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Abstract. The decomposability number of a von Neumann algebra M (denoted by dec(M)) is the
greatest cardinality of a family of pairwise orthogonal non-zero projections in M. In this paper, we
explore the close connection between dec(M) and the cardinal level of the Mazur property for the
predual M, of M, the study of which was initiated by the second author. Here, our main focus is on
those von Neumann algebras whose preduals constitute such important Banach algebras on a locally
compact group G as the group algebra L (G), the Fourier algebra A(G), the measure algebra M(G),
the algebra LUC(G)*, etc. We show that for any of these von Neumann algebras, say )V, the cardinal
number dec(M) and a certain cardinal level of the Mazur property of MV, are completely encoded in
the underlying group structure. In fact, they can be expressed precisely by two dual cardinal invariants
of G: the compact covering number £(G) of G and the least cardinality x(G) of an open basis at the
identity of G. We also present an application of the Mazur property of higher level to the topological
centre problem for the Banach algebra A(G)**.

1 Introduction and Preliminaries

Our study of the decomposability of von Neumann algebras was originally motivated
by the investigation of a higher level Mazur property for preduals of von Neumann
algebras. So, we begin by recalling the definition of the classical Mazur property
as well as of property (X), as introduced by Godefroy—Talagrand, see [15, 16]. The
formulation of the latter relies on the notion of weakly unconditional Cauchy series
(also called weakly unconditionally convergent series), which we will give here for the
convenience of the reader.

Definition 1.1  Let X be a Banach space. A series Y, f,, in X is called weakly uncondi-
tionally Cauchy (wuC) if, for every functional ® € X*, we have Y ° [(®, f,)| < occ.

We now come to the central concept.
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Definition 1.2

(i) A Banach spaceY is said to have the Mazur property, or to satisfy the condition of
Mazur, if the following normality criterion is fulfilled: A functional in Y** is nor-
mal, i.e., defines an element of Y, if and only if it is w*-sequentially continuous
(on the unit ball of Y*).

(ii) A Banach spaceY is said to have property (X) if the following normality criterion
is satisfied: If f € Y** is a functional such that, for every wuC series ) y, in Y'*,

the equality
<f7W*‘Zyn> = Z<fa)’n>

holds, then we have f € Y. (Here, the limit w*}_ y, is taken in the o(Y*,Y)-
topology.)

It turns out that in many situations, the above properties are too restrictive, since
they require normality to be completely determined only by the sequential behavior
of the functional. It is thus adequate to refine the concept in such a way that one
actually measures the level of w*-continuity of functionals, which is encoded by the
cardinality of nets agains which the functionals must be tested. This leads to the no-
tions of the Mazur property and property (X) of level k, where « denotes an arbitrary
cardinal number, introduced in [33, Definition 4.1(ii); Definition 4.10]. In order to
summarize both notions, we need the following, ¢f. [33, Definition 4.1(i); Definition
4.8]:

Definition 1.3

(i) Let X be a Banach space and k > Ny a cardinal number. A functional f € X**
is called w* k-continuous if for all nets (x,)q.e; € Ball(X™*) of cardinality Xy <
|I| < & such that x, — 0 in the o(X*, X)-topology, we have (f, x,) — 0.

(ii) Let X be a Banach space. A series ) . fo in X is called weakly unconditionally
Cauchy (wuC for short) if for every functional ® € X*,onehas ) ., [(®, fu)| <
0.

We recall here from [33] the generalization of the Mazur property and property
(X) for arbitrary cardinality level. It is worth pointing out that in cases when the
cardinal level & is Ry, we recover the classical condition of Mazur and property (X),
respectively (see Remark 2.4(v) below).

Definition 1.4 Let X be a Banach space and x > Yy a cardinal number.

(i) We say that X has the level kK Mazur property if every w* k-continuous func-
tional in X** is actually w*-continuous, i.e., defines an element of X.

(ii) We say that X has property (X) of level x if the following normality criterion
holds: A functional & € X** belongs to X if, for every wuC series ) |, fo in X*
of cardinality |I| < k, one has

(@, W*'Z fa) = Z<(I)7 fa)-

a€l acl

(Here, the limit w*) _ __, f. is taken in the o(X*, X)-topology.)
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Next we give several basic statements concerning the above properties which will
be needed in the sequel.

Remark 1.5 Let x > N; be a cardinal number.

(i) Property (X) of level « trivially implies the Mazur property of level x.
(ii) Both the Mazur property and property (X) of level k are stable under isomor-
phisms and pass to (closed) linear subspaces, cf. [33, Remark 4.3; Remark 4.12].

The particular interest of this more general concept lies in the fact that by provid-
ing a quantitative version of the above mentioned classical properties, it reveals an
intimate link between the w*-continuity properties of functionals on X* and certain
Banach space properties of the underlying space X. This becomes especially apparent
if X is a function space where the domain is, say, a locally compact group G — the
standard situation in abstract harmonic analysis. It is interesting to see that in this
case, a certain cardinal level of the Mazur property or property (X) in the above sense
is intimately related to special cardinal invariants of the group G.

In fact, we find that in the case of the group algebra L;(G), the corresponding
cardinal invariant is just the compact covering number x(G) of G, whereas for the
Fourier algebra A(G), the decisive number is given by the least cardinality x(G) of an
open basis at the identity of G — as one could expect by looking at the situation for
a locally compact abelian group G (with dual group G), where we can identify A(G)
with L; (é) via the inverse Fourier transform and we have x(G) = H(é). Thus, the
above properties show a close connection to the structure of the underlying group,
which is not completely reflected in the coarser concept of the classical condition of
Mazur or property (X).

We need to stress that, as we shall show, the key link between the higher level
analogues of these properties and the cardinal invariants of the group is given by an
intrinsic property of the von Neumann algebra whose predual is the Banach space
considered. The crucial notion is the one of x-decomposability, as introduced by
Akemann—-Anderson in [1, p. 54], where they studied Lyapunov theorems for singu-
lar maps on von Neumann algebras. Unaware of [1], the second author re-introduced
this concept in [33, Definition 3.6], which we recall here for the sake of completeness.
We thank David Sherman for kindly bringing to our attention the book by Akemann—
Anderson [1].

Definition 1.6  Let x be a cardinal number. A von Neumann algebra M is called
k-decomposable if every family of pairwise orthogonal non-zero projections in M has
at most cardinality x. The least cardinality k such that M is ko-decomposable is
called the decomposability number of M, denoted by dec(M).

This notion naturally extends the well-known concept of countable decompos-
ability (or o-finiteness) for von Neumann algebras. See [33, Proposition 3.8] for a
useful equivalent formulation.

In the following, we shall briefly outline our main motivations to study the de-
composability of von Neumann algebras. It turns out that the investigation of the
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latter is intimately connected with intriguing questions stemming from abstract har-
monic analysis and the general theory of topological groups, the theory of Banach
and operator algebras, and Banach space theory.

e Since a von Neumann algebra M is determined by its projections, the num-
ber of pairwise orthogonal (non-zero) projections in M is, of course, a very natural
invariant for the algebra. Projection techniques are among the most powerful and
fundamental tools in operator algebras, and the decomposability number measures
the richness of the algebra in this crucial respect.

e Furthermore, it turns out that the concept of decomposability unifies differ-
ent cardinal invariants in harmonic analysis from a more abstract operator algebraic
viewpoint. More precisely, if G is any locally compact abelian group with dual group
G, there is a corresponding duality between the compact covering number of G and
the local weight of G, namely K(G) = X(@). An immediate question is whether
it is possible to extend this duality beyond the context of abelian groups. As our
study shows, for any locally compact group G, the above cardinals x(G) and x(G)
may be interpreted precisely as the decomposability numbers of the von Neumann
algebras L (G) and VN(G), respectively. But the latter are known to be Kac alge-
bras (¢f. Enock—Schwartz [10]) which are dual to each other, an abstract notion of
duality which generalizes the classical Pontryagin duality of locally compact abelian
groups. Hence, the concept of decomposability captures this duality in the most gen-
eral framework.

e As we shall prove in Section 2, the decomposability number provides us with
a very handy cardinal level of the Mazur property and property (X). The latter are
properties formulated for general Banach spaces which were introduced by Neufang
[33]. They have proved extremely useful in various applications in harmonic analysis
and Banach algebra theory, such as the solution to a conjecture by Ghahramani-Lau
(on topological centres) as well as a conjecture by Hofmeier—Wittstock (on automatic
continuity of module homomorphisms on von Neumann algebras), which were re-
cently established by the second author, ¢f. [34, 35].

e Combining our results with techniques of Hu [23], we shall give another appli-
cation of the concept of decomposability to the topological centre question in Section
8. There we shall be concerned with the problem of determining the centre of the sec-
ond dual of the Fourier algebra A(G), a question which is still unsolved in general but
has been studied in abstract harmonic analysis for more than 20 years. We shall prove
that it is enough to solve this question for certain classes of groups, such as second
countable ones.

e In connection with topological centres, we would like to mention yet another
intriguing question on which the notion of decomposability sheds new light. Namely,
as is well known, there are two natural concepts of “maximal” Arens irregularity for
general Banach algebras: extreme non-Arens regularity, on the one hand, and strong
Arens irregularity, on the other hand, as introduced by Granirer [18], and Dales—
Lau [7], respectively. However, up to now, the relation between these two concepts
has remained mysterious. But we have discovered that the notion of decomposabil-
ity may provide an intimate link between the above two properties, for it plays a
crucial role in the study of extreme non-Arens regularity undertaken by the first au-

https://doi.org/10.4153/CJM-2006-031-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2006-031-7

772 Z. Hu and M. Neufang

thor (cf. [22, 23]), as well as in the investigation of strong Arens irregularity by the
second author, ¢f. [34, 36]. Moreover, our work on decomposability indicates that
there might exist a Banach algebra which is strongly Arens irregular without being
extremely non-Arens regular (no such example is known so far!), a line of research
that we shall intensely pursue.

e Of course, an obvious application of decomposability is the generalization of
results established for o-finite von Neumann algebras to the general case. In this
context, we restrict ourselves to mentioning, as an example, Chu’s characterization
of the second dual von Neumann algebras among all o-finite von Neumann algebras,
cf. [4]. Here, his result on the equivalence of o-finiteness of the von Neumann al-
gebra and its predual being weakly compactly generated may have a general version
involving the decomposability number, which in turn motivates intriguing questions
in Banach space theory.

