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Abstract

We provide a qualitative analysis of a system of nonlinear differential equations that
model the spread of alcoholism through a population. Alcoholism is viewed as an
infectious disease and the model treats it within a sir framework. The model exhibits
two generic types of steady-state diagram. The first of these is qualitatively the same
as the steady-state diagram in the standard sir model. The second exhibits a backwards
transcritical bifurcation. As a consequence of this, there is a region of bistability in
which a population of problem drinkers can be sustained, even when the reproduction
number is less than one. We obtain a succinct formula for this scenario when the
transition between these two cases occurs.
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1. Introduction

The field of mathematical epidemiology models the spread of diseases through a
population. The most common approach to model an endemic disease is to use the sir
(susceptible, infected, recovered) framework in which individuals in a population are
classed as being in one of three compartments: susceptible, that is, yet to be infected,
infectious or recovered with immunity. This framework can be extended to include
additional classes, such as an exposed class for individuals who have caught the disease
but are not yet infectious, or contracted by removing the recovered class; in this case,
recovered individuals do not acquire immunity and return to the susceptible class.

The field of mathematical epidemiology was brought to the attention of a wider
audience by Anderson and May [1]. As befits a mature discipline, there are now
textbooks devoted to mathematical epidemiology [3, 27, 32], lecture notes for graduate
students [4] and an acknowledged modern classic [7].
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In recent years, the sir framework has been applied to study the dynamics of
social and behavioural processes, such as drug use [26, 34], eating disorders [11],
obesity [14, 19], smoking [18, 31] and alcoholism. The sir analogy can be employed
when the problem “state”, that is, the infection, can be viewed as occurring as
a result of frequent or intense social interactions between individuals in different
compartments. The analogy with the spread of diseases is clear. The application of the
sir framework to problems in sociology that are driven by peer pressure is reviewed
through the prism of projects developed by Kribs-Zaleta [22] at the Mathematical and
Theoretical Biology Institute.

Alcohol is the most commonly used addictive substance throughout the world
leading to approximately 3.3 million deaths per year, both by alcohol-induced diseases
and through risky behaviour induced by over-consumption of alcohol [20]. Individuals
who consume alcohol at a young age are at a greater risk of developing heavier
drinking patterns throughout adolescence and adulthood, leading to a greater chance
of developing adverse physical and mental health conditions [15].

Although Australia has never seen a nation-wide prohibition on the sale of alcohol,
the only successful armed takeover of an Australian government was the Rum
Rebellion of 1808. Within Australian popular culture, notable events connected to
alcohol consumption include cricketer David Boon putting away a legendary 52 cans
of beer on the flight from Sydney to London prior to the 1989 Ashes series, and future
Prime Minister Bob Hawke downing a yard of ale in 11 seconds whilst a student at the
University of Oxford in the early to mid 1950s.

Australian politicians’ penchant to use beer drinking to connect to voters has been
documented in the popular press. With regard to this, it is interesting to observe that
“Australians appear to be drinking less alcohol now than at any time in the past 50
years” [13]. Furthermore, the proportion of alcohol consumed in the form of wine has
increased from 12% to 38% over the past 50 years, whilst the proportion of alcohol
consumed in the form of beer has reduced significantly from approximately 75% to
41% [13]. One is forced to wonder whether a politician’s predilection for a beer is
a sign that they are out-of-touch with the general public. Alternatively, perhaps they
have identified that floating voters are more likely to drink beer.

We present an analysis of a model for the spread of alcoholism through a population
that was derived by Sánchez et al. [30]. We analyse this model in more detail than was
reported previously, and obtain compact explicit representations in parameter space,
delineating regions of different generic behaviour.

An interesting issue related to the spread of “social diseases” is the role played
by advertising campaigns in encouraging or discouraging certain behaviour. How
do “positive” and/or “negative” media campaigns influence the long-term behaviour
of a population? In a later work, we intend to extend the model of Sánchez
et al. [30] to include the impact of pro-alcohol and anti-alcohol media campaigns
upon the behaviour of a population [12]. The thorough re-analysis of Sanchez’s
model presented here, therefore, provides the necessary foundations for a study of
these media effects.
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2. Model equations

The underlying model is the standard sirmodel for the spread of a disease through a
population. Thus, the population is divided into three compartments, and it is assumed
that all individuals within these compartments, regardless of age or sex, behave in
the same manner. The compartments represent occasional and moderate drinkers
(S ), problem drinkers (I) and temporarily recovered drinkers (R). It is assumed that
moderate drinkers become problem drinkers through their interaction with problem
drinkers. Consequently, problem drinkers are viewed as infecting social drinkers. As
noted in Section 3.1, the relapse of individuals from the class of recovered drinkers to
the class of problem drinkers is assumed to occur through peer pressure.

