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Abstract. The title refers to the nilcommutative or NC-schemes introduced by M. Kapranov
in ‘Noncommutative Geometry Based on Commutator Expansions’, J. Reine Angew. Math

505 (1998) 73–118. The latter are noncommutative nilpotent thickenings of commutative
schemes. We also consider the parallel theory of nil-Poisson or NP-schemes, which are nilpo-
tent thickenings of commutative schemes in the category of Poisson schemes. We study several

variants of de Rham cohomology for NC- and NP-schemes. The variants include nilcommu-
tative and nil-Poisson versions of the de Rham complex as well as of the cohomology of the
infinitesimal site introduced by Grothendieck in Crystals and the de Rham Cohomology of
Schemes, Dix exposés sur la cohomologie des schémas, Masson, Paris (1968), pp. 306–358. It

turns out that each of these noncommutative variants admits a kind of Hodge decomposition
which allows one to express the cohomology groups of a noncommutative scheme Y as a sum
of copies of the usual (de Rham, infinitesimal) cohomology groups of the underlying commu-

tative scheme X (Theorems 6.1, 6.4, 6.7). As a byproduct we obtain new proofs for classical
results of Grothendieck (Corollary 6.2) and of Feigin and Tsygan (Corollary 6.8) on the rela-
tion between de Rham and infinitesimal cohomology and between the latter and periodic cyc-

lic homology.

Mathematics Subject Classifications (2000). 14A22, 14F40, 19D55.

Key words. commutator filtration, cyclic homology, Grothendieck topology.

1. Introduction

In this paper we study the de Rham theory of the nilcommutative or NC-schemes

introduced by Kapranov in [17]. To start, let us recall the definitions of NC-algebras

and schemes and introduce differential forms for such objects. We consider algebras

and schemes over a fixed field k of characteristic zero. Recall an associative algebra R

is nilcommutative of order 4 l or an NCl-algebra if for the commutator filtration
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F0R ¼ R; Fnþ1R :¼
Xn

p¼1

FpR � Fnþ1�pRþ
Xn

p¼0

h½FpR;Fn�pR�i ð1Þ

we have Flþ1R ¼ 0. For every NCl-algebra R there is defined a noncommutative

locally ringed space SpecR. Its underlying topological space is the prime spectrum

of the commutative algebra A ¼ R=F1R; the stalk at p 2 SpecA is the Øre localiza-
tion of R at the inverse image of p under the projection R�A. Prime spectra of NCl-

algebras are called affine NCl-schemes. In general, an NCl-scheme is a locally ringed

space that can be covered by affine NCl-schemes. If Y ¼ ðY;OYÞ is an NCl-scheme

then Y½0� ¼ ðY;OY=F1OYÞ is a commutative (i.e. usual) scheme. In particular an

NC0-scheme is just a commutative or Comm-scheme. There is a natural notion of

differential forms for NCl-schemes, as follows. For R 2 NCl we define its

NCl �DGA of differential forms as the quotient

ONCl
R ¼

OR

Flþ1OR
ð2Þ

of the usual DGA of noncommutative forms ([9]) by the lþ l th term of its commu-

tator filtration (taken in the DG sense). For example if R is commutative and l ¼ 0,

then this is the usual commutative DGA of Kähler forms. One checks that ONCl
loca-

lizes (in the Øre sense), and thus defines a sheaf of NCl �DGA’s on SpecR which is

quasi-coherent in the sense that each term Op
NCl
comes from an R-bimodule and its

(Øre) localizations (see Sections 2 and 4 below). Thus for every NCl-scheme Y there

is defined a quasi-coherent sheaf ONCl
of NCl �DGA’s. We compute its cohomology

in the formally smooth case. Recall from [17] that an NCl-algebra R is formally NCl-

smooth if homNCl
ðR; �Þ carries surjections with nilpotent kernel into surjections. We

call an NCl-scheme formally NCl-smooth if it can be covered by spectra of formally

NCl-smooth algebras. We remark that Y formally NCl-smooth ) Y ½0� formally

Comm-smooth. We show (Corollary 6.2) that if Y is formally NCl-smooth, then

for X ¼ Y ½0�,

H
ðYzar;ONCl
Þ :¼ H
ðXzar;ONCl

OYÞ ¼ H
ðXzar;OCommÞ ¼: H
dRX ð3Þ

is just the usual de Rham cohomology of the underlying commutative scheme. In the

affine case, because of the quasi-coherence of the Zariski sheaf ONCl
its hypercoho-

mology is just the cohomology of its global sections (cf. (27)) and we have

H
ðONCl
RÞ ¼ H
ðSpecR;ONCl

Þ ¼ H
ðSpecA;OCommÞ ¼ H 
ðOCommAÞ ¼: H 
dRA:

This contrasts with the fact that for every R 2 Ass the usual DGA of noncommu-

tative forms is acyclic, that is

HnðORÞ ¼
k if n ¼ 0;
0 if n 6¼ 0:

�
Recall, however, that if we divide OR by its commutator subspace we get the image

of the periodicity map in cyclic homology ([19, 2.6.7])
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Hn OR