Finally, we would like to point out several intriguing phenomena which occurred
to us in our study of the decomposability of von Neumann algebras, and which were
unexpected.

¢ Given a von Neumann algebra M, one may think that the decomposability
number of the second dual M** is completely determined by the cardinal dec(M),
and one may guess that dec(IM**) = 22" But it turns out that typically, the
right-hand side is just a lower bound for dec(;M**). Moreover, quite surprisingly,
when determining the latter cardinal exactly, a cardinal different from dec(M) comes
into play. And it is fascinating to remark that, as we shall see in Section 7, in case
M = Lo (G) or M = VN(G), this second cardinal is precisely the decomposability
number of the dual Kac algebra!

e In view of the fact that dec(Lo,(G)) = k(G) - Xy and dec( VN (G)) = x(G) - N,
for every infinite locally compact group G, it is natural to expect that «(G) plays the
dominant role in determining the decomposability numbers of algebras stemming
from function spaces such as Co(G)**, LUC(G)** and Lo (G)**, whereas x(G) may
predominate the values of dec(C*(G)**), dec( UC((A?)**) and dec( VN (G)**). Never-
theless, it turns out that even the algebra Co(G)** behaves differently, for as we shall
prove, we have dec(Cy(G)**) = k(G) - 2X9 for every infinite locally compact group
G. Here, x(G) plays a more important role than «(G), which is certainly surprising
at first glance. Hence, the decomposability number tells us that there is a hidden
structure of Cy(G) which appears when passing to the second dual, namely the Kac
algebra structure of VN (G). From the viewpoint of the theory of Kac algebras, the
above phenomenon may now be seen as an instance of the fact that the so-called
Fourier—Stieltjes algebra of the Kac algebra VN (G) is precisely M(G) = Cy(G)*, and
the decomposability number, revealing this link, even allows us to measure the extent
to which the structure of Co(G)** is determined by VN (G). (We shall study the dual
situation for B(G), i.e., the Fourier—Stieltjes algebra of the Kac algebra L..(G), on a
different occasion.)

¢ It is well known that the C*-algebra X(H) of compact operators on a Hilbert
space H may be viewed as the non-commutative analogue of ¢y(I), whereas the von
Neumann algebra B(H) of bounded operators on H parallels I (I) (here, dim(H) =
|I]). For a general infinite locally compact Hausdorff space {2, nevertheless, the C*-
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algebra Cy(€2) may of course be very different from JC(H). We shall see that the
notion of decomposability permits us not only to illustrate clearly both these analo-
gies and differences, but even to quantify them. On the one hand, we shall prove
that dec(lo(D**) = 22" = 22" and dec(B(H)™) = 22" = 2",
On the other hand, we have dec(co(I)**) = dec(lo(I)) = |I|] = dec(cp(I)) and
dec(KX(H)**) = dec(B(H)) = dim(H) = dec(X(H)), where the decomposabil-
ity number of a C*-algebra is defined in exactly the same fashion as we did for a
von Neumann algebra. Hence, we see that the decomposability numbers of the two
von Neumann algebras, when raised to the second dual level, both increase by two
cardinal levels, whereas the C*-algebras remain stable. Moreover, we shall see that
dec(Co(2)**) > || holds for any infinite locally compact Hausdorff space 2. This
tells us exactly how big the “gap” between the discrete case ¢y(I) and the continu-
ous case Cy(€2) is. Note that if 2 has no compact open subsets, then Cy(€2) has no
non-trivial projections.

Throughout this paper, G denotes a locally compact group with a fixed left Haar
measure A\, L (G) is the abelian von Neumann algebra of essentially bounded -
measurable functions on G, and VN(G) is the von Neumann algebra generated by
the left regular representation of G. It is well known that both L., (G) and VN(G)
are von Neumann subalgebras of B(L,(G)) (the latter denoting the von Neumann
algebra of all bounded linear operators on the Hilbert space L,(G)), and the group
algebra L, (G) (resp., the Fourier algebra A(G)) can be identified with the predual of
Loo(G) (resp., VN (G)). Furthermore, L, (G) and VN (G) are Kac algebras which are
dual to each other, and together they generate B(L,(G)) as a von Neumann algebra,
cf. [10].

The paper is organized as follows. In Section 2, for a general von Neumann algebra
M, we reveal the close connection between the level of the Mazur property (resp.,
property (X)) of the predual M, of M and the decomposability number of M. It is
also shown in this section that dec(M) is attained and determined by the families of
pairwise orthogonal normal states on M.

Section 3 is devoted to determining the decomposability number of L. (G) and
characterizing the groups G for which the group algebra L; (G) has the classical Mazur
property, resp., property (X). We shall establish the results dual to the ones obtained
in Section 3 for the Fourier algebra A(G) in Section 4. The results of Section 3 are
also completely extended to the measure algebra M(G) in Section 5; actually, the
dual of any commutative C*-algebra is considered in this section. All the decompos-
ability numbers of von Neumann algebras on a locally compact group G studied in
these three sections are expressed precisely by the cardinals £(G) and x(G). Among
the cardinal invariants of a locally compact group G, we are most interested in x(G)
and x(G) when we work on the group algebra L, (G) and the Fourier algebra A(G). A
particular reason for this is that these two cardinals are dual to each other in many as-
pects. For example, if G is abelian, then #(G) = x(G) and x(G) = k(G) (¢f. Hewitt—
Ross [20, (24.48)]); for any non-compact amenable group G, L~ (G) has exactly 22"
many topologically left invariant means, whereas for any non-discrete group G, the
size of the set of topologically invariant means on VN (G) is 221 (¢f. Lau—Paterson
[32] and Hu [21], respectively). For a general locally compact group G, the dual re-
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lation between x(G) and x(G) is further exploited in this paper through our study of
the decomposability of von Neumann algebras on G (see §3-§7).

Let LUC(G) denote the C*-algebra of bounded left uniformly continuous func-
tions on G. In Section 6, for all infinite locally compact groups G, the precise size
of the decomposability number dec(LUC(G)**) is also obtained explicitly in terms
of the cardinals x(G) and x(G). A local structure theorem for G*UC (the LUE-
compactification of G) by Lau—Medghalchi—Pym [29] plays a key role in this part,
which also leads to the determination of the exact cardinality of G*U¢. Further-
more, the dual version for the C*-algebra UC (G) of uniformly continuous linear
functionals on A(G) is proved to be true for a large class of groups G.

The decomposability of the second dual of L. (G) and VN(G) is investigated
in Section 7. For M = L. (G) or VN (G), it turns out that dec(M**) is completely
determined by dec(M) if dec(M) is equal to the Hilbert space dimension dim(L,(G))
of L,(G). As a consequence, for a large class of locally compact groups G, we are
able to precisely evaluate dec( Lo, (G)**) (resp., dec( VN (G)**)) by using the cardinal
k(G) (resp., X(G)). Meanwhile, L., (G) and VN(G) provide us with von Neumann
algebras M for which the cardinal dec(M**) is far away from 22",

In Section 8, we present an application of the Mazur property of higher level to
the topological centre problem for the Banach algebra A(G)**. It is shown that, for
any locally compact group G with a large compact covering number, the topological
centre problem for A(G)** can be reduced to the one for the algebras A(H)** of some
open subgroups H of G with compact covering number dominated by dec( VN (G)).

2 The General Situation

The main result of Neufang [33] characterizes, for the predual M., of a von Neumann
algebra M, the classical condition of Mazur in terms of the decomposability of M and
shows at the same time that in this situation, the Mazur property and property (X) are
actually equivalent. To state this result, we recall that a cardinal number x is called
real-valued measurable if for every set S of cardinality &, there exists a probability
measure 4 on the power set of S which vanishes on singletons, ¢f. Gardner—Pfeffer
[14, Definition 4.12]; in the following, we will briefly write “measurable” for “real-
valued measurable”. We note here that the above definition is different from the usual
one which requires the measure p to be x-additive, cf. [14, p. 972].

Theorem 2.1  For a von Neumann algebra M, the following are equivalent.

(1)  The predual M. of M has the Mazur property.

(if) The predual M. of M has property (X) of Godefroy—Talagrand.

(iii) The von Neumann algebra M is r-decomposable for some non-measurable cardi-
nal number k.

Proof See Neufang [33, Theorem 3.17]. [ |

Here, we give an analogue of the above result in the setting of the Mazur property
and property (X) of higher level. Namely, we shall prove the following:
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Theorem 2.2  Let M be a von Neumann algebra and k a cardinal number. Consider
the following statements.

(i)  The von Neumann algebra M is k-decomposable.
(ii)  The predual M, of M has property (X) of level k - Ry.
(iii) The predual M. of M has the Mazur property of level k - X

Then we have (1)=-(ii)=(iii).