2.1. Dimensional equations The model equations are given by Sánchez et al. [30]

dS
dt

= µN −
β

N
S I − µS , (2.1)

dI
dt

=
β

N
S I − (γ + µ)I +

p
N

RI, (2.2)

dR
dt

= γI − µR −
p
N

RI, (2.3)

N = S + I + R.

In these equations, I is the number of problem drinkers, N is the total number of
drinkers, R is the number of recovered drinkers, S is the number of occasional drinkers,
p is the per-person relapse rate (units, |t|−1), a measure of the average number of
effective interactions between problem and recovered drinkers per unit time, t is time
(units, |t|), β is the transmission rate (units, |t|−1), a measure of the average number
of effective interactions between social and problem drinkers per unit time, and γ is
the per-capita removal rate from the problem drinking class to the recovered drinking
class (units, |t|−1).

In equation (2.1), the parameter µ (units, |t|−1) is the per-capita rate at which new
recruits join the drinking population. In equations (2.2) and (2.3), it represents the
per-capita departure rate of individuals from the drinking population. These processes
are assumed to be equal to ensure that the total population size is constant.

Note that from equations (2.1)–(2.3) the total population size is constant,

N(t) = S (0) + I(0) + R(0), (2.4)

where the quantities on the right-hand side are the number of individuals in the three
classes at t = 0.

2.2. Semi-scaled equations The compartments are scaled, so that each represents
the proportion of the population in it by setting s = S/N, i = I/N and r = R/N.
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This leads to the system of equations

ds
dt

= µ − βsi − µs, (2.5)

di
dt

= βsi − (γ + µ)i + pri, (2.6)

dr
dt

= γi − µr − pri. (2.7)

It follows from equation (2.4) that the solution of this system satisfies

s + i + r = 1. (2.8)

Using the conservation relationship (2.8), the system of three differential equations
(2.5)–(2.7) reduces to the planar system

ds
dt

= µ − βsi − µs, (2.9)

di
dt

= βsi − (γ + µ)i + pi(1 − s − i). (2.10)

The Jacobian matrix for this system is given by

J(s, i) =

(
−βi − µ −βs
( β − p)i βs − (γ + µ) + p − ps − 2pi

)
. (2.11)

3. Alcoholism and epidemiology

In recent years, a number of authors have investigated the spread of alcoholism
through a population through the use of compartmental models [2, 5, 6, 16, 17, 23–
25, 30, 33]. These models are based on the classical sir model. The primary
distinguishing feature between the standard sir model and models for alcoholism is
that in the former the recovered population (R) acquires life-long immunity to the
disease. This is not the case for alcoholism as recovered drinkers may, and usually do,
relapse back into the class of “infectives” (problem drinkers) (I).

We differentiate models for the spread of alcoholism on whether relapse is due
to “peer pressure”, discussed in Section 3.1, or due to the individual, discussed in
Section 3.2. Models in which relapse is not included are discussed in Section 3.3.

Unless otherwise specified, the models discussed assume that alcoholism does not
increase the natural removal rate of individuals from compartments. Consequently, the
total population size remains constant. This assumption is justified for models which
consider the spread of drinking over population cohorts with a narrow spread of age,
such as students in university campuses or, more generally, youths.

3.1. Models with relapse due to “peer pressure” The first paper to apply the sir
paradigm to modelling the spread of alcoholism was published by Sánchez et al. [30].
These authors studied drinking in a college population. It is assumed that problem
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drinkers (I) cannot relapse back into the social drinking class (S ) and that recovered
drinkers (R) can only relapse back into the problem drinking class, that is, they cannot
become social drinkers.

To incorporate peer pressure, the relapse rate R is modelled by a “bimolecular” rate
term that is first order in both the number of recovered individuals and the number of
infectives:

R =
p
N

RI.

It is shown that in some circumstances, the effect of peer pressure is to allow
problem drinkers to be endemic in a population, even when the basic reproduction
number is less than one. This phenomenon occurs through a so-called “backwards
bifurcation” [29].

Cintrón-Arias et al. [6] adapted the deterministic modelling framework of Sánchez
et al. [30] to two stochastic settings. In the first setting, the stochastic analogue
(continuous-time Markov chain) of the deterministic model was derived and simulated.
They showed that stochastic fluctuations can allow a community of problem drinkers
to be sustained under conditions in which it would become extinct in the deterministic
model.

In the second setting, the authors investigated the effect of community structure
upon the spread of problem drinkers. In the absence of relapse, it was found that
community structure affects the average size of the problem drinking class during the
drinking wave. However, for larger values of the relapse parameter, the community
structure has no impact on the prevalence of the problem drinking class.

3.2. Models with relapse due to the individual The papers discussed in this
section model relapse from the “recovered” class (R) to the class of problem drinkers
(I) by

R = p′R.

