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Abstract

A lumping of a Markov chain is a coordinatewise projection of the chain. We characterise
the entropy rate preservation of a lumping of an aperiodic and irreducible Markov chain
on a finite state space by the random growth rate of the cardinality of the realisable
preimage of a finite-length trajectory of the lumped chain and by the information needed to
reconstruct original trajectories from their lumped images. Both are purely combinatorial
criteria, depending only on the transition graph of the Markov chain and the lumping
function. A lumping is strongly k-lumpable, if and only if the lumped process is a
kth-order Markov chain for each starting distribution of the original Markov chain.
We characterise strong k-lumpability via tightness of stationary entropic bounds. In the
sparse setting, we give sufficient conditions on the lumping to both preserve the entropy
rate and be strongly k-lumpable.
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1. Introduction

The entropy rate of a stationary stochastic process is the average number of bits per time step
needed to encode the process. A lumping of a (stationary) Markov chain is a coordinatewise
projection of the chain by a lumping function. The resulting (stationary) lumped stochastic
process is also called a functional hidden Markov model [8]. One can transform every hid-
den Markov model on finite state and observation spaces into this setting [8, Section IV.E].
In general, the lumped process loses the Markov property [13] and has a lower entropy rate
than the original Markov chain due to the aggregation of states [21], [24].

Our first result characterises the structure of entropy rate preserving lumpings of stationary
Markov chains over a finite state space. The realisable preimage is the set of finite paths in the
transition graph associated with the Markov chain having the same image. The key property is
the behaviour of the growth of this random set. It is also described by the ability of two such
paths, once split, to join again. We document a strong dichotomy between the preservation
and loss case: a uniform finite bound on the lost entropy and an almost surely finite growth
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Lumpings of Markov chains 1115

in the former, and a linearly growing entropy loss and an almost surely exponential growth
in the latter.

In particular, a positive transition matrix always implies an entropy rate loss for a nonidentity
lumping. We state a sufficient condition on a lumping of a Markov chain with a nonpositive
transition matrix to preserve the entropy rate. Carlyle’s representation [6] of a finite-state
stationary stochastic process as a lumping of a Markov chain on an at most countable state
space fulfills this condition.

Lumpings resulting in higher-order Markov chains are highly desirable from a simulation
point of view. Our second result characterises such lumpings by the equality of natural entropic
bounds with the entropy rate of the lumped process in the stationary setting. A first equality that
holds only for entropies depending on the lumped process is equivalent to weak lumpability,
i.e. the lumped process is a higher-order Markov chain in the stationary setting. A second
equality involving entropies also using the underlying Markov chain in the stationary case
is equivalent to strong lumpability, i.e. the lumped process is a higher-order Markov chain,
for every initial distribution. Our characterisation is an information-theoretic complement to
Gurvits and Ledoux’s [13] linear algebraic approach to characterise lumpability.

We state a sufficient condition on the transition graph and the lumping function to preserve
the entropy rate and be strongly k-lumpable. The condition is fulfilled on nontrivial lower-
dimensional subspaces of the space of transition matrices. This complements Gurvits and
Ledoux’s [13] result that lumpings having higher-order Markov behaviour are nowhere dense.

2. Main results

2.1. Preliminaries

We let N := {1, 2, . . . } and N0 := {0, 1, 2, . . . }. We write [n, m] := {k ∈ N0 : n ≤ k ≤ m}
and abbreviate [n] := [1, n]. A vector x subscripted by a set A is the subvector of elements
indexed by this set: xA := (xn)n∈A.

We recall information-theoretic basics from [7, Chapters 2 and 4]. Let ld denote the binary
logarithm. By continuous extension, we assume that 0 ld 0 = 0. The Shannon entropy of a
random variable Z taking values in a finite set Z is

H(Z) := −
∑
z∈Z

P(Z = z) ld P(Z = z).

The conditional entropy of Z given W is defined by

H(Z | W) :=
∑
w∈W

P(W = w)H(Z | W = w).

Successive conditioning reduces entropy:

H(Z) ≥ H(Z | W1) ≥ H(Z | W1, W2). (1)

For a stationary stochastic process Z := (Zn)n∈N0 on a finite state space Z, the entropy rate is

H̄ (Z) := lim
n→∞

1

n
H(Z[n]) = lim

n→∞ H(Zn | Z[n−1]). (2)

The left-hand limit in (2) is the limit of the normalised block entropy H(Z[n]). By stationarity
and (1), the H(Zn | Z[n−1]) in the right-hand limit of (2) are monotonically decreasing.
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Figure 1: A section of trajectory space, with time running left to right. The two realisable length-5
trajectories (x̌, x′

1, x
′
2, x

′
3, x̂) and (x̌, x′′

1 , x′′
2 , x′′

3 , x̂) have the same lumped image (g(x̌), y1, y2, y3, g(x̂)).
Thus, K ≤ 3. The lumped states {g(x̌), y1, y2, y3, g(x̂)} need not be distinct, e.g. it might be that

y1 = y2 = g(x̂). If K = 3, then the minimality of K implies that x′
i 	= x′′

i , for i ∈ [3].

2.2. Setting

Let X := (Xn)n∈N0 be an irreducible, aperiodic, time-homogeneous Markov chain on the
finite state space X. It has transition matrix P with invariant probability measure μ. We assume
that X is stationary, that is X0 ∼ μ. The lumping function g is X → Y and surjective. We
assume g to be nontrivial, that is 2 ≤ |Y| < |X|. Without loss of generality, we extend g

to Xn → Yn coordinatewise for arbitrary n ∈ N. The lumped process of X under g is the
stationary stochastic process Y := (Yn)n∈N0 defined by Yn := g(Xn). We refer to this setup as
the lumping (P, g).

The lumping induces a conditional entropy rate [9], [24], which characterises the average
information loss per time step:

H̄ (X | Y ) := lim
n→∞

1

n
H(X[n] | Y[n]) = H̄ (X) − H̄ (Y ).

Our main question is whether H̄ (X | Y ) is positive or zero, speaking of entropy rate loss or
entropy rate preservation respectively. Entropy rate preservation does not imply that we can
reconstruct the original process from the lumped process without entropy loss. See Figure 4 in
Section 2.4 for an example.

