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We study the dynamics of salt fingers in the regime of slow salinity diffusion (small inverse
Lewis number) and strong stratification (large density ratio), focusing on regimes relevant
to Earth’s oceans. Using three-dimensional direct numerical simulations in periodic
domains, we show that salt fingers exhibit rich, multiscale dynamics in this regime, with
vertically elongated fingers that are twisted into helical shapes at large scales by mean
flows and disrupted at small scales by isotropic eddies. We use a multiscale asymptotic
analysis to motivate a reduced set of partial differential equations that filters internal
gravity waves and removes inertia from all parts of the momentum equation except
for the Reynolds stress that drives the helical mean flow. When simulated numerically,
the reduced equations capture the same dynamics and fluxes as the full equations in
the appropriate regime. The reduced equations enforce zero helicity in all fluctuations
about the mean flow, implying that the symmetry-breaking helical flow is generated
spontaneously by strictly non-helical fluctuations.

Key words: double diffusive convection, stratified flows, stratified turbulence

1. Introduction

The salt-finger instability occurs in stably stratified fluid layers with background
temperature and salinity that both increase with height, and a sufficiently small ratio of
salinity diffusivity s to thermal diffusivity 7. This instability drives significant turbulent
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mixing and a broad range of dynamics in the ocean (Radko 2013), where this diffusivity
ratio — the inverse Lewis number — is quite small: T = kg/k7 ~ 102

In stably stratified systems where heat is the sole contributor to buoyancy, large thermal
diffusivity has been leveraged to derive asymptotically reduced sets of partial differential
equations valid in the so-called ‘low-Péclet number’ (LPN) limit (Lignieres 1999; Garaud
2021), where the buoyancy equation reduces to a diagnostic balance between advection
of the background temperature gradient and diffusion of thermal fluctuations. Given that
rapid thermal diffusion is fundamental to the salt-finger instability, one might naturally
expect similar asymptotic reductions to be applicable. Indeed, Prat et al. (2015) explored
the LPN limit for salt fingers in astrophysical regimes (cf. Knobloch & Spruit 1982), where
both 7 and the ratio of viscosity to thermal diffusivity, the Prandtl number Pr=v/kt, are
extremely small (Pr, T ~ 10~%; Garaud 2018). They found that the LPN limit reproduces
the same turbulent fluxes as the full equations in the appropriate limit. The low salinity
diffusivity limit was also studied, albeit in two dimensions (2-D), by Xie et al. (2017),
who showed, in addition, that in the oceanographic regime of Pr > O(1), the momentum
equation reduces to a diagnostic balance involving buoyancy and viscosity. In this regime,
the evolution is driven by the salinity field alone, with subdominant inertial terms,
resulting in inertia-free salt convection (IFSC).

The reductions offered by these limits simplify both numerical and analytical
computations while excluding presumably irrelevant dynamics in their respective regimes
of validity. For instance, in the LPN limit internal gravity waves are overdamped, and thus
a large buoyancy frequency no longer constrains the simulation time step in this limit.
However, the regions in parameter space where the excluded dynamics remain important
are not always clear a priori. The spontaneous formation of thermohaline staircases and
the large-scale, secondary instabilities that often precede them (e.g. the collective and
gamma instabilities, see Radko 2003; Traxler et al. 2011) are excluded in the LPN limit,
but these can still occur when 7 and/or Pr are extremely small, provided the system is
not too strongly stratified (Garaud 2018). Thus, one expects the LPN and IFSC limits to
faithfully capture the dynamics of salt fingers provided 7 and/or Pr are sufficiently small
and the density stratification is sufficiently large.

With these uncertainties in mind, we extend here the work of Xie er al. (2017) to
three dimensions, performing a suite of direct numerical simulations (DNS) of both the
primitive and IFSC equations at T = 0.05 and Pr = 5 with varying degrees of stratification,
focusing on the limit of moderate or strong stratification (moderate or weak instability). We
find that this regime is characterised by remarkably rich, multiscale dynamics, including
helical mean flows (resembling the mean flows seen in bounded domains by Yang,
Verzicco & Lohse 2016) that are not captured by the IFSC reduction of Xie et al. (2017).
Motivated by the simulation results, we consider a multiscale asymptotic expansion of
our system, which points to a natural modification of the IFSC model. This modified
IFSC (MIFSC) model reproduces the dynamics seen in simulations of the full equations
for much weaker stratification (stronger instability), provides an explanation and reduced
description of the mean flows observed by Yang et al. (2016), and suggests how the fields
and fluxes might scale with stratification, which we show to be broadly consistent with the
simulations.