When this functional form is used, relapse is ascribed to an individual’s failure to
control alcohol withdrawal symptoms rather than peer pressure.

Bhunu [2] investigated a model containing four compartments: nondrinkers, social
drinkers, alcoholics and recovereds. A term representing alcohol-induced death is
included. Thus, the total population size is a function of time. There are two steady-
state solutions: an alcohol-free equilibrium, in which all individuals are nondrinkers,
which is locally asymptotically stable when the basic reproduction number is less
than one (R0 < 1), and an endemic equilibrium, in which a positive fraction of the
population is social drinkers and alcoholics, which is locally asymptotically stable
when the reproduction number is slightly greater than one (R0 = 1 + ε). Model
parameters represent typical values for developing countries. A combination of
analytical and numerical methods are used to investigate whether it is more effective
to encourage social drinkers or alcoholics to quit alcohol consumption.

Huo and Song [16] investigated a sir model for binge drinking containing four
compartments. The “I” compartment, representing heavy drinkers, is split into two
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groups, differentiating between individuals that admit (or do not admit) that they have
a problem. The behaviour of this model is essentially the same as that of the classical
sir model: either the disease-free state or the endemic state is globally asymptotically
stable, depending on whether the basic reproduction number is less than or greater
than than one. The disease-free state corresponds to a scenario in which the population
consists of either nondrinkers or individuals who drink in moderation.

Huo and Wang [17] considered a four-compartment model in which the class of
individuals who drink heavily and recognize that they have a problem is replaced by a
class of nondrinkers. They investigated the effect that anti-drinking media campaigns
have on drinking behaviour. They did this by adding a fifth compartment which
represents the cumulative density of awareness programmes. The media campaign
is assumed to convert social drinkers into nondrinkers. There are only two steady-
state solutions: a disease-free equilibrium, which is globally asymptotically stable for
R0 ≤ 1, and an endemic equilibrium, which is conjectured to be globally
asymptotically stable for R0 > 1. The disease-free state corresponds to a scenario
in which the population consists of either nondrinkers or individuals who drink in
moderation.

Three- and four-component models for binge drinking were developed and analysed
by Mulone and Straughan [25]. The former differs from that of Sánchez et al. [30] only
in the functionality of the relapse rate. In the latter the class of heavy drinkers (I) is
split into two: those who admit that they have a problem and those that do not admit
that they have a problem.

For both models there are only two steady-state solutions: a disease-free
equilibrium, in which the population consists of occasional and moderate drinkers,
which is locally asymptotically stable for R0 < 1, and an endemic equilibrium, in which
there is a positive fraction of problem drinkers, which is locally asymptotically stable
for R0 > 1. A notable feature of this paper is the attempt to estimate realistic parameter
values for binge drinkers in the north east of the UK.

Walters et al. [33] extended the three-compartment model of Mulone and
Straughan [25] by allowing some of the individuals in the recovered population to
move into the social drinker class. There are only two steady-state solutions: a disease-
free equilibrium, which is locally asymptotically stable for R0 < 1, and an endemic
equilibrium, which is locally asymptotically stable for R0 > 1. Significant features of
this paper include a sensitivity analysis to determine which model parameter has the
greatest effect on the value of R0, and the estimation of parameter values based on
information about binge drinking in England.

The model of Walters et al. [33] has been extended by Buonomo and Lacitignola [5].
The differences in the model are threefold. Firstly, it is assumed that the population
is recruited at a constant rate irrespective of the size of the population. Secondly, it is
assumed that alcoholics have a higher mortality rate. The consequence of these two
assumptions is that unlike in [33], the total population size is no longer constant.

The final and most significant difference is that the rate at which susceptibles
become alcoholics (B(S , I)) is modelled by a function originating in management
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science [9]

B(S , I) = βS I(1 + αI).

Here the term αI represents an increase in the conversion rate due to additional social
pressure that is characterized as imitation: “if everyone else is doing it, shouldn’t I
do it?”. As in the original model of Sanchez et al. [30], it is shown that a backwards
bifurcation can occur.

Relapse due to the individual can occur in modelling the spread of diseases.
For example, individuals may lose their immunity to a disease and relapse into the
infectives group. Other possibilities in the context of diseases include infectives and/or
recovered individuals relapsing into the pool of susceptibles. The impact of these types
of relapse for the spread of diseases and their consequences for vaccination campaigns
have been investigated by Gomes et al. [10].