The transition graph G of the Markov chain X is the directed graph with vertex set X and
an edge (x, x′), if and only if P(X1 = x′ | X0 = x) > 0. A length-n trajectory x ∈ Xn is
realisable, if and only if P(X[n] = x) > 0, equivalent to being a directed path in G. A key
structural property of G is its split-merge index with respect to g:

K := inf{ n ∈ N | there exist x̌, x̂ ∈ X, y ∈ Yn, and x′, x′′ ∈ g−1(y), x′′ 	= x′,
such that both P(X0 = x̌, X[n] = x′, Xn+1 = x̂) > 0 and

P(X0 = x̌, X[n] = x′′, Xn+1 = x̂) > 0}. (3)

The split-merge index is the shortest length of the differing part of a pair of finite, different,
and realisable trajectories with common start and end points, and the same lumped image if
such a pair exists. Otherwise, let K = ∞. If K < ∞, every pair of sequences x′, x′′ ∈ XK

fulfilling (3) is not only different, but differs in every coordinate by virtue of the infimum in (3).
See Figure 1 for an example with K ≤ 3.

2.3. Characterisation of the entropy rate loss

In this section we present the characterisation of the entropy rate loss of a lumping in terms
of K and the growth rate of the cardinality of the realisable preimage. The realisable preimage

https://doi.org/10.1239/jap/1421763331 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763331


Lumpings of Markov chains 1117

of a lumped trajectory y ∈ Yn are the realisable trajectories in its preimage:

R(y) := {x ∈ g−1(y) : x is realisable}.
The preimage count of length n of the lumping (P, g) is the cardinality of the realisable preimage
of a random lumped trajectory of length n:

Tn := |R(Y[n])| =
∑

x∈g−1(Y[n])
[P(X[n] = x) > 0].

Here, the right-hand side sums over Iverson brackets. Our first main result characterises entropy
rate preservation.

Theorem 1. It holds that

H̄ (X | Y ) > 0 ⇐⇒ K < ∞
⇐⇒ there exists C > 1 such that P

(
lim inf
n→∞

n
√

Tn ≥ C
)

= 1, (4a)

H̄ (X | Y ) = 0 ⇐⇒ K = ∞
⇐⇒ there exists C < ∞ such that P

(
sup

n→∞
Tn ≤ C

)
= 1. (4b)

The proofs of all statements in this section are given in Section 3. The constant C in
Theorem 1 is an explicit function of (P, g); see (31) for (4a) and (16) for (4b). Likewise, an
explicit lower bound for the entropy rate loss in case (4a) is stated in (28), implying that the
entropy loss grows at least linearly in the sequence length.

Theorem 1 reveals a dichotomy in behaviour of the entropy of the lumping. If K is infinite,
then no split-merge situations as in Figure 1 occur. Thus, all finite trajectories of X can be
reconstructed from its lumped image and knowledge of its endpoints. Therefore, the only
entropy loss occurs at those endpoints and is finite. This yields uniform finite bounds on the
conditional block entropies and the preimage count. If K is finite, then at least two different
realisable length-(K + 2) trajectories of X with the same lumped image split and merge (see
Figure 1). Such a split-merge leads to a finite entropy loss. The ergodic theorem ensures that
this situation occurs linearly often in the block length, thus leading to a linear growth of the
conditional block entropy. This implies an entropy rate loss. In particular, the conditional block
entropy of a lumping never exhibits sublinear and unbounded growth.

If no split-merge situation occurs, then realisable trajectories with the same lumped image
must be parallel. This constraint bounds their number. First, this yields a uniform bound on
the conditional block entropies for lengths smaller than K .

Proposition 1. We have, for all n,

n − 2 < K 
⇒ H(X[n] | Y[n]) ≤ 2 ld(|X| − |Y| + 1). (5)

Second, the finiteness of X implies that either a split-merge situation of low trajectory length
exists or no split-merge situation exists at all.

Proposition 2. In case (4a), we have

K ≤
∑
y∈Y

|g−1(y)|(|g−1(y)| − 1).

If P is positive, i.e. all its entries are positive, then G is the complete directed graph and
K = 1. The following corollary is an immediate consequence.
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Corollary 1. If P is positive, then H̄ (X | Y ) > 0.

Thus, entropy rate preserving lumpings must have sufficiently sparse transition matrices P .
The examples depicted in Figures 2 and 3 preserve the entropy rate without satisfying the
sufficient conditions from Section 2.5.

2.4. Characterisation of strong k-lumpability

The case of the lumped process retaining the Markov property is desirable from a compu-
tational and modelling point of view. However, in general, the lumped process Y does not
possess the Markov property [13], [17]. Nevertheless, one may hope that the lumped process
belongs to the larger and still desirable class of higher-order Markov chains.

Definition 1. A stochastic process Z := (Zn)n∈N0 is a kth-order homogeneous Markov chain
(denoted by Z is HMC(k)), if and only if, for all n ∈ N, m ∈ [k, n], zn ∈ Z, and z ∈ Zm,

P(Z[n−m,n−1] = z) > 0


⇒ P(Zn = zn | Z[n−m,n−1] = z) = P(Zn = zn | Z[n−k,n−1] = z[n−k,n−1]). (6)

The entropy rate of a HMC(k) is as straightforward as we would expect.

Proposition 3. Let Z := (Zn)n∈N0 be a stationary stochastic process on Z. Then

Z is HMC(k) ⇐⇒ H̄ (Z) = H(Zk | Z[0,k−1]). (7)

The proof of this proposition is given in Section 4. We investigate lumpings, where the
lumped process is HMC(k).

Definition 2. (Extension of [17, Definition 6.3.1].) A lumping (P, g) of a stationary Markov
chain is weakly k-lumpable, if and only if Y is HMC(k). It is strongly k-lumpable, if and only
if this holds for each distribution of X0 and the transition probabilities of Y are independent of
this distribution.

A direct expression of the entropy rate of the lumped process Y is intrinsically compli-
cated [3]. However, there are asymptotically tight, monotone decreasing, upper and lower
bounds.

