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Abstract

Let #(n) be the number of overpartitions in which (i) the difference between successive parts may be odd
only if the larger part is overlined and (ii) if the smallest part is odd then it is overlined. Ramanujan-type
congruences for #(n) modulo small powers of 2 and 3 have been established. We present two infinite
families of congruences modulo 5 and 27 for #(n), the first of which generalises a recent result of Chern
and Hao [ ‘Congruences for two restricted overpartitions’, Proc. Math. Sci. 129 (2019), Article 31].
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1. Introduction

A partition of a positive integer n is a weakly decreasing sequence of positive integers
whose sum is n. The summands are called the parts of the partition. Let p(n) denote
the number of partitions of n. For example, p(4) = 5 and the five partitions of 4 are

4,3+1,2+2,2+1+1, 1+1+1+1.

The generating function of p(n) satisfies

0 . l
;p(n)q (@D

where

(@) = [ |1 -ag"™).

n=1

Ramanujan proved for every nonnegative integer n that

p(Sn +4)=0 (mod 5),
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p(Tn+5)=0 (mod 7),
p(1ln+6)=0 (mod 11).

Elementary proofs of these three congruences are given in [3]. Ramanujan’s
congruences have inspired work on similar congruences for other partition functions.
We shall investigate congruences for overpartitions with restricted odd differences.

An overpartition of n is a partition of n where the final occurrence of parts of each
size may be overlined. Let p(rn) denote the number of overpartitions of n. For example,
p(3) = 8 with the relevant partitions being

3,3,2+1,2+1,2+1,2+1, 1+1+1,1+1+1.

Since the overlined parts form a partition into distinct parts and the nonoverlined parts
form an ordinary partition,

Arithmetic properties of p(n) are much studied (see, for example, [5, 8, 10, 11, 13]).

Recently, Bringmann et al. [4] considered a new type of overpartitions with
restricted odd differences. Let #(n) denote the number of overpartitions of » in which
(i) the difference between two successive parts may be odd only if the larger part is
overlined and (ii) if the smallest part is odd then it is overlined. For example, #(4) = 8
because there are eight such overpartitions of 4, namely,

4,4, 3+1,3+1,2+2,2+2,2+1+1, 1+1+1+1.

By means of certain g-difference equations, Bringmann er al. [4] derived the
unexpected generating function

LT (@547
S A 1.1
; 1 (¢ Deo(q%; 4o (a-b

it can also be deduced by a simple combinatorial argument using an elementary
analysis of Ferrers diagrams. Subsequently, arithmetic properties of #(n) have received
attention and congruences modulo small powers of 2 and 3 have been found in
[6, 9, 12]. For example, for n > 0,

16n+4)=0 (mod 2),

t6n+6)=0 (mod 2),

124n+4)=0 (mod 4),

1(32n+4)=0 (mod 4),

1(96n+4)=0 (mod 8),

1(96n +36)=0 (mod 8)
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and

1(4n+2)=0 (mod 3),
1(8n+5)=0 (mod9),
tOn+6)=0 (mod9).

From the theory of modular forms, Chern and Hao [6] obtained
1(45n+30)=0 (mod 5)

and asked for an elementary proof. In this paper, we not only find such a proof but
also give a generalisation to an infinite family of congruences.

Tueorem 1.1. For @ > 0 and n > 0,
1(9%(45n +30)) =0 (mod 5).
Moreover, we present an infinite family of congruences modulo 27 for #(n).
Tueorem 1.2. For @ > 0 and n > 0,
19%(72n +69)) =0 (mod 27).
The rest of the paper is organised as follows. In Section 2, we introduce some
preliminary results. In Section 3, we prove Theorems 1.1 and 1.2.
2. Preliminaries
Recall Ramanujan’s theta functions ¢(g) and ¥(q) defined by

¢(q) = i g

n=—00
w(q) = Z qn(n+l)/2'
n=0

These two functions can be expressed as infinite products

o) = (4; D
(% %)
2. 2N\2
W(q) = (g fq )m,
(5 Do

which arise from the Jacobi triple product identity [3, page 11]. Ramanujan [2,
page 49] established the following 3-dissections of ¢(g) and ¥(q).