2. Problem formulation

We are interested in the dynamics of salt fingers in the simultaneous limits of fast
thermal diffusion and weak or moderate instability. We consider fluctuations atop linear
background profiles of salinity and potential temperature in the vertical with constant
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slopes Bs and fBr, respectively. We assume the flows are slow enough and the layer
height small enough to permit the use of the Boussinesq approximation. In this limit,
the standard control parameters include the Prandtl number Pr= v/xr, the inverse Lewis
number T = ks/kT, and the density ratio R, = arBr/(asBs) with ar > 0, ag > 0 being
the respective coefficients of expansion. We consider periodic boundary conditions in all
directions, in which case our system is linearly unstable to the salt-finger instability for
l1<R, < t~! (Baines & Gill 1969), with R, = ! corresponding to marginal diffusive
stability and R, < 1 to an unstably stratified background and hence dynamical instability.
In the regime of interest here, it is helpful to introduce the following control parameters:
asBsKkT 1 v Pr

e=R—-1 and Sc=— , 2.1)

R= =—,
OlT,BTKS Rp‘L’ Ks T

where R is the Rayleigh ratio (with marginal stability now at R = 1), ¢ is a measure
of supercriticality and Sc is the Schmidt number. In all results presented, we fix Pr=35,
7 =0.05 and thus Sc = 100.

We follow § 3.1 of Xie et al. (2017) in our choice of non-dimensionalisation, taking the
characteristic finger width d = [k7v/(gar Br)]'/* (with gravitational acceleration g) as
the length scale and the salinity diffusion time d? /« g as the time scale. As our temperature
scale, we take the background temperature difference across a height d rescaled by r,
yielding 787d. Similarly, our unit for salinity fluctuations is the background salinity
difference across d rescaled by R~!, yielding R~!Bsd. The governing equations, with
hats over dependent and independent variables (and derivatives) to indicate this choice of
non-dimensionalisation, are

1 0 A~ &\ A 2SN A &0 A
« a_f+”'v a=-Vp+(T —S)e.+ Va, (2.2)
V.a=0, (2.3)
d PN RPN n Ao A
and
0 JES PN A~ 224
8—[A+u-V S+Rw=V-S, (2.5)

with unit vector e, in the z direction, velocity & = (i1, U, w) and temperature, salinity and
pressure fluctuations T, S and p. Note that T and § represent fluctuations atop the imposed
background profiles of potential temperature and salinity, which vary linearly with depth.
These equations are identical to those that have been used to study salt fingers in triply
periodic boxes elsewhere (see e.g. Radko 2013; Garaud 2018), albeit with a different
non-dimensionalisation, and thus with different control parameters appearing in different
places.

In what follows, we present DNS of the system for different values of R. These simu-
lations were performed using the pseudospectral-tau method implemented in Dedalus v2
(Burns et al. 2020). We use periodic boundary conditions with a horizontal domain size of
(Lx,Ly)=(4x 27t//20pt, 2 x 275/]2,,,”), where l%op,(Pr, 7, R,) is the horizontal wavenum-
ber at which the linear instability has the largest growth rate for a given set of parameters
(for a subset of our parameters, we have checked that the dynamics and time-averaged
fluxes change negligibly upon increasing Ly and Ly). For the parameters of interest,
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the salt fingers become very extended in z (cf. Fraser et al. 2024), and thus our domain
height must be very large to avoid artificial domain-size effects (see e.g. Appendix A.3 of
Traxler et al. 2011). For most of the cases reported here, we find L, = 64 x 27 /k, to be