3.3. Models with no relapse Manthey et al. [23] developed a model to study the
drinking of college students. The compartments in the model were “nondrinkers”,
social drinkers and problem drinkers; a recovered compartment is not included
and consequently a relapse function is not required. The model has three steady-
state solutions: alcohol-free (the population consists only of nondrinkers), problem-
drinking-free (the population consists of nondrinkers and social drinkers) and endemic
(the population contains problem drinkers). As in the study of Sanchez et al. [30], it
was found that reproduction numbers on their own are not sufficient to predict whether
drinking behaviour is endemic in the population. It was shown that alcohol abuse can
be reduced by minimizing the ability of problem drinkers to recruit nondrinkers.

Mubayi et al. [24] investigated a model for drinking within the US college
environment. A unique feature of this model is that it includes two environments: a
low-risk and a heavy-risk environment. Two compartments are associated with each of
the two environments. For the low-risk environment, these are social drinkers and low-
risk moderate drinkers. For the high-risk environment, they are high-risk moderate
drinkers and heavy drinkers. Drinkers in the low-risk moderate class may move into
the high-risk moderate class and vice versa. As in the work of Manthey et al. [23],
a recovered compartment is not included and consequently a relapse function is not
required.

There are only two steady-state solutions: a disease-free equilibrium in which the
population consists of light or occasional drinkers, which is globally asymptotically
stable for R0 ≤ 1; and an endemic equilibrium in which the population also contains
moderate and heavy drinkers, which is locally asymptotically stable when the
reproduction number is slightly greater than one (R0 = 1 + ε). Parameter estimates
are based upon regional national college data.

Mubayi et al. [24] investigated how the relative residence times of moderate
drinkers between the low-risk and high-risk environments influence the persistence
of heavy drinking. If this distribution occurs randomly, then the proportion of heavy
drinkers is likely to be higher than expected.
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4. Results

In Section 4.1, we state some global results for the system (2.5)–(2.7) and for the
planar system (2.9) and (2.10).

In Section 4.2, we find the steady-state solutions of the planar system (2.9) and
(2.10) and state the conditions under which they are physically meaningful. In
Section 4.3, we determine the stability of these solutions. Steady-state diagrams are
presented for the types of (physically meaningful) behaviour exhibited by the model.

Two important parameters in the analysis of the model equations are

R0 =
β

µ + γ
, (4.1)

R =
β

µ
. (4.2)

(Note that in [30], the notation R0 and Rγ is used instead of R and R0, respectively.)
The first parameter, R0, is the basic reproduction number, that is, it is the number

of secondary infections caused by a single alcoholic in a population of susceptible
individuals. The second parameter, R, is the number of infections caused by a single
alcoholic in a population of susceptible individuals in the absence of recovery. We take
the former as the primary bifurcation parameter and investigate the behaviour of the
model as a function of R0 at a fixed value of R. Thus, we are effectively taking the rate
at which infected drinkers seek treatment (γ) as the primary bifurcation parameter.
Increasing the value of this parameter decreases the value of the basic reproduction
number due to recovery of infected individuals.

Note that the number R is strictly greater than the basic reproduction number of
infectives seeking treatment, R0, except if the recovery rate γ is zero.

4.1. Global results In this section, we state some global results about the behaviour
of the system (2.1)–(2.3) and the planar system (2.9) and (2.10).

First, the region I defined by

0 ≤ s, 0 ≤ i, 0 ≤ r, s + i + r = 1

is positively invariant. Secondly, there are no limit cycles in the planar system (2.9)
and (2.10). Thirdly, if R < 1, it is not possible to establish a culture of problem drinkers
in the community, that is,

lim
t→∞

i(t) = 0.

These results are established in Appendix A.

4.2. Steady-state solutions In this section, we find the steady-state solutions of the
planar system (2.9)–(2.10). The planar system has two steady-state solution branches:

the disease-free steady-state, (s, i) = (1, 0),
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and

the endemic steady-state, (s, i) = ŝ, î),

ŝ =
p

β − p
· î +

1
β − p

(γ + µ − p), (4.3)

where î is a root of the quadratic equation

G(î) = î2 −
(
1 −

1
R
−

1
R0

β

p

)
î +

µ

p

( 1
R0
− 1

)
= 0. (4.4)

The disease-free steady state represents the scenario in which the population contains
no problem drinkers. When the endemic steady state is physically meaningful, it
represents alcoholism, in the form of problem drinkers, becoming established within
the population.

In Appendix B, we determine the conditions under which equation (4.4) has positive
roots. The first requirement is that

R =
β

µ
> 1.

(This makes sense, as from Section 4.1 we know that problem drinkers are eradicated
from the population when 0 ≤ R < 1.) If

p ≤ pcr =
R

R − 1
· β,

then equation (4.4) has no positive solutions for 0 < R0 ≤ 1 and one positive solution
for 1 < R0 < R. If

p > pcr,

then equation (4.4) has no positive solutions for 0 < R0 < R+, one positive solution
at R0 = R+, two positive solutions for R+ < R0 < 1 and one positive solution for
1 ≤ R0 < R. The value R+ is defined by equation (B.9).

