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SUMMARY

Research in epidemiology may be concerned with assessing risk factors for complex health issues

described by several variables. Moreover, epidemiological data are usually organized in several

blocks of variables, consisting of a block of variables to be explained and a large number of

explanatory variables organized in meaningful blocks. Usual statistical procedures such as

generalized linear models do not allow the explanation of a multivariate outcome, such as a

complex disease described by several variables, with a single model. Moreover, it is not easy to

take account of the organization of explanatory variables into blocks. Here we propose an

innovative method in the multiblock modelling framework, called multiblock redundancy

analysis, which is designed to handle most specificities of complex epidemiological data. Overall

indices and graphical displays associated with different interpretation levels are proposed.

The interest and relevance of multiblock redundancy analysis is illustrated using a dataset

pertaining to veterinary epidemiology.

Key words : Epidemiology, generalized linear model, multiblock modelling, multiblock redundancy

analysis, risk factor.

INTRODUCTION

Research in epidemiology may be concerned with

assessing risk factors for complex health issues de-

scribed by several variables. As an example in veter-

inary epidemiology, a disease can be jointly described

by clinical signs observed in animals, post-mortem

lesions on organs under study or diagnostic test re-

sults about viruses or bacterial pathogenicity. The key

idea that several variables may describe a latent con-

cept can be extended to the structure of explanatory

variables. Veterinary epidemiological surveys usually

consist of data gathered from animal characteristics,

farm, transport conditions, slaughterhouse features,

and laboratory results. As a consequence, explanatory

variables may be organized into meaningful blocks

related to the production stages. In a more formal

way, epidemiological data are organized in (K+1)

blocks of variables, consisting of a block of variables

to be explained (Y) and a large number of explan-

atory variables organized in K meaningful blocks

(X1, …, XK). All these variables are measured in the

same epidemiological units, e.g. animals or farms.
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The statistical procedures usually performed pertain

to generalized linear models (GLMs), especially com-

plex models of logistic regression [1]. These models

have appealing features that justify their wide use.

However, in the case of a multivariate outcome such

as a complex disease described by several variables

(i.e. dependent variables), the epidemiologist needs to

utilize successiveGLMs using each dependent variable

in turn, or, alternatively, a pooled variable which sums

up the various dependent variables [2]. Moreover, all

the potential explanatory variables can not be in-

cluded in a single model because very often they are

plagued by quasi-collinearity. It is well-known that

under these circumstances, the relevance and the

stability of the results obtained from GLMs are

impaired [3]. For this reason, several authors have

advocated that explanatory variables should be sub-

jected to a selection procedure or alternatively sum-

marized onto latent variables (or components) (see

e.g. [4, 5]). Finally, the organization of the explanatory

variables into meaningful blocks (e.g. environment,

infectious agents, alimentary factors, management

habits) is usually omitted inGLMs. This is a drawback

because assessment of the importance of each block in

the explanation of the dependent variables (Y) is of

paramount interest to the epidemiologist.

Considering the aim and the specificity of such com-

plex data, the research work focuses on methods re-

lated to the multiblock modelling framework. Within

this framework, the well-known method is structural

equation modelling (SEM), also known as LISREL

[6]. It can be viewed as a joint point between path and

factor analysis [7]. On the one hand, path models give

direct relationships between explanatory variables

and variables to be explained [8]. On the other hand,

factor analysis summarizes the variable blocks, as

expression of different concepts, with latent variables

[9]. SEM is a confirmatory model to assess the re-

lationships among several datasets through latent

variables. It is based on a conceptual model which

should be set up by the user beforehand. It is used

extensively in economics, business and social science.

