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Abstract

We study the top left derived functors of the generalised /-adic completion and obtain equivalent
properties concerning the vanishing or nonvanishing of the modules L;A;(M, N). We also obtain some
results for the sets Coass(L;A;(M; N)) and CosuppR(Hl.’(M; N)).

2010 Mathematics subject classification: primary 13D45; secondary 16E30; 13J99.

Keywords and phrases: derived functor, generalised /-adic completion, (generalised) local homology,
co-associated prime.

1. Introduction

Let R be a noetherian commutative ring and [ an ideal of R. In [10] the generalised
I-adic completion A;(M, N) of the R-modules M, N is defined by

Ai(M,N) = @(M/I’M ®g N).

t

When M =R, we have Aj(R, N) = Aj(N), the I-adic completion of N. For each
R-module M, there is a covariant functor A;(M, —) from the category R-modules to
itself. Let L;A;(M, —) be the ith left derived functor of A;(M, —). The ith generalised
local homology module Hl.’ (M, N) of M, N with respect to [ is defined by (see [12])

H!(M,N) = lim Tor®(M/I'M, N).

t

This definition of generalised local homology modules is in some sense dual to the
definition of generalised local cohomology modules of Herzog [5] and in fact a
generalisation of the usual local homology HI.I (M) = £iLnt Torf(R/I’, M). In [10] we
also studied some basic properties of the left derived functor L;A;(M, —) of A;(M, —)
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and showed that if M is a finitely generated R-module and N a linearly compact
R-module, then L;,A;(M, N) = Hl.’ (M, N) for all i > 0. However, the nonvanishing of
the modules L;A;(M, N) is a rather difficult problem. In Section 2, Theorem 2.1 gives
us equivalent statements for vanishing and nonvanishing of the modules L;A;(M, N).
In Theorem 2.5 we study the set of co-associated primes of the modules L;A;(M, N)
and show that if M is a finitely generated R-module and N an R-module with /£ (N) = d
and r = pd(M) < oo, then there is submodule X of Torf(M ; Ly—1A;(N)) such that

Coass(Lgy,—1A7(M; N)) C Coass(Torf_l(M; LysA[(N))) U Coass(X).

It should be mentioned that when M is a finitely generated R-module, the left
derived functors L;A;(M, —) and the generalised local homology functors H{ M, -)
are coincident on the category of linearly compact R-modules. In the final section we
study the co-localisation of generalised local homology modules H/(M, M) when N
is a semi-discrete linearly compact R-module and prove that if r = pd(M) < co and
Ndim N =d, then CosuppR(Hlli (M; N)) C{m} (Theorem 3.3). Note that Ndim M
is the noetherian dimension defined by Roberts [14] (see also [6]). It should be
mentioned that the class of linearly compact modules is large, containing important
classes of modules. Even its subclass of semi-discrete linearly compact modules
contains artinian modules, as well as finitely generated modules over a complete ring.
Further information on linearly compact modules can be found in [7] or [2].

2. The top left derived functors of the generalised /-adic completion
For two R-modules M and N, we put
tor, (M, N) = sup{i | TorR(M, N) # 0},
LM, N) = sup(i | LA (M, N) # 0}
and
I'.(N) = supli | L:A;(N) # 0}.

TuEOREM 2.1. Let M be a finitely generated R-module and N an R-module such that
r=pd(M) < oo and d = IL(N) < co. Then the following statements are equivalent:
) r=tory (M, LaA(N));
(i)  LrwaAi(M,N) #0;
(i) E(M,N)=r+d.

To prove Theorem 2.1 we need the following lemmas.

Lemma 2.2 [11, Lemma 2.5]. Let M be a finitely generated R-module and F a free
R-module. Then
M Qg Aj(F) = Ay(M, F).

