)}i∈I belong to Ẏ∓h̵g

⋆ and Ẏ0
h̵g
⋆, respectively, and that Ẏ0

h̵g
⋆ is commutative. ∎

Proof of (1) and (2) The graded Lie bialgebra isomorphism Resh̵
− ∶ t− ∼
→ (h̵t+)⋆ of

Proposition 6.6 restricts to an isomorphism t
�χ
−

∼
→ (h̵tχ
+)⋆ ⊂ S(h̵tχ

+)⋆. Since Ẏχ
h̵g
⋆ is a

subalgebra of Ẏh̵g
⋆, its semiclassical limit S(h̵tχ

+)⋆ is a Z-graded C[[h̵]]-subalgebra of
S(h̵t+)⋆ and not just a submodule. It follows from these observations that the graded
Hopf algebra isomorphism φ of Proposition 6.6 restricts to an injective Z-graded
algebra homomorphism

φχ ∶ U(t�χ
− ) → S(h̵tχ

+)
⋆ ⊂ S(h̵t+)⋆(6.5)

which is surjective by the same argument as used in the proof of Part (2) of
Proposition 6.6. Since Ẏ

χ
h̵g
⋆ is a Z-graded topologically free C[[h̵]]-algebra with

semiclassical limitS(h̵tχ
+)⋆ ≅ U(t�χ

− ), taking χ = ± recovers Part (1) of the proposition.
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As for Part (2), since Ẏ0
h̵g
⋆ is a commutative topological C[[h̵]]-algebra containing

{hik}i∈I,k<0 (by Corollary 7.7), there is a C[[h̵]]-algebra homomorphism
η ∶ S(t0

−)[[h̵]] → Ẏ0
h̵g
⋆

uniquely determined by η(h i tk) = hik for all i ∈ I and k < 0. By Lemma 6.8, the
semiclassical limit η̄ ∶ S(t0

−) → U(t0
−) of η satisfies η̄(h i tk) = h i tk for all i ∈ I and

k < 0, and thus coincides with the canonical isomorphism S(t0
−) ∼
→ U(t0

−). Here, we
have assumed the identification of Ẏ0

h̵g
⋆/h̵Ẏ0

h̵g
⋆ withU(t0

−) provided by φ0 from (6.5)
above. As S(t0

−) and Ẏ0
h̵g
⋆ are both topologically free, we can conclude from Lemma

2.1 that η is an isomorphism of topological C[[h̵]]-algebras. ∎
Proof of (3) For Ẏ0

h̵g
⋆, this follows from the definition of the isomorphism η given

in the proof of (2) above.
Similarly, by Lemma 6.8 and Corollary 7.7, X∓β ,k belongs to Ẏ

±
h̵g
⋆ and specializes to

x∓β tk in Ẏ±h̵g
⋆/h̵Ẏ±h̵g

⋆ ≅ U(t∓− ) ⊂ U(t−), for each β ∈ Δ+ and k < 0. Since the elements
x∓β tk generate the Lie algebra t∓− and, by Part (1), Ẏ±h̵g

⋆ is a flat deformation of the
algebra U(t∓− ) over C[[h̵]], this completes the proof of the proposition. ∎
Remark 6.10 We caution that Ẏ±h̵g

⋆ is not generated by the elements X∓i ,−k−1, for
i ∈ I and k ∈ N, unless g = sl2, just as t−1n∓[t−1] is not generated as a Lie algebra by
the elements x∓i t−k−1 outside of the rank one case. In particular, the statement of Part
(i) in [32, Theorem 4.2], which is the analogue of Part (2) above, should be adjusted.
As an application of Lemma 2.1, Proposition 6.9, the decomposition t− = t−− ⊕

t0
− ⊕ t+− , and the Poincaré–Birkhoff–Witt theorem for enveloping algebras, we obtain
the following variant of Theorem 3.1(ii) in [32].
Corollary 6.11 The multiplication map

m ∶ Ẏ+h̵g
⋆ ⊗ Ẏ0

h̵g
⋆ ⊗ Ẏ−h̵g

⋆ → Ẏh̵g
⋆

is an isomorphism of Z-graded topological C[[h̵]]-modules.
Remark 6.12 We note that for the statement of [32, Theorem 3.1] to hold, the tensor
product ⊗ must be taken to be a completion of the algebraic tensor product ⊗C

compatible with the underlying Z-filtrations.

7 DYh̵g as a quantization

In this section, we construct a Z-graded topological Hopf algebra structure on DYh̵g

which quantizes the graded Lie bialgebra structure on the loop algebra t = g[t±1]
defined in Section 2.5. This will be achieved in Theorem 7.5 using Proposition 7.1
and Corollary 7.3. As a consequence of these results, we obtain in Section 7.3 a
characterization of the restricted duals Ẏ±h̵g

⋆ and Ẏ0
h̵g
⋆ in terms of the universal

R-matrix R(z) which completes the proof of Proposition 6.9.

7.1 The morphism Φ ‹z

Henceforth, the notation Yh̵g

‹ will be used to denote the topological Hopf algebra
(Ẏh̵g

⋆)cop overC[[h̵]].That is,Yh̵g

‹ coincideswith the dual Yangian Ẏh̵g
⋆ as an algebra,
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and has coproduct Δ ‹, counit ε ‹ , and antipode S ‹ given by

Δ ‹ ∶= (1 2) ○ mt ∶ Yh̵g

‹ → Yh̵g

‹ ⊗ Yh̵g

‹ ,
ε ‹ ∶= ι t ∶ Yh̵g

‹ → C[[h̵]], S ‹ ∶= (S−1)t ∶ Yh̵g

‹ → Yh̵g

‹ ,

where m, ι, and S are the product, unit, and antipode of the Drinfeld–Gavarini
Yangian Ẏh̵g ⊂ Yh̵g (see Section 6.1). ByTheorem 6.7, Yh̵g

‹ is a flat deformation of the
enveloping algebra U(t−) = U(t−1g[t−1]) over C[[h̵]] which provides a homogeneous
quantization of the Lie bialgebra (t− ,−δ−).
Our present goal is to construct a homomorphism of C[[h̵]]-algebras

Φ ‹z ∶ Yh̵g

‹ → Yh̵g[[z−1]]

which is compatible with both the formal shift operator Φz of Theorem 4.6 and the
Hopf structures on Yh̵g

‹ and Yh̵g. This is achieved using the universal R-matrix R(z)
of theYangian as follows. By Lemma5.9,R(z) is an element of (Ẏh̵(g) ⊗ Yh̵(g))[[z−1]],
and thus gives rise to a C[[h̵]]-module homomorphism

Φ ‹z ∶ Yh̵g

‹ → Yh̵g[[z−1]], f ↦ ( f ⊗ 1)R(−z) ∀ f ∈ Yh̵g

‹ .

Now recall that ḣ i(u), ẋ±β (u) ∈ DYh̵g[[u]] and hi(u),X±β(u) ∈ Yh̵g

‹[[u]] are the gener-
ating series defined in Sections 4.2 and 6.5, respectively. In addition, we let Ez denote
the canonical C[[h̵]]-algebra homomorphism

Ez ∶ Yh̵g[[w−1]] ⊗ Yh̵g[[z−1]] → Yh̵g
⊗2[[z−1]]

given by evaluating w to z. The following proposition asserts that Φ ‹z indeed has the
desired properties.

Proposition 7.1 Φ ‹z has the following properties:
(1) It is a homomorphism of C[[h̵]]-algebras satisfying

Δ ○Φ ‹z = Ez ○ (Φ ‹w ⊗Φ ‹z) ○ Δ ‹, ε ○Φ ‹z = ε ‹ and S ○Φ ‹z = Φ ‹z ○ S ‹ .

(2) It is a U(g)-module homomorphism compatible with Chevalley involutions:

Φ ‹z ○ ωt = ω ○Φ ‹z .

(3) Its restriction to Ẏh̵(g)⋆ is a Z-graded C[h̵]-algebra homomorphism

Φ ‹z ∣Ẏh̵(g)
⋆ ∶ Ẏh̵(g)⋆ → LYh̵g

⋀

z .

(4) For each β ∈ Δ+ and i ∈ I, one has

Φ ‹z(X±β(u)) = ∑
n∈N

(−1)nun ∂(n)z x±β (−z) = Φz(ẋ±β (u)),

Φ ‹z(hi(u)) = ∑
n∈N

(−1)nun ∂(n)z h i(−z) = Φz(ḣ i(u)).

Proof of (1) This is a modification of the standard result that if H is a finite-
dimensional quasitriangular Hopf algebra over a field K with R-matrix R ∈ H ⊗K H,
then themap f ↦ ( f ⊗ 1H)R defines a homomorphism ofHopf algebras (H∗)cop → H
(see, for instance, [4, Section 4.2.B] or [39, Section 2]).The only novelty in the present
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setting is the appearance of the formal parameter z. Nonetheless, for the sake of
completeness, we shall give a full proof.
As the product on Yh̵g

‹ is the transpose of the coproduct Δ on Ẏh̵g and Δ⊗
1(R(z)) = R13(z)R23(z), we have

Φ ‹z( f g) = f ⊗ g ⊗ 1(R13(−z)R23(−z)) = Φ ‹z( f )Φ ‹z(g) ∀ f , g ∈ Yh̵g

‹ .

Since, in addition, (ε ⊗ 1)R(z) = 1, we can conclude that Φ ‹z is a homomorphism of
unital, associative C[[h̵]]-algebras.
Let us now verify the coproduct identity Δ ○Φ ‹z = Ez ○ (Φ ‹w ⊗Φ ‹z) ○ Δ ‹ on

f ∈ Yh̵g

‹ . Using the cabling identity 1 ⊗ Δ(R(z)) = R13(z)R12(z), we obtain
Δ(Φ ‹z( f )) = ( f ⊗ Δ)(R(−z))

= ( f ⊗ 1 ⊗ 1)(R13(−z)R12(−z))
= (Δ ‹( f ) ⊗ 1 ⊗ 1)(R13(−z)R24(−z))
= (Ez ○ (Δ ‹( f ) ⊗ 1 ⊗ 1))(R13(−w)R24(−z))
= (Ez ○ (Φ ‹w ⊗Φ ‹z) ○ Δ ‹)( f ).

Finally, the remaining two identities follow from the relations (1 ⊗ ε)R(z) = 1 and
(S−1 ⊗ 1)R(z) = (1 ⊗ S)R(z). Indeed, for each f ∈ Yh̵g

‹ , we have

ε ○Φ ‹z( f ) = ( f ⊗ ε)R(−z) = f (1) = ε ‹( f ),
S ○Φ ‹z( f ) = ( f ⊗ S)R(−z) = (S ‹( f ) ⊗ 1)R(−z) = Φ ‹z ○ S ‹( f ). ∎

Proof of (2) Since τz restricts to the identity onU(g), the intertwiner equation (3.20)
implies that R(z) is a g-invariant element of Yh̵(g)⊗2[[z−1]]:

[x ⊗ 1 + 1⊗ x ,R(z)] = 0 ∀ x ∈ g.
It follows readily from this fact, and the definition of the g-module structure on
Yh̵g

‹ = Ẏh̵g
⋆ introduced in Section 6.2, that Φ ‹z is a U(g)-module homomorphism.

Similarly, by Corollary 3.10, the Chevalley involution ω satisfies (ω ⊗ ω)R(z) =
R(z), and we thus have
Φ ‹z(ωt( f )) = (( f ○ ω) ⊗ ω2)R(−z) = ( f ⊗ ω)R(−z) = ω(Φ ‹z( f )) ∀ f ∈ Yh̵g

‹ .