½OR;OR�

� �
¼ sðHCnþ2RÞ � HCnR;

which is nontrivial in general. For example if A is smooth commutative then

([19, 5.1.12])

Hn OA

½OA;OA�

� �
¼

M
2m4 n

Hn�2m
dR A

We show (see 8.3.1 below) that if R is formally NCl-smooth, then for A ¼ R=F1R,

Hn ONCl
R

½ONCl
R;ONCl

R�

� �
¼
Ml

m¼0

Hnþ2m
dR A:

Note that Hnþ2m
dR A is the nth cohomology of the complex

t2mOCommA:
O2mCommA

dO2m�1CommA
! O2mþ1CommA! � � � ð4Þ

which has O2mCommA=dO2m�1CommA in degree zero. We show (Corollary 6.5) that if Y is a

formally NCl-smooth scheme then for X ¼ Y½0�

Hn YZar;
ONCl

½ONCl
;ONCl

�

� �
¼
Ml

m¼0

Hnþ2m
ðXZar; t2mOCommÞ: ð5Þ

Here X ¼ Y½0�, and ONCl
=½ONCl

;ONCl
� and t2mOComm are the sheafified complexes. In

particular the 0th term of t2mOComm is the sheaf cokernel of d : O2m�1Comm ! O2mComm; it is
not a quasi-coherent sheaf. There is always a map Hnþ2m

dR ðXÞ ! Hn
ðX; t2mOCommÞ

induced by the projection OComm½2m�� t2mOComm but it is not an isomorphism in
general, not even if X is affine. Hence, in general

H
 SpecR;
ONCl

½ONCl
;ONCl

�

� �
6¼ H


ONCl
R

½ONCl
R;ONCl

R�

� �
: ð6Þ

Next we consider a third type of de Rham complex; the periodic X-complex of [10].
Recall that if R is any algebra then XR is the 2-periodic complex with

XevenR ¼ O0R ¼ R; XoddR ¼ O1R\ :¼
O1R

½R;O1R�

and with the de Rham differential as coboundary from even to odd degree and the

Hochschild boundary from odd to even degree. We compute the cohomology of X
for formally NC1-smooth schemes. Such a gadget consists of a commutative scheme

X together with an inverse system of Zariski sheaves

OY1: � � � �OYl
�OYl�1

� � � � �OY1 �OY0 ¼ OX
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such that each Yl ¼ ðX;OYl
Þ is a formally NCl-smooth scheme, that

OYl
=FlOYl

¼ OYl�1
and that the map OYl

�OYl�1
is the natural projection. We com-

pute the hypercohomology of the procomplex XOY1 :¼ fXOYl
gl; we show (Corollary

6.9) that

Hn
ðXPro�Zar;XðOY1ÞÞ ¼

Y
2j5 n

H2j�n
dR X: ð7Þ

Moreover, the decomposition above is induced by the commutator filtration. On the

other hand we prove that for periodic cyclic homology

HCper
 ðXÞ ¼ H
ðXPro�Zar;XOY1Þ: ð8Þ

Putting (7) and (8) together we get the well-known formula ([19, 5.1.12], [23, 3.3])

HCpern ðXÞ ¼
Y
2j5 n

H2j�n
dR X: ð9Þ

Our proof gets rid of the usual finiteness hypothesis and shows that the so-called

Hodge decomposition (9) comes from the commutator filtration.

Each of the results for formally smooth schemes mentioned up to here is deduced

from a general theorem which holds without smoothness hypothesis. In the absence

of formal smoothness we need to replace de Rham by infinitesimal cohomology.

Recall that if X is a commutative scheme then its infinitesimal cohomology is the

cohomology of the structure sheaf on the infinitesimal site, which consists of all nil-

potent thickenings U ,!T of open subschemes U � X. One can also consider the

NCl-infinitesimal site of any NCl-scheme Y, consisting of all nilpotent thickenings

U ,!T of open subsets U of Y with T an NCl-scheme. We prove that for Y formally

NCl-smooth

H 
ðYNCl�inf;OÞ ¼ H
ðYZar;ONCl
Þ; ð10Þ

H 
 YNCl�inf;
O
½O;O�

� �
¼ H
 YZar;

ONCl

½ONCl
;ONCl

�

� �
: ð11Þ

The above generalizes the theorem of Grothendieck ([14]) which establishes the

case l ¼ 0 of (10) (compare also [6, Th. 3.0]). For commutative but not necessarily

Comm-formally smooth X, we have (as part of theorems 6.1 and 6.4) the following

generalizations of (3) and (5)

H 
ðXNCl�inf;OÞ ¼ H 
ðXComm�inf;OÞ

H 
 XNCl�inf;
O
½O;O�

� �
¼
Ml

m¼0

H 
þ2m XComm�inf;
Om
Comm

dOm�1
Comm

 !