sufficient (where we confirm this by comparing against results with L, = 128 x 2x/ lgop,),
although we find that shorter domains suffice for ¢ 2> 1, while taller domains are necessary
for ¢ < 1/8. We dealias using the standard 3/2-rule and use a numerical resolution of
eight Fourier modes per 27t/ IQOP, in each direction, although twice this resolution becomes
necessary (as verified by convergence checks) for our simulations with the largest values
of . Note that, per our dealiasing procedure, nonlinearities are evaluated on a grid with
3/2 times this resolution. We time step using a semi-implicit, second-order Adams—
Bashforth/backwards difference scheme (Dedalus’ ‘SBDF2’ option, (2.8) of Wang &
Ruuth 2008), with nonlinearities treated explicitly and all other terms treated implicitly,
and an advective Courant-Friedrichs—Lewy safety factor of 0.3 (sometimes 0.15 for our

highest ¢ cases). We initialise simulations with small-amplitude noise in S, and all other
fields set to zero.

3. Trends across &

Figure 1 shows velocity snapshots from simulations with ¢ =1/80 (panels a—c), 1/10
(panels d—f) and 1 (panels g—i), i.e. R, > 19.75, 18.18 and 10, illustrating general trends
in this regime. In each case, we see highly anisotropic and multiscale dynamics, with
vertically elongated, large-amplitude structures (the characteristic salt fingers) in w, and
smaller-amplitude, isotropic eddies seen in each velocity field. The separation between the
long vertical and the short isotropic scales shrinks as & increases.

At very small ¢ (see panels a—c), the fingers become vertically invariant ‘elevator modes’
disturbed by isotropic ripples. For moderate supercriticality, ¢ ~ 0.1, the fingers are no
longer vertically invariant but still very anisotropic, with much larger vertical scale and
velocity than in the horizontal. We remark that at larger ¢, self-connecting structures only
persist for insufficiently tall domains and lead to bursty and domain height-dependent
dynamics. At very small ¢, self-connecting structures persist in even the tallest domains
we can reasonably achieve numerically, but they do not drive bursty dynamics or domain
height-dependent dynamics.

In this regime, a horizontal mean flow U 1= (U (2), V(z), 0) develops spontaneously
(cf. Liu et al. 2024), as shown by the magenta curves in panels (e, f). The two components
of U are /2 out of phase in z —i.e. one component passes through O as the other reaches
an extremum — resulting in a mean flow with non-zero helicity H [ﬁ L], where

H[ﬁ]:/ﬁ (V x &)dv 3.1)

defines the helicity of a given flow field &. As the mean flow has no vertical component,
its helicity arises from the horizontal components of U, and V x U, and it advects
the fingers into a corkscrew-like shape (the graphical abstract accompanying this article
shows a volume rendering of the vertical velocity for the same R =2 simulation as
shown in figure 1(g—i) and provides a visualisation of this flow). In fact, this mean flow
is nearly a maximally helical (Beltrami) flow in that its relative helicity H,el[f] 1]1=
H[lA]L]/[(f U2 dv)(f |V x U |2dV)]'/2, calculated using the time- and horizontally
averaged flow, is over 0.99 — alternatively, H,,; of the instantaneous mean flow saturates
at roughly 0.8, see figure 2. While H,,; > 0 for this particular simulation, other random
initial conditions lead to H,,; < O (not shown) with no clear statistical preference between
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Figure 1. Flow velocity snapshots at y = 0 in the saturated state from simulations of (2.2)—(2.5) with varying
supercriticality: ¢ = 1/80 (a—), e = 1/10 (d—f) and € = 1 (g—i), with time traces of the corresponding salinity
flux |I:" s| (blue solid lines) shown in (j), (k) and (/), respectively, alongside fluxes from different reduced models
(orange dashed and red dash-dotted lines, see §4). All cases exhibit a multiscale and anisotropic flow where
fingers with large vertical extent and vertical velocity (compared with horizontal width and velocity) coexist
with small-scale isotropic disturbances. Magenta curves (e, f,h,i) show the time-average (over the saturated
state) of the horizontal, helical mean flow U, = (I:/ (2), 1% (2), 0) that becomes a significant feature for ¢ 2 0.1.