Proof (i)=-(ii). Since a bounded linear functional on a von Neumann algebra is
normal if and only if its restriction to every abelian von Neumann subalgebra is nor-
mal (cf. [39, Corollary 1]), it is readily seen that we can assume M to be abelian.

In the sequel, if (£2, u) is a finite measure space, we denote by L (€2, 1) the abelian
von Neumann algebra of essentially bounded pi-measurable functions on €. A close
inspection of the proof of [37, Proposition 1.18.1] shows that for our abelian von
Neumann algebra M, we have

loo
M =P Loo(Qu, 1)

acl

as von Neumann algebras, where (£2,, (o) are finite measure spaces. We thus obtain
an isometric isomorphism

h
M* = @ Ll (Q(yv /f"a)~

a€cl

Owing to [33, Corollary 3.20], the spaces L (€2, jio) have property (X) of level R,.

First, assume that |I| > Ro. Then, of course, the spaces L (£, ft,) in particular
have property (X) of level |I|. Hence, following [33, Theorem 4.17] and using the
stability of the latter property under isomorphisms (¢f. Remark 1.5(ii) above), we
deduce that M, also enjoys property (X) of level |I|. Since we obviously have |I| < &,
it follows that M, has property (X) of level k (= & - Ny).

Finally, in case |I| is finite, M, is of course isomorphic to L; (€2, 1) where Q is the
disjoint union of {Q},crand 1 = > P, ¢, tta- Again, by [33, Corollary 3.20], M,
has property (X) of level V.

(i1)=>(iii). See Remark 1.5(i). [ |

Remark 2.3 1t is readily seen that for any infinite set S, the abelian von Neumann
algebra I (S) has the decomposability number |S|.

Remark 2.4 (i) As we pointed out earlier, the definition of measurable cardinals
used in this paper is different from the usual one which is often used by topologists,
cf. Jech [24, Definition 10.8]. In particular, according to our definition, if 1, x; are
cardinals with x; < K, and k; is measurable, then x, is also measurable. However,
the existence question for both concepts of measurable cardinals is the same, cf. [24,
Corollary 10.7].
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(ii) It is known that the existence of measurable cardinals cannot be proved in
ZFC (the axioms of Zermelo—Fraenkel and the axiom of choice). Moreover, in ZFC,
the existence of measurable cardinals is equiconsistent with the fact that the Lebesgue
measure on R can be extended to a measure on the power set of R, ¢f. Gardner—Pfeffer
[14, p. 972]. See Fremlin [12] and Solovay [38] for more information on measurable
cardinals.

(iii) The inverse implications in Theorem 2.2 do not hold in general. It is known
that the cardinal 8, is non-measurable, cf. Jech [24, Lemma 10.13]. Let S be a set
such that |S| = ®;. Then, by Theorem 2.1 and Remark 2.3, we see that ;(S) has
the Mazur property of level Ry and property (X) of level R, but I (S) fails to be
countably decomposable.

(iv) If measurable cardinals exist, then there exists a von Neumann algebra M such
that M. does not have the classical Mazur property. In fact, Edgar proved that for
any set S, I(S) has the classical Mazur property if and only if |S| is non-measurable,
cf. [9, Theorem 5.10].

(v) Let X be Banach space. It is easy to see that f € X** is w*-sequentially contin-
uous if and only if f is w* Ry-continuous. It can also be shown thatif ) y, isa wuC
series in X*, then w*limp ) crVn exists in X*, where F denotes finite subsets of .
Therefore, X has the Mazur property, resp., property (X), of level ¥, if and only if X
has the classical Mazur property, resp., property (X).

Obviously, dec(M) < oo if M is a finite dimensional von Neumann algebra. In
fact, the converse is also true.

Proposition 2.5  Let M be a von Neumann algebra. Then dec(M) < oo if and only
if Ml is finite dimensional.

Proof Suppose dec(M) = n < oo. Then there exist pairwise orthogonal non-
zero projections py, ..., p, in M such that Y| p; = id. Assume that M is infinite
dimensional. Then M is not a reflexive von Neumann algebra. In particular, there
exists a non-zero singular positive linear functional ¢ on M. By [40, Theorem II1.3.8],
for each 1 < i < n, there exists a non-zero projection ¢; < p; in M such that
#(q;) = 0. It follows that ¢(>°"_ g;) = 0 and hence Y.\  g; # id. Let g1 =

id—>"", gi. Then q1,qz, - - ., qus+1 are pairwise orthogonal non-zero projections in
M, contradicting the assumption that dec(M) = n. Therefore, if dec(M) < oo, then
M is finite dimensional. u

Let M be a von Neumann algebra and ¢ a normal positive linear functional on
M. Then there exists a smallest projection P in M such that (P) = (1) = ||¢|,
cf. Sakai [37]. The projection P is called the support of ¢ and will be denoted by S(¢).
If ¢; and ¢, are normal positive linear functionals on M, then we say that ¢; and
y are orthogonal if || 1 — @a|| = |1l + ||¢2||> or equivalently, S(¢1) and S(¢,) are
orthogonal projections in M, cf. [37].

A projection P in M is said to be countably decomposable if every family of pairwise
orthogonal non-zero sub-projections of P in M is countable. Now suppose M is a
von Neumann algebra acting on a Hilbert space H. A projection in M is said to be
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cyclic if its range is the closed linear subspace of H generated by M’¢ for some vector
& € H, where M’ denotes the commutant of M in B(H). The following results
on cyclic/countably decomposable projections can be found in Kadison—Ringrose,
cf. [25, (5.5.9), (5.5.15), (7.6.13) and (7.2.7)], respectively.

(1) Every projection in M is a sum of pairwise orthogonal cyclic projections in M.

(2) Every cyclic projection in M is countably decomposable in M.

(3) A projection P in M is countably decomposable if and only if P = S(¢) for some
normal state ¢ on M.

(4) A projection P in M is cyclic if and only if P = S(¢) for some vector state p on
M, i.e., there exists a unit vector £ € H such that p(x) = (x£|€) for all x € M.

It is easy to see that M is dec(M)-decomposable and dec(MM) is the greatest cardi-
nality of a family of pairwise orthogonal non-zero projections in M. The following
result shows that the cardinal dec(M) actually can be attained by the cardinality of
such a family of cyclic projections in M. Hence, dec(M) is completely determined
by the families of pairwise orthogonal (normal) vector states on M. This fact will be
frequently used in the sequel in the study of the decomposability of the second dual
A** of a C*-algebra A. For convenience, let ost(M,.) denote the greatest cardinality
of a family of pairwise orthogonal normal states on M.

Theorem 2.6  Let M be a von Neumann algebra acting on a Hilbert space H. Then

(i)  there exists a family P of pairwise orthogonal non-zero cyclic projections in M with
> pep P = id such that |P| = dec(M). Furthermore, |P| = dec(M) holds for
any such infinite family of cyclic projections in M.

(ii) dec(M) = ost(M,.) = |®| for some family ® of pairwise orthogonal vector states
on M.

Proof (i) Suppose dec(M) < oo. Then there exists a family {P;}" | of pairwise
orthogonal non-zero projections in M such that n = dec(M). Clearly, we have
Z?:1 P; = id. By Fact (1) above, each P; (i < n) must be cyclic in M.

In the following, assume that dec(M) is infinite. First, we show that M con-
tains an infinite family P of pairwise orthogonal non-zero cyclic projections such
that >, 5, P = id. By Proposition 2.5, one can see that M must contain an infinite
sequence {E,} of pairwise orthogonal non-zero projections. We may assume that
each E, is cyclic in M (cf. Fact (1)) and Y.~ E, # id. Note thatid — >~ E, is
a non-zero projection in M. By Fact (1), id — >_ 7 E, is the sum of a family Q of
pairwise orthogonal (non-zero) cyclic sub-projections of id — Y _° | E, in M. Then
P = QU {E,}32, is the required family of cyclic projections in M.

Next, we prove that |P| = dec(M). Obviously, |P| < dec(M). Conversely, let U
be an arbitrary family of pairwise orthogonal non-zero projections in M. According
to [25, (6.3.9)], [U| < |P|since Yy U <id = >~ P. It follows that dec(M) <
|P| and hence |P| = dec(M).

Finally, by [25, (6.3.9)] again, |[U| = |P| = dec(M) for any infinite family U of
pairwise orthogonal non-zero cyclic projections in M with ) 7, ., U = id.

(ii) Let @ be the family of vector states on M corresponding to the family P of
projections in M as obtained in (i) (¢f. Fact (4)). Then @ is pairwise orthogonal and
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|®| = |P| = dec(M). On the other hand, |®| < ost(M,) < dec(M), cf. Fact (3).
Therefore, dec(M) = ost(M,) = |D|. [ |

Let A be a C*-algebra. Then the second dual A** of A is a von Neumann algebra.
It is known that for any linear functional ¢ on A**, ¢ is a normal state on A** if
and only if ¢ is a state on A, ¢f. Dixmier [8, (12.1.3(iii))]. So, we will use ost(A*)
to denote ost((A**),), which is now equal to the greatest cardinality of a family of
pairwise orthogonal states on A. For a normed linear space X, we use dense(X) to
denote the density character of X, i.e., the least cardinality of a norm dense subset of
X. The following corollary is clear.