In place of (7) and (8) we obtain (as part of Theorem 6.7)

HCpern ðXÞ ¼ Hn
ðXNC1�inf;XÞ ¼

Y
2m5n

H2m�nðXComm�inf;OÞ
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Here n is any integer and NC1 � inf denotes the site of all nilpotent thickenings

U ,!T with T an NC-scheme of arbitrary order. In particular, we recover Feigin

and Tsygan’s formula ([13, Th. 5], [23, Th. 3.4]) without finiteness hypothesis and

by noncommutative methods, showing that also this instance of the Hodge decom-

position comes from the commutator filtration. In the commutative case there is an

equivalent definition of infinitesimal cohomology which also generalizes to NC-

schemes and is as follows. Assume first that X admits a closed embedding

i: X ,!Y into a formally smooth scheme Y, with ideal of definition I � OY. Then

it is known that the infinitesimal cohomology of X is the same thing as the hyper-

cohomology of the I-adic completion

H
ðXzar; i�1bOCommOYÞ ¼ H
ðXComm�inf;OÞ ð12Þ

The same is true in the case of NCl-schemes, with ONCl
and a formally NCl-smooth

scheme Yl substituted for OComm and Y (cf. Theorem 6.1). A similar statement holds

for O=½O;O� and ONCl
=½ONCl

;ONCl
�, but we have to take pro-complex cohomology

rather than just complete (cf. Theorem 6.4). Back to the commutative theory, when

X cannot be embedded in a formally smooth scheme, one can still take an open cov-

ering U of X consisting of embeddable schemes (affine schemes are embeddable).

Then one can combine the completed de Rham complexes of each of the local

embeddings and of their intersections into a kind of Čech complex as done in [15,

p. 28]; the analogue of (12) holds for this complex. The same is true in the NC-case,

and (12) as well as its version for O=½O;O� hold for systems of local NC-embeddings

(defined in 3.2 below) substituted for single NC-embeddings (Theorems 6.1 and 6.4).

We also consider the Poisson analogue of the commutator filtration, obtained

by substituting Poisson for Lie brackets in (1). This leads one naturally to the

notion of NPl-schemes, their differential forms, their nilpotent thickenings and

through the latter to their infinitesimal topologies. We show that if X is a com-

mutative scheme, then

H
ðXNPl�inf;OÞ ¼ H
ðXNCl�inf;OÞ;

H
 XNPl�inf;
O
fO;Og

� �
¼ H
 XNCl�inf;

O
½O;O�

� �
;

H
ðXNPl�inf;YÞ ¼ H
ðXNCl�inf;XÞ: ð13Þ

Here we write O for the structure sheaf of both the NCl- and NPl-infinitesimal

sites, and Y is a Poisson adaptation of the X-complex, similar to the adaptation of
the usual cyclic complex given in [4] and [18] (see 6.6-8 below).

The rest of this paper is organized as follows. In Section 2 the notion of a quasi-

coherent sheaf of bimodules on an NC-scheme is introduced, and its elementary

properties are proved. Then this is used to establish the NC-analogues of several

notions from elementary algebraic geometry and their basic properties. In Section

3 the NCl-infinitesimal site of a scheme is introduced. The connection between this

site and the indiscrete infinitesimal site of an algebra considered in [5] and [6] is
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discussed (3.4). This section also contains a useful lemma regarding the Čech-Alex-

ander complex for infinitesimal topology (Lemma 3.3.1). Section 4 concerns NC-dif-

ferential forms and their elementary properties. In Section 5 the Poisson analogues

of what has been done in previous sections are discussed. In Section 6 the main

results of the paper are stated. These are packed into three theorems. The first

(6.1) computes the NC- and NP-infinitesimal cohomologies of the structure sheaf,

and the Zariski hypercohomology of the complexes of NC- and NP-forms. The sec-

ond (6.4) computes the cohomology of the structure sheaves modulo Lie and Poisson

brackets and compares them with the hypercohomology of the complexes of forms

modulo commutators and Poisson brackets. The third (6.7) computes the infinite-

simal hypercohomology of the Cuntz–Quillen complex and of its Poisson analogue.

All three theorems are stated in their fullest generality; for the reader’s convenience

the particular case of each theorem concerning formally smooth schemes has been

included as a corollary. The proofs of the main theorems are given in Section 8, after

a number of lemmas and auxiliary results which are the subject of Section 7. Among

these auxiliary results at least one is of independent interest (Prop. 7.9). It establishes

that if X is a commutative scheme, then

HpðXComm�inf;O
q
CommÞ ¼ 0 for p5 0; q5 1:

2. Basic Properties of NC-Schemes

The first subsection below is an introduction to sheaves of bimodules on NC-

schemes. For sheaves of bimodules in a different context, see [20].

2.1. NC-BIMODULES AND ASSOCIATED SHEAVES

We extend the commutator filtration (1) to arbitrary R-bimodules M by F0M ¼M

and

Fnþ1M :¼
Xn

p¼0

FpM � Fnþ1�pRþ Fnþ1�pR � FpMþ h½FpM;Fn�pR�i: ð14Þ

As in [17] we write NCl for the category of those algebras R such that Flþ1R ¼ 0; in

addition we put NCmðRÞ for those M 2 R� Bimod such that Fmþ1M ¼ 0. Let

NC1 ¼ [l5 0NCl, NC1ðRÞ ¼ [m5 0NCmðRÞ. Note that R 2 NCl ) R 2 NClðRÞ

(04 l41). If a: R! R0 2 NC1 is a homomorphism and N is an R0-bimodule then

we can either take its commutator filtration as an R0� or an R� bimodule (via a).
For each 04 n we have the inclusion

FR
n ðNÞ � FR0

n ðNÞ: ð15Þ

It follows that

N 2 NCnðR
0Þ ) N 2 NCnðRÞ: ð16Þ
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In other words, the functor R0 � Bimod! R� Bimod induced by a sends NCnðR
0Þ

into NCnðRÞ (04 n41). For n <1 > the functor NCnðR
0Þ ! NCnðRÞ has a left

adjoint given by

M 7!
R0 �R M�R R0

Fnþ1ðR0 �R M�R R0Þ
:

Note, however, that the functor NC1ðR
0Þ ! NC1ðRÞ does not have a left adjoint.