the two signs based on our limited sample. In stark contrast to the strongly helical mean
flow, the relative helicity of the fluctuations about the mean (&' =@ — U,)is roughly
1073. This leads to the remarkable observation that the system spontaneously forms
a symmetry-breaking, maximally helical flow from non-helical fluctuations. In fact the
generation of such mean flows by salt fingers was already seen in vertically bounded
domains by Yang et al. (2016) (see their figure 16), albeit without comment (see also
the discussion of fingers ‘twisting about one another’ in Schmitt & Lambert 1979).
Similar spontaneous mirror symmetry breaking and Beltrami flow formation have also
been observed in other systems, including active matter (Stomka & Dunkel 2017; Romeo
et al. 2024) and magnetohydrodynamic (Agoua et al. 2021) turbulence, but without such
strikingly non-helical fluctuations.

For yet larger ¢ (see figure 1(g—i)), both the mean flow and the fingers become more
vigorous, and the anisotropy of the fingers is less extreme, permitting shorter vertical
domains. In this regime, the mean flow is still very helical at each z, but tends to have
a shorter vertical scale and its helicity may change sign with z. The helicity is also less
stationary in this regime, and for some initial conditions it is observed to change sign
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Figure 2. Relative helicity (see text) of the mean flow (blue) and of the fluctuations about the mean flow

(orange; multiplied by 10* to ease comparison) for two values of &. At small &, the flow is almost maximally
helical, and in both cases the fluctuations are almost non-helical, with H,.;[@'] ~ 107,
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Figure 3. Horizontal (blue) and vertical (orange) kinetic energy spectra (time-averaged over the statistically
stationary state) versus IGZ at lgy =0 and k, =120p,. Black lines show l?z = lggpt to highlight the small-scale
isotropic flow component while the red vertical lines correspond to the secondary peak in the horizontal
spectrum to highlight the anisotropic, small lgz flow component. The ratio between these two wavenumbers
provides one measure of anisotropy shown in figure 4.

with time, similar to the finite lifetimes of different flow patterns observed in convection
(see e.g. Ahlers, Cannell & Steinberg 1985; Winchester, Dallas & Howell 2021; Wang,
Goluskin & Lohse 2023).

Both the multiscale aspect of this system and the trends in scale separation with &
are readily seen in figure 3, which shows spectra of the kinetic energy as a function of
the vertical wavenumber IGZ atk, = 120,,,, the fastest-growing wavenumber of the linear
instability. Two distinguishing features are seen most clearly in the horizontal kinetic
energy, which has a local maximum (or otherwise a clear change in the spectrum, in the
case of large ¢) at isotropic scales where k, ~ Igop,, indicated by the black vertical lines,
and a local maximum at smaller lgz indicated by the red vertical lines. Note that the gap
in l%z between these two local maxima shrinks as ¢ increases, consistent with the observed
decrease in scale separation with increasing ¢ (figure 1).

4. Asymptotic models

The IFSC model of Xie et al. (2017), in three dimensions (3-D), is appropriate when 7 < 1
and Sc > 1 and is described by the equations

W= VT, 4.1)
0=-Vp+ (T —Se,+ Va, 4.2)

with (2.3) and (2.5) left unchanged. While it appears that the model should be valid for
all order-one &, we show in figure 1 that this is not the case: the model does produce
dynamics and fluxes consistent with the full system at sufficiently small supercriticality,
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Figure 4. Scalings with respect to ¢ of several quantities (indicated in the caption for each panel) for the
full system, (2.2)—(2.5) (blue dots), the IFSC model, with (2.4) and (2.2) replaced by (4.1) and (4.2) (green
diamonds), and the MIFSC model, where (2.2) is replaced instead by (4.14)—(4.15) (orange crosses). Black
dashed lines show scalings predicted by the multiscale asymptotic analysis described in the text. The green
dashed lines and the two measures of anisotropy are described in the text.

roughly & < 1/80, but, for ¢ ~ 1/20 or larger, it produces dynamics that differ qualitatively
from solutions of the full equations — while the full system exhibits helical mean flows that
disrupt and twist the fingers on large scales, the IFSC model removes the Reynolds stress
term from the horizontal mean of (2.2) and thus lacks these flows. Without mean flows to
disrupt the long fingers, such fingers drive temporally bursty dynamics that dramatically
raise the fluxes, as shown by the IFSC curve in figure 1(k).