Corollary 2.7  Let A be a C*-algebra. Then
dec(A*™*) = ost(A*) < dense(A*) < |[A*| < 2denselA),

Remark 2.8  As pointed out earlier, our main interest here is to investigate the in-
timate connection between the decomposability of von Neumann algebras arising
from function spaces and the cardinal invariants of the underlying domain, espe-
cially when the domain is a locally compact group. Our investigation of the dual of
the measure algebra M (G) of a locally compact group G has led to considering the
decomposability of the second dual of an arbitrary commutative C*-algebra; this will
be studied in Section 5. We will explore the decomposability of the second dual of a
general C*-algebra elsewhere.

3 The Case of the Group Algebra L, (G)

We begin by determining the decomposability number of the abelian von Neumann
algebra Lo (G) = L;(G)* for all locally compact groups G. Here, we recall that x(G)
denotes the compact covering number of G, i.e., the least cardinality of a compact
covering of G.

Theorem 3.1 Let G be a locally compact group. Then
(1) dec(Loo(G)) = k(G) if G is non-compact;

(i) dec(Loo(G)) = N if G is compact and infinite;
(i) dec(Loo(G)) = |G| if G is finite.

Proof (i) Suppose that G is non-compact. Then there exists a family with cardi-
nality x(G) of pairwise disjoint non-empty open subsets of G. By taking the charac-
teristic functions of these open sets, we get a family of pairwise orthogonal non-zero
projections in Lo, (G). It follows that dec(Lo. (G)) > k(G).

Conversely, let {U,}aca be an open covering of G such that the closure U, of
U, is compact for all &« € A and |A| = k(G). Let {®;};c; be a family of pairwise
orthogonal non-zero projections in L., (G). Then, for each i € I, ®; = xg, for some
measurable set E; such that E; is not locally A-null and E; NE; is locally A-nullif i # j,
where g, denotes the characteristic function of E;. Note that U, is compact for all
a € A. It follows that for each o« € A, thesetI, = {i € I : A\(E;NU,) > 0} is at
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most countable and I = | J ¢, Io. Therefore, |I| < |A|- Ry = [A| = £(G) and hence
dec(Loo(G)) < k(G). Consequently, dec(Loo (G)) = k(G).

(ii) Assume that G is compact and infinite. Then there exists an infinite sequence
of pairwise disjoint non-empty open sets in G. Following the same argument as
above, we have dec(Loo(G)) > Ry. On the other hand, let {®;};c; be a family of
pairwise orthogonal non-zero projections in L., (G). Again, for eachi € I, ®; = xg,
for some measurable set E; such that A(E;) > 0 and A(E; N E;) = 0if i # j. Thus,
I is at most countable since A(G) < oco. Therefore, dec(Lo,(G)) < Ny and hence
dec(Loo(G)) = Ny.

(iii) If G is finite, by Remark 2.3, dec(Lo (G)) = dec(l(G)) = |G]. [ |

Corollary 3.2 dec(Loo(G)) = K(G) - Xy for all infinite locally compact groups G.

A certain cardinal level of the Mazur property, resp., property (X), for the group
algebra L;(G) has been obtained by Neufang [33]. Now we are ready to characterize
the locally compact groups G for which the space L;(G) enjoys the classical Mazur
property, resp., property (X).

Corollary 3.3  Let G be a locally compact group. Then

(1) L1 (G) has the Mazur property (resp., property (X)) of level k(G) - Ro.

(ii) L1 (G) has the classical Mazur property, resp., property (X), if and only if k(G) is
a non-measurable cardinal.

Proof (i) See [33, Theorem 4.4; Theorem 4.18].
(ii) For the sufficiency, see [33, Corollary 4.15; Theorem 4.18]. The necessity
follows immediately from Theorem 2.1 and Corollary 3.2. ]

4 The Case of the Fourier Algebra A(G)

Let G be a locally compact group and let x(G) denote the least cardinality of an open
basis at the identity of G. It is well known that if G is abelian with dual group G, then
the Fourier algebra A(G) is identified with L; ((A?) via the inverse Fourier transform
and we have x(G) = K(CA?). In this section, for all locally compact groups G, we will
prove the dual version of the results on L;(G) presented in Section 3 for the Fourier
algebra A(G).

Theorem 4.1 Let G be a locally compact group. Then
(1) dec(VN(G)) = x(G) if G is non-discrete;

(ii)) dec(VN(G)) = Ny if G is discrete and infinite;
(iii) dec(VN(G)) < oo if G is finite.

Proof (i) Suppose that G is non-discrete. Then VN (G) contains a family with car-
dinality x(G) of pairwise orthogonal non-zero projections (see Chou [3, Theorem
3.2] for the case x(G) = Ny and Hu [21, Lemma 5.1] for the case x(G) > N).
Therefore, we have dec(VN (G)) > x(G).
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To finish the proof, we only need to show that VN (G) is x(G)-decomposable. We
follow an idea as used in the proof of Hu [22, Proposition 5.1]. Let U be a compact
neighborhood system at the identity e of G such that |U| = x(G). Foreach U € U, let
hy = ﬁme € L,(G), where A(U) is the left Haar measure of U. By [20, Theorem
(20.15)], we have limy ||hy * [ — f|l, = Oforall f € Ly(G). f T € VN(G) and
f € Coo(G) (the latter denoting the space of continuous functions on G with compact
support), then T(hy * f) = T(hy) * f and hence T(f) = limy(T(hy) * f) in the
I - |l2-norm. Since Cyo(G) is || - ||2-dense in L(G), each T € VN(G) is uniquely
determined by the net {T(hy ) }ucu in Ly(G). In particular, if T # 0, then T'(hy) # 0
for some U € U.

Now let {P;};c; be an arbitrary family of pairwise orthogonal non-zero projec-
tions in VN(G). For each U € U, we have Y., [|Pi(hy)|3 < ||hy||5 and hence
the set Iy = {i € I : P;(hy) # 0} is at most countable. Leti € I. Since P; # 0,
P;(hy) # 0 for some U € U by the above discussion, i.e., i € Iy. Thus, we have
I = Uyey Iu- Tt follows that [I| < [U| - Ry = x(G) - Ry = x(G). Therefore, VN (G)
is x (G)-decomposable.

(i) Assume that G is discrete and infinite. Let h = x(,} € L»(G). By the same
argument as used in (i), we see that each T € VN(G) is uniquely determined by
the function T(h) in L,(G). Let {P;};c; be an arbitrary family of pairwise orthog-
onal non-zero projections in VN (G). Then P;(h) # 0 for all i € I. It follows that
I is at most countable since >, [|P;i(h)||3 < |[|h||3. Hence, dec(VN(G)) < X,.
On the other hand, according to Proposition 2.5, dec(VN(G)) > N,. Therefore,
dec(VN(G)) = Ny.

(iii) If G is finite, then dim( VN (G)) < oo and hence dec( VN (G)) < cc. [ |

Corollary 4.2 dec(VN(G)) = x(G) - X for all infinite locally compact groups G.

We have the following analogue of Corollary 3.3.

Corollary 4.3  Let G be a locally compact group. Then

(1) A(G) has the Mazur property (resp., property (X)) of level x(G) - No.

(ii) A(G) has the classical Mazur property, resp., property (X), if and only if x(G) is a
non-measurable cardinal.

Proof (i) It follows from Corollary 4.2 and Theorem 2.2.

(ii) Owing to Theorem 2.1, we only have to show that A(G) has the Mazur prop-
erty if and only if x(G) is a non-measurable cardinal. Note that VN (G) is x(G) - Ro-
decomposable, cf. Corollary 4.2. Also, x(G)- N is non-measurable if and only if x(G)
is non-measurable, ¢f. Remark 2.4(i). Therefore, by Theorem 2.1 and Corollary 4.2,
A(G) has the classical Mazur property if and only if x(G) is non-measurable. ]

5 The Case of the Space 1/ (1)

Let Q2 be a locally compact Hausdorff space. Let C(£2) be the C*-algebra of bounded
complex-valued continuous functions on {2 with the supremum norm and let Cy(£2)
be the C*-algebra of all f € C(2) such that f vanishes at infinity. It is well known
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that Co(€2)* is identified with the space M (2) of bounded regular complex Borel
measures on 2. So, M (2)* (= Co(€2)**) is a von Neumann algebra. In this section,
we will study the decomposability of M (€2)* in terms of the space €2 and derive a
certain cardinal level of the Mazur property and property (X) for the space M (2). In
particular, for all locally compact groups G, we will determine the decomposability
number dec(M (G)*) and characterize the groups G for which M (G) has the classical
Mazur property, resp., property (X), precisely in terms of |G| (and hence in terms of
the two group cardinal invariants «(G) and x(G)).

We note here that p is a state on Cy(€2) if and only if u € M () is a probability
measure on ). Also, recall that for p, v € M(Q), ||u — v|| = ||p]| + [|v| if and
only if y and v are mutually singular, ¢f. Ghahramani—-McClure [13, Lemma 1]. So,
by Corollary 2.7, dec(M (€2)*) is just the greatest cardinality of a family of mutually
singular probability measures in M (£2).

For any topological space X, let w(X) denote the weight of X, i.e., the least car-
dinality of an open basis for X. Here, we introduce the following cardinal for any
locally compact Hausdorff space €2. Let

w.(Q2) = sup{w(U) : U is a relatively compact open subset of Q2}.

Then w () < w(€2), w.(2) = w(Q) if Q is compact, and w.(2) = R, if Q is discrete
and infinite. It is readily seen that w.(€2) is an infinite cardinal if €2 is non-discrete.
In general, w.(Q2) # w(QQ), e.g,, for any infinite discrete group G, w.(G) = X, but
w(G) = |G|, see Lemma 5.4.