Lemma 1. ([7, Theorem 4.5.1, p. 86].) In our setup, we have

H(Yn | Y[n−1], X0) ≤ H̄ (Y ) ≤ H(Yn | Y[0,n−1]) for all n ∈ N. (8)

a1 b1 c1

a2 b2 c2

A C

B1

B2

Figure 2: The transition graph of a Markov chain with the lumping represented by dashed boxes. The
lumping preserves the entropy rate without satisfying the single-entry property of Section 2.5. The loops
at a1 and a2 on the left-hand side, and at c1 and c2 on the right-hand side, prevent the lumped process from
being a kth-order homogeneous Markov chain, for every k, given that the loop probabilities are different.
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C2

C1
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B

b1

a

c1

b2 c2

Figure 3: The transition graph of a Markov chain with the lumping represented by dashed boxes. The
lumping is not single entry (violated by transitions from a into B). On the other hand, the existence of the
uniquely represented states C1 and C2 allows us to distinguish between the trajectories (a, b1, c1, a) and
(a, b2, c2, a). Therefore, the lumping preserves the entropy rate. Furthermore, this lumping is weakly
1-lumpable and strongly 2-lumpable, but not strongly 1-lumpable. Hence, it shows that the single-entry
property is neither necessary for entropy rate preservation nor for weak k-lumpability. This also applies

to the single forward k-sequence, a subclass of single entry.

b1 a1

AB

b2 a2

Figure 4: The transition graph of a Markov chain with the lumping represented by dashed boxes. The
lumping is single entry and, thus, preserves the entropy rate. Furthermore, if all transitions have probability
1
2 , it is strongly 1-lumpable and, thus, H(Y1 | X0) = H(Y1 | Y0) (see Theorem 2). However, observing
an arbitrarily long trajectory of the lumped process does not determine the current preimage state. Whence,
(P, g) does not satisfy the single forward k-sequence property for every k. Therefore, the single forward

k-sequence property is neither necessary for entropy rate preservation nor for strong lumpability.

In the stationary setting, the equality on the right-hand side of (8) for n = k, together with
Proposition 3, implies that Y is HMC(k), i.e. (P, g) is weakly k-lumpable. If there is also
equality on the left-hand side of (8) for n = k, then knowledge of the distribution of X0 delivers
no additional information about Yk . In other words, Y is HMC(k) for every starting distribution.
Our second main result characterises higher-order lumpability.

Theorem 2. The following statements are equivalent:

H(Yk | Y[k−1], X0) = H(Yk | Y[0,k−1]), (9a)

X is strongly k-lumpable. (9b)

The proof of Theorem 2 is given in Section 4. We stress the fact that (9a) is a condition
only on the stationary setting, whereas (9b) deals with all starting distributions. Theorem 2 is
an information-theoretic equivalent to Gurvits and Ledoux’s characterisation [13, Theorems 2
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and 6] of k-lumpability via a linear algebraic description of invariant subspaces. A classic
example [17, p. 139] shows that weak k-lumpability alone is not sufficient for (9). Moreover,
the examples presented in Figures 3 and 4, and Example 1 are strongly lumpable for some k

without satisfying the sufficient condition from Section 2.5.

2.5. Sufficient conditions

We present easy to check sufficient conditions for the preservation of the entropy rate and
strong k-lumpability. Their proofs are in Section 5. The conditions depend only on the transition
graph G and the lumping function g.

Our first sufficient condition preserves the entropy rate.

Definition 3. A lumping (P, g) is single entry (SE), if and only if, for all y ∈ Y and x ∈ X,
there exists x′ ∈ g−1(y) such that

P(X1 = x′′ | X0 = x) = 0 for all x′′ ∈ g−1(y) \ {x′}, (10)

i.e. there is at most one edge from a given state x into the preimage g−1(y).

The SE lumpings are entropy rate preserving.

Proposition 4. If (P, g) is SE, then H̄ (X | Y ) = 0.

Figures 2 and 3 show that SE is not necessary for entropy rate preservation.

Corollary 2. If (P, g) is SE and weakly k-lumpable then it is strongly k-lumpable.

Proof. The proof of Proposition 4 shows that SE implies equality on the left-hand side
of (8) for all n. Weak k-lumpability implies equality on the right-hand side of (8) for n = k.
Therefore, Theorem 2 applies.

An example of a lumping satisfying the conditions of the corollary is given in Figure 4. That
a lumping can be SE without being strongly lumpable, or strongly lumpable without being SE
is shown in Figure 5 and in Example 1, respectively.

Our second sufficient condition preserves the entropy rate and guarantees higher-order
lumpability.

b1 a

b2 c

B

A

C

Figure 5: The transition graph of a Markov chain with the lumping represented by dashed boxes. The
lumping is SE. The loops at b1 and b2 imply that the lumped process is not HMC(k) for every k, regardless
of the distribution of X0. This is easily seen by the inability to differentiate between n consecutive b1 and
n consecutive b2. When starting in B and as long as P(X1 = a | X0 = b1) 	= P(X1 = a | X0 = b2) and
P(X1 = b1 | X0 = b1) 	= P(X1 = b2 | X0 = b2), this long sequence of Bs prevents determining the

probability of entering A. Thus, it is neither SFS(k) nor strongly k-lumpable for each k.
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strongly k-lumpable

weakly k-lumpable

H
–

(Y ) = H(Yk |Y[0, k – 1])

H(Yk |Y[0,k–1]) = H(Yk |Y[k – 1], X0)

H
–

(X|Y ) = 0

H
–

(Y ) = H(Yk |Y[k – 1],X0)

K = ∞
Figure 2

Figure 4

[17, p. 139]

Example 2.1

Figure 3

SE

Fig. 6

 SFS(k)

Figure 5

(k = 2)

Figure 3
(k = 1)

Figure 6: Venn diagram of the relation between different classes and location of counterexamples in this
paper.

Definition 4. For k ≥ 2, a lumping (P, g) has the single forward k-sequence property (denoted
by SFS(k)), if and only if, for all y ∈ Yk−1 and y ∈ Y, there exists x′ ∈ g−1(y) such that

P(X[k−1] = x | Y[k−1] = y, X0 = x) = 0, for all x ∈ g−1(y), x ∈ g−1(y) \ {x′}, (11)

i.e. there is at most one realisable sequence in the preimage g−1(y) starting in y.

The SFS(k) property implies entropy rate preservation and strong k-lumpability.

Proposition 5. If (P, g) is SFS(k), then it is strongly k-lumpable and SE.

Figure 6 gives an overview of the various classes and examples, in particular showing that
the sufficient conditions are not necessary.
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Example 1. Consider the following transition matrix, where the lines divide lumped states:

P :=

⎡⎢⎢⎣
0. 0.4 0 0
0.3 0.2 0.1 0.4

0.2 0.05 0.375 0.375
0.2 0.05 0.375 0.375

⎤⎥⎥⎦ .