Lemma 2.1. We have

o(@) = 9(@") +29(=q"; ¢ (4" ") o(q"%; ¢"®)s, (2.1)
(@) = (044" 0o (@”: ¢ )0 + qUW(G°). 2.2)
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We present two equations satisfied by

(9]

a(q) = Z qm2+mn+n2'

m,n=—co

LeEmmA 2.2. We have
_ (@M )w , (@%400(4 D

alg®) = q (mod 5).
(@: D3(q% 4% (@ PGP 4%
Proor. From [7, (22.11.10) and (22.11.6)],
3\3
2 ¥(q”)
a(q”) = a(g) — 6 ,
= ED=g)
(@)? )
alg) = L0 4342
Y(g®) ¥(q)
Combining these two identities and using the product expression for y(q) gives the
desired result. O
Lemma 2.3 [14, Theorem 2.1]. We have
1 __a@@ % qa@)@®a™ | 3¢%(e’ a0 gL
(D@8 ()65 9% (50780 ¢)% (2% )a(q% 4°)%
(2.3)
The following lemmas are useful for our later proofs.
Lemma 2.4. We have
@19 _ (0*10(0°47)(@"% 4" 45
(@D (@454 4%)e0(9'?: 4o (g% 4o
(4% 49)e(q*; 4% (q*; ¢*)eo 2.4)
(0% 49509 4" (@ o
(@) (q*9D%(q% g3, (" 454 40 (g "),
30T ,2.,2Y9 (12 122+3q 2. .2V7 : (2.5)
@D%  (@59)0(q'* q' )% (975 9o
Proor. See [7, (30.10.3)] for a proof of (2.4). To obtain (2.5), first replace g by —¢ in
[7,(22.6.2)] and then use (—¢; =)o = (¢*: 422/ (@5 D)oo (g*: §)eo)- o

Lemma 2.5. Define u(n) by

(o]

D umq" = ¢q’e(d).
n=0
Then .
D usmg" = ¢(gPp(g’)  (mod 5).
n=0
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Proor. Given an integer n, we can factor it as n = 23N, where @ > 0,8 > 0 and
(N,6) =1. From [1], forn > 1,

_ J4o(N) ifn=1 (mod 2),
(m) = 4291 — 3)g(N) otherwise,

where o(N) denotes the sum of all of the positive divisors of N. Thus,

(5 = [47GN) ifn=1 (mod2),
UM =1 4(20%1 — 3)0(5N)  otherwise.

Let N = 5YN;, where (N1,5) = 1. Then
o(5N) = (5" Ho(N)) = (0(57) + 57 Ho(N)) = o(N) (mod 5),

which implies that
u(d5n) = u(n) (mod 5).

This completes the proof. O
LeEmma 2.6 [8, Theorem 2]. We have
@) _ (4°19)0@” 9% q(qﬁ;qé)i(qg; 9% 4 (4°%49%(q"%: "%
(@GD% (@)% "), (@ )k (@5 4%
In addition, we frequently use the following fact without explicitly mentioning it:
for any prime p,

(4: 9% =(4";¢")  (mod p).

3. Proofs of Theorems 1.1 and 1.2

Proor oF THEOREM 1.1. Substituting (2.3) into (1.1), extracting those terms on both
sides where the power of ¢ is a multiple of 3 and replacing ¢° by ¢, we arrive at