Also, one can prove that w(€2) = () - w.(Q2), where x(€2) denotes the least
cardinality of a compact covering of §2. In fact, let {U, },ca be an open covering of
Q such that each U, is compact and [A| = £(Q). Then w(Q) < > ., w(U,) <
|A] - we(2) = R(Q) - w(Q), i.e., w() < k() - we(£2). Conversely, let O be an open
basis for 2 such that || = w(Q). Let X = {U : U € O and U is compact}. Then X
is a compact covering of 2 and thus () < |X| < |0] = w(), i.e., k() < w(Q).
Therefore, £(£2) - w.(Q) < w({2) since we obviously have w,.(2) < w(2).

Let U be an infinite relatively compact open subset of 2. Then there exists a rel-
atively compact open set V. C Q such that U C V. Since Cy(U) can be canonically
embedded into C(U), we have that dense(Cy(U)) < dense(C(U)). Note that

dense(C(U)) = w(U),

cf. Lacey [28, Theorem 13.1]. Hence, we have dense(Cy(U)) < w(U) < w(V) <
wq(Q), i.e.,

(1) dense(Co(U)) < w.(2) for all infinite relatively compact open subsets U of 2.

This fact will be used in the sequel.
Note that |Q| < #(2) - 2¥D. We shall show that the decomposability number
dec(M(€2)*) is just between these two cardinals.

Lemma 5.1 Let ) be an infinite locally compact Hausdorff space. Then

Q| < dec(M(Q)*) < dense(M () < k() - 2",
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Proof Obviously, {0, : x € Q} is a family of mutually singular probability mea-
sures in M (2), where d, denotes the point mass at x. So, we always have |Q| <
dec(M (£2)*) < dense(M (£2)), cf. Corollary 2.7.

If ) is discrete, then, by Remark 2.3, dec(M (2)*) = dec(lo(£2)) = dense(l;(2))
= |Q| = k(Q) < K(Q) - 2% In the following, we assume that § is non-discrete.
Then w,(£2) is an infinite cardinal and hence we may assume that dense(M (£2)) >
No.

According to Comfort [5, Lemma 17], there exists a subset {; };e; of M () such
that [I| = dense(M (), ||pi|| < 1,and ||p; — pj|| > 3 foralli, j € Iwithi # j. Let
i € I. Choose v; € M (£2) such that v; is supported on some compact subset K; of 2
and ||pu; — vil| < §. Thus,if i, j € Tand i # j, then ||y; — vj|| > 1. In particular,
v; # v; whenever i # j.

Let U be an open cover of §2 such that U is closed under finite union, [U| = (),
and U is compact forall U € U. Foreach U € U,letIy = {i € [ : K; C U}. Then
I=Uy cu Iu since each K; is compact and U is closed under finite union. So, we
only have to show that |I;y| < 2" forallU € U.

Fix U € U. Since dense(Co(U)) < w.(2) by (}), there exists a subset { f, }aea
of Co(U) such that |A] < w.(Q2) and {f,}aca is norm dense in Co(U). Fori € Iy
and a € A, let T'(i)(«) = (v, fo), where v; is considered as a measure in M(U)
since v; is supported on K; C U. Then I'(i) is a complex-valued function defined
on A for each i € Iy. Clearly, I'(i) # I'(j) ifi, j € Iy and i # j. Hence, 'is a
one-to-one map from Iy to the set of complex-valued functions on A. We derive that
[Iy| < 2%0)IA < 2% since w () > Ry and w(2) > |A]. [

Let A be a commutative C*-algebra with Gelfand space 2. Then 2 is a locally
compact Hausdorff space and A = Cy(€2). So, Lemma 5.1 can be reformulated as
follows.

Corollary 5.2 Let A be an infinite dimensional commutative C*-algebra with Gel-
fand space ). Then

Q| < dec(A**) < dense(A*) < k(Q) - 2",

In view of the equality w(€2) = k(2) - w.(2) (cf. the fourth paragraph of this
section), it can be seen that if €2 is non-compact, i.e., A is non-unital, then the esti-
mate on dec(A**) obtained in Corollary 5.2 is, in general, sharper than the inequal-
ity dec(A**) < 2dense(A) (= 2%(V)) and may even be sharper than dec(A**) < |A*,
cf. Corollary 2.7, see also Theorem 5.5(ii).

Combining Corollary 5.2 and Theorem 2.2, we have

Corollary 5.3  Let A be an infinite dimensional commutative C*-algebra with Gel-
fand space Q). Then A* has the Mazur property, resp., property (X), of level r(£2)-2¥<(D,

To express the decomposability number dec(M(G)*) explicitly in terms of x(G)
and x(G) for all locally compact groups G, we need the following lemma, which is
essentially contained in [6, §3].
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Lemma 5.4 Let G be an infinite locally compact group. Then
@) we(G) = x(G) - .

(i) w(G) = max{k(G), x(G)}.

(iii) |G| = K(G) - 2X19),

Proof Suppose that G is discrete. Then x(G) = 1, k(G) = w(G) = |G|, and
w:(G) = Ro. So, (i)—(iii) hold.

In the following, we assume that G is non-discrete. Let U be any non-empty rela-
tively compact open subset of G and Gy a o-compact open subgroup of G containing
U. By [6, Theorem 3.9(i)], w(Gp) = x(Gyp). So, we have

X(G) = x(Go) < w(U) < w(Gy) = x(Go) = x(G),

i.e, w(U) = x(G). By the definition of w.(G), we have w.(G) = x(G) = x(G) - X,
since x(G) > Ny. Therefore, (i) is true. Conclusions (ii) and (iii) are Theorem 3.5(iii)
and Theorem 3.12(iii) in [6], respectively. [ |

Now we are ready to present the main result of this section.

Theorem 5.5

(i)  Let A be an infinite dimensional commutative C*-algebra with Gelfand space (2
satisfying |Q] = k(Q) - 2%V, Then

dec(A**) = dense(A*) = k(Q) - 2.

In addition, if A is unital, then dec(A**) = dense(A*) = |A*| = 2",
(ii) Let G be an infinite locally compact group. Then

dec(M(G)*) = dense(M(G)) = r(G) - 2X'9 = |G|.

Proof (i) The first half of the conclusion follows directly from Corollary 5.2. Fur-
thermore, suppose that A is unital. Then € is compact and hence w.(2) = w(Q2) >
No. We recall the Kruse-Schmidt—Stone theorem, which states that for any Banach
space X, we have |X| = [dense(X)]™. Hence, |A*| = [dense(A*)]N = 2¥(DN —
2% = dec(A**). Therefore, we have dec(A**) = dense(A*) = 2"V = |A*|.

(ii) Let G be an infinite locally compact group. If G is discrete, then M(G) = ,(G)
and, by Remark 2.3 and Lemma 5.4(iii), dec(M (G)*) = dec(l(G)) = dense(M(G))
= |G| = k(G) - 2X(9)_ The equality for the case that G is non-discrete can be derived
from the first conclusion of this theorem and Lemma 5.4(i) and (iii). [ |

We now obtain an analogue of Corollary 3.3.

Corollary 5.6  Let G be a locally compact group. Then
(i) M (G) has the Mazur property (resp., property (X)) of level |G| - N,.
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(ii) M(G) has the classical Mazur property, resp., property (X), if and only if |G| is
a non-measurable cardinal, which holds if and only if both k(G) and 2X\%) are
non-measurable cardinals.

Proof The statement is clear if G is finite.

Assume that G is infinite. Combining Theorem 5.5(ii) with Theorem 2.1 and
Theorem 2.2 and following the proof of Corollary 4.3, one can see that (i) and the
first half of (ii) hold true. We note here that, if k; and &, are cardinal numbers with
k1 < Ky and if K, is non-measurable, then k; is also non-measurable, see Remark
2.4(i). By Lemma 5.4(iii), it is readily seen that |G| is non-measurable if and only if
both x(G) and 2X(©) are non-measurable. [ |

Remark 5.7

(i) When G is discrete, Corollary 3.3(ii) and Corollary 5.6(ii) are included in
Edgar [9, Theorem 5.10], ¢f. Remark 2.4(iv).

(ii) Corollary 5.6(ii) has been used by the second author in the proof of the fol-
lowing results: if G is non-compact and |G| is non-measurable, then (a) the (left
and right) topological centres of M(G)** are exactly M (G); (b) every (left or right)
M (G)**-module homomorphism on M (G)* is automatically bounded and w*-con-
tinuous, see [34, Theorem 3.4]. In fact, by Lemma 5.4(iii) and from the proof of [34,
Theorem 3.4], it is easily seen that the above (a) and (b) are also true for all locally
compact groups G satisfying x(G) > 2X(9,

(iii) It will be interesting to explore the “dual” setting of Theorem 5.5(ii). A nat-
ural question is: when B = B(G) or B,(G) (where B(G), resp., B,(G), denotes the
(resp., reduced) FourierStieltjes algebra of G), for which non-compact and non-
abelian groups G do we have dec(B*) = x(G) - 26(G)?  Furthermore, is there a
C*-algebra A naturally associated with G such that dec(A**) = x(G) - 25(6) holds
for all locally compact groups G? Here, we would like to point out that for Fell’s
group G (c¢f. [27, p. 328]), we have B(G) = B,(G), k(G) = x(G) = Ny, and
dec(B(G)*) = dense(B(G)) = ;. So, one may have dec(B(G)*) < x(G) - 256
even when G is second countable and amenable.