∎
Proof of (3) Suppose that f is a degree k element of Ẏh̵(g)⋆ for some k ∈ Z. Then
f ⊗ 1 ∶ Ẏh̵(g) ⊗ Yh̵(g) → Yh̵(g) is homogeneous of degree k, and hence

f ⊗ 1(Yh̵g
⋀

(2)
z ∩ (Ẏh̵(g) ⊗ Yh̵(g))[[z−1]]) ⊂ zk ∏

n∈N
Yh̵(g)n+k z−n−k ⊂ zk Yh̵g

⋀

z ,

whereYh̵g
⋀

(2)
z = ∏n∈N(Yh̵(g)⊗2)nz−n , as in Section 3.6.The assertion now follows from

Part (3) of Theorem 3.8 and Lemma 5.9, which yield

R(z) ∈ Yh̵g
⋀

(2)
z ∩ (Ẏh̵(g) ⊗ Yh̵(g))[[z−1]]. ∎

Proof of (4) Since Φ ‹z is a U(g)-module homomorphism intertwining Chevalley
involutions, it is sufficient to establish that

Φ ‹z(X+i ,−k−1) = (−1)k+1∂(k)z x+i (−z) = Φz(x+i ,−k−1) ∀ i ∈ I and k ∈ N,(7.1)
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where we recall that X+i ,−k−1 was defined explicitly in (6.4). Since ε ⊗ 1 sends both
R0(z) and R+(z) to 1 and X+i ,−k−1 vanishes on Ẏ

−
h̵(g)β for β ≠ −α i , we have

Φ ‹z(X+i ,−k−1) = (X+i ,−k−1 ⊗ 1)R−α i
(z).

Using (3.18), we deduce that the element R−α i
(z) is given by

R−α i
(z) = ∑

p≥0

α i(ζ)T(ζ)p

(zα i(ζ))p+1 (h̵x−i ,0 ⊗ x+i ,0) = ∑
p≥0

p

∑
n=0

(p
n
)(−1)n h̵x−i ,n ⊗ x+i , p−nz−p−1 ,

where we have used ad(T(ζ))p(x±i ,0) = (±1)pα i(ζ)px±i , p . This can be rewritten as

R−α i
(z) = ∑

n∈N
h̵x−i ,n ⊗ ∂(n)z x+i (z) = − ∑

n∈N
h̵x−i ,n ⊗Φ−z(x+i ,−n−1),

where the second equality is due to Part (1) of Theorem 4.6. As X+i ,−k−1(h̵x−i ,n) =
Resh̵

−(x+i t−k−1)(h̵x−i tn) = −δkn for all k, n ∈ N, this implies the identity (7.1). ∎

Remark 7.2 As Yh̵g

‹ and LYh̵g
⋀

z are Z-graded topological C[[h̵]]-algebras with

(Yh̵g

‹)Z = (Ẏh̵g
⋆)Z ≅ Ẏh̵(g)⋆ and (LYh̵g

⋀

z)Z = LYh̵g
⋀

z ,

Part (3) of the proposition is equivalent to the assertion that Φ ‹z is a Z-graded C[[h̵]]-
algebra homomorphism Φ ‹z ∶ Yh̵g

‹ → LYh̵g
⋀

z .

Since Φ ‹z has image in LYh̵g
⋀

z , we may compose it with Ev from (4.2) to obtain a
C[[h̵]]-algebra homomorphism

Φ ‹ ∶= Ev ○Φ ‹z ∶ Yh̵g

‹ → Yh̵g
⋀

.

Our present goal is to apply Part (1) of Proposition 7.1 to interpret Φ ‹ as a homomor-
phism of topological Hopf algebras, where the topological structure on the completed
Yangian is that induced by the gradation topology on Yh̵g. To make this precise, let us
define Yh̵g

⋀
(n), for any n ∈ N, to be the formal completion of Yh̵(g)⊗n with respect to

its N-grading:

Yh̵g
⋀

(n) ∶= ∏
k∈N

(Yh̵(g)⊗n)k .

Equivalently, it is the completion of the N-graded topological C[[h̵]]-algebra Yh̵g
⊗n

with respect to the filtration defining its gradation topology, as defined in Section 2.3.
By [41, Proposition A.1], this is a topologically freeC[[h̵]]-algebra containing Yh̵g

⊗n as
a subalgebra (see also [41, Lemma 4.1] and Section 4.3 above). Furthermore, we can
(and shall) view

(Yh̵g
⋀

)⊗n ⊂ Yh̵g
⋀

(n) ∀ n ∈ N,

where ⊗ denotes the topological tensor product over C[[h̵]].
Next, observe that the N-graded Hopf algebra structure on Yh̵(g) induces a topo-

logical Hopf structure on Yh̵g
⋀

, equipped with the grading-completed tensor product.
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More precisely, as the multiplication m, coproduct Δ, counit ε, and antipode S on
Yh̵(g) are N-graded, they uniquely extend to C[[h̵]]-module homomorphisms

m ∶ Yh̵g
⋀

(2) → Yh̵g
⋀

, Δ ∶ Yh̵g
⋀

→ Yh̵g
⋀

(2) , ε ∶ Yh̵g
⋀

→ C[[h̵]], S ∶ Yh̵g
⋀

→ Yh̵g
⋀

,

which collectively satisfy the axioms of a Hopf algebra. Proposition 7.1 then admits the
following corollary.

Corollary 7.3 TheC[[h̵]]-algebra homomorphismΦ ‹ is a morphism of topological Hopf
algebras. That is, it satisfies

Δ ○Φ ‹ = (Φ ‹ ⊗Φ ‹) ○ Δ ‹, ε ○Φ ‹ = ε ‹ and S ○Φ ‹ = Φ ‹ ○ S ‹ .

In particular, one has Im(Δ ○Φ ‹) ⊂ Yh̵g
⋀

⊗ Yh̵g
⋀

.

Proof The counit and antipode relations are obtained by applying Ev to the
corresponding relations of Part (1) of Proposition 7.1 and appealing to the identity
Φ ‹ = Ev ○Φ ‹z .The idea now is that the relation Δ ○Φ ‹ = (Φ ‹ ⊗Φ ‹) ○ Δ ‹ should follow
by applying Ev⊗ Ev to both sides of the identity Δ ○Φ ‹z = Ez ○ (Φ ‹w ⊗Φ ‹z) ○ Δ ‹.
However, to make this precise, we must first make a few technical observations.

Recall from (3.16) that L(Yh̵g
⋀

(2)
z ) is the Z-graded subalgebra of Yh̵(g)⊗2[z; z−1]] with

kth homogeneous component zk Yh̵g
⋀

(2)
z , where

Yh̵g
⋀

(2)
z = ∏

n∈N
(Yh̵(g)⊗2)nz−n ⊂ Yh̵(g)⊗2[[z−1]].

Following Section 4.3, we shall write L(Yh̵g
⋀

(2)
z ) for the h̵-adic completion ofL(Yh̵g

⋀
(2)
z ).

This is a Z-graded topological C[[h̵]]-algebra contained in the formal series space
(Yh̵g⊗ Yh̵g)[[z±1]] (see Lemma 4.5). As in (4.2), evaluation at z = 1 yields a C[[h̵]]-
algebra epimorphism

Ev(2) ∶ L(Yh̵g
⋀

(2)
z ) ↠ Yh̵g

⋀
(2) , f (z) ↦ f (1).

Next, let EL
z denote the natural C[[h̵]]-algebra homomorphism

E
L
z ∶ LYh̵g
⋀

w ⊗ LYh̵g
⋀

z → L(Yh̵g
⋀

(2)
z )

given by evaluating w ↦ z. Then, since Φ ‹z is a Z-graded C[[h̵]]-algebra homomor-
phism Yh̵g

‹ → LYh̵g
⋀

z and Δ is homogeneous of degree zero, the first relation of Part
(1) in Proposition 7.1 is equivalent to the identity

Δ ○Φ ‹z = E
L
z ○ (Φ ‹w ⊗Φ ‹z) ○ Δ ‹

in HomC[[h̵]](Yh̵g

‹ , L(Yh̵g
⋀

(2)
z )). As E

L
z satisfies the relation Ev(2) ○ EL

z = Ev⊗ Ev,
applying Ev(2) to the above identity recovers Δ ○Φ ‹ = (Φ ‹ ⊗Φ ‹) ○ Δ ‹. ∎

7.2 DYh̵g as a quantization

With Proposition 7.1 andCorollary 7.3 in hand, we now turn to proving that DYh̵g pro-
vides a homogeneous quantization of the Z-graded Lie bialgebra t = g[t±1], equipped
with the Lie cobracket δ defined in Section 2.5.
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To begin, observe that the homomorphisms Φ ‹z and Φ ‹ satisfy the relation

Γ ○Φ ‹ = Γz ○Φ ‹z ,

where Γ and Γz are as in Theorem 4.8 and (4.3), respectively. The C[[h̵]]-algebra
homomorphism defined by either side of this relation shall be denoted ı̌:

ı̌ ∶= Γz ○Φ ‹z ∶ Yh̵g

‹ → DYh̵g
⋀

.

The following lemma shows that ı̌ is injective, Z-graded, and has image contained in
the Yangian double DYh̵g.

Lemma 7.4 The morphism ı̌ is an embedding of Z-graded topological C[[h̵]]-algebras

ı̌ ∶ Yh̵g

‹ ↪ DYh̵g

satisfying Φ ○ ı̌ = Φ ‹ and Φz ○ ı̌ = Φ ‹z . In particular, Φ ‹ and Φ ‹z are both injective.

Proof Since Γz ○Φz = 1DYh̵g, Part (4) of Proposition 7.1 yields

ı̌ (X±β(u)) = Γz(Φz(ẋ±β (u))) = ẋ±β (u) ∀ β ∈ Δ+,
ı̌ (hi(u)) = Γz(Φz(ḣ i(u))) = ḣ i(u) ∀ i ∈ I.

(7.2)

By Remark 4.9, DYh̵g is a closed subspace of its J-adic completion, viewed as a
topological C[[h̵]]-module. As Yh̵g

‹ is topologically generated as a C[[h̵]]-algebra by
the coefficients of all the series X±β(u) and hi(u) (by Lemma 6.8), the equalities
(7.2) imply that ı̌ has image in DYh̵g and thus can be viewed as a C[[h̵]]-algebra
homomorphism

ı̌ ∶ Yh̵g

‹ → DYh̵g

which necessarily satisfies Φ ○ ı̌ = Φ ‹. Similarly, since Φz(DYh̵g) is closed in LYh̵g
⋀

z
(see Remark 4.9), Part (4) of Proposition 7.1 and (7.2) give Φz ○ ı̌ = Φ ‹z .
As Yh̵g

‹ and DYh̵g are both topologically free, it follows from Lemma 2.1 that ı̌ will
be injective provided its semiclassical limit ı̌ ∶ U(t−) → U(t) is.That this is indeed the
case is a consequence of Lemma 6.8, the relations (7.2), and the definitions of ẋ±β (u)
and ḣ i(u) given in Section 4.2, which imply that ı̌ coincides with the natural inclusion
of U(t−) into U(t) induced by the polarization t = t+ ⊕ t− = g[t] ⊕ t−1g[t−1].
Finally, by Part (2) of Theorem 4.6 and Part (3) of Proposition 7.1, Φz and Φ ‹z are

both Z-graded (see Remarks 4.7 and 7.2). As Φz is injective, it follows automatically
that ı̌ is Z-graded. ∎

The embedding ı̌ is at the heart of the following theorem, which provides the first
main result of this article.

Theorem 7.5 There is a unique Z-graded topological Hopf algebra structure on DYh̵g
such that the inclusions

Yh̵g
ı
→ DYh̵g

ı̌←
 Yh̵g

‹

are morphisms of Z-graded topological Hopf algebras over C[[h̵]]. Equipped with this
Hopf structure, DYh̵g is a homogeneous quantization of the Lie bialgebra (t, δ).
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Proof If DYh̵g can be equipped with a coproduct Δ̇, counit ε̇, and antipode Ṡ which
give it the structure of a topological Hopf algebra over C[[h̵]] and, in addition, make
ı and ı̌ morphisms of Z-graded topological Hopf algebras, then this structure is
necessarily unique and Z-graded. Indeed, Δ̇, ε̇, and Ṡ are determined by their values
on any set of generators of the topological algebra DYh̵g, and thus by their values on
ı(Yh̵g) ∪ ı̌(Yh̵g

‹).
Let us now establish the existence of a topological Hopf structure on DYh̵g over

C[[h̵]] with the claimed properties. We begin by observing that ı and ı̌ satisfy the
relations

Δ ○Φ ○ ı = (Φ⊗Φ) ○ (ı ⊗ ı) ○ Δ,
Δ ○Φ ○ ı̌ = (Φ⊗Φ) ○ (ı̌ ⊗ ı̌) ○ Δ ‹.