As an alternative to SEM, partial least squares path

modelling (PLS-PM) [10] is a distribution-free data

analysis approach and appears to be more adapted to

biological data. It requires neither distributional nor

sample size assumptions [11]. However, PLS-PM

lacks a well-identified global optimization criterion

and the iterative algorithm convergence is only prov-

en in few particular cases [12]. For our purpose of

exploring and modelling the relationships between

a dataset Y and several datasets (X1, …, XK), these

problems can be circumvented by using multiblock

(K+1) methods. Multiblock partial least squares

(PLS) [13, 14] is a widely used multiblock modelling

technique. It is designed as an extension of PLS

regression [15], a popular method for linking two

datasets X and Y. Multiblock PLS is mainly used in

the field of process monitoring [16], chemometrics [17]

and sensometrics [18].

We propose yet another (K+1) multiblock method

called multiblock redundancy analysis. This method

of analysis is more focused towards the explanation of

the Y variables than multiblock PLS [19, 20]. It can be

viewed as an extension of redundancy analysis [21]

which is designed to explore the relationships between

two datasets. The underlying principle is that each

dataset is summed up by latent variables which are

linear combinations of the variables in the dataset

under consideration. These latent variables are sought

by maximizing a criterion which reflects the extent to

which each latent variable from the explanatory blocks

are linked to the latent variables from the Y block.

The solution to this maximization problem is directly

derived from a matrix eigenanalysis. Moreover,

multiblock redundancy analysis gives valuable tools

for the explanation and the investigation of the

relationships among variables and datasets. The

associated models explain each variable in Y with

explanatory variables, through orthogonalized re-

gression. As the method aims at describing datasets

with a large numbers of variables, the epidemiologist

needs to sum up the complex links between them and

between the datasets. Overall indices and graphical

displays associated with different interpretation levels

are proposed.

The interest of multiblock redundancy analysis is

illustrated using a dataset from an observational

study devoted to the assessment of the overall risk

factors for losses in broiler chicken flocks (Y) de-

scribed by four variables, i.e. the first-week mortality

rate, the mortality rate during the rest of the rearing,

the mortality rate during the transport to the slaugh-

terhouse and the condemnation rate at slaughter-

house. As a matter of fact, most studies reported in

the literature focus on particular reasons for losses.

For the epidemiologist interested in determining the

most appropriate focus to contain losses in broiler

chickens, integrating results from separate analysis

into an overall approach is difficult and probably not

relevant. Moreover, the investigation of risk factors in

epidemiological surveys is consistently resulting from
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complex interactions between variables. Our objec-

tives are to model the relationships between the losses

as a composite block to be explained, with explana-

tory variables organized in thematic blocks related to

the various production stages. In particular, we aim at

assessing the impact of the different production stages

on thewhole losses and the specific risk factors for each

element of losses. This pinpoints which production

stages need to be improved and meets the specific

expectations of the various factors in the poultry

production chain confronted with health event

complexity.

MATERIAL AND METHOD

Multiblock redundancy analysis

An original method, called multiblock redundancy

analysis, is proposed in the multiblock modelling

framework, adapted to the setting in which a block Y

of several variables is to be explained byK explanatory

variable blocks (X1, …, XK). The main idea is that

each dataset is summed up by a latent variable (or

component) which is a linear combination of the

variables derived from this dataset. Multiblock re-

dundancy analysis can be considered as a component-

based estimation technique where the latent variable

estimation plays a central role. More precisely, the

method derives a global component t(1), related to

all the explanatory variables merged in the dataset

X=[X1|…|XK], closely related to a component u(1),

linear combination of the variables in Y. Moreover,

the component t(1) sums up the partial components

(t1
(1), …, tK

(1)), respectively, associated with the blocks

(X1, …, XK). A simplified example of a conceptual

scheme, highlighting the relationships between the

variable blocks and their associated components is

proposed in Figure 1.

The global component t(1) sums up the partial

components and is sought such as its squared covari-

ance with u(1) is as large as possible. The solutions are

derived from the eigenanalysis of a matrix which in-

volves the datasets Y and (X1, …, XK). Thereafter, the

partial components t1
(1), …, tK

(1) are given by the nor-

malized projection of u(1) on each subspace spanned

by variables in blocks X1, X2, …, XK. It follows that

the global component t(1) is a synthesis of the partial

components (t1
(1), …, tK

(1)) and therefore, the relation-

ships of a given block Xk with Y is investigated

through the relationships of tk
(1) with t(1). (For a de-

tailed account of multiblock redundancy analysis see

[19, 20].)