This lumping is strongly 2-lumpable and satisfies (9a) with

H̄ (Y ) = H(Y2 | Y[0,1]) = H(Y2 | Y1, X0) = 0.733

(with an accuracy of 0.001). However, it does not preserve entropy: 1.480 = H̄ (X) > H̄(Y ),
whence it is neither SE nor SFS(2).

2.6. Further discussion

The study of functions of Markov chains has a long tradition, in particular, whether a function
of a Markov chain possesses the Markov property or not [5], [22]. Kemeny and Snell [17] coined
the term lumpability for retaining the Markov property. Gurvits and Ledoux [13] analysed
higher-order lumpability, as we use in this work. They showed that the class of Markov chains
being lumpable is nowhere dense.

A related problem is the identification problem, initially posed by Blackwell and Koop-
manns [4]: given a stationary process on a finite state space, is it representable by a lumping
of a Markov chain? The question of existence of a finite state space representation has a long
tradition [1], [11], [15], without a definite algorithmic solution. Two results from research into
this topic have a connection to the present work. Firstly, Carlyle [6] showed that every stationary
stochastic process on a finite state space is representable as a lumping of a Markov chain on
an at most countable state space. The representation is SE. If it involves a Markov chain on a
finite state space then Proposition 4 guarantees entropy rate preservation of the representation.

Secondly, Gilbert [11] showed that the distribution of a lumping of a finite-state Markov
chain is uniquely determined by the distribution of m consecutive samples, where m depends
on the cardinalities of the input and output alphabet. This does not contradict the nowhere

a1b1

c

a2b2

A

C

B

Figure 7: The transition graph of a Markov chain with the lumping represented by dashed boxes. After
at most two steps one either enters a new lumped state at a unique original state or is circling in either b1
or a1. Hence, this lumping is SFS(2) and not strongly 1-lumpable. The space of Markov chains with this
transition graph contains at least the interior of a multi-simplex in R

13, parametrised by eigth parameters
(13 directed edges minus five nodes).
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dense result of Gurvits and Ledoux [13], since the construction of the process distribution is
different from a product of conditional distributions (as it is in the case of lumpability).

Moreover, the nowhere dense property does not prevent our results from being practically
relevant. In particular, our sufficient condition holds for nontrivial lower-dimensional subspaces
of the space of Markov transition matrices; see Figure 7. In other words, if the transition matrix
is sufficiently sparse, one can hope that the lumping satisfies some of our sufficient conditions.
More generally, one can hope that for a given Markov model there exists a lumping function with
a desired output alphabet size such that the resulting lumping satisfies our sufficient conditions.
Sparse transition matrices appear, e.g. in n-gram models in automatic speech recognition [2,
Table 1], chemical reaction networks [14], [16], [25], and link prediction and path analysis [23].
That the sufficient conditions for entropy preservation and weak k-lumpability are not overly
restrictive was recently shown for a letter bi-gram model [10]: the bi-gram model exhibited the
SFS(2)-property and, thus, permitted lossless compression.

In the nonstationary case, i.e. with X0 having a different distribution than the invariant one,
we are still stationary in the asymptotic mean [12], [18]. In particular, we have entropy rates
and an ergodic theorem. Hence, all statements of this paper should generalise to this setting.
Whether we can drop the restriction to aperiodic and irreducible chains is a more difficult
question.

We give crude upper bounds on the algorithmic complexity of checking the properties
introduced in the present paper. By Proposition 2, determining the finiteness and value of
K takes at most O(exp((1 + |X|2) log |Y|)) steps. We can check the SE property in O(|X|2)
steps and the SFS(k) property in O(|X|k) steps. Finally, the verification of strong k-lumpability
via (9a) requires O(|X|k+1) steps. The last bound is of a similar order as Gurvits and Ledoux’s
algorithm for weak k-lumpability [13, Section 2.2.2].

There is another notion of information loss through lumping: Lindqvist [19] discussed
sufficient statistics for estimating X0 from Yn. Gurvits and Ledoux introduced g-observability
[13, Section 3] for determining X0 from Y[0,n]. Simple examples show that entropy rate
preservation is independent of g-observability.

3. Proof of entropy rate preservation

Proof of Theorem 1. Statement (4) follows from the mutually exhaustive implications

K < ∞ 
⇒ H̄ (X | Y ) > 0, (12a)

K = ∞ 
⇒ H̄ (X | Y ) = 0, (12b)

and
K < ∞ 
⇒ there exists C > 1 such that P

(
lim inf
n→∞

n
√

Tn ≥ C
)

= 1, (13a)

K = ∞ 
⇒ there exists C < ∞ such that P

(
sup

n→∞
Tn ≤ C

)
= 1. (13b)

The proofs of implications (12b), (13b), and Proposition 1 are given in Section 3.1 and the
proofs of implications (12a), (13a), and Proposition 2 are given in Section 3.4. Sections 3.2
and 3.3 contain technical results about Markov chains needed in the proof of the loss case in
Section 3.4.
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3.1. The preservation case

The definition of K in (3) implies that lumped trajectories of length less than K have a
unique preimage contingent on the endpoints, i.e. if n < K , then, for all x̌, x̂ ∈ X and y ∈ Yn,

P(X0 = x̌, Y[n] = y, Xn+1 = x̂) > 0


⇒ there exists exactly one x ∈ Xn such that

P(X[n] = x | X0 = x̌, Y[n] = y, Xn+1 = x̂) = 1. (14)

Proof of Proposition 1. We assume that n− 2 < K . The unique preimage (14) implies that
the conditional entropy of the interior of a block, given its lumped image and the states at its
ends, is 0:

H(X[2,n−1] | X1, Xn, Y[n])

=
∑
y∈Yn

x̌,x̂∈X

P(X1 = x̌, Xn = x̂, Y[n] = y) H(X[2,n−1] | X1 = x̌, Xn = x̂, Y[n] = y)︸ ︷︷ ︸
=0 by (14)

= 0. (15)

We apply the chain rule of entropy (compare [7, p. 22]) to decompose the conditional block
entropy into its interior and its boundary. The interior vanishes by (15) and the entropy at the
endpoints is maximal for the uniform distribution:

H(X[n] | Y[n]) = H(X[2,n−1] | X1, Xn, Y[n]) + H(X1, Xn | Y[n])
≤ 0 + H(X1, Xn | Y1, Yn)

≤ H(X1 | Y1) + H(Xn | Yn)

≤ 2 max {ld |g−1(y)| : y ∈ Y}
≤ 2 ld(|X| − |Y| + 1).