(7.3)

The first relation follows from the identity Φ ○ ı = τ1 and that, for each c ∈ C, τc is
a Hopf algebra automorphism (see Section 3.3). As for the second relation, since
Φ ○ ı̌ = Φ ‹, Corollary 7.3 yields

Δ ○Φ ○ ı̌ = Δ ○Φ ‹ = (Φ ‹ ⊗Φ ‹) ○ Δ ‹ = (Φ⊗Φ) ○ (ı̌ ⊗ ı̌) ○ Δ ‹.

Since DYh̵g is a generated as a topological C[[h̵]]-algebra by ı(Yh̵g) ∪ ı̌(Yh̵g

‹), these
relations imply that Δ ○Φ has image satisfying

Im(Δ ○Φ) ⊂ Im(Φ⊗Φ) ⊂ Yh̵g
⋀

⊗ Yh̵g
⋀

,

where we view the right-hand side as subspace of Yh̵g
⋀

(2), as in Corollary 7.3. We may
therefore introduce a C[[h̵]]-algebra homomorphism Δ̇ by

Δ̇ ∶= (Γ ⊗ Γ) ○ Δ ○Φ ∶ DYh̵g → DYh̵g⊗DYh̵g,

where Γ is the inverse of Φ
⋀

, as in Theorem 4.8. Since Γ ○Φ = 1, it follows from this
definition and the relations (7.3) that

Δ̇ ○ ı = (ı ⊗ ı) ○ Δ and Δ̇ ○ ı̌ = (ı̌ ⊗ ı̌) ○ Δ ‹.(7.4)

Similarly, from Corollary 7.3 and the relations τ1 ○ S = S ○ τ1 and ε ○ τ1 = ε, we find
that ı and ı̌ satisfy

S ○Φ ○ ı = Φ ○ ı ○ S , S ○Φ ○ ı̌ = Φ ○ ı̌ ○ S ‹ ,
ε ○Φ ○ ı = ε, ε ○Φ ○ ı̌ = ε ‹ .

In particular, these relations imply that Im(S ○Φ) ⊂ Im(Φ). We may therefore define
morphisms Ṡ and ε̇ by

Ṡ ∶= Γ ○ S ○Φ ∶ DYh̵g → DYh̵g and ε̇ ∶= ε ○Φ ∶ DYh̵g → C[[h̵]]

which by construction satisfy the compatibility relations

Ṡ ○ ı = ı ○ S , Ṡ ○ ı̌ = ı̌ ○ S ‹ , ε̇ ○ ı = ε and ε̇ ○ ı̌ = ε ‹ .(7.5)

Since Γ∣Im(Φ) = Φ−1 and Yh̵g is a topological Hopf algebra with coproduct Δ,
antipode S, and counit ε, the above definitions imply that DYh̵g is a topological Hopf
algebra overC[[h̵]]with coproduct Δ̇, antipode Ṡ, and counit ε̇. Moreover, the relations
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(7.4) and (7.5) prove that, when DYh̵g is given this Hopf structure, the Z-graded
embeddings ı and ı̌ are homomorphisms of topological Hopf algebras.
We are left to establish the second assertion of the theorem. By what we have shown

so far and Theorem 4.3, DYh̵g is a flat, Z-graded Hopf algebra deformation of the
universal enveloping U(t) of t = g[t±1] over C[[h̵]]. It thus provides a homogeneous
quantization of a Z-graded Lie bialgebra structure on the Lie algebra t with cobracket
δt given by the formula (2.2). From Theorems 6.7 and 6.7 and the first part of the
theorem, δt satisfies δt∣t+ = δ+ and δt∣t− = −δ−. As t = t+ ⊕ t−, we can conclude that δt
coincides with the Lie cobracket δ defined in Section 2.5. ∎

Remark 7.6 The proof of Theorem 7.5 shows that the coproduct Δ̇, counit ε̇, and
antipode Ṡ on DYh̵g are uniquely determined by the requirement that Φ is a homo-
morphism of topological Hopf algebras

Φ ∶ DYh̵g → Yh̵g
⋀

,

where Yh̵g
⋀

is given the topological Hopf structure defined above Corollary 7.3. Here,
we emphasize that although DYh̵g is a genuine topological Hopf algebra over C[[h̵]]
in the sense of Section 2.1, the completed Yangian Yh̵g

⋀

is not. In the same breath, the
Hopf algebra structure on DYh̵g is uniquely characterized by the requirement that Φz
satisfies the relations

Δ ○Φz = E
L
z ○ (Φw ⊗Φz) ○ Δ̇, ε ○Φz = ε̇ and S ○Φz = Φz ○ Ṡ ,

where EL
z is as in the proof of Corollary 7.3. In particular, this makes precise the

uniqueness statement in the first assertion of Theorem I.

7.3 The dual triangular decomposition revisited

Weconclude this section by giving an equivalent characterization of the restricted dual
Ẏ

χ
h̵g
⋆ to Ẏχ

h̵g considered in Section 6.5, where we recall that χ takes value +, − or 0.

Corollary 7.7 For each choice of χ, Ẏχ
h̵g
⋆ satisfies

Ẏ
χ
h̵g
⋆ = { f ∈ Ẏh̵g

⋆ ∶ Φ ‹z( f ) = ( f ⊗ 1)Rχ(−z)} = (Φ ‹z)−1(Y�χ
h̵ g[[z−1]]).

Proof From the definitions of Ẏχ
h̵g and Φ

‹

z , and the Gauss decomposition of the
universal R-matrix, we obtain the sequence of inclusions

Ẏ
χ
h̵g
⋆ ⊂ { f ∈ Ẏh̵g

⋆ ∶ Φ ‹z( f ) = ( f ⊗ 1)Rχ(−z)} ⊂ (Φ ‹z)−1(Y�χ
h̵ g[[z−1]]).

It therefore suffices to show that (Φ ‹z)−1(Y�χ
h̵ g[[z−1]]) ⊂ Ẏ

χ
h̵g
⋆. We shall establish this

for χ = −. The proof in the remaining cases is identical, and hence omitted.
Let π+ ∶ Yh̵g → Y+h̵g be the C[[h̵]]-linear projection associated with the opposite

triangular decomposition Yh̵g ≅ Y−h̵g⊗ Y 0
h̵ g⊗ Y+h̵g from Remark 3.7, and suppose

f ∈ Ẏh̵g
⋆ satisfies Φz( f ) ∈ Y+h̵g[[z−1]]. We wish to show that f ∈ Ẏ−h̵g

⋆.
To begin, note that since (1 ⊗ ε)Rχ(z) = 1, we have

Φ ‹z( f ) = π+(Φ ‹z( f )) = ( f ⊗ 1)R−(z).
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Consider now the element f ○ π− ∈ Ẏ−h̵g
⋆ ⊂ Ẏh̵g

⋆, where π− ∶ Ẏh̵g → Ẏ−h̵g is as in
Section 6.5. Since (π− ⊗ 1)R(z) = R−(z), it satisfies

Φ ‹z( f ○ π−) = ( f ⊗ 1)R−(z) = Φ ‹z( f ).

As Φ ‹z is injective (by Lemma 7.4), we can conclude that f = f ○ π− ∈ Ẏ−h̵g
⋆. ∎

Remark 7.8 Since Y±h̵g and Y 0
h̵ g are C[[h̵]]-subalgebras of Yh̵g, it follows from this

corollary that Ẏχ
h̵g
⋆ is a C[[h̵]]-subalgebra of Ẏh̵g

⋆ for each choice of χ. In addition,
it is immediate from this characterization and Part (4) of Proposition 7.1 that the
coefficients of the series X±β(u) and hi(u) belong to Ẏ∓h̵g

⋆ and Ẏ0
h̵g
⋆, respectively,

for each β ∈ Δ+ and i ∈ I. Similarly, since Φ ‹z is injective and Y 0
h̵ g is commutative, we

deduce that Ẏ0
h̵g
⋆ is commutative.

In particular, these observations complete the proof of Proposition 6.9.We empha-
size that we have not applied that proposition in establishing any of the results in
Section 7.

8 DYh̵g as a quantum double

We now turn to reframing Theorem 7.5 in the context of the quantum double. Our
central objective is to prove the second main result of this article, Theorem 8.4, which
establishes that the Yangian double DYh̵g is isomorphic, as a Z-graded topological
Hopf algebra over C[[h̵]], to the restricted quantum double of the Yangian, which is
defined explicitly in Section 8.2.

8.1 The quantum double of U h̵b

Let us begin by recalling, in broad strokes, the general construction of the quan-
tum double of a quantized enveloping algebra, as was first outlined by Drinfeld in
[7, Section 13].
Suppose that U h̵b is a quantization of a finite-dimensional Lie bialgebra b, and let

U h̵b

‹ denote the quantized enveloping algebra (U h̵b
○)cop, whereU h̵b

○ is the topologi-
cal dual toU h̵b

′ introduced in Section 5.1.Then there exists a unique topological Hopf
algebraD(U h̵b) overC[[h̵]], the quantum double ofU h̵b, satisfying the following three
properties:
(1) There are embeddings of topological Hopf algebras

U h̵b
ı
→ D(U h̵b)

ı̌←
 U h̵b

‹ .

(2) The compositem ○ (ı̌ ⊗ ı) ∶ Uh̵b

‹ ⊗ U h̵b → D(U h̵b) is an isomorphism ofC[[h̵]]-
modules.

(3) The canonical element R ∈ U h̵b
′ ⊗ U h̵b

‹ ⊂ D(U h̵b) ⊗ D(U h̵b) associated with
the pairing between U h̵b

′ and U h̵b
○, which coincides with the canonical tensor

in U h̵b⊗ U h̵b
∗, defines a quasitriangular structure on D(U h̵b). That is, one has

Δop(x) = RΔ(x)R−1 ∀ x ∈ D(U h̵b),
Δ⊗ 1(R) = R13R23 , 1 ⊗ Δ(R) = R13R12 .
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In addition, D(Uh̵b) provides a quantization of the Drinfeld double of the finite-
dimensional Lie bialgebra b.
The quantum double D(U h̵b) can be realized explicitly as the tensor product of

topological coalgebras U h̵b

‹ ⊗ U h̵b, with multiplication determined from the cross
relations

ı(x)ı̌( f ) = f1(x1) f3(S−1(x3)) f2 ⊗ x2 ∀ x ∈ U h̵b
′ , f ∈ U h̵b

‹ ,(8.1)

where we have used the sumless Sweedler notation for iterated coproducts onUh̵b and
U h̵b

‹ , and ı and ı̌ are now given by ı(x) = 1⊗ x and ı̌( f ) = f ⊗ 1 for all x ∈ U h̵b and
f ∈ U h̵b

‹ . As spelled out in detail in [1, Section A.5], this can be realized as a special
instance of the double cross-product construction. Namely, one has

D(U h̵b) = U h̵b

‹ ? U h̵b,

with respect to the left coadjoint action ⊳ of Uh̵b on U h̵b

‹ and the right coadjoint
action ⊲ on U h̵b

‹ on U h̵b. Given the U h̵b analogue of Lemma 5.8, established in
[1, Proposition A.5], this construction of D(Uh̵b) proceeds identically to the anal-
ogous construction for the quantum double of a finite-dimensional Hopf algebra; we
refer the reader to the texts [36, Section 7], [26, Section IX.4], [33, Section 8.2] and
[37, Section 10.3], for instance, as well as the articles [34, 35, 39].

8.2 The restricted quantum double of the Yangian

In our case, U h̵b = Yh̵g is not a quantization of a finite-dimensional Lie bialgebra,
but rather a homogeneous quantization of an N-graded Lie bialgebra b with finite-
dimensional graded components bk . In this setting, the double cross-product con-
struction alluded to above remains valid provided all duals are taken in the category
of Z-graded topological C[[h̵]]-modules; that is, we replace Uh̵b

‹ with Yh̵g
‹ . This

produces the restricted quantum double D(Uh̵b) of U h̵b.
Let us now give the detailed construction of this topological Hopf algebra. Follow-

ing Section 5.4, let ▼ and ▲ denote the left adjoint action of Yh̵g on itself, and the
right adjoint coaction of Yh̵g on itself, respectively:

▼ = m3 ○ (1⊗2 ⊗ S) ○ (2 3) ○ (Δ⊗ 1),
▲ = (1⊗ m) ○ (1 2) ○ (S ⊗ 1⊗2) ○ Δ3 ,

where all tensor products are now taken to be the topological tensor product over
C[[h̵]]. By Lemma 5.8, we have

▼(Yh̵g⊗ Ẏh̵g) ⊂ Ẏh̵g and ▲ (Yh̵g) ⊂ Yh̵g⊗ Ẏh̵g.