6 The Decomposability of LUC(G)*™* and UC(G)**

Let G be a locally compact group and LUC(G) the C*-algebra of bounded left uni-
formly continuous functions on G, i.e., all f € C(G) such that the map x —  f from
G into C(G) is continuous when C(G) has the norm topology, where , f(t) = f(xt)
(t € G). Let UC(G) be the C*-algebra generated by operators in VN (G) with com-
pact support as introduced by Granirer [17]. We recall here that the support of an ele-
ment T of VN (G) is defined to be the closed subset supp T of G such that x € supp T
if and only if for all u € A(G), u- T = 0 implies u(x) = 0, whereu - T € VN(G)
is defined by (u - T,v) = (T,uv) (v € A(G)). It is known that when G is abelian
with dual group I', UC (G) is identified with LUC(T). In this section, we will ex-
plore the decomposability of the von Neumann algebras LUC(G)** and UC (G)**.
It turns out that LUC(G)** and UC(G)** have plenty of projections even though
the C*-algebras LUC(G) and UC(G) may rarely have non-trivial projections.
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Let G*UC be the Gelfand space of the commutative C*-algebra LUC(G). Then
G*U€ can be regarded as the LUC-compactification of G and C(G~U®) is *-isomor-
phic to LUC(G). See Berglund-Junghenn—Milnes [2] for more information on the
LUC-compactifications. If G is compact, then GFUC §g just G. When G is discrete,
LUC(G) = l(G) so that G*U® is equal to the Stone-Cech compactification 5G of
G. For a general locally compact group G, Lau—Medghalchi—Pym [29] proved a “local
structure theorem” for G*U€, which plays a key role in our determination of the
decomposability number dec(LUC(G)**). We cite this local topological structure
theorem here for the convenience of the reader.

Theorem 6.1 ([29, Theorem 2.10])  Let G be an infinite locally compact group. Let

V be any compact symmetric neighborhood of the identity e of G and let {z, }oeca be a

maximal subset of G such that the family {V z, } aca of subsets of G is disjoint. Give A the

discrete topology and let q: V> x A — G be the natural map defined by q(v, @) = vz,.

Then q extends to a continuous map q: V> x BA — G*UC for which

(i) q(V?x BA) = GFUS;

(ii) ifWisopeninG,cg W CintV andv € V2, then q(vW x BA) is open in GZUC
and q is a homeomorphism from vW x BA onto g(vW x BA);

(iii) if M C A, then gq(vW x clga M) NG = q(vW x M) = U, cps YW za-

From now on, we shall fix V and {z,}4ca such that the conclusions of Theo-
rem 6.1 hold. We note that |A] is less than or equal to the cellularity of G. So, by [6,
Theorem 3.12(v)], |A| < Kk(G) - Rq. In fact, we have

Lemma 6.2 If G is non-compact, then |A| = k(G).

Proof The maximality of {z, },c ensures that {V?z,},c4 covers G, see the proof of
[29, Lemma 2.1]. So, £(G) < |A|. Combining this with the inequality |A| < K(G) Ry,
we have |A| = k(G) if G is non-compact. [ |

It is known that for any infinite compact Hausdorff space X, dense(C(X)) =
w(X), ¢f. Lacey [28, Theorem 13.1]. Let S be an infinite set. Then C(3S) = I (S)
and hence w(8S) = dense(C(S)) = dense(l(S)) = 2, i.e., w(3S) = 2!5I. This
fact will be used in the proof of the following result on the LUC-compactification
G*UC of G.

Lemma 6.3  Let G be an infinite locally compact group. Then
W(GLUG) _ X(G) . znt(G) and |GLUG‘ — 2W(GLUG) _ 2X(G) ] 22»;(6).

Proof By Lemma 5.4(ii) and (iii), the assertion holds when G is compact. If G is
discrete, then G*U€ = 3G, w(G*UC) = 216l = 259 and |G*UC| = 221 = 22"
and hence the conclusion is also true.

In the following, we assume that G is non-compact and non-discrete. Let W be
an open neighborhood of the identity of G as in Theorem 6.1(ii). Let x € G*U¢, By
Theorem 6.1(i), x = q(v, ) for some v € V2 and e € BA. Let W(x) = q(vW x BA).
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Then W (x) is an open neighborhood of x in G*1¢

vW x [A.

Now vW is a non-empty relatively compact open subset of G. The proof of Lemma
5.4(i) shows that w(vW) = x(G). Note that w(3A) = 24l and w(X x Y) = w(X) -
w(Y) for all topological spaces X and Y. It follows that

and W (x) is homeomorphic to

w(W(x)) = wivW x BA) = w(vW) - w(BA) = x(G) - 2lAl

= x(G) - 279 (Lemma 6.2),

ie, wW(x)) = x(G) - 259 for all x € G*UC. Thus, w(G*UC) > x(G) - 279,
On the other hand, since G*U€ is compact, G~UC s a finite union of open sets
of the form W (x). So, w(G*U€) < Ry - x(G) - 289 = y(G) - 29, Therefore,
w(GFUC) = y(G) - 279,

Note that G“U€ is not extremally disconnected in general, ¢f. Theorem 6.1(ii). So,
we need the following proof to conclude that |GFU¢| = 2GS,

Clearly, |G*U¢| < MG = ox(@.22"7 Let Gy bea o-compact open subgroup
of G containing W. Then G, can be covered by countably many left translates of W.
By Lemma 5.4(iii), 2X(©) = 2X(G) = |Gy| < R, - [W| = [W|. Also, |8A| = 22" =
229 (Lemma 6.2). Thus,

5(G)
[GUE > [W(x)| = [vW x BA| = [yW| - |BA| = [W| - |BA] > 21927,

2»;,(6

i.e, [GEUC| > 2X(O) . 227 Therefore, |GEUE| = 2w(G™ ") = ox(@) . 227 [

Recall that G*U€ is the Gelfand space of L UC(G) and note that G*'€ is compact.
Taking A = LUC/(G) in Theorem 5.5(i) and applying Lemma 6.3, we derive the main
result of this section.

Theorem 6.4  Let G be an infinite locally compact group. Then
dec(LUC(G)**) = dense(LUC(G)*) = | LUC(G)*| = 2X© 2@

Now, let us turn to the decomposability number dec( UC(G)**). Suppose that G
is non-discrete. Let TIM (G) be the set of topologically invariant means on VN (G),
ie,allm € VN(G)* such that |m| = m(1) = 1 and m(u - T) = u(e)m(T) for
allu € A(G) and T € VN(G). By Hu [21, Proposition 6.1], there exists a subset
E of TIM(G) such that |E| = 22 and ||m; — m,|| = 2 for all my, m, € E with
my; # m,. Note that for each m € TIM(G), m|Uc(G) is a state on UC(G) and
[(m1 — m2)| yoell = [lm — my|| for all my, m, € TIM (G). Therefore,

dec(UC(G)™) = ost(UC(G)*) > |E| = 227,

ie, dec(UC(G)**) > 22 An upper bound in terms of x(G) and x(G) for the
cardinal dec( UC(G)**) is obtained in the following
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Lemma 6.5 Let G be an infinite locally compact group. Then
22 < dec(UC(G)™) < dense(UC(G)*) < | UC(G)*| < 27 . 227

Proof Suppose that G is discrete. Then [,(G) is || - || vo(e-dense in UC(G) and
hence dense(UC(G)) = |G| = &(G). So, by Corollary 2.7, dec(UC(G)**) <
dense(UC(G)*) < | UC(G)*| < 2dense(UC(G) — 286 Therefore, the conclusion
holds when G is discrete.

In the following, we assume that G is non-discrete. Let T be the set of all opera-
tors in VN (G) with compact support. Then T is norm dense in UC(G). Owing to
Corollary 2.7 and the inequality dec(UC (G)**) > 22 preceding this lemma, we
only need to prove that (dense(UC(G)) <) |T] < K(G) - 2X9, Let U = {U;}ier
be an open cover of G such that each U; is compact, U is closed under finite union
and |I| = k(G). Foreachi € I,1et T; = {T € T :suppT C U;} and let G; be a
o-compact open subgroup of G containing U;. Then T; C VNg,(G) = VN(G;) (cf.
Eymard [11, Proposition 3.21]), where VNG (G) = {T € VN(G) : supp T C G;}.
Note that dense(A(G;)) < dense(L,(G;)) = x(G;) = x(G), ¢f Lemma 7.6. Thus,
[VN(G;)| < 2denselA@) < 2x(@ Tt follows that |T;| < |VNg,(G)| = [VN(G;)| <
2X@ forall i € I. Therefore, |T| = |U,¢; Ti| < [I] - 2X(9) = &(G) - 2X(9, ]

Theorem 6.6  Let G be an infinite locally compact group. Then

)

dec(UC(G)*™) = dense(UC(G)*) = | UC(G)*| = 28(@ . 22

if either of the following two conditions is satisfied:

NG

(i) 299 <2
(i) 2°9 > 22" and G contains an abelian subgroup H such that k(H) = k(G).

Proof The conclusion for case (i) follows immediately from Lemma 6.5.