N a(@* )G’ 43
13n)q" = (¢: P —— 55
; (4 D&% 4%
Applying Lemma 2.2,
ian)q” __ (@545 ((qz;qz)i(q3;q3)m 42 (4% 4°)%(: Do )
g (@: DX )%\ (43 D90 %)% (@ )P )%
_ @%@ )% (4% 4°)5,

q
(4; D%(q% ¢°)2, (4 D2 (g% g%
_ @9h @)% @4 | (@ 9%4% D)0(q )
(@)% (@%99% (@)% (@°:87)0(q": ¢')eo
_ o) p(—q*)? (@ D345 %)@ ¢)co
= 5 + 5. 5 10. 10
o(=q°) @ 4)(q"5 9o

(mod 5). (3.1)
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Define v(n) by

(e8]

Z V(”l)qn = 2q (q’ Q)EO(CIG, q6)oo(q30; q30)oo
=0 (@)@ ¢

We claim that v(5n) is divisible by 5. By Euler’s pentagonal number theorem [3,
page 12] and Jacobi’s identity [3, page 14],

9(q D% 600 = g Y (=1 Q@r+ g2 Y (=1)7gh G,
r=0

§=—00

One can readily verify that »(r + 1)/2 =0, 1,3 modulo 5 and 3s(3s+1)=0,1,2
modulo 5. We therefore see that 1 + r(# + 1)/2 + 35(3s + 1) = 0 (mod 5) if and only
if r(r+1)/2=3 (mod 5) and 35(3s+ 1) =1 (mod 5). In particular, r(r + 1)/2 =3
(mod 5) if and only if » =2 (mod 5), which implies that 2r + 1 is a multiple of 5. It
follows that v(5n) =0 (mod 5).

Selecting the terms of the form ¢>" in (3.1), replacing ¢° by ¢, applying the above
claim and using the definition of u(n),

00

> n _— 1 S n
D15 = e Z:;) u(5n)(-g)" (mod 5).

n=0
By Lemma 2.5,

o)

> 15" = p(-q)p(~*)*  (mod 5). (32)
n=0
Collecting the terms of the form ¢*" on both sides of (3.2), applying (2.1) and replacing
3
q° by g,

(o)

D i4smq" = p(—qYe(~q")  (mod 5).
n=0

A similar argument shows that

[

2, 11350)q" = p(~q)p(~¢’)*  (mod 5).
n=0

Proceeding by induction on «, it is easy to see that for @ > 0,

e8]

9" 15m)q" = e(-g)p(—¢")*  (mod 5). (33)
n=0

It follows from (2.1) that there are no powers of ¢ on the right-hand side of (3.3) which
are congruent to 2 modulo 3. Therefore,

1(9%-153n+2))=0 (mod 5),

which completes the proof. O
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Proor oF THEOREM 1.2. Combining (1.1) and (2.4),

N PRI At S Al W et MO
Z(n )q" = . N3 (8.8)(12.12)'
= @D @ 6°)(q' 759 oo
From (2.5),
i;@“ Dy = @%@ % (@959
pry (: D% g% (4% qMee(q% 4w

_ ((q3;q3)oo )3 (@769 ¢
(q; 9% (7" qHe (g% g%,

Applying (2.5) again,

65

- N S R N U D S S U I C R ) U
Zt(8”+5)q =9 18,6. 614 7 2. 2 (13- 33
gy (4: D (G°; 4%V (4 Peo (4% 4% (@3 ¢7)
2. .2 6. ,6\3
= 9(q ’q 300 . (q3’ q3)oo (mOd 27)
@ D% (@3¢
It follows from Lemma 2.6 that
&0 2. .2\2 (6. ,6)\3 2. .2\3
Zi(z4n+21)q” _ 9(q q )m(qG,q o (475975 = (g (mod 27).
= (43 Do (43 Do
By (2.2),
D H72n + 45)g" = 9(qYw(q’)  (mod 27)
n=0
and, applying (2.2) again,
Zi(zlén +189)¢" = Wy (g)y(q’)* (mod 27).
n=0
By induction on @, we derive the conclusion that for @ > 0,
DTH9"24n + 21)q" = W(g(g’)?  (mod 27). (3.4)
n=0
Combining (3.4) and (2.2),
1(9°24Bn+2)+21)=0 (mod 27).
This completes the proof. O

https://doi.org/10.1017/5S0004972719001254 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972719001254

66

[1]

[2]
[3]

[4]
[3]
[6]

[7]
[8]

[91
[10]
[11]
[12]
[13]

[14]

B.L.S. Lin, J. Liu, A. Y. Z. Wang and J. Xiao [8]

References

A. Alaca, S. Alaca, M. F. Lemire and K. S. Williams, ‘Nineteen quaternary quadratic forms’, Acta
Arith. 130 (2007), 277-310.