We may thus dualize▼ and▲ to obtain the so-called left and right coadjoint actions

⊳∶ Yh̵g⊗ Yh̵g

‹ → Yh̵g

‹ and ⊲∶ Yh̵g⊗ Yh̵g

‹ → Yh̵g,

respectively, of Yh̵g on Yh̵g

‹ and of Yh̵g

‹ on Yh̵g. These are defined on simple tensors
by the formulas

x ⊲ f = 1 ⊗ f ○ (1 ⊗ S−1) ○ ▲(x) and (x ⊳ f )(y) = f (S−1(x) ⋅ y)
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for all x ∈ Yh̵g, f ∈ Yh̵g

‹ , and y ∈ Ẏh̵g, where the action of S−1(x) on y is given by ▼
and we have written x ⊳ f for ⊳(x ⊗ f ) and x ⊲ f for ⊲(x ⊗ f ).
The tuple (Yh̵g,Yh̵g

‹ , ⊳, ⊲) forms a matched pair of Z-graded topological Hopf
algebras over C[[h̵]]. Explicitly, ⊳ and ⊲ are Z-graded homomorphisms of topological
C[[h̵]]-modules which satisfy the following set of conditions:
(M1) (Yh̵g

‹ , ⊳) is a left Yh̵g-module coalgebra and (Yh̵g, ⊲) is a right Yh̵g

‹-module
coalgebra. Equivalently, ⊳ and ⊲ are morphisms of topological coalgebras:

Δ ‹○ ⊳=⊳ ⊗ ⊳ ○(2 3) ○ Δ⊗ Δ ‹, Δ○ ⊲=⊲ ⊗ ⊲ ○(2 3) ○ Δ⊗ Δ ‹,
ε ⊗ ε ‹ = ε ‹○ ⊳, ε ⊗ ε ‹ = ε○ ⊲,

which make Yh̵g

‹ a left Yh̵g-module and Yh̵g a right Yh̵g

‹-module.
(M2) ⊲ and ⊳ are compatible with the productsm and m ‹ on Yh̵g and Yh̵g

‹ :

⊲ ○(m ⊗ 1) = m ○ (⊲ ⊗1) ○ (1⊗ ⊳ ⊗ ⊲) ○ (3 4) ○ 1 ⊗ Δ⊗ Δ ‹,
⊳ ○(1 ⊗ m ‹) = m ‹ ○ (1⊗ ⊳) ○ (⊳ ⊗ ⊲ ⊗1) ○ (2 3) ○ Δ⊗ Δ ‹ ⊗ 1.

(M3) The unit maps ι and ι ‹ are module homomorphisms:

⊲ ○(ι ⊗ 1) = ι ⊗ ε ‹ and ⊳ ○ (1 ⊗ ι ‹) = ε ⊗ ι ‹ .

(M4) ⊲ and ⊳ satisfy the compatibility relation

(⊲ ⊗ ⊳) ○ (2 3) ○ Δ⊗ Δ ‹ = (1 2) ○ (⊳ ⊗ ⊲) ○ (2 3) ○ Δ⊗ Δ ‹.

Here, we note that the above conditions coincide with those from [26, Definition
IX.2.2], [39, Section 2], and [1, Section A.1], which agree with those from [36,
Definition 7.2.1] up to conventions on the order in which the tensor factors appear.
Since Yh̵g

‹ and Yh̵g are matched, we may form the double cross-product Hopf
algebra Yh̵g

‹ ? Yh̵g in the category of Z-graded topological Hopf algebras over C[[h̵]]
by following the standard procedure (see [26,Theorem IX.2.3] or [36,Theorem 7.2.2],
for instance). As a Z-graded topological coalgebra, Yh̵g

‹ ? Yh̵g coincides with the
tensor product of Yh̵g

‹ and Yh̵g:

Yh̵g

‹ ? Yh̵g = Yh̵g

‹ ⊗ Yh̵g,
ΔD = (2 3) ○ Δ ‹ ⊗ Δ and εD = ε ‹ ⊗ ε,

where ΔD denotes the coproduct and εD denotes the counit. The algebra structure on
Yh̵g

‹ ? Yh̵g is uniquely determined by the requirement that the inclusions

ı̌D ∶ Yh̵g

‹ → Yh̵g

‹ ⊗ Yh̵g and ıD ∶ Yh̵g → Yh̵g

‹ ⊗ Yh̵g

are C[[h̵]]-algebra homomorphisms satisfying the relations

mD ○ (ı̌D ⊗ ıD) = 1Yh̵g

‹ ⊗ 1Yh̵g ,
mD ○ (ıD ⊗ ı̌D) = (⊳ ⊗ ⊲) ○ (2 3) ○ Δ⊗ Δ ‹,

(8.2)

wheremD denotes the multiplication on D(Yh̵g). In particular, the unit map is ι ‹ ⊗ ι.
Finally, the antipode SD on Yh̵g

‹ ? Yh̵g is given by

SD = mD ○ (ıD ⊗ ı̌D) ○ (S ⊗ S ‹) ○ (1 2).
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This double cross-product Hopf algebra is the restricted quantum double of the
Yangian, as we formally record in the below definition.

Definition 8.1 The Z-graded topological Hopf algebra Yh̵g

‹ ? Yh̵g is called the
restricted quantum double of the Yangian Yh̵g, and is denoted

D(Yh̵g) ∶= Yh̵g

‹ ? Yh̵g.

This definition, together with the general theory, implies that D(Yh̵g) provides a
homogeneous quantization of the restricted Drinfeld double t ≅ D(t+) of the graded
Lie bialgebra (t+, δ+), realized on the space t⋆+ ⊕ t+ ≅ t− ⊕ t+.2
One stipulation to carrying out the quantum double construction in the restricted

homogeneous setting is that the canonical element R associated with the pairing
between Ẏh̵g and Ẏh̵g

⋆, although formally satisfying the relations of (3) in Sec-
tion 8.1, does not converge in the h̵-adically complete tensor product Ẏh̵g⊗ Ẏh̵g

⋆ ⊂
D(Yh̵g) ⊗ D(Yh̵g), and so DYh̵g is only topologically quasitriangular. Here, the prefix
“topologically” is a bit subtle: it does not refer to the h̵-adic topology and must be
handled with care. In Section 9, we shall identify R with the universal R-matrix
R(w − z) ∈ Yh̵(g)⊗2[w][[z−1]].This viewpoint allows for a precise interpretation of the
relations of (3) in terms of those fromTheorem 3.8.

Remark 8.2 There aremany competing, though equivalent, variants of the definition
of the quantum double. For instance, it may be realized on the tensor product Yh̵g⊗
Yh̵g

‹ , as in [7, Section 13]. Here, we follow the conventions from [26, 39].

8.3 DYh̵g as a quantum double

Wenow turn to proving the h̵-adic variant of themain conjecture from [32, Section 2],
which postulates that DYh̵g and D(Yh̵g) are one and the same (see Theorem 8.4
below).
Recall from the proof of Corollary 7.3 that L(Yh̵g

⋀
(2)
z ) ⊂ (Yh̵g⊗ Yh̵g)[[z±1]] denotes

theZ-graded topologicalC[[h̵]]-algebra obtained by completing the graded subalgebra
L(Yh̵g
⋀

(2)
z ) of Yh̵(g)⊗2[z; z−1]] defined in (3.16). Given this notation, we have C[[h̵]]-

linear maps

πz ∶ LYh̵g
⋀

z ⊗ Yh̵g → LYh̵g
⋀

z , πz ∶= mz ○ (1 ⊗ τz),
π∗z ∶ LYh̵g
⋀

z → L(Yh̵g
⋀

(2)
z ), π∗z (y) = (1⊗ y)R(−z),

where mz denotes the multiplication in LYh̵g
⋀

z . These obey a Drinfeld–Yetter right
action/left coaction compatibility condition, as the next lemma makes explicit.

Lemma 8.3 The pair (πz , π∗z ) satisfy the relation

π∗z ○ πz ○ (1 2) = m ⊗ πz ○ (4 3 2) ○ ▲̇ ⊗ ▼̇ ⊗ 1 ○ Δop ⊗ π∗z

inHomC[[h̵]](Yh̵g⊗ LYh̵g
⋀

z , L(Yh̵g
⋀

(2)
z )), where we have set

▲̇ ∶= (S−1 ⊗ 1) ○ (1 2) ○ ▲ and ▼̇ ∶= ▼ ○ (S−1 ⊗ 1).

2This also follows immediately from Theorem 8.4.
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Proof This follows from a straightforward modification of the proof of (9) in [39,
Lemma 1], using the antipode relations

m ○ (1 ⊗ S−1) ○ Δop = ι ○ ε = m ○ (S−1 ⊗ 1) ○ Δop ,

the counit relation m ○ (1 ⊗ ε) ○ Δ = 1, and the intertwining relation

1⊗ τz ○ Δ(x) = R(−z)−1 ⋅ 1⊗ τz ○ Δop(x) ⋅R(−z) ∀ x ∈ Yh̵g,(8.3)

which itself follows from the identities (1) and (3.20) of Theorem 3.8.
To illustrate this, we apply both sides of the claimed identity to a simple tensor x ⊗

y ∈ Yh̵g⊗ LYh̵g
⋀

z , while exploiting the sumless Sweedler notation Δn(x) = x1 ⊗ ⋅ ⋅ ⋅ ⊗
xn for iterated coproducts. Expanding the right-hand side of the resulting expression,
while using that ▼̇(x ⊗ y) = S−1(x2)yx1 and ▲̇(x) = S−1(x3)x1 ⊗ x2, we obtain

S−1(x5)x3S−1(x2) ⊗ y ⋅R(−z) ⋅ x1 ⊗ τz(x4)
= S−1(x4) ⊗ y ⋅R(−z) ⋅ x1ε(x2) ⊗ τz(x3)
= S−1(x3) ⊗ y ⋅R(−z) ⋅ x1 ⊗ τz(x2)
= S−1(x3)x2 ⊗ yτz(x1) ⋅R(−z)
= 1⊗ yτz(x1ε(x2)) ⋅R(−z)
= 1⊗ yτz(x) ⋅R(−z),

where we have applied the intertwining relation (8.3) in the third equality, and the
appropriate Hopf relations listed above in each of the remaining equalities. Since

π∗z ○ πz(y ⊗ x) = π∗z (yτz(x)) = (1⊗ yτz(x))R(−z),

the above computation implies the lemma. ∎

We now come to the main theorem of this section. Recall from Definition 8.1
that we may identify the restricted quantum double D(Yh̵g) with Yh̵g

‹ ⊗ Yh̵g as a
topological coalgebra over C[[h̵]]. We further recall that

ı ∶ Yh̵g ↪ DYh̵g and ı̌ ∶ Yh̵g

‹ ↪ DYh̵g

are the Z-graded embeddings of topological Hopf algebras overC[[h̵]]which featured
prominently inTheorem 7.5.

Theorem 8.4 The C[[h̵]]-module homomorphism

Υ ∶= m ○ (ı̌ ⊗ ı) ∶ Yh̵g

‹ ⊗ Yh̵g → DYh̵g

is an isomorphism of Z-graded topological Hopf algebras D(Yh̵g) ∼
→ DYh̵g.

Proof We shall first prove that Υ is an isomorphism ofZ-graded topological coalge-
bras over C[[h̵]], which follows fromTheorem 7.5. Afterward, we will use Lemma 8.3
to complete the proof of the theorem by proving that Υ is an algebra homomorphism
D(Yh̵g) → DYh̵g. Here, we note that it follows automatically that Υ intertwines the
underlying antipodes, though this is straightforward to verify. ∎

Proof that Υ is an isomorphism of Z-graded coalgebras Since m, ı, and ı̌ are all
Z-graded C[[h̵]]-module homomorphisms, the same is true of Υ. Moreover, as the

https://doi.org/10.4153/S0008414X24000142 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000142


The restricted quantum double of the Yangian 827

coproduct Δ̇ of DYh̵g is an algebra homomorphism, it satisfies

Δ̇ ○ Υ = Δ̇ ○ m ○ (ı̌ ⊗ ı)
= m ⊗ m ○ (2 3) ○ (Δ̇⊗ Δ̇) ○ (ı̌ ⊗ ı)
= m ⊗ m ○ (2 3) ○ (ı̌ ⊗ ı̌ ⊗ ı ⊗ ı) ○ (Δ ‹ ⊗ Δ)
= Υ ⊗ Υ ○ (2 3) ○ Δ ‹ ⊗ Δ.