Proof of (12b). As K = ∞, the bound from (5) holds uniformly. Thus,

H̄ (X | Y ) = lim
n→∞

1

n
H(X[n] | Y[n]) ≤ lim

n→∞
2 ld(|X| − |Y| + 1)

n
= 0.

Proof of (13b). Recall, we assume that K = ∞. We show, for all y ∈ Yn with P(Y[n] =
y) > 0, we have

P(Tn ≤ (|X| − |Y| + 1)2 | Y[n] = y) = 1. (16)

This implies (13b). To show (16), we use (14) to bound∑
x∈g−1(y)

[P(X[n] = x) > 0]

=
∑

x1,xn∈g−1(y{1,n})
[P(X1 = x1, Xn = xn | Y[n] = y) > 0]

×
∑

x∈g−1(y[2,n−1])
[P(X[2,n−1] = x | X1 = x1, Xn = xn, Y[2,n−1] = y[2,n−1]) > 0]
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≤
∑

x1,xn∈g−1(y{1,n})
[P(X1 = x1, Xn = xn | Y[n] = y) > 0]

≤ |g−1(y{1,n})|
≤ (|X| − |Y| + 1)2.

3.2. Nonoverlapping traversal instants

The main result of this section is an almost-sure linear lower growth bound for nonover-
lapping occurrences of a fixed, finite pattern in a realisation in Proposition 6.

Let Z := (Zn)n∈N be a stationary stochastic process taking values in Z. The occupation
instants of a state z is the set of indices

Oz
Z(n) := {i ∈ [n] : Zi = z}.

The classic occupation time [20, Section 6.4] is the cardinality of the occupation instants. The
traversal instants of a sequence z ∈ Zk is the set of indices

T z
Z (n) := {i ∈ [n − k + 1] : Z[i,i+k−1] = z}.

The nonoverlapping traversal instants of a sequence z ∈ Zk is the set of indices

N z
Z(n) := {i ∈ [n− k +1] : Z[i,i+k−1] = z for all j ∈ [i +1, i + k −1] : Z[j,j+k−1] 	= z}

where we select lower indices greedily.
For k ∈ N, the k-transition process Z(k) of Z is the stochastic process on Zk with marginals

P(Z
(k)
[n] = (zi )ni=1) = P(Z[n−1] = (zi{1})

n−1
i=1 , Z[n,n+k−1] = zn)

if, for all i ∈ [n − 1], zi
[2,k] = zi+1

[k−1], and 0 otherwise. Obvious relations are

T z
Z (n) = Oz

Z(k) (n − k) (17a)

and

N z
Z(n) ⊆ T z

Z (n) with |N z
Z(n)| ≥ 1

k
|T z

Z (n)|. (17b)

Proposition 6. Let s ∈ Xk be realisable with p := P(X[k] = s | X1 = s{1}) > 0. Then

P

(
lim inf
n→∞

1

n
|N s

X(n)| ≥ pμ(s{1})
k

)
= 1 (18a)

and

lim
n→∞ P

(
|N s

X(n)| ≥
(

pμ(s{1})
k

− ε

)
n

)
= 1 for all ε > 0. (18b)

Lemma 2. (Ergodic theorem [26, Theorem 3.55, p. 69].) For every homogeneous, irreducible,
and aperiodic Markov chain Z := (Zn)n∈N on a finite state space Z with invariant measure ν,
all f : Z → R, and each starting distribution α ∈ M1(Z) of Z1, we have

Pα

(
lim

n→∞
1

n

n∑
i=1

f (Zi) =
∫

Z
f (z) dν(z) =: ν(f )

)
= 1.
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Proof of Proposition 6. Statement (18b) is a direct consequence of (18a).

The k-transition process X(k) of X is a homogeneous Markov chain with transition proba-
bilities

P(X
(k)
2 = x′ | X

(k)
1 = x) =

{
P(Xk+1 = x′{k} | Xk = x{k}) if x[2,k] = x′[k−1],
0 otherwise.

Furthermore, as X is irreducible and aperiodic then so is X(k). Its invariant measure μ(k) fulfils
μ(k)(x) = μ(x{1})

∏k−1
i=1 P(X2 = x{i+1} | X1 = x{i}).

Let f be the indicator function of s. We use (17a), (17b), and Lemma 2 to obtain

P

(
lim inf
n→∞

1

n
|N s

X(n)| ≥ μ(k)(f )

k

)
≥ P

(
lim inf
n→∞

1

n
|T s

X(n)| ≥ μ(k)(f )

)
= P

(
lim inf
n→∞

1

n
|Os

X(k) (n − k)| ≥ μ(k)(f )

)
= P

(
lim

n→∞
1

n
|Os

X(k) (n)| ≥ μ(k)(f )

)
= 1.

Finally, μ(k)(f ) = μ(k)(s) = pμ(s{1}).

3.3. Conditional Markov property

In this section we present two technical statements about discrete Markov processes. Let
X := (Xn)n∈N0 be a stochastic process on the cartesian product S := ∏

n∈N0
Sn of the finite

sets (Sn)n∈N0 . For A ⊆ N0, let SA := ∏
n∈ASn. In the remainder of this section, we assume

that all conditional probabilities are well defined. The process X is Markov, if and only if, for
all n, m ∈ N, m ≤ n, sn ∈ Sn, and s[n−m,n−1] ∈ S[n−m,n−1]:

P(Xn = sn | X[n−m,n−1] = s[n−m,n−1]) = P(Xn = sn | Xn−1 = sn−1). (19)

We denote by A � N0 the fact that A is a finite subset of N0. The first statement is a factorisation
of conditional probabilities over disjoint index blocks: for all ∅ 	= B0, A1, B1, . . . , Bm−1, Am,

Bm � N0, A ∩ B = ∅, where A := ⊎m
i=1 Ai and B := ⊎m

i=0 Bi , xA ∈ SA, and xB ∈ SB (for
all i ∈ [m], b−

i := min(Bi−1) < min(Ai) and max(Ai) < min(Bi) =: b+
i ):

P(XA = xA | XB = xB) =
m∏

i=1

P(XAi
= xAi

| Xb−
i

= xb−
i
, Xb+

i
= xb+

i
). (20)