In order to improve the prediction ability of the

model, higher-order solutions are obtained by con-

sidering the residuals of the orthogonal projections of

the datasets (X1, …, XK) onto the subspace spanned

by the first global component t(1). Thereafter, the se-

cond-order solution is performed by replacing the

original datasets (X1, …, XK) by their residuals in the

criterion to maximize. This leads to determination of

a second component u(2) in the Y space, a second

component t(2) in the space spanned by the X variables

and the associated latent variables in the various

blocks of variables. The rationale behind this step is

to investigate other directions in the space spanned by

the X variables in order to shed light on the Y vari-

ables from various perspectives thus improving their

prediction. Subsequent components (t(2), …, t(H)) can

be found by reiterating this process. As a conse-

quence, these components can be expressed as linear

combinations of X, t(h)=Xw*(h), where w*(h) is the

vector of loadings associated with t(h). They are

mutually orthogonal with each other and ranked by

order of importance in explaining the total variation

of Y. This allows orthogonalized regression which

takes into account all the explanatory variables, and
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Fig. 1. Example of multiblock data structure and associated conceptual scheme of multiblock redundancy analysis, high-
lighting the relationships between the variable blocks (X1, X2, Y) and their associated components (t1

(1), t2
(1), u(1)) for the first

dimension.
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Y is split up into Y=
P

h
l=1t

(l)c(l)0+Y(h) for

h=(1, …, H), Y(h) being the matrix of residuals of

the model based on h components. This leads to

the model : Y=X[w*(1)c(1)0+ � � �+w*(h)c(h)0]+Y(h) for

h=(1, …, H). From a practical point of view, the final

model may be obtained by selecting the optimal

number of components to be retainedwith a validation

technique such as twofold cross-validation [22]. This

consists of splitting the whole dataset into two sets,

namely a calibration set and a validation set. The

calibration set is used to select the parameters of

the model and the fitting ability of the model, and the

validation set is used to compute the prediction ability.

Among all the models corresponding to the various

values of h, a model with a satisfactory fitting ability

and good prediction ability is retained. Orthogonal-

ized regression handles the multicollinearity problem

by selecting a subset of orthogonal components and

avoiding the latest components which can be deemed

to reflect noise only.

Interpretation tools

For the optimal dimension h, the exponential of the

regression coefficients associated with each explana-

tory variable xp and each variable to be explained yq,

b(h)pq=
P

(h)
l=1w

*(h)c(h)0, are interpreted as the incidence

rate ratio (IRR) [1]. Bootstrapping simulations are

performed to provide standard deviations and toler-

ance intervals (TIs), associated with the regression

coefficient matrix [23, 24]. An explanatory variable is

considered to be significantly associated with a vari-

able in Y if the 95% TI associated with the IRR does

not contain 1. IRRs are interesting indices to link

explanatory variables with each of the variables in Y.

However, if the number of variables in Y is large,

the epidemiologist needs to sort the explanatory

variables in a global order of priority. The variable

importance for the projection (VIP) proposed in the

PLS regression framework is a relevant tool [25, 26].

The VIP values sum up the overall contribution of

each explanatory variable to the explanation of the Y

block for a model involving (t(1), …, t(h)) components.

As the VIP indices verify, for a given dimension, the

property gP
p=1(VIP

2
p)/P=1, where P is the total

number of variables in X, they can be expressed as

percentages. Associated standard deviations and tol-

erance intervals, computed using bootstrapped re-

sults, may additionally be computed. For the optimal

dimension h, each explanatory variable is considered

as significantly associated with the Y block if the 95%

TI associated with the VIP does not contain the

threshold value 0.8 [27].