Lemva 2.3. Let M be a finitely generated R-module and N an R-module. If
Torﬁ(M; L,A{(N)) =0 forall p>rorq>d, then

Torf (M; LyA[(N)) = Ly gA((M, N).
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Proor. Let us consider functors F' = M®g- and G = A;. The functor F is obviously
right exact. On the other hand, it follows from [1, Theorem 1.4.7] that a projective
module P implies A;(P) is flat and then is F-acyclic. Hence, combining [15,
Theorem 11.39] with Lemma 2.2 yields a Grothendieck spectral sequence

E; = Tork(M, LyA/(N)) = LpsgAi(M, N).

Thus there is a filtration ® of L,,,A;(M, N) with

0=0"'H, C - CO*H,,y=LaA(M,N)

and
EY gy 2O H,. /D" 'Hyy, 0<p<r+d.
As Torﬁ(M; LyAj(N))=0forall p>rorg>d, E[2],r+d—p =0forall p#r.
We have
O 'Hy=® *Hypg= =0 'H1y=0
and
O Hyg =0 Hyg=- = 0" H,y = LoyaAr(M, N).

It follows that ®"H,,; = Er‘”;i, which means that L,,;A;(M, N) = E;’j’d. To finish the

proof we consider homomorphisms of the spectral sequence

k

k
Er,d Er—k,d+k—1 .

k
E r+k,d—k+1

The hypothesis gives E’r‘ kdkil = E]:—k, dexy = O forall k > 2. Therefore

Torf(M, LiA(N)) = E2, = E2 =+ = E = Ly gAf(M, N).

rd —
The proof is complete. O

COoROLLARY 2.4. Let M be a finitely generated R-module and N an R-module such that
r=pd(M) < oo and d = I’ (N) < co. Then

Torf(M; LaAi(N)) = LasrAy(M; N).

We are now in a position to prove Theorem 2.1.

Proor oF THEOREM 2.1. (i) = (ii) By Corollary 2.4, we have the isomorphism
Torf(M; LaA1(N)) = LyraAi(M; N).

As r=tor.(M, LyA;(N), we get L,.yAj(M, N) #0.
(i1) = (iii) Assume that L, 4A; (M, N) # 0. For all j > d + r, we have

Tor®(M; L;-, Ay(N)) = L;A/(M; N)

by Lemma 2.3. It follows that L;A;(M; N) = 0 and then that li(M, N)=r+d.
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(ii1) = (i) We have Torf(M; LyA;(N)) = Ly yAj(M; N)#0. Forall i > r,
Torf(M; LaAj(N)) = LisaAi(M; N) =0,

as IL.(M, N) = r + d. Therefore r = tor, (M, LyA;(N)). ]

A prime ideal P is said to be co-associated to a nonzero R-module M if there is
an artinian homomorphic image T of M with P = Anng T. The set of co-associated
primes of M is denoted by Coassg(M). It should be noted that if M is a semi-discrete
linearly compact R-module, then the set Coassg(M) is finite [18, Property 1(L4)].

If0 — N — M — K — (s an exact sequence of R-modules, then Coassg(K) C
Coassg(M) C Coassg(N) U Coassg(K) [17, Theorem 1.10].

TueorEM 2.5. Let M be a finitely generated R-module and N an R-module. If IL.(N) =
d and r = pd(M) < oo, then there is a submodule X ofTor‘f(M; Ly 1A;(N)) such that

Coass(Lgy,—1Af(M; N)) C Coass(Torf_l(M; LysA[(N))) U Coass(X).
Proor. We have the Grothendieck spectral sequence

E? = Tork(M; LyA/(N)) = LpegAr(M; N).

Then there is a filtration @ of L, ,A;(M; N) with

0=0"Hyyo1 €+ SO " Hysry = Lysr1 Af(M; N)

and
E3 iy = O Haor /O Hysroy, O<p<d+r-1.
Note that L,A;(N) = 0 for all g > d, so E;,dw_l_p =0forall p#r,r—1. Thus
O Hyyry = O Hygpy = -+ = O Hyyp g = Ly i Af(M; N)
and
O Hyyyy = O Hyypoy =+ - =0 "Hyyroy = 0.