Similarly, as the counit ε̇ of DYh̵g is an algebra homomorphism, one has

ε̇ ○ Υ = ε̇ ○ m ○ (ı̌ ⊗ ı) = m ○ (ε̇ ⊗ ε̇) ○ (ı̌ ⊗ ı) = m ○ ε ‹ ⊗ ε.

This proves that Υ is aZ-graded homomorphism of topological coalgebras. Now let us
turn to establishing the bijectivity of Υ. As Yh̵g

‹ ⊗ Yh̵g is a topologically free C[[h̵]]-
module with semiclassical limit U(t−) ⊗C U(t+) and DYh̵g is a flat deformation of
U(t), Lemma 2.1 asserts that it is sufficient to establish that the semiclassical limit

Ῡ = m̄ ○ (ı̌ ⊗ ı) ∶ U(t−) ⊗C U(t+) → U(t)
of Υ is an isomorphism, where m̄, ı̌, and ı are the semiclassical limits of m, ı̌, and
ı, respectively. As ı̌ and ı quantize the natural inclusions of t− and t+ into t (as was
shown in the proof of Lemma 7.4 for ı̌) and m̄ is the multiplication map on U(t),
this follows from the Poincaré–Birkhoff–Witt theorem for enveloping algebras and
the decomposition t = t− ⊕ t+. ∎
Proof that Υ is an algebra homomorphism By (8.2), we must show that Υ ○ ıD
and Υ ○ ı̌D are C[[h̵]]-algebra homomorphisms and that, in addition, Υ satisfies the
relations

Υ ○ mD ○ (ı̌D ⊗ ıD) = m ○ (Υ ⊗ Υ) ○ (ı̌D ⊗ ıD),
m ○ (Υ ⊗ Υ) ○ (ıD ⊗ ı̌D) = m ○ (Υ ⊗ Υ) ○ (⊳ ⊗ ⊲) ○ (2 3) ○ Δ⊗ Δ ‹.

(8.4)

By definition of Υ, we have Υ ○ ıD = ı and Υ ○ ı̌D = ı̌. Moreover, both sides of the
identity

Υ ○ mD ○ (ı̌D ⊗ ıD) = m ○ (Υ ⊗ Υ) ○ (ı̌D ⊗ ıD)
coincide with Υ, viewed as a map Yh̵g

‹ ⊗ Yh̵g → DYh̵g. Hence, we are left to verify the
second relation of (8.4), which we shall establish by appealing to the injective C[[h̵]]-
algebra homomorphism Φz fromTheorem 4.6. Namely, it is enough to show that

Φz ○ m ○ (Υ ⊗ Υ) ○ (ıD ⊗ ı̌D) = Φz ○ m ○ (Υ ⊗ Υ) ○ (⊳ ⊗ ⊲) ○ (2 3) ○ Δ⊗ Δ ‹.
Since Φz is an algebra homomorphism satisfying Φz ○ ı = τz and Φz ○ ı̌ = Φ ‹z (see
Lemma 7.4), this is equivalent to

mz ○ (τz ⊗Φ ‹z) = mz ○ (Φ ‹z ⊗ τz) ○ (⊳ ⊗ ⊲) ○ (2 3) ○ Δ⊗ Δ ‹,(8.5)

wheremz is the product in LYh̵g
⋀

z .The proof that (8.5) is satisfied follows an argument
parallel to that employed to establish Part (a) of Theorem 2 in [39], using Lemma 8.3
in place of [39, (9)]. For the sake of completeness, we give a complete argument below.
Applying the left-hand side of (8.5) to an arbitrary simple tensor x ⊗ f , we obtain

τz(x)Φ ‹z( f ) = ( f ⊗ τz(x))R(−z) = ( f ⊗ 1) ○ π∗z ○ πz(1⊗ x),
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which, by Lemma 8.3, may be rewritten as

τz(x)Φ ‹z( f ) = f ⊗ 1 ○ m ⊗ πz ○ (4 3 2) ○ ▲̇ ⊗ ▼̇ ⊗ 1 ○ Δop(x) ⊗R(−z).(8.6)

On the other hand, by definition of Φ ‹z , ⊳, and ⊲, the right-hand side of (8.5) evaluated
on x ⊗ f is

Φ ‹z(x1 ⊳ f1) ⋅ τz(x2 ⊲ f2) = ( f1 ⊗ 1 ○ ▼̇ ⊗ 1(x1 ⊗R(−z))) ⋅ ( f2 ⊗ τz ○ ▲̇(x2)),

where we have employed the sumless Sweedler notation Δ(x) = x1 ⊗ x2 and Δ ‹( f ) =
f1 ⊗ f2.That this coincides with the expression (8.6) for τz(x)Φ ‹z( f ) is a consequence
of the following general computation. For each a ∈ Ẏh̵g and b ∈ Yh̵g, we have

( f1(x1 ● a) ⊗ b)⋅( f2 ⊗ τz ○ ▲̇(x2))
= f (x(1)2 (x1 ● a))bτz(x(2)2 )
= f ⊗ 1 ○ m ⊗ πz(x(1)2 ⊗ (x1 ● a) ⊗ b ⊗ x(2)2 )
= ( f ⊗ 1 ○ m ⊗ πz ○ (4 3 2) ○ ▲̇ ⊗ ▼̇ ⊗ 1 ○ Δop ⊗ 1 ⊗ 1)(x ⊗ a ⊗ b),

wherewe have set x ● a = ▼̇(x ⊗ a) and in the first and second equalities we have used
the (sumless) Sweedler-type notation ▲̇(x) = x(1) ⊗ x(2). This completes the proof of
(8.5), and thus the proof that Υ is an algebra homomorphism. ∎

9 The universal R-matrix

In this final section, we establish the last assertion of Theorem I, which identifies the
universal R-matrixR of the Yangian double DYh̵g ≅ D(Yh̵g)with Drinfeld’s universal
R-matrixR(z) (seeTheorem 9.6).Though this in fact follows without too much effort
from the results of Sections 7 and 8, constructing R precisely does require some care.
After laying the groundwork in Sections 9.1 and 9.2, we define R and prove our last
main result in Section 9.3. The final two subsections – Sections 9.4 and 9.5 – are
devoted to providing additional context pertinent to this theorem.

9.1 The isomorphism Θ

Let θ denote the canonical C[[h̵]]-module injection

θ ∶ Yh̵g⊗ Ẏh̵g
⋆ ↪ HomC[[h̵]](Ẏh̵g,Yh̵g)

determined on simple tensors by θ(x ⊗ f )(y) = f (y)x. This injection is a homomor-
phism of topologicalC[[h̵]]-algebras provided we equip HomC[[h̵]](Ẏh̵g,Yh̵g)with the
convolution product

φ1 ⋆ φ2 ∶= m ○ (φ1 ⊗ φ2) ○ Δ∣Ẏh̵g
∀ φ1 , φ2 ∈ HomC[[h̵]](Ẏh̵g,Yh̵g)

and identity element ι ○ ε, wherem, Δ, ι, and ε are the multiplication, coproduct, unit,
and counit ofYh̵g, respectively. Ourmain goal in this subsection is to identity a natural
extension of θ which is an isomorphism.
Let us begin by noting some topological properties of the homomorphism space

HomC[[h̵]](Ẏh̵g,Yh̵g). As Yh̵g and Ẏh̵g are topologically free with semiclassical
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limits U(t+) and S(h̵t+), respectively, HomC[[h̵]](Ẏh̵g,Yh̵g) is a topologically free
C[[h̵]]-modules with

HomC[[h̵]](Ẏh̵g,Yh̵g) ≅ (HomC(S(h̵t+),U(t+)))[[h̵]].(9.1)

In addition, HomC[[h̵]](Ẏh̵g,Yh̵g) is a Hausdorff and complete topological space
with respect to the topology associated with the descending filtration E● of closed
C[[h̵]]-submodules defined by

En ∶= { f ∈ HomC[[h̵]](Ẏh̵g,Yh̵g) ∶ f (Jn) = 0},(9.2)

where we have set Jn = ⊕k<n Ẏh̵(g)k with J0 = {0}. Said in more algebraic terms, the
natural C[[h̵]]-module homomorphism

HomC[[h̵]](Ẏh̵g,Yh̵g) → lim←

n

(HomC[[h̵]](Ẏh̵g,Yh̵g)/En)

is an isomorphism, as is readily verified. Moreover, as the coproduct Δ on Yh̵g is
graded, E● is a descending filtration of ideals and the above is an isomorphism of
C[[h̵]]-algebras.
We now turn toward enlarging the domain of θ. For each n ∈ Z, let Ẏh̵g

⋆
(n) denote

the closure of theC[[h̵]]-submodule of Ẏh̵g
⋆ generated by⊕k≥n Ẏh̵g

⋆
−k . Since Ẏh̵g

⋆
k ⊂

h̵Ẏh̵g
⋆
k−1 for k > 0, Ẏh̵g

⋆
(0) = Ẏh̵g

⋆ and we have a descending N-filtration

Ẏh̵g
⋆ = Ẏh̵g

⋆
(0) ⊃ Ẏh̵g

⋆
(1) ⊃ ⋅ ⋅ ⋅ ⊃ Ẏh̵g

⋆
(n) ⊃ ⋅ ⋅ ⋅ .

We may thus introduce the topological tensor product

Yh̵g ⊗̃ Ẏh̵g
⋆ ∶= lim←


n
(Yh̵g⊗ Ẏh̵g

⋆/Yh̵g⊗ Ẏh̵g
⋆
(n)).

Since Ẏh̵g
⋆ is topologically generated as aC[[h̵]]-algebra by the space⊕k>0 Ẏh̵g

⋆
−k and,

for each n ∈ N,⊕k≥n Ẏh̵g
⋆
−k is stable under multiplication by any x in this space, we

see that each Ẏh̵g
⋆
(n) is an ideal in Ẏh̵g

⋆. It follows that Yh̵g ⊗̃ Ẏh̵g
⋆ is aC[[h̵]]-algebra.

To see that Yh̵g ⊗̃ Ẏh̵g
⋆ is a topologically free C[[h̵]]-module, let us introduce the

classical spaces S(h̵t+)⋆(n) and U(t+) ⊗̃S(h̵t+)⋆ by setting

S(h̵t+)⋆(n) ∶= ⊕
k≥n

S(h̵t+)⋆−k ,

U(t+) ⊗̃S(h̵t+)⋆ ∶= ∏
n∈N

U(t+) ⊗C S(h̵t+)⋆−n ≅ lim←

n

U(t+) ⊗C (S(h̵t+)⋆/S(h̵t+)⋆(n)).

Lemma 9.1 The C[[h̵]]-algebra Yh̵g ⊗̃ Ẏh̵g
⋆ is topologically free with

Yh̵g ⊗̃ Ẏh̵g
⋆/h̵(Yh̵g ⊗̃ Ẏh̵g

⋆) ≅ U(t+) ⊗̃S(h̵t+)⋆.

Proof Let ν⋆ ∶ Ẏh̵g
⋆ ∼
→ S(h̵t+)⋆[[h̵]] be any fixed Z-graded isomorphism of topo-

logical C[[h̵]]-modules. We claim that

ν⋆(Ẏh̵g
⋆
(n)) = S(h̵t+)⋆(n)[[h̵]].(9.3)
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To see this, fix n ∈ N. Since ν⋆ is graded, we have

ν⋆(Ẏh̵g
⋆
−k) = ∏

a∈N
S(h̵t+)⋆−k−a h̵a ⊂ S(h̵t+)⋆(n)[[h̵]] ∀ k ≥ n.