However, the IFSC model can be modified to capture mean flow generation. Our
simulations suggest that anisotropy is an essential aspect of a reduced description of salt
fingers valid in the regime depicted in figure 1, possibly with a rescaling of the various
fields to retain the Reynolds stress at leading order. In order to capture both the elongated
fingers shown in figure 1 and the small-scale isotropic fluctuations therein, we employ
a multiscale asymptotic analysis inspired by a related approach to turbulence in stably
stratified fluids employed by Chini et al. (2022), Shah et al. (2024) and Garaud et al.
(2024).

To begin, we note that the growth rate and optimal wavenumber of the linear instability
scale as ¢3/% and ¢1/4, respectively, for sufficiently small ¢ — for the Pr, t considered here,
this scaling is achieved for ¢ < 1 (see e.g. figure 3 of Xie et al. 2017). It is thus convenient
to rescale the independent and dependent variables as follows (cf. Radko 2010):

=%, F=e3"% a=&"u, p=&p, (T,5=4T,S). 43)

Equations (2.2)—(2.5) then become

1 0
e—(—+u-V)u=-Vp+e (T - e, + V?u, (4.4)
Sc \ ot
d 2
eT E—i_u.v T4+w=V-T (45)
1020 R1-7


https://doi.org/10.1017/jfm.2025.10641

https://doi.org/10.1017/jfm.2025.10641 Published online by Cambridge University Press

A.E. Fraser, A. van Kan, E. Knobloch, K. Julien and C. Liu

and
0 2
£ E—i—u-V S+Rw=V-S, (4.6)

with (2.3) left unchanged. When ¢ = O(1) but T < 1 and Sc > 1, the inertial terms in
(4.4)—(4.5) drop out and the resulting equations correspond to the 3-D IFSC model with
(4.6) providing the sole prognostic equation. On the other hand, when ¢ < 1, we may
expand all fields as asymptotic series in € as ¢ = ), g,&". Inspecting the z component of
(4.4) in the limit ¢ — 0 shows that Ty = S, i.e. the dynamics are neutrally buoyant in this
limit. In the following it is helpful to introduce the buoyancy b = ¢~ (T — §) and subtract
(4.5) from (4.6), yielding

ot

We now perform a multiscale asymptotic expansion employing the following four steps:

(i +u.v> (S —1T)+w=—V?bh. CX))

(i) Introduce fast and slow scales in z and ¢ and allow each field ¢ to depend on them
both, i.e. ¢ =q(x 1,z 2. ts, 1), With 8. > =10, + 9., and 9, > =19, + 9y
here the fast vertical scale z is isotropic, and the anisotropy of the slow vertical
scale zg is controlled by «, which we take to be o = Sc/e > 1 (which we note is
qualitatively consistent with the trends seen in figures 1 and 3).

(i) Decompose each field ¢ into its fast-averaged and fluctuating components: g =
(q)  + G where (-) ; denotes an average over z¢ and ty, so that (g) ; depends only
on x, zs and #;, while ¢ depends on all coordinates. The only exception to this
g ={q) s +g decomposition is for the pressure and horizontal flow fluctuations

(defined as ', =u, — U ), where we instead take p =q~! (p)y+pand | =
ol (w'|) s+ @', . (Note that this is without loss of generality: we are simply taking
different non-dimensionalisations for { p)f and p and likewise for (u' ) y and ftl.)

(iii) Take the fast average of each of the governing equations to obtain an equation for
01, {q) r, and subtract the result from the original equation to obtain an equation for
0:q.

(iv) Finally, retain only leading-order terms by removing terms that are small in the limits
e—>0,7— 0, Sc > oo and o« — oo (with we/Sc =1).