It follows that
O Hypr 2E2 , and  ERy = Law 1 A(M; N)/ O Hyypoy.
We now consider homomorphisms of the spectral sequence

k k k
Er—l+k,d—k+l Er—l,d Er—l—k,d+k—l’

k k k
Er+k,d—k Er,d— 1 Er—k,d+k—2 .
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k _ pk _ pk _ k _
?S fr—1+k,d—k+1 =B, arker = Eripq =0 for all k=2 and E, ., , =0 for all
Z 1)
Tor,"(M; LaAi(N)) = Ef_l,d = E?—l,d ==E2,
3 _r4 _ _ oo 2 : _ oo
and Er’d_1 = End*l =-..= Er’dfl, a submodule of ENH. Setting X = E“H, we have a

short exact sequence
0 — Tor® | (M; LyA;(N)) — Lyr 1 Af(M; N) — X — 0

which finishes the proof. O

3. Co-support of local homology modules

In this section we study the the generalised local homology functors H! (M, —) when
M is a finitely generated R-module. Note that the left derived functors L;A;(M, —) and
the generalised local homology functors Hi] (M, —) are coincident on the category of
linearly compact R-modules.

Lemma 3.1 [2, Proposition 3.5] and [10, Theorem 3.6]. Let M be a finitely generated
R-module and N a linearly compact R-module. Then:

i) LAN)= H{(N)for alli>0;

(i) LiA(M,N)=H!/(M,N) foralli>0.

Let S be a multiplicative subset of R. Following [9], the co-localisation of an R-
module M with respect to S is the module y M = Hom(Rs, M). If M is a linearly
compact R-module, then ¢ M is also a linearly compact R-module by [2, Lemma 2.5].
If M is an artinian R-module, then ¢ M is not necessarily artinian (see [9, Section 4])
but is a linearly compact R-module. Let p be a prime of R and S = R — {P}; then instead
of ¢ M we write ,M.

For an R-module M, Melkersson and Schenzel [9] defined the co-support of M to
be the set

Cosg(M) = {P € Spec(R) | yM + 0}.

In [17, Definition 2.1] Yassemi defined the co-support Cosuppg(M) of an R-module
M to be the set of primes P such that there exists a cocyclic homomorphic image L
of M with Ann(L) C p. Note that a module is cocyclic if it is a submodule of E(R/m)
for some maximal ideal m € R. We have Cosg(M) C Cosuppg(M), but the equation
is in general not true (see [17, Theorem 2.6]). If M is a linearly compact R-module,
we proved that Coassg(M) C Cosg(M) = Cosuppg(M) and every minimal element of
Cosuppg(M) belongs to Coassg(M) [13, Theorem 3.8] and [4, Theorem 4.2].
The following lemma is used to prove Theorem 3.3.

Lemma 3.2. Let (R, m) be a local ring and M a finitely generated R-module. If N is a
linearly compact R-module, then for all i, j > 0O:

) Torf(M; N) = Tor{"(M; N) and, especially, Torf([\;[; H;(N)) = Torf(M; H;(N));
(i) HR(; N) = H(M; N).
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Proor. (i) It foll\ows f/r\om [2, Lemma 7.1] that N has a natural linearly compact module
structure over R. As R is a flat R-module, we have, by [15, Theorem 11.53],

Torf(M; N) = Torf(M; R ®; N)
= Tork(M &g R; N) = TorX(M; N).