As S(h̵t+)⋆(n)[[h̵]] is a closed C[[h̵]]-submodule of S(h̵t+)⋆[[h̵]], we get ν⋆(Ẏh̵g
⋆
(n)) ⊂

S(h̵t+)⋆(n)[[h̵]]. Conversely, if ∑a≥0 xa h̵a ∈ S(h̵t+)⋆(n)[[h̵]], then ya ∶= ν−1
⋆ (xa) ∈

⊕k≥n Ẏh̵g
⋆
−k for each a ∈ N. Therefore, we have

ν⋆ (∑
a≥0

xa h̵a) = ∑
a≥0

ya h̵a ∈ Ẏh̵g
⋆
(n),

which completes the proof of (9.3). The statement of the lemma now follows from the
sequence of isomorphisms

Yh̵g⊗ Ẏh̵g
⋆/Yh̵g⊗ Ẏh̵g

⋆
(n) ≅ (U(t+) ⊗C S(h̵t+)⋆)[[h̵]]/(U(t+) ⊗C S(h̵t+)⋆(n))[[h̵]]

≅ (U(t+) ⊗C (S(h̵t+)⋆/S(h̵t+)⋆(n))) [[h̵]]. ∎

The next result outputs the desired extensions of θ.

Proposition 9.2 The injection θ extends to an isomorphism of C[[h̵]]-algebras

Θ ∶ Yh̵g ⊗̃ Ẏh̵g
⋆ ∼
→ HomC[[h̵]](Ẏh̵g,Yh̵g).

Proof Let E● be the filtration of E ∶= HomC[[h̵]](Ẏh̵g,Yh̵g) defined in (9.2). Then

θ(Yh̵g⊗ Ẏh̵g
⋆
(n)) ⊂ En ∀ n ∈ N.

Indeed, this follows from the definition of θ and the fact that if f ∈ ⊕k≥n Ẏh̵g
⋆
−k and

x ∈ Jn , then f (x) = 0. Hence, we obtain

Θ ∶ Yh̵g ⊗̃ Ẏh̵g
⋆ = lim←
(Yh̵g⊗ Ẏh̵g

⋆/Yh̵g⊗ Ẏh̵g
⋆
(n)) → lim←
E/En = E.

As Yh̵g and E are topologically free, to show Θ is an isomorphism, it is sufficient to
show its semiclassical limit Θ̄ is (see Lemma 2.1). Employing the identifications of (9.1)
and Lemma 9.1, we see that Θ̄ coincides with the isomorphism

U(t+) ⊗̃S(h̵t+)⋆ ∼
→ HomC(S(h̵t+),U(t+))

uniquely extending the canonical map U(t+) ⊗C S(h̵t+)⋆ ↪ HomC(S(h̵t+),U(t+)),
which is the semiclassical limit θ̄ of θ, by continuity. ∎

We now give two remarks pertinent to the above discussion.

Remark 9.3 By Proposition 9.2, we may introduce the C[[h̵]]-subalgebra

Ẏh̵g ⊗̃ Ẏh̵g
⋆ ∶= Θ−1(EndC[[h̵]](Ẏh̵g)) ⊂ Yh̵g ⊗̃ Ẏh̵g

⋆ .

By definition, it comes equipped with an isomorphism

Θ∣Ẏh̵g ⊗̃ Ẏh̵g
⋆ ∶ Ẏh̵g ⊗̃ Ẏh̵g

⋆ ∼
→ EndC[[h̵]](Ẏh̵g)
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extending the injection θ∣Ẏh̵g⊗Ẏh̵g
⋆ . It is worth noting that, by following the above

arguments, it is easy to see that Ẏh̵g ⊗̃ Ẏh̵g
⋆ admits the equivalent description

Ẏh̵g ⊗̃ Ẏh̵g
⋆ ≅ lim←


n
(Ẏh̵g⊗ Ẏh̵g

⋆/Ẏh̵g⊗ Ẏh̵g
⋆
(n)).

Suppose now that φ, γ ∈ EndC[[h̵]](Ẏh̵g) with γ homogeneous of degree a ∈ Z. Then
φ ⊗ γt uniquely extends to an element of EndC[[h̵]](Ẏh̵g ⊗̃ Ẏh̵g

⋆) and Θ has the
property that

φ ○Θ(y) ○ γ = (Θ ○ (φ ⊗ γt))(y) ∀ y ∈ Ẏh̵g ⊗̃ Ẏh̵g
⋆ .(9.4)

Remark 9.4 The argument used to establish Proposition 6.2 implies that the natural
C[[h̵]]-algebra homomorphism

EndC[[h̵]](Yh̵g) → HomC[[h̵]](Ẏh̵g,Yh̵g), φ ↦ φ∣Ẏh̵g
,

is an embedding. Hence, we can (and shall) view EndC[[h̵]](Yh̵g) as a subalgebra of
HomC[[h̵]](Ẏh̵g,Yh̵g). We may thus introduce Yh̵g ⊗̃Yh̵g

⋆ ⊂ Yh̵g ⊗̃ Ẏh̵g
⋆ by setting

Yh̵g ⊗̃Yh̵g
⋆ ∶= Θ−1(EndC[[h̵]](Yh̵g)).

We then have

(Yh̵g ⊗̃Yh̵g
⋆) ∩ (Ẏh̵g ⊗̃ Ẏh̵g

⋆) ≅ EndẎh̵g

C[[h̵]](Yh̵g),

where the right-hand side consists of all f ∈ EndC[[h̵]](Yh̵g) for which f (Ẏh̵g) ⊂ Ẏh̵g.

9.2 The restriction Θχ

We now give a few comments which concern the triangular decompositions of Ẏh̵g
and Ẏh̵g

⋆. For each choice of the symbol χ, let π χ ∶ Ẏh̵g → Ẏ
χ
h̵gdenote theC[[h̵]]-linear

projection associated with the triangular decomposition of Ẏh̵g, as defined in Section
6.5. These projections give rise to C[[h̵]]-module embeddings

HomC[[h̵]](Ẏχ
h̵g,Y

χ
h̵ g) ↪ HomC[[h̵]](Ẏh̵g,Yh̵g), φχ ↦ φχ ○ π χ .

We shall henceforth adopt the viewpoint that HomC[[h̵]](Ẏχ
h̵g,Y

χ
h̵ g) is a submodule of

HomC[[h̵]](Ẏh̵g,Yh̵g), with the above identification assumed. The restriction θ χ of θ
to Y χ

h̵ g⊗ Ẏ
χ
h̵g
⋆ is then a C[[h̵]]-module injection

θ χ ∶ Y χ
h̵ g⊗ Ẏ

χ
h̵g
⋆ ↪ HomC[[h̵]](Ẏχ

h̵g,Y
χ

h̵ g).

Following the above procedure, we may introduce the C[[h̵]]-algebra

Y χ
h̵ g ⊗̃ Ẏ

χ
h̵g
⋆ ∶= lim←


n
(Y χ

h̵ g⊗ Ẏ
χ
h̵g
⋆/Y χ

h̵ g⊗ Ẏ
χ
h̵g
⋆
(n)),

where Ẏχ
h̵g
⋆
(n) is the closure of the C[[h̵]]-submodule of Ẏχ

h̵g
⋆ generated by the direct

sum⊕k≥n Ẏ
χ
h̵g
⋆
−k . The above arguments show that this completed tensor product is a
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flat C[[h̵]]-algebra deformation of

U(tχ
+) ⊗̃S(h̵tχ

+)
⋆ = ∏

n∈N
U(tχ

+) ⊗C S(h̵tχ
+)
⋆
−n .

It follows that the natural algebra homomorphismY χ
h̵ g ⊗̃ Ẏ

χ
h̵g
⋆ → Yh̵g ⊗̃ Ẏh̵g

⋆ is injec-
tive and, by the proof of Proposition 9.2, that θ χ uniquely extends to an isomorphism
of C[[h̵]]-modules

Θχ ∶ Y χ
h̵ g ⊗̃ Ẏ

χ
h̵g
⋆ ∼
→ HomC[[h̵]](Ẏχ

h̵g,Y
χ

h̵ g)(9.5)

which coincides with the restriction of Θ to Y χ
h̵ g ⊗̃ Ẏ

χ
h̵g
⋆. In particular, since

Y χ
h̵ g ⊗̃ Ẏ

χ
h̵g
⋆ is a subalgebra of Yh̵g ⊗̃ Ẏh̵g

⋆, the space HomC[[h̵]](Ẏχ
h̵g,Y

χ
h̵ g) is a sub-

algebra of HomC[[h̵]](Ẏh̵g,Yh̵g) and Θχ is an isomorphism of C[[h̵]]-algebras.
Finally, as in Remarks 9.3 and 9.4, we set

Ẏ
χ
h̵g ⊗̃ Ẏ

χ
h̵g
⋆ ∶= Θ−1

χ (EndC[[h̵]](Ẏχ
h̵g)) ≅ lim←


n
(Ẏχ

h̵g⊗ Ẏ
χ
h̵g
⋆/Ẏχ

h̵g⊗ Ẏ
χ
h̵g
⋆
(n)),

Y χ
h̵ g ⊗̃Y χ

h̵ g
⋆ ∶= Θ−1

χ (EndC[[h̵]](Y χ
h̵ g)).

9.3 Canonical tensors and universal R-matrices

By Proposition 9.2, we may introduce R and R χ in Yh̵g ⊗̃ Ẏh̵g
⋆, for each choice of χ,

as the elements

R ∶= Θ−1(1Ẏh̵g
) ∈ Yh̵g ⊗̃ Ẏh̵g

⋆ and R χ ∶= Θ−1(1Ẏχ
h̵g
) ∈ Y χ

h̵ g ⊗̃ Ẏ
χ
h̵g
⋆.

That is, R and R χ are the canonical elements associated with the Hopf pairing Ẏh̵g ×
Ẏh̵g

⋆ → C[[h̵]] and its restriction to Ẏχ
h̵g × Ẏ

χ
h̵g
⋆, respectively.

As 1Ẏh̵g
and 1Ẏχ

h̵g
coincide with 1Yh̵g and 1Y χ

h̵ g
under the identifications of

Remark 9.4 and Section 9.2, respectively, R (resp. R χ) is also the canonical element
defined by the pairing between Yh̵g and its restricted dual Yh̵g

⋆ (resp. Y χ
h̵ g and Y χ

h̵ g
⋆).

In particular, we have

R ∈ (Yh̵g ⊗̃Yh̵g
⋆) ∩ (Ẏh̵g ⊗̃ Ẏh̵g

⋆) and R χ ∈ (Y χ
h̵ g ⊗̃Y χ

h̵ g
⋆) ∩ (Ẏχ

h̵g ⊗̃ Ẏ
χ
h̵g
⋆).

It is worth pointing out that one can immediately deduce a number of properties that
R and R χ satisfy using only elementary properties of Θ. For instance:

(R1) Applying (9.4) with γ = 1 while using that Θ(1⊗ f ) = ι ○ f recovers the charac-
teristic identities

(ι ○ f ) ⊗ 1 ⋅ R = 1⊗ f and (ι ○ f χ) ⊗ 1 ⋅ R χ = 1⊗ f χ

for all f ∈ Ẏh̵g
⋆ and f χ ∈ Ẏχ

h̵g
⋆.

(R2) Taking φ = γ = ω in (9.4) with y = 1Ẏh̵g
or 1Ẏ∓h̵ g while using that 1Ẏ±h̵ g = ω ○

1Ẏ∓h̵ g ○ ω gives rise to the identities

R = (ω ⊗ ωt)R and R± = (ω ⊗ ωt)(R∓).
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(R3) Since 1Ẏh̵g
is a g-invariant element of EndC[[h̵]](Ẏh̵g) and Θ is a g-module

intertwiner, R is a g-invariant element Ẏh̵g ⊗̃ Ẏh̵g
⋆. Using the multiplication in

D(Yh̵g), this can be written as

[x ⊗ 1 + 1⊗ x , R] = 0 ∀ x ∈ g.

Similarly, R± and R0 are both h-invariant.
In addition, the standard quantum double arguments show that R satisfies the qua-
sitriangularity relations of (3) in Section 8.1 in suitable completions of tensor powers
of D(Yh̵g). For instance, the cabling identities Δ⊗ 1(R) = R13R23 and 1 ⊗ Δ ‹(R) =
R13R12 are equivalent to the simple identities

1(1)
Ẏh̵g

⋆ 1(2)
Ẏh̵g

= Δ and (ε ⊗ 1Ẏh̵g
) ⋆ (1Ẏh̵g

⊗ ε) = (1 2) ○ m

in the convolution algebras

(Ẏh̵g
⊗2) ⊗̃ Ẏh̵g

⋆ ∶= HomC[[h̵]](Ẏh̵g, Ẏh̵g
⊗2),

Ẏh̵g ⊗̃ (Ẏh̵g
⋆)⊗2 ∶= HomC[[h̵]](Ẏh̵g

⊗2 , Ẏh̵g),

respectively, where 1(a)
Ẏh̵g

∶ Ẏh̵g → Ẏh̵g
⊗2 is given by x ↦ x(a).