An explicit illustration of these steps is provided in, for example, Chini et al. (2022) and
Shah et al. (2024).
The resulting equations are

(w)p=Vi(T); and w=V;T, (4.8)
(UL)p-ViAS)p+(@-VyS), +w)y==Vi by, (4.9)

3 37 - N 3
— 4+ (Uy),-V —|S+a-VS—(a-V4S 4.10
[atf+< ny l+<w>fazf} +i-VeS—(a-VS), (4.10)

+u, VL(S)f'i‘a):—V;‘l;
0=—Vi(p);+(b)ye.+Viu'); and 0=—V;p+be, + Vi, (4.11)
1020 R1-8
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i UL+ — ! (uw) > (Uy) (4.12)
— w .
ot T g MWL = g A

Vy-();=0 and Vj-ii' =0, (4.13)

where we have introduced V = (dy, dy, 9;,) and V y = (0, 9y, z)s with (-) | denoting
an average over x| in addition to zy and 77. The structure of this system of equations
is broadly similar to the IFSC model: the temperature equations reduce to a diagnostic
balance between diffusion and advection of the background, the salinity equations retain
nonlinearity on fast scales (and so do not yield a quasilinear structure as in the work
of Chini et al. 2022), and the momentum equations for fluctuations about the mean
flow involve a dominant balance between pressure, buoyancy and viscosity. However, in
contrast to the IFSC model, (4.12) retains the Reynolds stress term absent from (4.2). Thus,
modifying the IFSC model to capture the leading-order dynamics of the full equations in
this limit merely requires retaining the Reynolds stress in the k| =0 component of the
momentum equation:

1 /9 4 9 Y 8% .

— (=0 =0, 4.14

Se (az Lt gl “) az2 * @19
0=-Vp + (7'~ §)e, + V2@, (4.15)

with temperature given by (4.1), and (2.3) and (2.5) retained in full. Figure 1 shows
that this MIFSC model captures the same dynamics as the full equations even for
e=0(1).

The rescaling applied to arrive at the multiscale asymptotic system offers a natural
suggestion for the scaling of the various fields in this limit. For (2.2)—(2.5), this analysis
predicts that both S and 7 should scale as &34 U and 0 as /4, and the scaling of ftl
should differ between fast and slow scales in z, with (u’, ) f ~ /% and @'| ~ &>/, The
predicted stronger ¢ dependence of (u’, ) ; is consistent with figure 3, which shows that the
horizontal kinetic energy peaks at large k. for small & but at small k. for large €.

We present a more quantitative comparison between these predictions and DNS in
figure 4 by calculating the root—mean-square of @\, Uy, w, S and T (denoted by
subscript ‘rms’ in figure 4; here, &) ., = /it}2,c + Uj2, etc.), and the volume-averaged
fluxes ﬁs = (12)3' ) and ﬁT = (zi)f’), with the blue dots corresponding to DNS of the full
equations, green diamonds to the IFSC model, and orange crosses to the MIFSC model.
Anisotropy is quantified by two means: using the wavenumber ratio corresponding to the
two spectral peaks in figure 3 (crosses; the lowest ¢ values are suppressed because the
low-k, peak is difficult to identify and is likely constrained by domain size), and the ratio
Wyms/ ftl,,ms (dots). In each panel, black dashed lines correspond to the predicted scalings

5/4

(for ﬁ/J_,rms’ the black line shows the predicted &', ~ &>/* scaling while the green line

shows the (u' )y ~ /4
with predictions as ¢ — 0, especially W, Srms, Trms, FS and FT, with the anisotropy
measurement inconclusive. In contrast, the rms of the mean flow, U 1.rms> follows the
predicted £>/# scaling at larger ¢ only; at small &, its scaling is perhaps more consistent
with &%/2 (green line), although it is difficult to measure U 1,rms accurately at the smallest
¢ values as the mean flow is then very weak and evolves very slowly.

scaling). The scahngs of most of these quantltles are consistent
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5. Conclusions

We have explored the dynamics of salt fingers in 3-D and in the limit of slow salinity
diffusion (r < 1, Pr/t > 1) and weak or moderate instability (¢ = R;l 7= — 1 <4). This
regime was studied in 2-D by Xie et al. (2017), who showed that the temperature equation
reduces to a diagnostic balance akin to the low-Péclet number limit of Lignieres (1999)
(see also Prat er al. 2015; Garaud 2021) and that the vorticity equation is governed by a
diagnostic balance between buoyancy and viscous diffusion; Xie et al. referred to these
reduced equations as the IFSC model.