Finally, it interesting for the epidemiologist to

assess the contributions of the explanatory blocks to

the modelling task. Several indices are proposed in the

literature and the block importance in the prediction

(BIP) appears to be the most relevant [28]. For

an optimal dimension h, the BIP values are based

on the weighted average values of the coefficients

(a1
(h)2, …, aK

(h)2) which reflect the importance of each

block Xk in the Y block explanation. Moreover, the

BIP can also be computed to assess the importance of

each block Xk in explaining each variable in Y. As the

BIP indices verify, for a given dimension the property

gK
k=1(BIP

2
k)/K=1, where K is the number of ex-

planatory blocks, can be expressed as percentages.

Associated standard deviations and tolerance inter-

vals, computed using bootstrapped results, may be

given. It follows that for the optimal dimension h,

each block Xk is considered to be significantly associ-

ated with the overall block Y or with each variable in

Y, if the 95% TI associated with the BIP does not

contain the threshold value 0.8 [28].

Software

Statistical procedures and associated interpretation

tools were performed using code programs de-

veloped in Matlab1(The MathWorks Inc., USA) and

also made available in R (http://www.r-project.org/).

The code source is available upon request from the

corresponding author.

Illustration dataset

Both in human and veterinary epidemiological

surveys, it frequently occurs that the data at hand can

be organized into blocks. The complex health issue (Y

block), described by several variables, needs to be

explainedwith a large number of explanatory variables

organized into meaningful blocks (X1, …, XK), related

to feeding, environment, genetic heritage, among

others.

An example is given in the field of veterinary epi-

demiology. The population consists of a cohort of

slaughtered broiler chicken flocks from all the

European Union licensed slaughterhouses in France

[29]. A large number (351) of broiler chicken flocks

are randomly selected by two-stage sampling, strati-

fied per slaughterhouse and based on random selection

of the day of slaughter and of the flock sequence
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number in the slaughtering schedule of that day. On

the one hand, the information collected on each flock

is prospective at slaughterhouse, and consists of re-

cording the transport conditions to the slaughter-

house, the number of dead animals on arrival, the

slaughtering conditions, the condemnation rate and

the official sanitary reasons for condemnation. On the

other hand, retrospective information is collected and

involves the conditions during the rearing period,

health history, daily mortality, catching and loading

conditions. The aim is to assess the overall risk factors

for a composite outcome: losses in broiler chickens

(Y), described by four variables, i.e. the first-week

mortality rate, the mortality rate during the rest of

the rearing, the mortality rate during the transport to

the slaughterhouse, and the condemnation rate at the

slaughterhouse.

The explanatory variables are first selected on the

basis of the main factors reported in the literature and

of an earlier univariate screening applied to each de-

pendent variable. These 68 selected variables are

organized in four thematic blocks related to farm struc-

ture and systematic husbandry management practices

(X1, 16 variables), flock characteristics and on-farm

history of the chicks at placement (X2, 14 variables),

flock characteristics during the rearing period (X3, 17

variables) and catching, transport and lairage condi-

tions, slaughterhouse and inspection features (X4, 21

variables). Indicator (dummy) variables are considered

for the categorical variables. All the 68 putative ex-

planatory variables are included in the multiblock

analysis, fitted with a backwards-selection procedure.

As all the variables are expressed in different units,

they are column centred and scaled to unit variance.

As the explanatory variables have been standardized,

the total variance in each block is equal to the number

of variables in this block. This motivates the block

scaling in order to put the blocks on the same footing

[30]. For this purpose, each of the (K=4) explanatory

block is accommodated with a scaling factor to set

them at the same total variance 1/K.

RESULTS

Preliminary results

Among the 68 explanatory variables, 20 were sig-

nificant risk factors for at least one variable relating

to the losses and are retained for the final analysis.