Secondly, a Markov process retains the Markov property under a cartesian conditioning:
for all ∅ 	= C � N0, and where SC := ∏

n∈C Sn with Sn ⊆ Sn:

(X | XC ∈ SC) is Markov. (21)

To prove this, we need the following intermediate statements. For all n ∈ N, ∅ 	= B ⊆
[0, n − 1], xn ∈ Sn, and xB ∈ SB :

P(Xn = xn | XB = xB) = P(Xn = xn | Xmax(B) = xmax(B)). (22)

For all ∅ 	= A, B � N0, b := max(B) < min(A), xA ∈ SA, and SB ⊆ {xb} × SB\{b}:

P(XA = xA | XB ∈ SB) = P(XA = xA | Xb = xb). (23)

https://doi.org/10.1239/jap/1421763331 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763331


Lumpings of Markov chains 1127

Proof of (22). Let b := max(B), C := [b + 1, n − 1], and D := [min(B), b] \ B. We use
(19) to obtain

P(Xn = xn | XB = xB)

=
∑

xC,xD
P(Xn = xn, XC = xC, XB = xB, XD = xD)

P(XB = xB)

=
∑

xC,xD
P(Xn = xn, XC = xC | XB = xB, XD = xD)P(XB = xB, XD = xD)

P(XB = xB)

=
∑

xC
P(Xn = xn, XC = xC | Xb = xb)

∑
xD

P(XB = xB, XD = xD)

P(XB = xB)

= P(Xn = xn | Xb = xb).

Proof of (20). For A � N0, we abbreviate the event EA := [XA = xA]. Apply (22) in order
to obtain

P(XA = xA | XB = xB)

= P(XA = xA, XB = xB)

P(XB = xB)

=
P(EB0 )

∏m
i=1 P(E

Bi\{b+
i

} | (EAj
)j≤i ,(EBj

)j<i,Eb
+
i

)P(E
b
+
i

,EAi
| (EAj

)j<i,(EBj
)j<i)

P(EB0 )
∏m

i=1 P(E
Bi\{b+

i
} | (EBj

)j<i,Eb
+
i

)P(E
b
+
i

| (EBj
)j<i)

=
m∏

i=1

P(EBi\{b+
i } | Eb+

i
)P(Eb+

i
, EAi

| Eb−
i
)

P(EBi\{b+
i } | Eb+

i
)P(Eb+

i
| Eb−

i
)

=
m∏

i=1

P(EAi
| Eb−

i
, Eb+

i
).

Proof of (23). Let b := max(B). We apply (22) to obtain

P(XA = xA | XB ∈ SB) =
∑

xB∈SB
P(XA = xA, XB = xB)

P(XB ∈ SB)

=
∑

xB∈SB
P(XA = xA | Xb = xb)P(XB = xB)

P(XB ∈ SB)

= P(XA = xA | Xb = xb).

Proof of (21). Let n, m ∈ N with m ≤ n. Let B := [n − m, n − 1], xn ∈ Sn, and xB ∈ SB .
Let C+ := C \ [0, n − 1] and C− := C ∩ [0, n − 1]. Thus, SC = SC− × SC+ . We apply (23)
twice to show that (X | XC ∈ SC) fulfils (19) and is thus Markov:

P(Xn = xn | XB = xB, XC ∈ SC)

= P(Xn = xn, XC+ ∈ SC+ , XB = xB, XC− ∈ SC−)

P(XB = xB, XC ∈ SC)

= P(Xn = xn, XC+ ∈ SC+ | XB = xB, XC− ∈ SC−)P(XB = xB, XC− ∈ SC−)

P(XC+ ∈ SC+ | XB = xB, XC− ∈ SC−)P(XB = xB, XC− ∈ SC−)

= P(Xn = xn, XC+ ∈ SC+ | Xn−1 = xn−1)

P(XC+ ∈ SC+ | Xn−1 = xn−1)

= P(Xn = xn | Xn−1 = xn−1, XC+ ∈ SC+)
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= P(Xn = xn | Xn−1 = xn−1, XC+ ∈ SC+ , XC− ∈ SC−)

= P(Xn = xn | Xn−1 = xn−1, XC ∈ SC).

3.4. The loss case

We start with derivations common to the proofs of (12a) and (13a). We assume that K < ∞.
Equation (3) is equivalent to the existence of x̌, x̂ ∈ X, y ∈ YK , and x ∈ g−1(y) with

0 < P(X0 = x̌, X[K] = x, XK+1 = x̂) < P(X0 = x̌, Y[K] = y, XK+1 = x̂). (24)

Let s := (x̌, x, x̂). The unreconstructable set of trajectories H is

H := {x̌} × g−1(y) × {x̂}.

Equation (3) implies that H contains at least two elements with positive probability. If we pass
through H , then we incur an entropy loss L:

L := H(X[K] | X[0,K+1] ∈ H) > 0. (25)

Let � be the random set of indices marking the start of nonoverlapping runs of X[n] through
H , that is

� := {i ∈ [n − K − 1] : X[i,i+K+1] ∈ H and, for all j ∈ [i + 1, i + K + 1],
X[j,j+K+1] 	∈ H},

where we select lower indices greedily. Taking s from just after (24), we lower bound the tail
probability of the cardinality of � by that of N s

X(n):

P(|� | ≥ m) ≥ P(|N s
X(n)| ≥ m) for all m ∈ N. (26)

Finally, let

α := P(X[K+2] = s)

2(K + 2)
> 0.

Proof of (12a). We claim that, for every m ∈ N,

H(X[n] | Y[n]) ≥ P(|� | ≥ m)H(X[n] | Y[n], |� | ≥ m) ≥ P(|� | ≥ m)mL. (27)

Combining (26) and (27) for m = αn with (18b), we arrive at (12a)

H̄ (X | Y ) = lim
n→∞

1

n
H(X[n] | Y[n])

≥ lim
n→∞

1

n
P(|� | ≥ αn)αnL

≥ αL lim
n→∞ P(|N s

X(n)| ≥ αn)

= αL

> 0. (28)

https://doi.org/10.1239/jap/1421763331 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763331


Lumpings of Markov chains 1129

It remains to prove (27). We fix m, n ∈ N. For I ⊆ [n] with P(� = I ) > 0 and each i ∈ I ,
we derive the indices of the block Bi := [i, i + K + 1] and its interior B̂i := [i + 1, i + K].
Their unions are B := ⊎

i∈IBi and B̂ := ⊎
i∈I B̂i , respectively. Hence,

H(X[n] | Y[n], � = I ) ≥ H(XB̂ | X[n]\B, for all i ∈ I : XBi
∈ H) (29a)