Note that an alternative expression for the steady-state solution for the fraction of
social drinkers can be obtained from the equation (2.9)

ŝ =
µ

βî + µ
=

1
Rî + 1

.

This formulation shows that if the value for the fraction of problem drinkers is
physically meaningful (î > 0), then so is the corresponding fraction of social drinkers.

4.3. Stability In Section 4.3.1, we determine the stability of the disease-free steady
state and in Section 4.3.2 we determine the stability of the endemic steady-state
solution(s), provided that it is physically meaningful. For the latter, three cases are
considered depending on the value of the relapse rate (p).
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4.3.1 The disease-free steady state. For the disease-free steady-state solution
(s, i) = (1, 0), the Jacobian matrix (2.11) becomes

J(1, 0) =

(
−µ −β
0 β − (γ + µ)

)
.

The eigenvalues of the Jacobian matrix are

λ1 = −µ < 0 and λ2 = β − (γ + µ) = β ·
R0 − 1

R0
.

Thus, the disease-free steady-state solution is locally stable (unstable) if the basic
reproduction number (R0) is less than (greater than) one. We shall see later that the
condition R0 < 1 is not always sufficient to ensure eradication of problem drinkers
from the population.

4.3.2 The endemic steady state(s). The entry in the Jacobian matrix at position
J(2,2) can be simplified for the endemic steady state using the steady-state expression
for the susceptible fraction (4.3). Dropping the hat notation for convenience, the
Jacobian matrix becomes

J(s, i) =

(
−βi − µ −βs
(β − p)i −pi

)
.

We have

traceJ = −(β + p)i − µ,
det J = i[2βpi + p(µ − β) + β(µ + γ)]

= βi
[
2pi + p ·

1 − R
R

+
β

R0

]
. (4.5)

For physically meaningful solutions, trace J < 0; thus, the condition for stability is
det J > 0. We consider the three cases: p < pcr, p = pcr and p > pcr.

4.3.3 Case 1: p < pcr. We know from Section 4.2 that when p < pcr, the endemic
steady-state solution is not physically meaningful for R0 ≤ 1. For R0 > 1, there is a
unique physically meaningful endemic steady state. From equation (4.4), this solution
is given by

i+ =
1
2

[{(R − 1
R

)
−

1
R0

β

p

}
+

√{(R − 1
R

)
−

1
R0

β

p

}2
−

4µ
p

(1 − R0

R0

)]
>

1
2

[(R − 1
R

)
−

1
R0

β

p

]
.

It follows that the determinant (4.5) is positive for R0 > 1. Hence, this solution is
stable.

The steady-state diagram for this case is shown in Figure 1. As the transcritical
bifurcation occurs in the “forwards” direction, the condition R0 ≤ 1 ensures that
problem drinkers are eradicated from the population.
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Figure 1. Steady-state diagram for the case when the relapse rate is less than the critical relapse rate
(p < pcr). There is a transcritical bifurcation at the point (R0, i) = (1, 0). The solid and dashed lines
indicate stable and unstable steady-state solutions, respectively. Parameter values: β = 0.8, µ = 0.4, R = 2,
p = 1.1, pcr = 1.6.

When R0 ≤ 1, the disease-free steady-state solution is the only steady-state solution.
From Section 4.1, we know that the region

0 ≤ s, 0 ≤ i ≤ 1 − s

is positively invariant and contains no periodic orbits. It follows from the generalized
Poincaré–Bendixon theorem [28, p. 243] that the disease-free steady state is globally
stable.

When R0 > 1, there are two steady-state solutions. The disease-free steady-state
solution is locally unstable, whilst the endemic steady-state solution is locally stable.
The disease-free steady state has a one-dimensional stable manifold, which is the line
i = 0. It follows from the generalized Poincaré–Bendixon theorem that the endemic
steady-state solution is globally stable for all initial conditions with i(0) > 0.

4.3.4 Case 2: p = pcr. For this case, the determinant (4.5) simplifies to

det J = βi
[
2pi + β

( 1
R0
− 1

)]
.

We know from Section 4.2 that when p = pcr, the endemic steady-state solution
is not physically meaningful for R0 ≤ 1. For R0 > 1, there is a unique physically
meaningful endemic steady state. It immediately follows from the argument observed
in Section 4.3.3 that for this solution (i+), we have det J > 0.
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Figure 2. Steady-state diagram for the case when the relapse rate is equal to the critical relapse rate
(p = pcr). There is a pitchfork bifurcation at the point (R0, i) = (1, 0). The solid and dashed lines
indicate stable and unstable steady-state solutions, respectively. Parameter values: β = 0.8, µ = 0.4, R = 2,
p = pcr = 1.6.