Fix R 2 NCl and M 2 NCmðRÞ; put A :¼ R=F1R. The proof of [17, 2.1.5] shows

that any multiplicative subset Ĝ � R satisfies both the right and the left Øre condi-

tions. Similarly the proof of [17, 2.1.7] shows that localization commutes with each

of the terms of the filtration (1). In particular F1ðR½Ĝ�1�Þ ¼ ðF1RÞ½Ĝ�1� � R½Ĝ�1� is a
nilpotent ideal, whence an element of R½Ĝ�1� is invertible if it is so in

R½Ĝ�1�=ðF1RÞ½Ĝ�1� which – by exactness of Øre localization – is the same thing as
G�1A, the commutative localization at the image G � A of Ĝ. We have just shown
that R½Ĝ�1� depends only on G. We shall therefore write R½G�1� to mean R½Ĝ�1�.
The identity

smþ1x ¼
Xm
i¼0

sm�iadðsaÞiðxÞ

 !
s ðs 2 R; x 2MÞ

is proved in the same manner as [17, 2.1.5.1]. It shows that right multiplication by s is

surjective if left multiplication is. Similarly, by the same argument as in loc. cit.,

xs ¼ 0 implies smþ1x ¼ 0, whence also injectivity of left and right multiplication

are equivalent. It follows that there is a canonical isomorphism

M½G�1� :¼ R½G�1� �R M ffiM�R R½G�1�:

The same proof as in [17, 2.1.6] applies with M substituted for R and proves that

FnðM½G�1�Þ ¼ ðFnMÞ½G�1� ðn5 0Þ: ð17Þ

Here the Fn on the left is taken in the sense of R½G�1�-bimodules, while that on the
right is taken in R� Bimod. In particular M½G�1� 2 NCmðR½G�1�Þ. Next we show
that M and its localizations define a sheaf ~M on Spec A. We need some notations.

If f 2 A, p 2 SpecA and x 2M we put Dð f Þ ¼ fq 2 SpecA : f =2 qg and write Mf

and Mp for the localizations at f f
n: n5 0g and at Anp respectively and xp for the

image of x in Mp. If U � SpecA is open, we put ~MðUÞ �
Q

p2U Mp for the subset

of all those elements s which satisfy

ð8p 2 U Þð9U � Dð f Þ 3 p; x 2MfÞð8q 2 Dð f ÞÞ; sq ¼ xq: ð18Þ

It turns out that

~MðDð f ÞÞ ¼Mf: ð19Þ
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Seeing this amounts to showing that the sheaf condition holds for affine coverings of

affine open subsets, and one reduces immediately to the case when the affine open is

all of SpecA. For M ¼ R, this is [17, 2.2.1(b)]. In view of (17) the same proof as in

loc. cit. works for arbitrary M. We put X ¼ SpecR :¼ ðSpecA; ~RÞ and OX :¼ ~R.

Note that SpecR is a locally ringed space (in the obvious noncommutative sense)

and that ~M is an OX-bimodule. Note further the adjoint property

homOX�Bimodð
~M;GÞ ¼ homR�BimodðM;GðXÞÞ ð20Þ

for G 2 OX � Bimod. The OX-bimodule ~M is an example of the general notion of

NCm-bimodule over OX, which is defined as follows. If G is an OX-bimodule, we

write FnG for the sheafification of the presheaf U 7!FnðGðUÞÞ (n5 0), with

FnðGðUÞÞ taken in the sense of OXðUÞ-bimodules. Note the inclusion

FnðGðUÞÞ � ðFnGÞðUÞ: ð21Þ

We say that G is an NCm-bimodule over OX and write G 2 NCmðOXÞ if Fmþ1G ¼ 0.
For G ¼ gFnM the inclusion (21) together with the adjunction (20) give a sheaf map

gFnM �!
ffi

Fn
~M ð22Þ

which is an isomorphism by (17) and (19). In particular ~M is an object of NCmðOXÞ.