= H(XB̂ | for all i ∈ I : XBi
∈ H) (29b)

=
∑
i∈I

H(XB̂i
| XBi

∈ H) (29c)

= |I | × L, (29d)

where in (29a) we discard all information outside B̂ and condition on it, in (29b) we apply
the conditional factorisation (20) to remove every condition except the block ends, in (29c) we
apply the conditional factorisation (20) to the Markov process (X | XB ∈ H |I |) (as H is a
cartesian product), and in (29d) we conclude by stationarity and the minimum loss (25). Hence,

H(X[n] | Y[n], |� | ≥ m) =
∑

I⊆[n], |I |≥m

P(� = I | |� | ≥ m)H(X[n] | Y[n], � = I )

≥
∑

I⊆[n], |I |≥m

P(� = I | |� | ≥ m) × |I | × L

≥ mL.

Proof of (13a). Taking s from just after (24), we have

Tn ≥ 2|N s
X(n)|. (30)

Thus, (18a) and (30) imply that

lim inf
n→∞

n
√

Tn ≥ lim inf
n→∞ exp

(
(log 2)

1

n
|N s

X(n)|
)

= exp

(
(log 2) lim inf

n→∞
1

n
|N s

X(n)|
)

P−a.s.≥ exp((log 2)α) (31)

= 2α > 1.

Proof of Proposition 2. Let x0, xK+1, y, x′, x′′ be as in (3). Suppose that K > K :=∑
y∈Y|g−1(y)|(|g−1(y)| − 1) and K > 1. We apply the pigeonhole principle, first to every

x ∈ g−1(y) and then to each g−1(y) for every y ∈ supp y. This ensures that the two trajectories
intersect:

there exists m ∈ [K] such that x′{m} = x′′{m}. (32)

Choose m to satisfy (32). If m = 1, then x′{1}, xK+1, y[2,K], x′[2,K], and x′′[2,K] fulfill the
conditions in (3). If m > 1, then x0, x

′{m}, y[m−1], x′[m−1], and x′′[m−1] fulfill the conditions
in (3). Both cases lead to K < K , which is a contradiction.

4. Proof of strong k-lumpability

For (conditional) probabilities, we use the shorthand notation

P(Z = z) = pZ(z) and P(Z1 = z1 | Z2 = z2) = pZ1 | Z2(z1 | z2),
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where we always assume that the latter is well defined, i.e. that pZ2(z2) > 0. Recall that the
conditional mutual information of Z1 and Z2 given Z3 is

I (Z1; Z2 | Z3) := H(Z1 | Z3) − H(Z1 | Z2, Z3).

The conditional mutual information vanishes, if and only if Z1 and Z2 are conditionally
independent given Z3 [7, Theorem 2.6.3].

Proof of Proposition 3. The right-hand side of (7) is equivalent to

0 = H(Zk | Z[0,k−1]) − H̄ (Z)

= H(Zk | Z[0,k−1]) − lim
n→∞ H(Zn | Z[0,n−1])

= lim
n→∞(H(Zn | Z[n−k,n−1]) − H(Zn | Z[0,n−1]))

= lim
n→∞ I (Zn; Z[0,n−k−1] | Z[n−k,n−1]).

By stationarity, the sequence in the last limit increases monotonically in n. A limit value of
zero is equivalent to

pZn | Z[n−k,n−1](· | z)pZ[0,n−k−1] | Z[n−k,n−1](· | z)

= pZn,Z[0,n−k−1] | Z[n−k,n−1](· | z)

= pZn | Z[0,n−1](· | ·, z)pZ[0,n−k−1] | Z[n−k,n−1](· | z) for all n ∈ N,

where the first equality holds pZ[n−k,n−1] -a.s. The equality between the first and last line is
equivalent to the higher-order Markov property (6).

Proof of Theorem 2. The equivalence in (9) follows from the equivalence of its two state-
ments to the following technical property: for all y′, y ∈ Y, y ∈ Yk−1, and x ∈ g−1(y):

pYk,Y[k−1],X0(y
′, y, x) > 0


⇒ 0 < pYk | Y[k−1],X0(y
′ | y, x) = pYk | Y[k−1],Y0(y

′ | y, y). (33)

The equivalence between (9a) and (33) is in Proposition 7, and the equivalence between (9b)
and (33) is in Proposition 8.

Proposition 7. For a lumping (P, g), property (9a) is equivalent to (33).

Proof. We rewrite (9a) as

0 = H(Yk | Y[0,k−1]) − H(Yk | Y[k−1], X0)

= H(Yk | Y[0,k−1]) − H(Yk | Y[0,k−1], X0)

= I (Yk; X0 | Y[0,k−1]).

For all y′ ∈ Y, y ∈ Yk , and x ∈ X with pYk,Y[0,k−1],X0(y
′, y, x) > 0, this is equivalent to

0 < pYk,X0 | Y[0,k−1](· | y) = pYk | Y[0,k−1](· | y)pX0 | Y[0,k−1](· | y).

Division in the previous line equals (33).

Proposition 8. A lumping (P, g) is strongly k-lumpable, if and only if (33) holds.

Proof. This is a straightforward generalization of the proof for the case k = 1 in [17].
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5. Proofs of the sufficient conditions

We use the shorthand notation introduced at the beginning of Section 4.

Proof of Proposition 4. We have

H(Yk | Xk−1) ≤ H(Yk | Y[k−1], X0) ≤ H̄ (Y ) ≤ H̄ (X) = H(Xk | Xk−1),

where the first and the second inequality are due to [7, Theorem 4.5.1, p. 86] (compare Lemma 1)
and the third inequality is due to data processing [9], [24]. The SE property implies that
pXk,Xk−1 -a.s.

pYk | Xk−1(y | x) = pXk | Xk−1(x
′(x, y) | x),

where x′(x, y) is a unique endpoint of the edge existing by (10). Thus, the outer terms in the
above chain of inequalities coincide, yielding H̄ (Y ) = H̄ (X). This completes the proof.