Among these 20 variables, five pertain to the farm

structure and the systematic husbandry management

practices (X1), four are selected from the flock

characteristics and the on-farm history of the chicks

at placement (X2), six relate to the flock characteristics

during the rearing period (X3), and five relate to the

catching, transport and lairage conditions, slaughter-

house and inspection features (X4). The twofold cross-

validation results led us to a model with (h=4)

components (mcv=500 cross-validated samples). This

model explains 93% of the variation in Y, 15% in X1,

30% in X2, 30% in X3 and 27% in X4.

Risk factors for each element of the dependent block

A predictive model is set up by regressing the vari-

ables to be explained upon the first four global com-

ponents. The regression coefficients, transformed into

IRRs, the associated standard deviations and the tol-

erance intervals (mbt=500 bootstrapped samples) of

the 20 explanatory variables are computed for each

dependent variable. Table 1 gives the explanatory

variables which are significantly associated with the

four variables related to the losses.

Each variable in Y is significantly related to a spe-

cific set of explanatory variables. First, the first-week

mortality rate is related to four variables, two of

which pertain to the farm structure. The mortality

rate during the rest of the rearing is significantly

linked with seven variables, four of which pertain to

the flock characteristics during the rearing period.

The mortality rate during the transport to the

slaughterhouse is associated with eight variables,

among which four pertain to the catching, transport

and lairage conditions, slaughterhouse and inspection

features. Finally, the condemnation rate at slaugh-

terhouse is related to 15 variables, six of these vari-

ables refer to flock characteristics during the rearing

period. Some explanatory variables are specifically

related to one variable in Y, e.g. the chick homogen-

eity (from X2), whereas others are linked with up to

three (out of four) variables in Y, e.g. the genetic

strain (from X3).

Risk factors for the dependent block (Y)

In order to sort these explanatory variables by a global

order of priority thus highlighting their overall con-

tribution to the explanation of the Y block, the VIP

are computed. Figure 2 depicts the VIP2 expressed as

percentages, of the main explanatory variables.

It turns out that four explanatory variables have a

significant impact on the overall losses : the stress oc-

currence during rearing (VIP2
Stress=13.3%, 95% TI
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Table 1. Contribution of the explanatory variables to the explanation of the four variables of losses Y=[y1, y2, y3, y4], by means of significant incidence rate ratio

(IRR) associated with their 95% tolerance interval

First-week

mortality rate (y1)

Mortality rate
during the rest

of the rearing (y2)

Mortality rate
during the
transport to

slaughterhouse (y3)

Condemnation
rate at

slaughterhouse (y4)

% of the Y variation explained by the model (h=4 dimensions) 82.6% 93.6% 97.0% 95.2%

X1 block: Farm structure and systematic husbandry management practices

Total area for chicken on the farm [Area]* n.s. n.s. 1.25 (1.05–1.49) 1.31 (1.07–1.60)
Cleaning step in decontamination of chicken house : yes (vs. no) [Soak] n.s. 0.85 (0.75–0.96) 0.77 (0.65–0.90) 0.80 (0.66–0.96)

Heating system in the chicken house: gas heater (vs. radiant) [Heat] 0.77 (0.65–0.91) 0.83 (0.71–0.96) n.s. n.s.
Sorting practice : yes (vs. no) [Sort] 1.24 (1.05–1.46) n.s. n.s. n.s.
Age of the facilities : >12 years (vs. recent or renovated) [Renov] n.s. n.s. n.s. 1.20 (1.01–1.43)

X2 block: Flock characteristics and on-farm history of the chicks at placement

Vitamins and minerals during the starting period: yes (vs. no) [Vitamin] n.s. 0.90 (0.82–0.99) n.s. 0.88 (0.79–0.97)

Frequency of farmer visits during the starting period [Freqchick] n.s. n.s. n.s. 0.81 (0.72–0.92)
Homogeneity of chicks at placement : yes (vs. no) [Homochick] 0.60 (0.49–0.72) n.s. n.s. n.s.
Number of chicks at placement [Nbchick] n.s. n.s. 1.20 (1.03–1.40) 1.21 (1.01–1.44)