The steady-state diagram for this case is shown in Figure 2. As in Figure 1, the
condition R0 ≤ 1 ensures that problem drinkers are eradicated from the population.

The generalized Poincaré–Bendixon theorem can again be applied to deduce that
the disease-free steady state is globally stable when it is locally stable, and that the
endemic steady state is globally stable when it is locally stable, excepting initial
conditions starting on the line i = 0 which converge to the disease-free steady state.

4.3.5 Case 3: p > pcr = β2/(β − µ). We know from Section 4.2 that when p > pcr,
the endemic steady-state equation (4.4) has two positive solutions (i− and i+) over the
range R+ < R0 < 1 and one positive solution (i+) for 1 ≤ R0 < R. It immediately follows
from the argument observed in Section 4.3.3 that for the steady-state solution i+, we
have det J > 0. Hence, this steady-state solution is stable.

For the (positive) solution i−,

i− =
1
2

[{(R − 1
R

)
−

1
R0

β

p

}
−

√{(R − 1
R

)
−

1
R0

β

p

}2
−

4µ
p

(1 − R0

R0

)]
<

1
2

[(R − 1
R

)
−

1
R0

β

p

]
.

It follows that when the solution i− is physically meaningful (i− > 0), the determinant
(4.5) is negative. Hence, this solution is unstable.
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Figure 3. Steady-state diagram for the case when the relapse rate is greater than the critical relapse rate
(p > pcr). There is a transcritical bifurcation at the point (R0, i) = (1, 0) and a limit-point bifurcation
at the point (R+, î(R+)). The solid and dashed lines indicate stable and unstable steady-state solutions,
respectively. Parameter values: β = 0.8, µ = 0.4, R = 2, p = 3.1, pcr = 1.6.

The steady-state diagram for this case is shown in Figure 3. The practical
consequence of the backwards bifurcation at R0 = 1 is that the condition R0 ≤ 1 is
no longer a sufficient condition to eradicate problem drinkers from the population. To
ensure removal of all problem drinkers, we require R0 < R+; the steady-state diagram
exhibits bistability over the region R+ ≤ R0 ≤ 1.

As in Sections 4.3.3 and 4.3.4, the generalized Poincaré–Bendixon theorem can be
used to make deductions regarding the global stability of the disease-free and endemic
steady-state solutions. However, this theorem is only applied in the “unstable”
parameter regions 0 < R0 < R+ and R0 > 1.

This is the most “interesting” of the three cases, since it shows that at sufficiently
high relapse rates (p > pcr) a population of problem drinkers may be maintained in a
population, even when the reproduction number (R0) is reduced below one.

Sánchez et al. [30, Figure 16.4] provided the following typical values for the
backwards bifurcation case: µ = 5.48 × 10−5 t−1, p = 0.21 t−1 and γ = 0.2 t−1, where
t denotes a day. In this case, the primary bifurcation parameter is the transmission
rate β. We find that there is a backwards transcritical bifurcation at β = 0.2001 t−1,
corresponding to R0 = 1, and that the limit-point bifurcation occurs at β = 0.06510 t−1.
This corresponds to a value R0 = R+ = 0.325.
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5. Conclusions

In this paper, we have re-analysed a model for the spread of alcoholism through a
population that was proposed by Sánchez et al. [30]. Amongst other results, we have
shown that periodic solutions are impossible, and we have determined the stability of
the steady-state solutions as a function of the primary bifurcation parameter.

Sánchez et al. [30] showed that provided R > 1, their model exhibits two generic
types of steady-state diagrams. In the first type there is a ‘forwards’ transcritical
bifurcation, at R0 = 1. In this case, the steady-state diagram, shown in Figure 1, is
qualitatively the same as that in the standard sir model. In the second type, there
is a ‘backwards’ transcritical bifurcation at R0 = 1 and a limit-point bifurcation at
R0 = R+ < 1. This leads to a region of bistability, R+ < R0 < 1, in which a nonzero
population of problem drinkers can be maintained, even though the basic reproduction
number is less than one. This steady-state diagram is shown in Figure 3.

We have obtained a simple criterion that identifies when each region occurs. If
the per-person relapse rate is sufficiently low (high), then the first (second) type of
behaviour occurs. The critical value at which the transition occurs between the two
types is given by

p = pcr =
R

R − 1
· β.

Note that, in particular, bistability is impossible if the per-person relapse rate (p) is
lower than the transmission rate (β).

The thorough re-analysis of the model due to Sánchez et al. [30] presented
here lays the foundations for an investigation into the role played by the media in
encouraging/discouraging binge drinking [12]. These results will be presented at a
later date.
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Appendix A. Global results

A.1. Solutions are nonnegative The initial conditions of the system are
nonnegative. We show that the solution components of equations (2.5)–(2.7) are
nonnegative, that is,

0 ≤ s(t), 0 ≤ i(t), 0 ≤ r(t).