In order to prove the assertion for case (ii), suppose that 2% > 22" and let
H be an abelian subgroup of G such that x(H) = k(G). By Lemma 5.4(iii), we
may assume that H is a closed abelian subgroup of G. By Kaniuth-Lau [26, Lemma
3.2(ii)], UC(H) is identified with a C*-subalgebra of UC(G) and hence UC(H)**
is a von Neumann subalgebra of UC(G)**. Let T" be the dual group of H. Then
x(T) = k(H), k(') = x(H), and UC(H) = LUC(T"). So, we have

dec(UC(G)*™) > dec(UC(H)*™)

= dec(LUC(I")™) (by Theorem 6.4)
_ o) | 2

= o) 2 (since 281 = 25(@ 5 2 > 2"
— pr(H) ZH(G),

i.e., dec( UC’(G)**) > 2"9, Owing to Lemma 6.5, we have dec( UC(G)**) =
256 . 229 Therefore, the conclusion holds for case (ii). ]
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Remark 6.7 (i) We are not able to prove the full dual version of Theorem 6.4,
i.e, dec(UC(G)*) = 29 . 227 for all infinite locally compact groups G, since
we do not know whether dec(UC(G)**) > 2% holds in general. It is interesting
to note that for Fell’s group G, dec( UC(G)**) = 2r(6) . 22" holds even though
dec(B(G)*) < x(G) - 259, ¢f. Remark 5.7(iii).

(ii) For a C*-algebra A, if dec(A**) = |A*|, then we say that dec(A**) is maximal,
cf. Corollary 2.7. Theorem 6.4 shows that for all infinite locally compact groups G,
dec(LUC(G)**) is maximal. And so is dec(UC/(G)**) for a large class of groups G
by Theorem 6.6. We shall see in the next section that dec(lo (I)**) and dec(B(H)**)
are also maximal for all infinite sets I and infinite dimensional Hilbert spaces H. It
is not clear to us whether this is true for all infinite dimensional unital commutative
C*-algebras A, ¢f. Theorem 5.5(i).

(iii) A related question is: for which infinite dimensional C*-algebras A do we
have dec(A**) = dense(A*), ¢f. Corollary 2.72 Obviously, this equality holds if A*
is separable (c¢f. Proposition 2.5), which is equivalent to A being weakly compactly
generated, ¢f. Kaniuth—-Lau—Schlichting [27, Theorem 2.3]. We note that the equality
dec(M) = dense(M,.) does not hold for a general von Neumann algebra M, e.g., for
any infinite compact group G, dec(Loo(G)) = N, but Li(G) can be non-separable.
Besides the C*-algebras LUC(G), UC(G), I (I) and B(H) as mentioned in (ii),
dec(A**) = dense(A*) if A = Cy(G) and G is any infinite locally compact group,
¢f. Theorem 5.5(ii). The equality also holds for A = ¢,(I) with |I| > Xy and A =
K(H), the C*-algebra of compact operators on an infinite dimensional Hilbert space
H, ¢f. Remark 2.3 and Theorem 7.3, respectively.

7 The Decomposability of M**

In this section, we shall investigate the decomposability of the second dual of the
von Neumann algebras Lo (G) and VN(G). We begin with the following simple
consequence of Theorem 5.5(i) on the cardinal dec(l (I)**) for any infinite set I.
Note that dec(lo(I)) = |I], ¢f- Remark 2.3.

Lemma 7.1 Let I be an infinite set. Then dec(loo(I)**) = 2"

Proof Let A = [ (I). Then A is an infinite dimensional unital commutative
C*-algebra with Gelfand space I (the Stone—Cech compactification of I). Note that
81| = 2*9D = 22" By Theorem 5.5(i), we have dec(lo (I)**) = 2"¥D = 22" m
Lemma 7.2  Let M be an infinite dimensional von Neumann algebra. Then

dec(V*) > 22,

Proof Let {P;}ics be a family of pairwise orthogonal non-zero projections in M
such that |[I| = dec(M), ¢f. Theorem 2.6(i). Since M is infinite dimensional, by

Proposition 2.5, |I| = dec(M) is infinite. Let R be the von Neumann algebra gen-
erated by {P;}ic;. Then R is *-isomorphic to lo(I), i.e, R = {D>_;c; fiPi : (fi) €
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oD} and [| 3 7,; fiPill® = |(f)llin)» ¢f. the proof of [33, Theorem 3.12]. So, by
Lemma 7.1, dec(R**) = dec(loo(I)**) = 22" = 22" ie, dec(R**) = 22"
Also, we note that R** is a *-subalgebra of the von Neumann algebra M**, since R is
a von Neumann subalgebra of M. Therefore, dec(M**) > dec(R**) = 2 m

For any Hilbert space H, let B(H) be the von Neumann algebra of all bounded
linear operators on H. We can express both dec(B(H)) and dec(B(H)**) precisely
in terms of the Hilbert space dimension dim(H) of H as follows.

Theorem 7.3  Let H be an infinite dimensional Hilbert space. Then

zdim(H)

dec(B(H)) = dim(H) and dec(B(H)*") =2

Proof The equality dec(B(H)) = dim(H) follows from Neufang [33, Corollary
3.9].

By Lemma 7.2 and the above equality, we have dec(B(H)**) > 2 . On the
other hand, let {e;};c; be an orthonormal basis for H. Then |I| = dim(H). Note
that each T in B(H) is uniquely determined by the infinite matrix ((Te; | ¢;)), where
(-|-) denotes the inner product on H. It follows that |B(H)| < (2R0)!xII = 2/,
Hence, by Corollary 2.7, we have

2dim(H)

1
;

dec(B(H)*™) < 2deme(BUD) < HIBD| < 52
i.e., dec(B(H)*™) < 22" Therefore, dec(B(H)**) = 22" [ |

Let M be an infinite dimensional von Neumann algebra acting on a Hilbert space
H. Then dense(M) < dense(B(H)) < 24mH) see the proof of Theorem 7.3. By
Corollary 2.7, we have dec(IM**) < 22, Combining this inequality with Lemma
7.2, we have

Corollary 7.4  Let M be an infinite dimensional von Neumann algebra acting on a
Hilbert space H. Then

dec(M) dim(H)
22 < dec(M**) <22,

dec(M

In particular, dec(M**) = 22 : if dec(M) = dim(H).

In order to evaluate dec(Ls, (G)**) and dec( VN (G)**), we need Lemma 7.6 be-
low. We are unable to find any reference to it except for Hewitt—Ross [19, Theorem
28.2], where Lemma 7.6 is proved to be true for all infinite compact groups G. For
the sake of completeness, we include the proof here. First, we have

Lemma 7.5 Let G be an infinite locally compact group and 1 < p < oo. Then
dense(L,(G)) < max{x(G), x(G)}.
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Proof Let {U;}ics be an open covering of G which is closed under finite union such
that |I| = k(G) and Uj is relatively compact for all i € I. For each i € I, let

Ci(G) = {f € Coo(G) : supp f C U;}.

Fix i € I. Note that C;(G) C C(U;) and the density character of C(U;), where C(U;)
is equipped with the supremum norm, is w(Uj;) (cf. [28, Theorem 13.1]), which is less
than or equal to w(G) = max{k(G), x(G)} (Lemma 5.4(ii)). Also, if A C C;(G) and
A'is dense in C;(G) with respect to the supremum norm, then A is also || - || ,-dense in
Ci(G). Consequently, dense((Ci(G), || - [|,)) < max{x(G), x(G)} foralli € I. Since
Coo(G) = Ui¢; Ci(G) with |I| = k(G) and Cg(G) is || - || -dense in L, (G), it follows
that dense(L,(G)) < max{x(G), x(G)}. [ |

Using the decomposability numbers of the two von Neumann algebras L..(G)
and VN (G), we are able to provide a shorter proof of an even more general version
of Hewitt—Ross [19, Theorem 28.2] as follows.

Lemma 7.6  Let G be an infinite locally compact group. Then
dim(L,(G)) = dense(L,(G)) = max{x(G), x(G)}.
Proof Following Theorem 7.3, Corollary 3.2 and Corollary 4.2, we have

dim(L,(G)) = dec(B(L,(G)))
> max{dec(Ls(G)),dec( VN (G))}
= max{k(G) - No, X(G) - Ny} = max{x(G), x(G)}.

On the other hand, for any infinite dimensional Hilbert space H, dim(H) =
dense(H). Hence, by Lemma 7.5,

dim(L,(G)) = dense(L,(G)) < max{x(G), x(G)}.
Therefore, dim(L,(G)) = dense(L,(G)) = max{k(G), x(G)}. [ |
Combining Lemma 7.2 with Theorem 7.3 and Lemma 7.6, we have

Corollary 7.7 Let G be an infinite locally compact group. Let M = Loo(G) or
VN(G). Then 2™ < dec(M**) < 2™,

Now, for the von Neumann algebra M = L. (G), resp., VN(G), satistying
dec(M) = dim(L,(G)), we are ready to show that dec(M™**) can be expressed pre-
cisely by the single group cardinal invariant (G), resp., x(G), as follows.

Theorem 7.8  Let G be an infinite locally compact group. Then

(i) dec(Loo(G)™) = 227 = 22" if(G) - Ry > X(G), for example, if G is
metrizable.
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22dec( VN(G)) o 22X(G)'NU

(i) dec(VN(G)**) =
o-compact.
(i) max{dec(Loo(G)**),dec(VN(G)*™)} =2

if x(G) - Ry > k(G), for example, if G is

o dim(L2(G)) 2max{h’(G)Ax(G)}

2

Proof This follows immediately from Corollary 7.7, Corollary 3.2 and Corollary
4.2. ]

Let M = Lo (G) or VN(G), M denote the dual Kac algebra of M, and H = L,(G).
It is well known that L., (G) and VN (G) are dual to each other as Kac algebras and
B(H) is generated by M and M, ¢f. Enock-Schwartz [10]. Thus it is interesting to
reformulate Lemma 7.6 and Theorem 7.8 as follows:
(i) dec(M=*) = 22 if dec(M) > dec(M);
(ii) dec(B(H)) = max{dec(M), dec(M)};
(iii) dec(B(H)**) = max{dec(M**), dec(j\/[**)}

When dec(M) < dec(ﬁ[), it is natural to ask whether we still have dec(M**) =
2™ and how far away from 22" the cardinal dec(M**) can be if the equality
does not hold. One particular reason for this consideration lies in the fact that a
certain cardinal level of the Mazur property, resp., property (X), of the space M* can
be traced back to that of M, if dec(M**) = 22dec(MJ, ¢f. Theorem 2.2. We will further
investigate the problem mentioned above on another occasion. At this point, we only
note that dec(Loo(G)**) > dec(Co(G)**) > 2X9 for all infinite locally compact
groups G, cf. Theorem 5.5, and dec( VN (G)**) > dec( UC(G)**) > 25 for groups
G as in Theorem 6.6. This fact shows that the cardinal number dec(M**) can be
arbitrarily far away from 22 It also reveals that dec(f/[) will join with dec(0M)
to determine dec(M**) when dec(M) < dec(JV[). We do have the evidence that
dec(M**) = 2decD™ (hen M = L (G) or VN(G) for a large class of locally
compact groups G.