Simulations of the full equations in 3-D exhibit significant departures from the 2-D
system. First, the 3-D case is characterised by rich, multiscale dynamics where anisotropic
fingers are twisted at large vertical scales by a helical mean flow and disrupted at small
scales by isotropic eddies. This helical mean flow is a maximally helical, Beltrami flow
in some regimes, with helicity of either sign depending on the random initial conditions,
and provides a striking example of spontaneous symmetry breaking, much as occurs in the
systems studied by Stomka & Dunkel (2017), Agoua et al. (2021) and Romeo et al. (2024).
Second, 3-D simulations of the IFSC model exhibit qualitatively different dynamics and
significantly enhanced fluxes over the full equations unless the instability is very weak
(¢ <« 0.1) — a consequence of the exclusion of Reynolds stresses in the IFSC model.

The observed multiscale dynamics inform a multiscale asymptotic expansion in the
supercriticality ¢ where the leading-order equations form a closed system. This analysis
identifies the leading-order terms missing from the IFSC model — the Reynolds stresses
in the equations for the horizontal mean flow — and predicts the scaling of the various
fields and fluxes with . Simulations of the full equations are consistent with these
predictions except for the scaling of the mean flow, which has a stronger dependence
on ¢ than suggested by the asymptotic analysis. Furthermore, simulations of the MIFSC
equations — the IFSC equations with Reynolds stresses retained — yield qualitative and
quantitative agreement with DNS of the full equations up to € ~ 1, further supporting the
derived leading-order balances and shedding light on the physical processes contributing
to the observed helical flow: for example, because the reduced equations preclude vertical
vorticity, internal gravity waves and modifications to the mean temperature profile, we
know such effects are not necessary to produce our helical flows.

A noteworthy feature of the MIFSC model is that, to leading order, the fluctuations
W =0, — U | have strictly zero helicity. Thus, the helical flow represents a spontaneous
symmetry-breaking instability arising from asymptotically non-helical fluctuations,
analogous to the development of unidirectional travelling waves in reflection-symmetric
systems (Knobloch ef al. 1986).

Our computations of the rms values of the various fields broadly support the scalings
with ¢ predicted from the asymptotic analysis. For comparison, Garaud et al. (2024)
devised a means to extract the scalings of fast-averaged quantities (g), and their
fluctuations g separately, demonstrating that in their system these differed. In the present
case, our asymptotic analysis points to fields other than &', and p exhibiting identical
scalings on fast and slow scales. While we find no clear discrepancies in our simulations,
future work should extend the approach of Garaud et al. (2024) to the present system to
test these predictions more carefully.

Our reduced equations — and those of Prat et al. (2015) and Xie et al. (2017) —
indicate that for 7 <1 the dynamics no longer depend on Pr and t separately, and
only depend on the combination Sc = Pr/t. Thus, while we have only simulated the full
equations at Pr =5, we may expect our simulations of the reduced equations at Sc = 100
to be consistent with the full system in the astrophysically relevant regime of small
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Pr,t~10"7-10"*% (Prat et al. 2015; Fraser et al. 2022). We are thus led to expect that
helical flows may form in the interiors of stars, an exciting prospect due to their tendency
to support dynamo growth (Rincon 2019; Tobias 2021).

Both the reduced and the full equations admit (unstable) single-mode solutions that
may provide a useful proxy for flux computations in the strongly nonlinear regime, and
investigations of the role played by the helical mean flow. Outstanding questions involve
possible reversals of this flow in longer simulations, and the generation of such flows in
vertically confined domains. The multiparameter nature of the problem raises additional
questions involving distinct asymptotic regimes when both 7 and Sc~! are small and if
Sc = 0(1) in the regime of small T and Pr — note that Sc ~ 102 is likely in stars (Skoutnev
& Beloborodov 2025).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.10641.
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