To do this, we consider the derivative of each solution component when the latter is
equal to zero.

For the social drinking class, we have from equation (2.5) that
ds
dt

∣∣∣∣∣
s=0

= µ > 0.
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Therefore, the fraction of social drinkers is always nonnegative.
For the problem drinking class, we have from equation (2.6) that

di
dt

∣∣∣∣∣
i=0

= 0.

This shows that the line i = 0 is both positively and negatively invariant. Therefore,
the fraction of problem drinkers is always nonnegative.

For the temporarily recovered drinking class, we have from equation (2.7) that

dr
dt

∣∣∣∣∣
r=0

= γi ≥ 0 as i ≥ 0.

Therefore, the fraction of temporarily recovered drinkers is always nonnegative.

A.2. There are no limit cycles To show the nonexistence of a periodic solution we
use Dulac’s criteria.

Theorem A.1 (Dulac’s test [8, 21]). Consider the system

dx
dt

= f (x, y),

dy
dt

= g(x, y).

Let D be a simply connected region in R2 and let { f (x, y), g(x, y)} ∈ C1(D). If there
exists a function ρ ∈ C1(D) such that

∂(ρ f )
∂x

+
∂(ρg)
∂y

is not identically zero, and does not change sign in D, then this system does not have
any closed paths lying entirely inD.

We use the test function ρ = 1/i. To see that this test function is acceptable, a
periodic solution, if it exists, cannot include any part of the line i = 0 because this line
is invariant.

Applying Dulac’s test to the system (2.9) and (2.10) with the specified choice for ρ,

∂(ρ f )
∂s

+
∂(ρg)
∂i

= −(β + p + µi−1).

This function is strictly negative inside the positive quadrant. Thus, no periodic
solution can exist that is entirely contained within the positive quadrant. As the positive
quadrant is positively invariant, there can be no periodic solution only partly contained
within it.

https://doi.org/10.1017/S1446181117000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000347


150 M. I. Nelson, P. Hagedoorn and A. L. Worthy [16]

A.3. There is no community of problem drinkers when R < 1 In this section,
we show that alcoholism is eliminated from the population if R < 1. Let

z(t) = i(t) + r(t).

Then, from the nonnegativity of the solution components in Section A.1, we have
z(t) ≥ 0. Using equations (2.6) and (2.7),

dz
dt

= βsi − µi − µr

≤ (βs − µ)i (as r ≥ 0)
≤ (β − µ)i (as s ≤ 1)

=
1
µ

(R − 1)i.

Hence,

z − z0 ≤
1
µ

(R − 1)
∫ t

0
i dτ.

As z(t) ≥ 0 and z0 ≤ 1,

−1 ≤
1
µ

(R − 1)
∫ t

0
i dτ.

It follows that if 0 < R < 1, then limt→∞ i(t) = 0.

Appendix B. When is the endemic steady state physically meaningful?

In this section, we determine when the roots of the quadratic equation

G(î) = î2 − Bî + C = 0 (B.1)

are physically meaningful (î > 0), where the coefficients are

B =
R − 1

R
−

1
R0

β

p
,

C =
µ

p

(1 − R0

R0

)
.

The parameters R0 and R are defined by equations (4.1) and (4.2), respectively. The
roots of (B.1) are given by

î =
B ±
√

B2 − 4C
2

. (B.2)

Note that when R0 < R ≤ 1, we have B < 0 and C > 0. In this case, the roots
of equation (B.2) are not physically meaningful, because they are either complex
(B2 − 4C < 0) or strictly negative (B2 − 4C ≥ 0).

Thus, we may assume that R > 1. We consider in turn the cases R0 > 1, R0 = 1 and
R0 < 1.
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B.1. Case 1: R0 > 1 (β > µ + γ) In this case, the coefficient C is negative.
This means that the discriminant of equation (B.2) (B2 − 4C) is positive. Thus,
equation (B.2) must have one positive root and one negative root. Hence, when R0 > 1,
the (physically meaningful) endemic state is single valued.

B.2. Case 2: R0 = 1 (β = µ + γ) In this case, the coefficient C is zero and the roots
of equation (B.1) are î = 0 and î = B. When R0 = 1, the coefficient B can be rewritten
as

B =
µ

βp
· (R0 − 1) ·

(
p −

β2

β − µ

)
.

Recall that R = β/µ > 1 and let

pcr =
β2

β − µ
=

R
R − 1

· β.

If p > pcr, then the nonzero root of equation (4.4) is positive, whereas if p < pcr, then
the nonzero root of equation (4.4) is negative. Thus, when R0 = 1, the physically
meaningful endemic state, if it exists, is single valued.