2 2max{ dec(M).dec(M) }

Remark 7.9  Let a be an arbitrary cardinal. Then there exists a compact abelian
group G such that x(G) = a. Note that dec(L(G)) = Ny and dec(Loo(G)**) >
2X(G) = 2 ¢f. Corollary 3.2 and Theorem 5.5. Hence, by Theorem 2.1, L, (G) has
the classical Mazur property and property (X). However, if a measurable cardinal A
exists, then L, (G)** will fail to have the above two properties whenever 2% > A, f.
Remark 2.4 and Theorem 2.1.

8 An Application to the Topological Centre Problem

Let G be a locally compact group. It is known that the topological centre Z; (L, (G)**)
of the Banach algebra L,(G)** is precisely L,(G), see Lau—Losert [30]. It is also
known that for a large class of locally compact groups G, including amenable dis-
crete groups, the motion group, the “ax + b”-group and the Heisenberg group, the
topological centre Z;(A(G)**) of the Banach algebra A(G)** is A(G), ¢f. Lau—Losert
[31]. In this section, we present an application of the Mazur property of higher level
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to the topological centre problem for A(G)**. It turns out that if G has a large com-
pact covering number, then the topological centre problem for the algebra A(G)**
can be reduced to the one for the algebras A(H)** of some open subgroups H of
G with compact covering number dominated by dec( VN (G)). We note here that
the spaces A(H)** may behave better than A(G)** in the sense that the equality
dec(VN(H)**) = L holds, which ensures that a certain cardinal level of the
Mazur property of A(H)** can be traced back to that of A(H), cf. the last paragraph
of Section 7.

As is well known, the multiplication on A(G) gives rise to two Banach algebra
multiplications on A(G)** (known as the first and the second Arens multiplications
on A(G)**) which extend the multiplication on A(G). In the following, the space
A(G)** will always be considered to be equipped with the first Arens multiplication.
That is, for p, ¥ € A(G), T € A(G)*, and m, n € A(G)**, the products T - ¢,
n-T € A(G)* and m - n € A(G)* are defined by

<T'<P71/’>:<T790¢>a <H-T,(p>:<1’l,T~(p>, and <m-n,T>:<m,n~T>.

Since A(G) is commutative, Z;(A(G)**) is just the algebraic centre of A(G)**, i.e.,
Z(AG)™) ={me A(G)* :m-n=n-mforalne A(G)**}.

Let H be an open subgroup of G. Let r: A(G) — A(H) be the restriction map
and t: A(H) — A(G) the trivial extension map, i.e., (tu)(x) = 0 forx € G — H.
Obviously, r ot = 1. Even though t o r # id when H # G, we still have

(%) t(r(p)u) = pt(u) forall p € A(G)and u € A(H).

This fact will be used later. The adjoint r* of r is a *-isomorphism of the von Neu-
mann algebra VN (H) (= A(H)*) onto the von Neumann subalgebra VN (G) of
VN(G), ¢f. Eymard [11, Proposition 3.21]. Also, it is easy to see that r** is an alge-
braic homomorphism of A(G)** onto A(H)** and t** is an algebraic isomorphism
of A(H)** into A(G)**. To get the main result of this section, we need the following
elementary results on the images of the topological centres under the maps ¢** and
r**, respectively. We include a proof here for completeness.

Lemma 8.1

@) [Z(AH)™)] € Z(A(G)™).
(i) r*[Z(AG)™)] = Z(A(H)™).

Proof (i) Owing to (%), it is readily seen that for all n € A(G)**, T € A(G)* and
p € A(H)**,wehavet*(n-T) = r**(n) - t*(T) and r*(p - t*(T)) = t**(p) - T.
Let p € Z,(A(H)**). Then, foralln € A(G)** and T € A(G)*, we have
E*(p) -n, T) = (p),n-T) = (p,t*(n-T))
= (p,r*(n) - t*(T)) = (r**(n),p - t*(T)) (since p € Z,(A(H)*™))
=, (p -t (T)) = (n, e (p) - T) = {n-**(p), T).
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So, t**(p) -n=n-t**(p) foralln € A(G)**, i.e, t**(p) € Z,(A(G)**). Therefore,
(i) holds.

(ii) The inclusion Z,(A(H)**) C r**[Z,(A(G)**)] follows from (i) and the identity
r™* o t* = id. Conversely, let m € Z,(A(G)**). To get r**(m) € Z,(A(H)**), let
p € AH)**. Since A(H)** = r**(A(G)**), there exists an n € A(G)** such that
p = r**(n). Note that r** is an algebraic homomorphism. Thus,

r**(m) - p =r"*(m-n) (sincem € Z,(A(G)™)

=r"*(n-m)=r"(n) - r™*(m) = p - (m),

ie, ™ (m)-p=p-r**(m)forall p € A(H)**. So, r**(m) € Z,(A(H)**). Therefore,
r*[Z:(A(G)*™)] C Z(A(H)**) and hence r**[Z,(A(G)**)] = Z,(A(H)™"). u

For convenience, for any open subgroup H of G and m € A(G)**, let my denote
r**(m) € A(H)**, where r: A(G) — A(H) is the restriction map.

Proposition 8.2  Let G be an infinite locally compact group and I the collection of
open subgroups H of G satisfying k(H) < dec(VN(G)). Let m € A(G)*™*. If my €
A(H) forall H € H, then m € A(G).

Proof Since dec(VN(G)) = x(G) - Ny (¢f- Corollary 4.2), we may assume that
Kk(G) > x(G) - Xy. Suppose that m € A(G)** and my € A(H) forall H € .

Note that A(G) has the Mazur property of level x(G) - Ry (¢f. Corollary 4.3(i)). To
get m € A(G), welet (T;);cr be a net in the unit ball of VN(G) (= A(G)*) such that
lI| < x(G) - Ry and T; — 0 in the o( VN (G), A(G))-topology. Now we only have to
prove that (m, T;) — 0.

Since |I| < x(G) - N, by [23, Corollary 4.4; Theorem 5.3], there exists an H € H
such that T; € VNy(G) = r*(VN(H)) for alli € I. Thus, for each i € I, there is an
S; € VN(H) such that T; = r*(S;). Since r: A(G) — A(H) is a surjection, we have
that S; — 0in the o(VN(H), A(H))-topology. Note that my € A(H). It follows that

(m, Ti) = (m,r*(S;)) = (r"*(m),S;) = (my,S;) — 0,
ie, (m,T;) — 0. [ |

Let H, be the family of all o-compact open subgroups of G. In [31, Lemma 6.3],
Lau-Losert proved that if Z,(A(H)**) = A(H) for all H € Hy, then for any m €
Z(A(G)**), there exists an H € J{, such that m — mpy vanishes on B,(G) - VN(G).
Note that if G is amenable, then B,(G) - VN(G) = VN(G). Therefore, if G is
amenable and Z;(A(H)**) = A(H) for all H € H,, then Z,(A(G)**) = A(G).
The following result shows that without the assumption of amenability, the above
assertion remains true if H, is replaced by the family J.

Theorem 8.3  Let G and H be the same as in Proposition 8.2. If Z;,(A(H)**) = A(H)
forall H € 3, then Z;(A(G)**) = A(G).
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In particular, if G is a metrizable (non-amenable) locally compact group such that
Z:(A(H)**) = A(H) for all o-compact open subgroups H of G, then Z;,(A(G)**) =
A(G).

Proof Assume that Z,(A(H)**) = A(H) for all H € H. To get the nontrivial
inclusion Z;(A(G)**) C A(G), let m € Z,(A(G)**). Then, by Lemma 8.1(ii), my €
Z;(A(H)**) for all H € H. By the assumption, my € A(H) forall H € (. It follows
from Proposition 8.2 that m € A(G). [ |

Remark 8.4 (i) The algebra A(H)** can be identified with a closed subalgebra of
A(G)** via the algebraic isomorphism #**. By Lemma 8.1(i), it is readily seen that if
Z:(A(G)**) = A(G), then Z;(A(H)**) = A(H) for all open subgroups H of G. So,
the converse of Theorem 8.3 is obviously true.

(ii) Let 3 be the same family of open subgroups of G as in Proposition 8.2.
Then we have | ;.4 A(H) = A(G) and, by Lemma 8.1(i), UHGJ—CZf(A(H)**) -
Z;(A(G)**) under the algebraic isomorphisms t**. Therefore, Theorem 8.3 would
be trivial if one could prove that | ;¢ Z;(A(H)**) = Z,(A(G)**). However, it is
unknown whether this equality holds in general.
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