We remark that the functor NCmðRÞ ! NCmðOXÞ which sends M to ~M is exact,

because Øre localization is. Suppose now a homomorphism a: R ! R0 2 NC1 is

given. Then a descends to a homomorphism A! A0 ¼ R0=F1R
0, which in turn indu-

ces a continuous map â: SpecA0 ! SpecA. The map â together with the induced
homomorphisms

~RðDð f ÞÞ ¼ Rf ! R0af ¼ â
ð ~R0ÞðDð f ÞÞ ð f 2 AÞ

give rise to a map of locally ringed spaces X 0 :¼ Spec R0 ! X. If G 2 NCmðOX0 Þ then

â
G 2 NCmðOXÞ, by (16). If furthermore G ¼ ~N for some N 2 NCmðR
0Þ then

â
G ¼a ~Na, where the subscript indicates that R acts through a. A left adjoint of
the functor â
: NCmðOX0 Þ ! NCmðOXÞ is given by

â
G ¼ OX0 �â�1OX
�G�â�1OX

OX0

Fmþ1ðOX0 �â�1OX
�G�â�1OX

OX0 Þ
: ð23Þ

2.2. QUASI-COHERENT SHEAVES

Let X ¼ ðX;OXÞ ! Spec k be a (not necessarily commutative) locally ringed space

over Spec k and 04 l41. We say that X is an affine NCl-scheme if it is isomorphic

– as a locally ringed space over Spec k – to the spectrum of some R 2 NCl, and in

general that it is an NCl-scheme if every point p 2 X has an open neighborhood U

such that ðU;OXjUÞ is an affine NCl-scheme. We write NCl � Sch for the

category of NCl-schemes and morphisms of locally ringed spaces and put

NC1 � Sch ¼ [l5 0NCl � Sch. Note that NC0 � Sch is the usual category of
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commutative schemes over Spec k. Like in the commutative case, the global sections

functor is right adjoint to Spec; we have

HomNCl�SchðX; Spec RÞ ¼ HomNCl
ðR;OXðXÞÞ:

This is proved in two steps, first for X affine and then in general; the arguments of

the proofs of [12, 1.7.3] and [12, 2.2.4] apply verbatim to the NC-case.

Fix X 2 NCl; an NCm-bimodule over OX as defined in 2.1 above is called quasi-

coherent if every point p 2 X has an open affine neighborhood U such that the nat-

ural mapgMðU Þ!
�

MjU ð24Þ

is an isomorphism. Put QCohmðXÞ for the category of NCm-quasi-coherent bimo-

dules. Recall [16, Prop. 5.4] that for l ¼ 0 the definition we have just given is equi-

valent to the condition that (24) be an isomorphism for every affine open subset U.

The same is true for arbitrary m and l. To see this note that in 2.1 we have already

proved the analogues of Prop. 5.1 and 5.2 and of Ex. 5.3 of loc. cit. One checks, using

these results, together with elementary properties of Øre localization, that the proof

of Lemma 5.3 in loc. cit. goes through for arbitrary m and l. The NCm-analogue of

Prop. 5.4 of loc. cit. is then immediate. As an application of all this as well as of

(22) and of the exactness of the functor ~ we get that ifM 2 QCohðXÞ and U is affine

then

FnMjU ffi Fn
gMðUÞ and

M

FnM
jU ¼

gMðUÞ
FnMðUÞ

ðU affineÞ: ð25Þ

In particular, for each 04 n4 l <1, the locally ringed space

X½n� :¼ ðX;OXÞ; OX½n� :¼
OX

Fnþ1OX

is an NCn-scheme. We have a canonical identification

QCohmðX Þ ¼ QCohmðX
½n�Þ ð04m4 nÞ:

If S is any abelian sheaf on the commutative scheme X ½0�, we put

H 
ðXZar;SÞ :¼ H 
ðX½0�Zar;SÞ; ð26Þ

where the subscript indicates that cohomology is taken with respect to the Zariski

topology. If M is NCm-quasi-coherent then the commutator filtration induces a

cohomology spectral sequence

E
p;q
2 ¼ Hp X½0�Zar;

FqM

Fqþ1M

� �
) HpþqðXZar;MÞ:

We remark that – by (25) – the sheaves FnM=Fnþ1M are quasi-coherent ðn5 0Þ. Thus

for example if X happens to be affine then

HnðXZar;MÞ ¼ 0 ðn > 0Þ: ð27Þ
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As an application of (27) one obtains that the subcategory QCohmðXÞ � NCmðOXÞ is

closed under extensions; indeed the proof of [16, Prop. 5.7] applies. Now let

f: X! Y 2 NC1 � Sch be a homomorphism. The inclusion (15) implies that the

functor f
: OX � Bimod! OY � Bimod sends NCmðOXÞ into NCmðOYÞ. Formula

(23) defines a left adjoint functor f 
m of the induced functor fm

 : NCmðOXÞ !

NCmðOYÞ. It is clear from the affine case (2.1) that f 
m always sends QCohmðYÞ

into QCohmðXÞ. The proof of [16, 5.8 c)] shows that if X½0� is noetherian, then also

fm

 preserves quasi-coherence.

We say that the morphism f is a closed or an open immersion if it is so in the sense

of locally ringed spaces. The argument of the proof of [12, 4.2.2-b)] shows that if f is

a closed immersion and Y is an affine NCl-scheme then also X 2 NCl and is affine.

One shows using this that for any closed immersion f the functor

fm

 : NCmðOXÞ ! NCmðOYÞ ð28Þ

preserves quasi-coherence. As an application one obtains a one-to-one correspon-

dence between equivalence classes of closed immersions X ,!Y and quasi-coherent

two sided ideals of OY.