Our main goal in this section is to establish the remaining assertion of Theorem I
from Section 1.1, which claims that R can be identified with the universal R-matrix of
the Yangian.This interpretation allows for a precise framework for understanding the
topological quasitriangular structure on D(Yh̵g) alluded to above. To achieve this, we
will need the next lemma, where Φ ‹z is as in Proposition 7.1.

Lemma 9.5 τw ⊗Φ ‹z extends to an injective C[[h̵]]-algebra homomorphism

τw ⊗̃Φ ‹z ∶ Yh̵g ⊗̃Yh̵g

‹ ↪ (Yh̵g
⊗2[[w]])[[z−1]].

Proof It is sufficient to show 1 ⊗Φ ‹z extends to an injectiveC[[h̵]]-algebra homomor-
phism

1 ⊗̃Φ ‹z ∶ Yh̵g ⊗̃Yh̵g

‹ → Yh̵g
⊗2[[z−1]].

Since Φ ‹z(Ẏh̵g
⋆
−k) ⊂ z−k Yh̵g

⋀

z ⊂ z−k Yh̵g[[z−1]], 1 ⊗Φ ‹z induces a family of compatible
algebra homomorphisms

(1 ⊗Φ ‹z)n ∶ Yh̵g⊗ Ẏh̵g
⋆/Ẏh̵g⊗ Ẏh̵g

⋆
(n) → Yh̵g

⊗2[[z−1]]/z−nYh̵g
⊗2[[z−1]].

Taking the projective limit gives the desired extension 1 ⊗̃Φ ‹z . We are left to verify
that it is indeed injective, which is perhaps a bit subtle (given that Φ ‹z is injective),
but not difficult. As Yh̵g ⊗̃ Ẏh̵g

⋆ is separated with respect to the h̵-adic topology and
Yh̵g

⊗2[[z−1]] is torsion free, this can be done by verifying that the semiclassical limit of
1 ⊗̃Φ ‹z is injective. This is the linear map

U(t+) ⊗̃S(h̵t+)⋆ → ∏
n∈N

z−n(U(t+) ⊗C U(t+)
⋀

z) ⊂ U(t+)⊗2[[z−1]]

which is 1 ⊗ Φ̄ ‹z ∶ U(t+) ⊗̃S(h̵t+)⋆−n → z−n(U(t+) ⊗C U(t+)
⋀

z) on the n-th compo-
nent of the direct product, where Φ̄ ‹z is the semiclassical limit of Φ ‹z and U(t+)

⋀

z =
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∏n∈N U(t+)nz−n . The desired result now follows from the fact that Φ̄ ‹z is injective,
which can be seen as a consequence of the equality Ev ○Φ ‹z = Φ ○ ı̌ and that, by [41,
Theorem 6.2] and the proof of Lemma 7.4, both Φ and ı̌ have injective semiclassical
limits. ∎

To recover the desired result as stated in (2) of Theorem I, we now translate some
of the above constructions and results from D(Yh̵g) to DYh̵g using the isomorphism
Υ from Theorem 8.4 or, equivalently, the Hopf algebra embeddings ı and ı̌ from
Theorem 7.5. Let us set

Yh̵g ⊗̇Yh̵g

‹ ∶= lim←

n

(ı(Yh̵g) ⊗ ı̌(Yh̵g

‹)/ı(Yh̵g) ⊗ ı̌(Yh̵g

‹

(n))) .

This definition is such that isomorphism

ı ⊗ ı̌ ∶ Yh̵g⊗ Yh̵g

‹ ∼
→ ı(Yh̵g) ⊗ ı̌(Yh̵g

‹) ⊂ DYh̵g⊗DYh̵g

extends to an isomorphism of C[[h̵]]-algebras

ı ⊗̇ ı̌ ∶ Yh̵g ⊗̃Yh̵g

‹ ∼
→ Yh̵g ⊗̇Yh̵g

‹ .

Armed with these preliminaries, we may now introduce the universal R-matrix of the
Yangian double DYh̵g as the element

R ∶= (ı ⊗̇ ı̌)(R) ∈ (Yh̵g ⊗̇Yh̵g

‹) ∩ (Ẏh̵g ⊗̇Yh̵g

‹) ⊂ Yh̵g ⊗̇Yh̵g

‹ ,

where, for each choice of A and B, A⊗̇B denotes the image of A⊗̃B under ı ⊗̇ ı̌.
Similarly, we define the DYh̵g analogues of R± and R0 by setting

R
± ∶= (ı ⊗̇ ı̌)(R±) ∈ Y±h̵g ⊗̇ Ẏ±h̵g

⋆ and R
0 ∶= (ı ⊗̇ ı̌)(R0) ∈ Y 0

h̵ g ⊗̇ Ẏ0
h̵g
⋆.

By Theorem 4.6 and Lemma 7.4, Φz satisfies Φz ○ ı = τz and Φz ○ ı̌ = Φ ‹z .
Lemma 9.5 therefore implies that the restriction of Φw ⊗Φz to ı(Yh̵g) ⊗ ı̌(Yh̵g

‹) ⊂
DYh̵g

⊗2 extends to an injective C[[h̵]]-algebra homomorphism

Φw ⊗̇Φz ∶ Yh̵g ⊗̇Yh̵g

‹ ↪ Yh̵g
⊗2[[w]][[z−1]].

Indeed, we may set Φw ⊗̇Φz ∶= (τw ⊗̃Φ ‹z) ○ (ı ⊗̇ ı̌)−1. With this homomorphism at
our disposal, we are now in a position to state and prove the last main result outlined
in Section 1.1.

Theorem 9.6 The following identities hold in Yh̵(g)⊗2[w][[z−1]]:

(Φw ⊗̇Φz)(R) = R(w − z),
(Φw ⊗̇Φz)(R±) = R±(w − z), (Φw ⊗̇Φz)(R0) = R0(w − z).

Consequently, R admits the factorization R = R
+ ⋅R0 ⋅R− in Yh̵g ⊗̇Yh̵g

‹.

Proof ByTheorems 4.1 and 6.7 of [17] andTheorem 3.8 above, R(z) andRχ(z) sat-
isfy (τw ⊗ 1)R(z) = R(w + z) and (τw ⊗ 1)Rχ(z) = Rχ(w + z) in Yh̵(g)⊗2[w][[z−1]],
for each choice of the symbol χ. Therefore, to prove the first assertion of the theorem,
it is sufficient to establish the equalities

(1 ⊗̃Φ ‹z)(R) = R(−z) and (1 ⊗̃Φ ‹z)(R χ) = Rχ(−z)
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in (Ẏh̵g⊗ Yh̵g)[[z−1]] and (Ẏχ
h̵g⊗ Y �χ

h̵ g)[[z−1]], respectively. These relations will hold
provided their images under the evaluations

f ⊗ 1 ∶ (Ẏh̵g⊗ Yh̵g)[[z−1]] → Yh̵g[[z−1]],
f χ ⊗ 1 ∶ (Ẏχ

h̵g⊗ Y �χ
h̵ g)[[z−1]] → Y �χ

h̵ g[[z−1]]

are satisfied in Yh̵g[[z−1]] for each f ∈ Ẏh̵g
⋆ and f χ ∈ Ẏχ

h̵g
⋆, respectively. This follows

from the definition of Φ ‹z , (R1), and Corollary 7.7, which collectively output the
relations

( f ⊗Φ ‹z)(R) = Φ ‹z( f ) = ( f ⊗ 1)R(−z),
( f χ ⊗Φ ‹z)(R) = Φ ‹z( f ) = ( f χ ⊗ 1)Rχ(−z).

This completes the proof of the first statement of the theorem. The second assertion
now follows immediately from the decomposition R(z) = R+(z)R0(z)R−(z) (see
Theorem 3.8) and the injectivity of Φw ⊗̇Φ ‹z . ∎

Remark 9.7 In the closely related setting of [32], a formal version (i.e., suppressing
convergence issues) of the factorization R = R

+ ⋅R0 ⋅R− fromTheorem 9.6 was estab-
lished in [32, Proposition 5.1] by proving directly that the Hopf pairing between the
Yangian and its dual splits with respect to the underlying triangular decompositions
(see Theorem 3.1 therein).

Remark 9.8 Since Φz intertwines the Chevalley involutions of DYh̵g and Yh̵g, it
follows from Part (2) of Proposition 7.1 and the relation Φz ○ ı̌ = Φ ‹z of Lemma 7.4
that ı̌ satisfies ω ○ ı̌ = ı̌ ○ ωt . Consequently, the property (R2) translates to

R = (ω ⊗ ω)(R) and R
± = (ω ⊗ ω)(R∓).

Hence, by Theorem 9.6, R(z) and its components R±(z) satisfy the relations

R(z) = (ω ⊗ ω)(R(z)) and R±(z) = (ω ⊗ ω)(R∓(z)).

In particular, this observation recovers the first identity of Corollary 3.10.

One can now interpret the quasitriangularity relations for DYh̵g in terms of the
relations of Theorem 3.8. Namely, setting v = w − z, we see that the cabling identities
of R correspond to the relations

Δ⊗ 1(R(v)) = R13(v)R23(v),
1 ⊗ Δ(R(v)) = R13(v)R12(v)

in Yh̵(g)⊗3[w][[z−1]], which are satisfied by Theorem 3.8. In more detail, these are
obtained heuristically by applying Φu ⊗Φw ⊗Φz and Φw ⊗Φy ⊗Φz to

(Δ̇⊗ 1)(R) = R13R23 and (1 ⊗ Δ̇)(R) = R13R12 ,

respectively, where Δ̇ is the coproduct on DYh̵g, and then evaluating u ↦ w and
y ↦ z while using (Φu ⊗Φz) ○ Δ̇∣u=z = Δ̇ ○Φz . Similarly, applying Φw ⊗Φz to the
intertwiner equation Δop(x) = RΔ(x)R−1 for x ∈ Yh̵(g) leads to the identity

τv ⊗ 1 ○ Δop(τz(x)) = R(v) ⋅ τv ⊗ 1 ○ Δ(τz(x)) ⋅R(v)−1

https://doi.org/10.4153/S0008414X24000142 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000142


836 C. Wendlandt

in Yh̵(g)⊗2[w][z; z−1]], which is satisfied by Theorem 3.8. We caution, however, that
the situation here is more subtle for general x ∈ DYh̵g.

9.4 Remarks

The identifications established in Theorem 9.6 provide a rigorous framework for
understanding the motivating remarks given in [17, Section 1.6]. We now give a few
comments related to this point.
First, we note that the diagonal factor R0(z) of R(z) was explicitly obtained

in [17, Section 6.6] by computing the common asymptotic expansion of the two
GL(V1 ⊗ V2)-valued meromorphic abelian R-matrices constructed in [16, Section
5], where V1 ,V2 are an arbitrary pair of finite-dimensional representations of the
Yangian. As explained in [16, Section 5.2], their construction was motivated by the
heuristic formula for R0 given in [32, Theorem 5.2]. Theorem 9.6 makes this relation
precise, and shows that the explicit formula for R0(z) obtained in [17], and recalled
in Section 3.6, does indeed compute the canonical element defined by the pairing on
Ẏ0

h̵g × Ẏ0
h̵g
⋆.