X3 block: Flock characteristics during the rearing period

Production type : standard (vs. others#) [Typrod] n.s. 1.41 (1.16–1.72) n.s. 0.79 (0.65–0.97)
Homogeneity of chickens at the end of rearing: yes (vs. no) [Homochicken] n.s. n.s. n.s. 0.75 (0.59–0.96)
Genetic strain : X (vs. other) [Strain] n.s. 0.59 (0.45–0.79) 0.83 (0.70–0.98) 0.73 (0.61–0.87)

Locomotor disorder observed: yes (vs. no) [Locpb] n.s. 1.52 (1.08–2.14) n.s. 1.37 (1.06–1.78)
Stress occurrence$ during rearing : yes (vs. no) [Stress] n.s. 2.16 (1.58–2.96) n.s. 1.40 (1.11–1.75)
Frequency of farmer visits during rearing [Freqchicken] n.s. n.s. ns 0.80 (0.70–0.93)

X4 block: Catching, transport and lairage conditions,

slaughterhouse and inspection features

Type of loading system: mechanical (vs. manual) [LoadType] n.s. n.s. 2.03 (1.56–2.64) n.s.
Meteorological conditions during lairage : rain and/or wind
(vs. neither rain nor wind) [RainWind]

n.s. n.s. 1.37 (1.12–1.69) n.s.

Stocking density in transport crates [StockingD] n.s. n.s. 1.53 (1.23–1.89) 0.82 (0.67–0.99)
Average duration of waiting time on lairage [Dlairage] 0.84 (0.73–0.98) n.s. 1.34 (1.04–1.74) 0.81 (0.70–0.94)
Withdrawal of carcasses at the evisceration line : yes (vs. no) [Evisc] n.s. n.s. n.s. 1.64 (1.38–1.95)

n.s., Non-significant.

* Abbreviation of the variable name given within square brackets.
# ‘Others ’ includes light or heavy production types.
$ Stress occurrence gathers feeding system defection, electrical defect, etc.
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4.9–21.7), the type of loading system (VIP2
LoadType=

9.4%, 95% TI 2.8–16.1), chick homogeneity

(VIP2
HomoChick=8.6%, 95% TI 2.2–15.0) and carcass

withdrawal at the evisceration line (VIP2
Evisc=7.6%,

95% TI 3.0–12.3). Because of its high variability,

the genetic strain has a relatively important although

non-significant impact (VIP2
Strain=8.2%, 95% TI

0.6–15.9).

Explanatory block importance for the dependent

block (Y) explanation

Figure 3 depicts the relative importance of the four

production stages, i.e. the four explanatory blocks,

in the overall losses explanation, highlighting the

significant importance of two blocks.

More precisely, 42.2% (95% TI 32.2–52.2) of the

overall losses variation are explained by the flock

characteristics during the rearing period (X3) and

26.8% (95% TI 19.1–34.6) by the catching, transport

and lairage conditions, slaughterhouse and inspection

features (X4). In addition, the relative importance of

the four production stages in the explanation of each

element of the losses is given in Table 2.

Neither the farm structure (X1) nor the on-farm

history at placement (X2) have a significant impact on

any variable of the losses. The most important find-

ings are that the mortality rate during the rest of the

rearing and the condemnation rate at slaughterhouse

are mainly explained by the flock characteristics

during rearing (X3), and that the mortality rate during

the transport to slaughterhouse is mainly related to

the catching, transport and lairage conditions,

slaughterhouse and inspection features (X4).

DISCUSSION

Multiblock modelling for complex epidemiological

data

On the whole, multiblock modelling results match up

with those obtained from particular cases of GLMs,

as both approaches lead to identification of specific

risk factors related to each specific element of losses.