LEMMA 2.2.1. Let X 2 NC1, M!
g

N 2 QCohlðXÞ, �g : �M :¼M=F1M! �N the

induced map. Then

(i) g is surjective () �g is.

(ii) Assume M ¼ N. If �g ¼ id �M, then gjFlM ¼ idFlM.

Proof. Part ) of (i) is trivial. To prove the converse we may assume X affine.

Furthermore, by (27) it suffices to show that if R 2 NC1 and h: P! Q 2 NClðRÞ is

such that �h is surjective then so is h. To prove this it suffices to show

hn: GnP :¼ FnP=Fnþ1P! GnQ is surjective for all n5 1. Every element of GnQ is

represented by a sum of elements of the form a � x � b where

x ¼ adðr1Þ ! � � � ! adðrjÞðqÞ. Here q 2 Q, r1; . . . ; rj 2 R, a 2 FiR, b 2 FkR and

iþ jþ k ¼ n. If hðpÞ " q mod F1Q, then

hðFnPÞ 3 hða � � � adðr1Þ ! � � � ! adðrjÞðpÞ � bÞ " a � x � bmodFnþ1Q:

This proves (i). To prove (ii) assume that P ¼ Q and that �h is the identity. Then for

n; a; x and b as above,

hða � x � bÞ ¼ a � adðr1Þ ! � � � ! adðrjÞðhðqÞÞ � b

" a � x � b mod Fnþ1P:

For n ¼ l, Fnþ1P ¼ 0, so " can be replaced by ¼. &

COROLLARY 2.2.2. Let f: X! Y 2 NC1 � Sch. Then f is a closed immersion()

f ½0� is.
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Remark 2:2:3: For open instead of closed immersions we still have

f : X! Y open immersion ) f ½n�: X ½n� ! Y ½n� open immersion;

for each n5 0. &

2.3. PRODUCTS OF NC-SCHEMES; SEPARATED SCHEMES

For l <1 the categorical product of two affine NCl-schemes as objects of

NCl � Sch is given by

Spec R#l SpecR
0 ¼ Spec

R 
 R0

Flþ1ðR 
 R0Þ
ð29Þ

where 
 is the coproduct in the category Ass of associative algebras. The product of

not necessarily affine X;X 0 2 NCl � Sch denoted X#l X
0 is constructed by glueing

together products of affine ones, just as in the commutative case. Note that products

do not exist in NC1. We say that an NCl scheme is separated over Spec k–if the

diagonal map dl: X! X#l X is a closed immersion.

LEMMA 2.3.1. Let X;Y 2 NCl, 1 > l5m5 0. Then

(i) ðX#l Y Þ
½m�
¼ X ½m� #m Y ½m�.

(ii) X is separated , X ½0� is separated.

Proof. To prove part (i). The projections X#l Y! X;Y induce a map

fm: ðX#l YÞ
½m�
! X½m� #m Y½m� 2 NCm � Sch. To show fn is an isomorphism we may

assume X;Y are affine, in which case the lemma is immediate from (29). Part (ii) is

immediate from (i) and Corollary 2.2.2. &

2.4. THICKENINGS

In this paper by a thickening of an NC1-scheme X we understand a closed immersion

t: X! T 2 NC1 � Sch such that Jt :¼ kerðOT 0 t
OXÞ is a nilpotent ideal. If both

X;T 2 NCl � Sch then we say that t is an NCl-thickening. For example if X 2 NC1
then for each 04m4 l the inclusion

X½m� ,!X½l� ð30Þ

is an NCl-thickening. We remark that all NC-thickenings considered in [17] are either

of the form (30) or colimits of such. However the definition given here is more gene-

ral, as it includes for example all thickenings of commutative schemes in the commu-

tative sense ([14, 4.1]); indeed these are precisely the NC0-thickenings. In fact we have

LEMMA 2.4.1. t: X! T is an NCl-thickening , t½0�: X½0� ! T½0� is an NC0-

thickening.

Proof. Immediate from 2.2.2. &
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LEMMA 2.4.2. Let t: X ,!T 2 NC1 � Sch be a thickening. Then X is affine, T is.

Proof. If T is affine then X must be affine since it is closed (cf. the discussion just

before (28)). To prove the converse, we may assume J 2t ¼ 0. Because t is a closed
immersion, t
OX is a quasi-coherent O�NC1-bimodule (cf. (28)). Hence, Jt is

quasi-coherent, and an object of NC1ðOXÞ since J 2t ¼ 0 and t is a homeomorphism.
Because X ¼ SpecR is affine, there is an R-bimodule M such that Jt ¼ ~M. Put

E ¼ OTðTÞ. Taking global sections in the exact sequence

0! Jt! OT ! t
OX ! 0

and using (27) we get an exact sequence of E-modules

0!M! E! R! 0:

Applying the functor ~ to the latter sequence we get

0! Jt! ~E! t
OX ! 0:

It follows that the canonical adjunction map ~E! OT is an isomorphism. &

COROLLARY 2.4.3. Let X be an NC1-scheme. Then

(i) X is affine , X½0� is.

(ii) If U;V � X are open affine subschemes and X is separated then U \ V is affine.