Next, we emphasize that the factor R± (equivalently, R±(z)) now admits two dis-
tinct characterizations. On the one hand, it is uniquely determined by the recurrence
relations (3.18) which were at the heart of [17, Theorem 4.1]. On the other hand, it
arises as the canonical element defined by the pairing on Ẏ±h̵g × Ẏ±h̵g

⋆, and can thus be
realized explicitly by computing the dual set to any fixed homogeneous basis of theN-
graded torsion freeC[h̵]-module Ẏ±h̵(g). In more detail, ifB±k ⊂ Ẏ±h̵(g)k is a lift of any
basis of the finite-dimensional kth component Sk(h̵t±+ ) of S(h̵t±+ ) ≅ Ẏ±h̵(g)/h̵Ẏ±h̵(g)
(see Section 5.3), then B± = ⋃k B

±
k is a basis of Ẏ

±
h̵(g) and

R
± = ∑

x∈B±
ı(x) ⊗ ı̌( fx) ∈ Yh̵g ⊗̇Yh̵g

‹ ,

where { fx}x∈B± ⊂ Ẏ±h̵g
⋆ is the dual set to B±, uniquely determined by fx(y) = δx y

for all x , y ∈ B±. Here, we note if x is of degree k, then it follows automatically that
fx ∈ Ẏh̵g

⋆
−k ≅ Hom−k

C[h̵](Ẏh̵(g),C[h̵]). This implies that the right-hand side of the
above expression defines a unique element in Yh̵g ⊗̇Yh̵g

‹ , which coincides with R
±

as its image under Θ± ○ (ı ⊗̇ ı̌)−1 is 1Ẏ±h̵ g (see (9.5) and Section 9.3).
In the special case where g = sl2, there are two closed-form expressions for R±

(equivalently, R±(z)) which have arisen from these two separate viewpoints (see [32,
Theorem 5.1] and [17, Theorem 5.5]). For g of arbitrary rank, no such expressions are
known, though an infinite-product formula for R± was conjectured in [32, (5.43)],
motivated by the earlier works [28–31].

9.5 On the blocks of R±

To conclude, we wish to highlight that the dual bases approach discussed in the
previous subsection provides a natural interpretation of some of the basic properties
of R±(z) discovered in [17].
Given β ∈ Q, let πβ ∶ DYh̵g → DYh̵gβ denote the C[[h̵]]-linear projection asso-

ciated with the topological Q-grading on DYh̵g defined in Section 4.2, and let
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π̇β ∶ Ẏh̵g ↠ Ẏh̵gβ denote its restriction to Ẏh̵g. Consider the element

π̇β ○ 1Ẏ±h̵ g = 1Ẏ±h̵ g ○ π̇β ∈ EndC[[h̵]](Ẏh̵g),

where we view EndC[[h̵]](Ẏ±h̵g) ⊂ EndC[[h̵]](Ẏh̵g), as in Section 9.2. Note that under the
identification provided by the natural inclusion

EndC[[h̵]](Ẏ±h̵gβ) ↪ HomC[[h̵]](Ẏ±h̵g,Y±h̵g), φ ↦ φ ○ π̇β ,

it coincides with the identity transformation of EndC[[h̵]](Ẏ±h̵gβ). For each β ∈ Q+, we
may therefore define R±β ∶= Θ−1(1±β), where 1±β = 1Ẏ±h̵ g±β

. By (9.4) and the reasoning
used in (R2) of Section 9.3, we have

R±β = (π̇±β ⊗ 1)(R±) = (1 ⊗ π̇ t
±β)(R±) and R±β = (ω ⊗ ωt)(R∓β),(9.6)

where we note that, for each α ∈ Q, π̇ t
α is just the projection Ẏh̵g

⋆ ↠ Ẏh̵g
⋆
−α associated

with the topological Q-grading on Ẏh̵g
⋆ (see Corollary 6.5). In the topological tensor

product Ẏ±h̵g ⊗̃ Ẏ±h̵g
⋆, we have the equality R± = ∑β∈Q+ R±β .

For the sake of the below discussion, it is worth pointing out that the convergence
of the infinite sum∑β∈Q+ R±β is also clear from the point of view of dual bases. Indeed,
by Corollary 5.5, we have Ẏ±h̵(g)±β ⊂ h̵ν(β)Y±h̵ (g)±β , where we recall that ν(β) ∈ N is
defined by (3.17). Hence, any homogeneous element in Ẏ±h̵(g)±β with respect to the
underlying N-grading belongs to Ẏh̵(g)ν(β)+� for some � ∈ N. It follows that the dual
set to any homogeneous basis of the N-graded C[h̵]-module Ẏ±h̵(g)±β belongs to

⊕
k≥ν(β)

Ẏ±h̵g
⋆
−k ⊂ Ẏ±h̵g

⋆
(ν(β)) ,

where the space on the right-hand side is the closure of the C[[h̵]]-module generated
by the left-hand side (see Section 9.2). This implies the convergence of ∑β∈Q+ R±β
in Ẏ±h̵g ⊗̃ Ẏ±h̵g

⋆ while establishing that R±β ∈ h̵ν(β)Y±h̵g ⊗̃ Ẏ±h̵g
⋆. Next, following the

procedure from Section 9.3, let us set

R
±
β ∶= (ı ⊗̇ ı̌)(R±β) ∀ β ∈ Q+ .

The relations of (9.6) then translate to

R
±
β = (π±β ⊗ 1)(R±) = (1 ⊗ π∓β)(R±) and R

±
β = (ω ⊗ ω)(R∓β),

where ω is the Chevalley involution on DYh̵g (see Section 4.2). Now recall that
R−β(z) is the Yh̵(g)−β ⊗ Yh̵(g)β component ofR−(z), characterized by the recurrence
relation (3.18). The Yh̵(g)β ⊗ Yh̵(g)−β block of R+(z) is then

R+β(z) = (ω ⊗ ω)R−β(z) ∀ β ∈ Q+ ,

and we have the following corollary of Theorem 9.6.

Corollary 9.9 For each β ∈ Q+, the element R±β satisfies

(Φw ⊗̇Φz)(R±β) ∈ (h̵/z)ν(β)Yh̵(g)⊗2[w][[z−1]]

in addition to the relation (Φw ⊗̇Φz)(R±β) = R±β(w − z).
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Of course, the second assertion is immediate fromTheorem9.6 asΦw is the identity
on g and thus satisfies πα ○Φw = Φw ○ πα ∣Yh̵g for all α ∈ Q. The first statement then
follows from the properties of R−(z) established in [17] and recalled in Section 3.6.
However, we wish to point out that this assertion is a natural consequence of the
above discussion on dual bases. Indeed, we have seen that any homogeneous basis
of Ẏ±h̵(g)β lies in h̵ν(β)Yh̵(g), and that the image of its dual set under ı̌ is contained in
⊕k≥ν(β)DYh̵g−k . As Φz is graded, we have

Φz(DYh̵g−k) ⊂ z−k Yh̵g
⋀

z ⊂ z−ν(β)Yh̵(g)[[z−1]] ∀ k ≥ ν(β),

which yields the first statement of the corollary.

A Homogenization of the R-matrix

In this appendix, we show that the results of [17, Section 7.4] imply Theorem 3.8,
as promised in Remark 3.9. Let Y(g) denote the Yangian defined over C with h̵
specialized to 1:

Y(g) ∶= Yh̵(g)/(h̵ − 1)Yh̵(g).

Slightly abusing notation, we shall denote the images of x±ir and h ir again by x±ir and
h ir , respectively. The graded Hopf algebra structure on Yh̵(g) induces on Y(g) the
structure of an N-filtered Hopf algebra over the complex numbers with filtration F●
defined by letting Fk denote the image of⊕n≤k Yh̵(g)k . The Yangian Y(g) is then a
filtered deformation of the graded Hopf algebra U(t+):

grFY(g) ≅ U(t+).

One can recover Yh̵(g) from Y(g) using the Rees algebra formalism (see [22,
Proposition 2.2] and [23, Theorem 6.10], for example). In more detail, there is an
isomorphism of N-graded Hopf algebras

φh̵ ∶ Yh̵(g) ∼
→ Rh̵(Y(g)) = ⊕
k∈N

h̵kFk(Y(g)) ⊂ Y(g)[h̵]

x±ir ↦ h̵r x±ir , h ir ↦ h̵r h ir ∀ i ∈ I, r ∈ N.

Here, the Hopf algebra structure on Rh̵(Y(g)) is obtained by extending that
of Y(g) by C[h̵]-linearity, and we note that Rh̵(Y(g) ⊗C Y(g)) ≅ Rh̵(Y(g)) ⊗C[h̵]
Rh̵(Y(g)).
In [17], the universal R-matrix R(z) of the Yangian Y(g) is constructed as a

product

R(z) = R+(z)R0(z)R−(z) ∈ 1 + z−1Y(g)⊗2[[z−1]],

whereR+(z) = R−21(−z)−1 and the factorsR−(z) andR0(z) are as in Sections 4.1 and
6.6 of [17], respectively. In particular, R±(z) − 1, R0(z) − 1, and R(z) − 1 lay in the
subspace

z−1 ∏
n∈N

Fn(Y(g)⊗2)z−n ⊂ Y(g)⊗2[[z−1]]
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and hence R±(z/h̵), R0(z/h̵), and R(z/h̵) are elements of Rh̵(Y(g))⊗2[[z−1]]. The
definitions of R±(z), R0(z) and R(z) given in Section 3.6 are such that one has the
equalities

φ⊗2
h̵ (R±(z)) = R±(z/h̵), φ⊗2

h̵ (R0(z)) = R0(z/h̵),
φ⊗2

h̵ (R(z)) = R(z/h̵).
(A.1)

Using this fact and the results of [17], we can recover the below proposition, which is
a restatement of Theorem 3.8.

Proposition A.1 R(z) is the unique formal series in 1 + z−1Yh̵(g)⊗2[[z−1]] satisfying
the intertwiner equation

τz ⊗ 1 ○ Δop(x) = R(z) ⋅ τz ⊗ 1 ○ Δ(x) ⋅R(z)−1 ∀ x ∈ Yh̵(g)

in Yh̵(g)⊗2[z; z−1]], in addition to the cabling identities

Δ⊗ 1(R(z)) = R13(z)R23(z),
1 ⊗ Δ(R(z)) = R13(z)R12(z)

in Yh̵(g)⊗3[[z−1]]. Moreover, R(z) satisfies the properties (1)–(3) of Theorem 3.8.

Proof That R(z) satisfies the properties (1)–(3) of Theorem 3.8 follows from (A.1)
and the corresponding properties ofR(z) established in (3)–(5) of [17, Theorem 7.4].
Similarly, that R(z) satisfies the cabling identities in Yh̵(g)⊗3[[z−1]] follows from the
equality φ⊗2

h̵ (R(z)) = R(z/h̵) and Theorem 7.4(2) of [17], which asserts that R(z)
satisfies the cabling identities in Y(g)⊗3[[z−1]]. As for the intertwiner equation, upon
applying the isomorphism φ⊗2

h̵ , we deduce that it will hold providedR(z) satisfies

τφ
z ⊗ 1 ○ Δop

Y(g)(x) = R(z/h̵) ⋅ τφ
z ⊗ 1 ○ ΔY(g)(x) ⋅R(z/h̵)−1 ∀ x ∈ Rh̵(Y(g))

in Rh̵(Y(g))⊗2[z; z−1]] ⊂ (Y(g)⊗2)[h̵][z; z−1]], where τφ
z = φ h̵ ○ τz ○ φ−1

h̵ . Since τφ
z is

determined by

τφ
z (x±i (u/h̵)) = x±i ((u − z)/h̵), τφ

z (h i(u/h̵)) = h i((u − z)/h̵) ∀ i ∈ I,

the above equality will hold provided that, for each x ∈ Y(g), and ζ ∈ C×, one has

τ̊z/ζ ⊗ 1 ○ Δop
Y(g)(x) = R(z/ζ) ⋅ τ̊z/ζ ⊗ 1 ○ ΔY(g)(x) ⋅R(z/ζ)−1 ,(A.2)

where τ̊z ∶ Y(g) → Y(g)[z] is obtained by specializing the algebra homomorphism τz
defined in (3.8). This equality is immediate from Part (1) of [17, Theorem 7.4].
As for the uniqueness assertion; the argument given inAppendix B of [17] translates

naturally to the formal setting. Alternatively, one can see this as a consequence of the
uniqueness of R(z) itself, as proven therein. Indeed, if R(z) ∈ 1 + z−1Yh̵(g)⊗2[[z−1]]
is another solution of the intertwiner equation satisfying the cabling identities, then
to see thatR(z) = R(z), it suffices to show thatX(z)∣h̵=ζ = R(z/ζ) for each ζ ∈ C×,
where

X(z) ∶= φ⊗2
h̵ (R(z)) ∈ Y(g)[h̵][[z−1]].
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This follows from the fact thatX(z)∣h̵=ζ andR(z/ζ) both satisfy the cabling identities
inY(g)⊗3[[z−1]] and the intertwiner equation (A.2), and so coincide by the uniqueness
ofR(z), as established in Appendix B of [17]. ∎
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