B. C. Berndt, Ramanujan’s Notebooks, Part III (Springer, New York, 1991).

B. C. Berndt, Number Theory in the Spirit of Ramanujan (American Mathematical Society,
Providence, RI, 2006).

K. Bringmann, J. Dousse, J. Lovejoy and K. Mahlburg, ‘Overpartitions with restricted odd
differences’, Electron. J. Combin. 22 (2015), Article ID P3.17.

W. Y. C. Chen and E. X. W. Xia, ‘Proof of a conjecture of Hirschhorn and Sellers on
overpartitions’, Acta Arith. 163 (2014), 59—69.

S. Chern and L.-J. Hao, ‘Congruences for two restricted overpartitions’, Proc. Math. Sci. 129
(2019), Article 31.

M. D. Hirschhorn, The Power of q. A Personal Journey (Springer, Cham, 2017).

M. D. Hirschhorn and J. A. Sellers, ‘Arithmetic relations for overpartitions’, J. Combin. Math.
Combin. Comput. 53 (2005), 65-73.

M. D. Hirschhorn and J. A. Sellers, ‘Congruences for overpartitions with restricted odd
differences’, Ramanujan J., to appear, https://doi.org/10.1007/s11139-019-00156-x.

B.L.S. Lin, ‘A new proof of a conjecture of Hirschhorn and Sellers on overpartitions’, Ramanujan
J. 38 (2015), 199-209.

J. Lovejoy and R. Osburn, ‘Quadratic forms and four partition functions modulo 3°, Integers 11
(2011), Article 4.

M. S. M. Naika and D. S. Gireesh, ‘Congruences for overpartitions with restricted odd differences’,
Afrika Mat. 30 (2019), 1-21.

E. X. W. Xia and O. X. M. Yao, ‘New Ramanujan-like congruences modulo powers of 2 and 3 for
overpartitions’, J. Number Theory 133 (2013), 1932-1949.

H. Zhao and Z. Zhong, ‘Ramanujan type congruences for a partition function’, Electron. J.
Combin. 18 (2011), Article ID PS8.

BERNARD L. S. LIN, School of Science,
Jimei University, Xiamen 361021, P. R. China
e-mail: linlsjmu@ 163.com

JIAN LIU, School of Insurance,

Central University of Finance and Economics,
Beijing 102206, P. R. China

e-mail: liujian@cufe-ins.sinanet.com

ANDREW Y. Z. WANG, School of Mathematical Sciences,
University of Electronic Science and Technology of China,
Chengdu 611731, P. R. China

e-mail: yzwang@uestc.edu.cn

JIEJUAN XIAQO, School of Science,
Jimei University, Xiamen 361021, P. R. China
e-mail: m18959257030@ 163.com

https://doi.org/10.1017/5S0004972719001254 Published online by Cambridge University Press


https://doi.org/10.1007/s11139-019-00156-x
https://orcid.org/0000-0003-3177-4095
mailto:linlsjmu@163.com
https://orcid.org/0000-0002-1073-9322
mailto:liujian@cufe-ins.sinanet.com
https://orcid.org/0000-0001-9915-9019
mailto:yzwang@uestc.edu.cn
https://orcid.org/0000-0002-6267-8285
mailto:m18959257030@163.com
https://doi.org/10.1017/S0004972719001254

	Introduction
	Preliminaries
	Proofs of Theorems 1.1 and 1.2
	References