2.5. PRO-SHEAVES

If C is any category, we write Pro� C for the category of countably indexed pro-

objects in C (cf. [2, 11]). Recall that Pro� C is Abelian if C is, and by [11, Prop.

1.1] has sufficiently many injectives if C does. In particular if X is an NC-scheme,

then the category Pro� ShAbðXZarÞ of pro-sheaves of Abelian groups has sufficiently

many injectives, and thus the right derived functors of the total global section functor

Ĥ
0
: Pro� ShAbðXZarÞ 3 S ¼ fSigi2I 7! lim

i2I
H0ðX;SiÞ 2 Ab

are defined. We write

H
ðXPro�Zar;SÞ :¼ R
ðĤ
0
ÞS

There is a cohomology spectral sequence

E
p;q
2 ¼ HpðXZar; lim

qSÞ ) HpþqðXPro�Zar;SÞ: ð31Þ

For example if M is an inverse system of quasi-coherent sheaves with surjective

maps

� � ��M2�M1 ðMn 2 QCoh1ðXÞÞ;

then by (27) and [15 Ch. 1 x4], the derived functors of lim vanish and we get

H
ðXPro�Zar;MÞ ffi H
ðXZar; limMÞ: ð32Þ
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https://doi.org/10.1023/A:1022732008165 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022732008165


An important application of pro-sheaves is to fix the problem that usual sheaf coho-

mology does not commute with infinite products of Abelian sheaves; that is

H 
 XZar;
Y1
n¼1

Sn

 !
6¼
Y1
n¼1

H 
ðXZar;SnÞ:

However, for the pro-sheaf

‘
Y
’S : � � ��

M3
n¼1

Sn�

M2
n¼1

Sn�S1;

we have

H 
 XPro�Zar; ‘
Y
’S

� �
¼
Y1
n¼0

H 
ðXZar;SnÞ: ð33Þ

Hypercohomology of pro-sheaves in the Cartan–Eilenberg sense [22, App] is defined

in the obvious way, and the obvious generalizations of (32) and (33) hold for hyper-

cohomology. These observations will be used in the proofs of the main theorems

(Section 8) to obtain Hodge-type decompositions for various variants of de Rham

cohomology.

3. Infinitesimal Topologies

3.1. THE INFINITESIMAL TOPOLOGIES OF AN NC-SCHEME

Let 04 l41, X an NCl-scheme. The NCl-infinitesimal site on X is the Grothen-

dieck topology XNCl�inf defined as follows. The underlying category CatðXNCl�infÞ

has as objects the NCl-thickenings U ,!T. We write ðU;TÞ or even T to mean

U,!T. A map ðU;TÞ ! ðU0;T 0Þ in CatðXNCl�infÞ exists only if U � U0 in which case

it is a morphism of NCl-schemes T! T 0 such that the obvious diagram commutes.

A covering of an object T is a family fTi ! T g of morphisms such that each Ti ! T

is an open immersion and [Ti ¼ T. A sheaf S on XNCl�inf is the same thing as a com-

patible collection of Zariski sheaves fST 2 ShðTZarÞ : T 2 XNCl�infg (cf. [3 x5], [14,

4.1]). For example the infinitesimal structure sheaf O is defined by the collection

fOTgT of the structure sheaves of T 2 XNCl�inf. We remark that a sequence of NCl-

infinitesimal sheaves 0! S0 ! S! S00 ! 0 is exact () the sequence of Zariski

sheaves

0! S0T ! ST ! S00T ! 0 ð34Þ

is exact for all T 2 XNCl�inf. An important feature of infinitesimal cohomology is that

it depends only on the underlying commutative scheme. Precisely, if X 2 NCl � Sch

then the inclusion i : X½0�,!X is an object of X½0�NCl�inf
; thus by composition we obtain

a morphism of topologies F : XNCl�inf ! X½0�NCl�inf
. With the notations of [1], we put

i
 :¼ Fs : ShAbðX½0�NCl�inf
Þ ! ShAbðXNCl�infÞ:
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LEMMA 3.1.1. H
ðXNCl�inf; i
SÞ ¼ H
ðX½0�NCl�inf
;SÞ.

Proof. One checks that the left adjoint i
 of i
 is exact. On the other hand i
 is
exact by (34). The lemma follows from the Leray spectral sequence associated to the

morphism of topoi i ¼ ði
; i
Þ: ShðX ½0�NCl�inf
Þ ! ShðXNCl�infÞ. &

If X is a commutative scheme and m < l41, then the natural inclusion
ĵ: XNCm�inf ,!XNCl�inf is a morphism of topologies. An argument similar to that of

the proof of 3.1.1 shows that for j
 :¼ ĵs and S 2 ShAbðXNCm�infÞ we have

LEMMA 3.1.2. H
ðXNCl�inf; j
SÞ ¼ H
ðXNCm�inf;SÞ

3.2. FORMAL NCl-SMOOTHNESS; SYSTEMS OF EMBEDDINGS

Let 04 l <1. An NCl-scheme X is formally NCl-smooth (l <1) if it can be covered

by open affine schemes of the form Spec R with R formally l-smooth in the sense of