Proof of Proposition 5. First, we show that SFS(k) is a subclass of SE, implying preservation
of entropy. If SE does not hold, then there exist states y� ∈ Y and x� ∈ X such that at least two
states x′, x′′ ∈ g−1(y�) have positive transition probabilities from x�. Choose a realisable path
x[0,k−3], with positive transition probability from xk−3 to x�. Let y = (g(x[k−3]), g(x�), y�) ∈
Yk−1. We have

pX[k−1] | Y[k−1],X0(x[k−3], x�, x′ | y, x{0}) > 0

and
pX[k−1] | Y[k−1],X0(x[k−3], x�, x′′ | y, x{0}) > 0.

This contradicts the definition of SFS(k) (11).
Second, we show that SFS(k) implies strong k-lumpability of (P, g). We check (33) and

then conclude via Proposition 8. We have pY[k−1],X0 -a.s. a unique x′(g(X0), Y[k−1]) ∈ Xk−1

fulfilling (11). Hence,

pYk | Y[k−1],X0(y | y, x)

= pYk | Y[k−1],X[k−1],X0(y | y, x′(g(x), y), x) pX[k−1] | Y[k−1],X0(x
′(g(x), y) | y, x)︸ ︷︷ ︸

=1 by (11)

= pYk | X[k−1],X0(y | x′(g(x), y), x)

= pYk | Xk−1(y | x′(g(x), y){k−1}) (by the Markov property of X)

is independent of x and (33) holds.

Acknowledgements

We thank Gernot Kubin and Wolfgang Woess for establishing contact between us, leading
to our joint investigation of this topic. We are particularly indebted to our anonymous reviewer
for his/her thoughtful comments and encouragement to elaborate the section concerning
k-lumpability.

References

[1] Anderson, B. D. O. (1999). The realization problem for hidden Markov models. Math. Control Signals Systems
12, 80–120.

[2] Brown, P. F. et al. (1992). Class-based n-gram models of natural language. Comput. Linguist. 18, 467–479.

https://doi.org/10.1239/jap/1421763331 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763331


1132 B. C. GEIGER AND C. TEMMEL

[3] Blackwell, D. (1957). The entropy of functions of finite-state Markov chains. In Trans 1st Prague Conf.
Inf. Theory, Statist. Decision Functions, (Liblice, 1956). Publishing House of the Czechoslovak Academy of
Sciences, Prague, pp. 13–20.

[4] Blackwell, D. and Koopmans, L. (1957). On the identifiability problem for functions of finite Markov chains.
Ann. Math. Statist. 28, 1011–1015.

[5] Burke, C. J. and Rosenblatt, M. (1958). A Markovian function of a Markov chain. Ann. Math. Statist. 29,
1112–1122.

[6] Carlyle, J. W. (1967). Identification of state-calculable functions of finite Markov chains. Ann. Math. Statist.
38, 201–205.

[7] Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory, 2nd edn. John Wiley, Hoboken, NJ.
[8] Ephraim, Y. and Merhav, N. (2002). Hidden Markov processes. IEEE Trans. Inf. Theory 48, 1518–1569.
[9] Geiger, B. C. and Kubin, G. (2011). Some results on the information loss in dynamical systems. In Proc. IEEE

Internat. Symp. Wireless Commun. Systems (ISWSC), IEEE, New York, pp. 794–798, 2011. Extended version
available at http://uk.arxiv.org/abs/1106.2404.

[10] Geiger, B. C. and Temmel, C. (2013). Information-preserving Markov aggregation. In Proc. IEEE Information
Theory Workshop (ITW), IEEE, New York, pp. 258–262. Extended version available at http://uk.arxiv.org/
abs/1304.0920.

[11] Gilbert, E. J. (1959). On the identifiability problem for functions of finite Markov chains. Ann. Math. Statist.
30, 688–697.

[12] Gray, R. M. (1990). Entropy and Information Theory. Springer, New York.
[13] Gurvits, L. and Ledoux, J. (2005). Markov property for a function of a Markov chain: a linear algebra

approach. Linear Algebra Appl. 404, 85–117.
[14] Heiner, M., Rohr, C., Schwarick, M. and Streif, S. (2010). A comparative study of stochastic analysis

techniques. In Proc. 8th Internat. Conf. Comput. Meth. Systems Biol., ACM, New York, pp. 96–106.
[15] Heller, A. (1965). On stochastic processes derived from Markov chains. Ann. Math. Statist. 36, 1286–1291.
[16] Henzinger, T. A., Mikeev, L., Mateescu, M. and Wolf, V. (2010). Hybrid numerical solution of the chemical

master equation. In Proc. 8th Internat. Conf. Comput. Meth. Systems Biol., ACM, New York, pp. 55–65.
[17] Kemeny, J. G. and Snell, J. L. (1976). Finite Markov Chains. Springer, New York.
[18] Kieffer, J. C. and Rahe, M. (1981). Markov channels are asymptotically mean stationary. SIAM J. Math. Anal.

12, 293–305.
[19] Lindqvist, B. (1978). On the loss of information incurred by lumping states of a Markov chain. Scand. J. Statist.

5, 92–98.
[20] Parzen, E. (1999). Stochastic Processes (Classics Appl. Math. 24). Society for Industrial and Applied

Mathematics, Philadelphia, PA.
[21] Pinsker, M. S. (1964). Information and Information Stability of Random Variables and Processes. Holden-Day,

San Francisco, CA.
[22] Rogers, L. C. G. and Pitman, J. W. (1981). Markov functions. Ann. Prob. 9, 573–582.
[23] Sarukkai, R. R. (2000). Link prediction and path analysis using Markov chains. Comput. Networks 33, 377–386.
[24] Watanabe, S. and Abraham, C. T. (1960). Loss and recovery of information by coarse observation of stochastic

chain. Inf. Control 3, 248–278.
[25] Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton, FL.
[26] Woess, W. (2009). Denumerable Markov chains. Generating Functions, Boundary Theory, Random Walks on

Trees. European Mathematical Society, Zürich.

https://doi.org/10.1239/jap/1421763331 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763331

	1 Introduction
	2 Main results
	2.1 Preliminaries
	2.2 Setting
	2.3 Characterisation of the entropy rate loss
	2.4 Characterisation of strong k-lumpability
	2.5 Sufficient conditions
	2.6 Further discussion

	3 Proof of entropy rate preservation
	3.1 The preservation case
	3.2 Nonoverlapping traversal instants
	3.3 Conditional Markov property
	3.4 The loss case

	4 Proof of strong k-lumpability
	5 Proofs of the sufficient conditions
	Acknowledgements
	References