The second statement is an immediate consequence, since H;(N) is linearly compact
by [2, Proposition 3.3].
(ii) For all i > 0, £ > 0, by (i),

TorR(M/I'M; N) = Tor® (W1 (IRY MI; N).
Passing to inverse limits, we have the isomorphism as required. O

We now recall the concept of noetherian dimension of an R-module M, denoted
by Ndim M. Note that the notion of noetherian dimension was introduced first by
Roberts [14] under the term ‘Krull dimension’. Kirby [6] later changed Roberts’s
terminology and referred to noetherian dimension to avoid confusion with the well-
known Krull dimension of finitely generated modules. Let M be an R-module.
When M =0 we put Ndim M =—-1. Then by induction, for any ordinal @, we
put Ndim M =« when (i) Ndim M <« is false, and (ii) for every ascending chain
My S M; C--- of submodules of M, there exists a positive integer myg such that
Ndim(M,,+1 /M) < « for all m>mgy. Thus M is nonzero and finitely generated if
and only if NdimM =0. If 0 — M”" — M — M’ — 0 is a short exact sequence
of R-modules, then Ndim M = max{Ndim M"’, Ndim M’}. For each subset B of R, let
V(B) denote the set of all primes of R which contain B.

TueorREM 3.3. Let (R, m) be a local ring of dimension d and N a semi-discrete linearly
compact R-module.

(i) IfdimR =d, then
(a)  Cosuppgr(H)(N)) C {m};
(b)  Cosuppgr(H’,_,(N)) is finite.

(1) If M is a finitely generated R-module with r = pd(M) < co, and Ndim N = d, then
Cosuppg(H!, (M; N)) C {m}.

+r
Prook. (i) (a) Let us first give a proof in the special case where N is artinian. From
[17, Proposition 2.3], Cosuppg(N) = V(Anng(N)). It should be noted that, by [16,
Lemma 1.11], N has a natural artinian module structure over R and the going-down
theorem holds for the canonical R — R. Therefore we may assume that (R, m) is
complete by Lemma 3.2. We mention that d = dim R > Ndim N. If d > Ndim N, then
H[II(N) = 0 because of [2, Theorem 4.8]. We need only give a proof when d = Ndim N.
Note that Hfj(N) is finitely generated by [2, Theorem 5.3]. From [17, Theorem 2.10]
we get Cosupp(H}(N)) € {m}.

We now turn to the case where M is semi-discrete linearly compact. By [2,
Corollary 4.5], there is an isomorphism H!(N) = H!(I'y(N)) for all i > 1 and I'y(NV)
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is artinian. So the lemma is true for d > 1. When d = 0, there is, from [18, Theorem],
a short exact sequence 0 — B — N — A — 0 where A is artinian and B is finitely
generated. It induces an exact sequence H}(B) — H(}(N) — H{(A) — 0. According
to the above proof, we have Cosupp(H(I)(A)) € {m}. On the other hand, combining
[2, Corollary 3.11] with [17, Theorem 2.10] gives Cosupp(Hé(B)) = Cosupp(B) = {m}.
This finishes the proof of (a).

(b) We first deal with the special case where N is artinian. By an analysis similar
to that in the proof of (i), we may assume that (R, m) is complete. Let D(N) denote
the Matlis dual of N. We have H) | (N) = D(H¢"'(D(N))) by [3, Proposition 3.3].
Applying [17, Corollary 2.9] yields

Cosuppg(H}_,(N)) = Cosuppg(D(H{ ' (D(N))))
= Suppg(H{ " (D(N))).

The last set is finite by [8, Theorem 2.4] and so CosuppR(HLIi_] (N)) is finite.

We can now proceed analogously to the proof of (a) for the case where N is semi-
discrete linearly compact and the proof of (b) is complete.

(ii) From [2, Theorem 4.8], Hl.’ (N) =0 for all i > d. Thus, combining Lemmas 2.3
and 3.1 yields H!, (M; N)= TorX(M; H/(N)). As M is finitely generated, there is
a free resolution of M with finitely many free modules. Then Torlf(M ; HLIi(N)) is
isomorphic to a subquotient of a finite direct sum of copies of H[’I(N). Therefore
CosuppR(Torf(M ; Hfi(N))) C CosuppR(HtIi(N )) and the conclusion follows from (i). O
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