(See e.g. [31] for risk factors associated with the first-

week mortality rate ; see [32] for risk factors for the

mortality rate during the remainder of the rearing; see

[33] for risk factors for the mortality rate during

transport and see [29] for risk factors for condem-

nation at slaughterhouse.) Although this classical risk

factor analysis gives complete, accurate and sensible

results, the epidemiologist needs to obtain overall re-

sults to pass them on to professionals. Multiblock

redundancy analysis gives all the specific risk factors

for each element of a composite outcome from a single

analysis and gives additional information. It is well-

adapted to complex health issues and integrates an

overall epidemiological approach. The method gives

operational conclusions to the multifactorial origin of

complex outcome. The model under study explains

93% of the variation that occurred in overall losses.
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Percentage of the main explanatory variables to explain the Y variation

Fig. 2. Contribution of the main explanatory variables [variable importance for the projection (VIP)2 o3%] to the
explanation of the overall losses (Y), through VIP2 (expressed as percentages) associated with their 95% tolerance interval.
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The main part of this variation, i.e. 13.3%, can be

explained by the stress occurrence during rearing and

9.4% by the mechanical catching method, among

others. If particular care is taken with respect to the

four most important variables, i.e. stress during

rearing, type of loading system, chick homogeneity at

placement and genetic strain, the explained losses

could be reduced by 39.6%. As a final remark, the

variation in overall losses is explained by the flock

characteristics during rearing (42.2% of explained

variation) and the catching, transport and lairage

conditions, slaughterhouse and inspection features

Table 2. Contribution of the explanatory blocks (X1, …, X4) to the explanation of each variable of the losses

Y=[y1, y2, y3, y4], by means of block importance in the prediction (BIP2 expressed as percentages) associated with

their 95% tolerance interval

First-week mortality
rate (y1)

Mortality rate during
the rest of the rearing
(y2)

Mortality rate during
the transport to
slaughterhouse (y3)

Condemnation
rate at
slaughterhouse (y4)

% of the Y variation
explained by the model
(h=4 dimensions)

82.6% 93.6% 97.0% 95.2%

Farm structure and

systematic husbandry
management
practices (X1)

12.8% (5.6–20.0) n.s. 14.1% (6.7–21.4) n.s. 11.6% (4.2–18.9) n.s. 18.5% (9.5–27.5) n.s.

Flock characteristics
and on-farm history
at placement (X2)

22.4% (10.4–34.5) n.s. 12.4% (3.8–20.9) n.s. 20.3% (10.4–30.1) n.s. 13.8% (4.5–23.0) n.s.

Flock characteristics
during rearing (X3)

31.0% (13.3–48.8)* 50.4% (37.9–62.8)* 26.9% (10.2–43.6) n.s. 53.0% (38.6–67.4)*

Catching, transport,
lairage,

slaughterhouse (X4)

33.7% (18.6–48.8)* 23.2% (11.1–35.3) n.s. 41.3% (24.0–58.5)* 14.7% (2.3–27.1) n.s.

n.s., Non-significant.
* Significant association.
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(26.8% of explained variation). One of the main ad-

vantages of multiblock redundancy analysis is to

assess measurable and relevant impacts of variable

blocks in a single analysis. Moreover, these weights

can be compared to each other and this provides

valuable information for epidemiologists. These find-

ings may be useful for global management decisions.

The relevant process stages on which to focus can be

determined, as a decision-support aid in health man-

agement. This meets the specific expectations of the

various factors in the production chain confronted

with health complexity.

Alternative multiblock methods

The structure of epidemiological data together with

the specific aim of epidemiologists led us to develop a

new multiblock method, called multiblock redun-

dancy analysis. This method is adapted to the setting

where a block of several variables is to be explained by

several explanatory blocks. Some other methods that

could also meet the epidemiologists’ expectations, are

proposed within the framework of canonical analysis

[34] or PLS regression [13]. Multiblock redundancy

analysis was chosen considering its balanced behav-

iour with respect to robustness to multicollinearity

and good fitting ability.