B.3. Case 3: R0 < 1 (β < µ + γ) In this case, the coefficient C is positive. Thus,
if B < 0, the roots of equation (B.1) are either complex (B2 − 4C < 0) or negative
(B2 − 4C > 0). If B = 0, then the roots are purely complex. Thus, a necessary condition
for positive values is

B > 0, which implies that

R0 > R0,cr =
β

p
·

R
R − 1

(assuming R > 1). (B.3)

By assumption, we have R0 < 1. Thus, from equation (B.3), a necessary condition for
positive values is

p >
R

R − 1
· β = pcr. (B.4)

We deduce from this equation that there can never be positive solutions when β ≥ p.
When both the coefficient B and the discriminant of equation (B.1) (∆i) are positive,

the endemic equation has two positive solutions. The discriminant of equation (B.1)
can be written as

∆i =
1

R2
0

·G2(R0), (B.5)

G2(R0) = aR2
0 + bR0 + c, (B.6)

a =

(R − 1
R

)2
+

4µ
p
, b = −

2
p

[(R − 1
R

)
· β + 2µ

]
< 0 and c =

β2

p2 .
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The discriminant of the quadratic equation G2 in (B.5) is

∆R0 =
16µ
p3 (p − β).

From inequality (B.4), the necessary condition for positivity is p > β. Thus,
the quantity ∆R0 is positive. It follows that the discriminant of equation (B.1),
equation (B.5), is positive when either

0 < R0 < R− (B.7)

or

R+ < R0 < 1, (B.8)

where

R+ =
−b +

√
b2 − 4ac

2a
, (B.9)

R− =
−b −

√
b2 − 2ac

2a
.

We now show that R− < R0,cr, where R0,cr is defined by (B.3). As the necessary
condition for the positivity of the solution is R > R0,cr, this shows that solutions in the
region 0 < R0 < R− are negative. Consider the quadratic equation (B.6). We have

G2(R0 = R0,cr) =
4βµR

(1 − R)2 p3 · [βR − (R − 1)p]

< 0 (using inequality (B.4)).

As G2(R0 = 0) = c > 0, it follows that 0 < R− < R0,cr. Thus, the region (B.7)
corresponds to negative values for the endemic steady state î.

Consequently, the condition for there to be two positive solutions is given by
equation (B.4) and the range of values of Rγ over which this occurs is given by
equations (B.8) and (B.9).
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[30] F. Sánchez, X. Wang, C. Castillo-Chávez, D. M. Gorman and P. J. Gruenewald, “Drinking as
an epidemic – a simple mathematical model with recovery and relapse”, in: Therapist’s guide
to evidence-based relapse prevention (eds K. Witkiewitz and G. Marlatt), (Academic Press,
Burlington, MA, 2007) Chapter 16, 353–368; doi:10.1016/B978-012369429-4/50046-X.

[31] O. Sharomi and A. B. Gumel, “Curtailing smoking dynamics: a mathematical modeling
approach”, Appl. Math. Comput. 195 (2008) 475–499; doi:10.1016/j.amc.2007.05.012.

[32] R. Smith, Modelling disease ecology with mathematics, Volume 2 of Differential Equ. Dyn. Syst.
(American Institute of Mathematical Sciences, Springfield, MO, 2008).

[33] C. E. Walters, B. Straughan and J. R. Kendal, “Modelling alcohol problems: total recovery”, Ric.
Mat. 62 (2013) 33–53; doi:10.1007/s11587-012-0138-0.

[34] E. White and C. Comiskey, “Heroin epidemics, treatment and ODE modelling”, Math. Biosci. 208
(2007) 312–324; doi:10.1016/j.mbs.2006.10.008.

https://doi.org/10.1017/S1446181117000347 Published online by Cambridge University Press

https://doi.org/10.1098/rsif.2007.1031
https://doi.org/10.1016/B978-012369429-4/50046-X
https://doi.org/10.1016/j.amc.2007.05.012
https://doi.org/10.1007/s11587-012-0138-0
https://doi.org/10.1016/j.mbs.2006.10.008
https://doi.org/10.1017/S1446181117000347

	Introduction
	Model equations
	Dimensional equations
	Semi-scaled equations

	Alcoholism and epidemiology
	Models with relapse due to ``peer pressure''
	Models with relapse due to the individual
	Models with no relapse

	Results
	Global results
	Steady-state solutions
	Stability
	The disease-free steady state
	The endemic steady state(s)
	Case 1: p<pcr
	Case 2: p=pcr
	Case 3: p> pcr =2/(-)


	Conclusions
	Global results
	Solutions are nonnegative
	There are no limit cycles
	There is no community of problem drinkers when R<1

	When is the endemic steady state physically meaningful?
	Case 1: R0>1 (>+)
	Case 2: R0= 1 (=+)
	Case 3: R0<1 (<+)

	References