Multiblock modelling vs. successive GLMs

The overall approach of multiblock modelling can be

compared to the standard approach which consists in

setting up successive GLMs. GLMs boast some major

advantages that justify their wide use in the epidemi-

ological framework. First, the link between ex-

planatory and dependent variables can be fitted (e.g.

Poisson link function for the condemnation rate)

whereas, in multiblock modelling, this link is the lin-

ear link function. Second, the explanatory variable

status, i.e. quantitative or categorical, is taken into

account in GLMs. By comparison, in the multiblock

framework, dummy variables are considered for cat-

egorical variables and with this coding they are con-

sidered along with the quantitative variables. Third,

in GLMs, explanatory variables can be selected in

relation to the dependent variable under study. As an

example, variables from the block relating to the

catching, transport and lairage, and slaughterhouse

are not selected to explain the first-week mortality.

A limitation of multiblock modelling is the selection

of all explanatory variables available in order to ex-

plain all the variables to be explained at the same

time, even if some are not relevant. This may lead to

the selection of irrelevant variables as risk factor (e.g.

the average duration of waiting time on lairage as a

significant risk factor for the first-week mortality).

Finally, GLMs are well-known methods that are fully

available on software.

Multiblock redundancy analysis is based on a single

criterion that reflects the objectives to be addressed.

The criterion is based on the determination of latent

variables which highlight the relationships among the

datasets. This method fits within the general frame-

work of multivariate techniques and factor analysis.

The appealing feature of these methods is that they

provide visualization tools which can be helpful for

researchers to unveil hidden patterns and relation-

ships among variables. As this method is mainly ex-

ploratory, its results are expressed in relation to the

explanatory variables. Using latent variables as a

summary of manifest variables makes it possible to

include a large number of variables in a single model.

In comparison with GLMs, the multiblock approach

does not necessitate recourse to the univariate

step, whose aim is to select a subset of explanatory

variables ; as these variables are organized in blocks

the method is less sensitive to multicollinearity.

Moreover, multiblock redundancy analysis is likely

to recover more variations in the Y dataset than

GLMs because new dimensions can be added if

necessary in order to explain additional variability in

the data.

Multiblock modelling uses additional information

available for grouping the variables into meaningful

blocks and allows several variables to be explained at

the same time. This avoids the necessity of setting up

separate models or combining several dependent

variables into one single variable. Multiblock redun-

dancy analysis provides both standard epidemiologi-

cal results, such as IRRs, and specific estimations,

such as VIPs and BIPs. The structure of explanatory

variables within thematic blocks can be used to esti-

mate their respective weights (i.e. the BIP indices) in

the dependent variable explanation. Multiblock re-

dundancy analysis makes it possible to shed light on

the significant explanatory variables affecting a com-

posite dependent variable and to pinpoint the prob-

lems in the various explanatory blocks. Furthermore,

multiblock redundancy analysis allows many possi-

bilities for graphical displays and combines tools from

factor analysis with tools pertaining to regression.
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Research perspectives for multiblock modelling

Notwithstanding their high benefits, multiblock

methods still present some limitations in comparison

with GLMs and further investigations will be under-

taken to handle more epidemiological data specifi-

cities. For instance, multiblock modelling does not

efficiently handle the information from relevant

external variables, such in hierarchical GLMs. At

present, this information could be highlighted in

graphical displays, but it is of paramount interest

to include it in the criterion to be optimized. Further-

more, multiblock redundancy analysis could be

adapted to more complex data, e.g. explanation of

several blocks of health events, each being described

by several variables, or the evolution of a complex

health event at different periods of time. As in LIS-

REL or PLS-PM framework, these kinds of methods

can also be extended to situations where the explana-

tory blocks of variables are linked with each other,

while integrating this information in the criterion.

Further developments in multiblock analysis should

lead to new breakthroughs in the statistical processing

of epidemiological data. These developments together

with the increase of the volume and complexity of

data in biology will certainly contribute to making the

use of multiblock modelling increasingly popular.
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