[17] and [8]. Equivalently, X is formally NCl-smooth if the representable sheaf ~X cov-

ers the final object 
 of the NCl-infinitesimal topos, i.e. the map ~X�
 is an epi-

morphism (cf. [3, 5.28]). An NCl-embedding of X is a closed immersion t:X ,!Y

with Y formally l-smooth. If I ¼ kerðOY � t
OXÞ, we consider the n-th formal neigh-

borhood of X along X ,!Y

ðYÞn :¼ X; t�1
OY

In

� �
2 XNCl�inf:

An NC1-embedding is a direct system Y ¼ fX ,!Yl ,!Ylþ1 ,!� � �g where X ,!Yl is

an NCl-embedding and for m5 lþ 1 each Ym�1,!Ym is an NCm embedding. A sys-

tem of (local) NCl-embeddings of X is a family Y ¼ fti : Ui,!Yi : i 2 Ig indexed by a

well ordered set I such that U ¼ fUi : i 2 Ig is an open covering of X and each ti is an

NCl-embedding. The utility of the order on I will be clear in 3.3 below. The definition

of a system of NC1-embeddings is analogous.

3.3. �CECH–ALEXANDER COMPLEX

Let l <1, X be a separated NCl-scheme, Y :¼ fUi ,!Yi : i 2 Ig a system of NCl-

embeddings, and S a sheaf of Abelian groups on XNCl�inf. For i0 < � � � < ip (ij 2 I)

we consider the following object of XNCl�inf

ðYi0;...;ip Þn :¼ ðUi0 \ � � � \Uip ,!ðYi0 #l � � � #l YipÞnÞ:

The �Cech�Alexander ð pro�Þcomplex of X relative to Y is the double pro-complex of
Zariski sheaves

Cp;q
Y ðSÞn ¼

Y
i0<���<ip

S
Y
#lqþ1

i0 ;...;ip

� �
n

ð35Þ

with the horizontal coboundary being the alternating sum of the cofaces induced by

the natural inclusions and the natural projections
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Ui0;...;ip � Ui0 ;..._;...;ip;
ij

Yi0;...;ip�Yi0 ;..._;...;ip
ij

and with the vertical coboundary being the alternating sum of the cofaces induced by

the qþ 1 distinct projections Y
#lqþ1
i0;...;ip

�Y
#lq
i0;...;ip

. In other words C
;
Y ðSÞ is a semi-cosim-
plicial-cosimplicial pro-sheaf, regarded as a double cochain pro-complex in the usual

fashion. Next assume Y extends to a system of NC1-embeddings Z and let G be an
abelian sheaf on XNC1�inf. By definition Z is a sequence Y l,!Y lþ1,!� � � of systems of

embeddings and compatible maps. Hence it gives rise to the following double com-

plex in ShAbðXÞN#N

C
;
Z ðGÞm;n :¼ C
;
Ym
ðGjXNCl�inf

Þn ðm5 l; n5 0Þ: ð36Þ

As a pro-object, (36) is isomorphic to the inverse system

C
;
Z ðGÞm :¼ C
;
Z ðGÞmþl;m ðm5 0Þ:

LEMMA 3.3.1. Let 04 l41, X a separated NCl-scheme, Y ¼ fUi,!Yi : i 2 Ig a

system of formally NCl-smooth embeddings and S an abelian sheaf on XNCl�inf. Assume

either of the following hypothesis holds

ðiÞ U ¼ fUi : i 2 I g is locally finite.

ðiiÞ ð8 T 2 XNCl�infÞ the Zariski sheaf ST is quasi-coherent in the sense of 2:2 above.

Then with the notations of 2:5 and 3:3,

H
ðXNCl�inf;SÞ ¼ H
ðXPro�Zar; CYðSÞÞ:

Proof. Assume l <1. Consider the following objects of the infinitesimal NCl-

toposgðYiÞ1 :¼ colim
n

gðYiÞn; ~Y ¼
a
i2I

gðYiÞ1;

where gðYiÞn is the representable sheaf. Then

H0ðXPro�inf; CYðSÞÞ ¼ h0ðĤ
0CYðSÞÞ

¼ ker HomðeY;SÞ ! Hom
a
i<j

gðYiÞ1 #
gðYjÞ1;SÞ

 ! !
ð37Þ

where the map is the difference of those induced by the two projections
gðYiÞ1 #

gðYjÞ1Þ !
~Y. Because ~Y� 
 is an effective epimorphism, (37) equals

H0ðXNCl�inf;SÞ It remains to show that

H
ðXPro�Zar; CYð�ÞÞ : S 7!H
ðXPro�Zar; CYðSÞÞ
is a unversal d-functor. Under either of the hypothesis (i), (ii) of the lemma, the pro-
ducts appearing in (35) are exact. Indeed in the case of (i) this is clear, and for (ii) it

follows from (27) and [15, Ch.1x4]. Thus we may assume Y consists of a single
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embedding X ,!Y. It is clear from (34) that Cq
Yð�Þ is an exact functor for each q5 0,

whence H
ðXPro�Zar; CYð�ÞÞ is a d-functor. It remains to show that the functor Cq
Yð�Þ

preserves injectives; this will follow once we show it has an exact left adjoint. For

the product embedding Y ðqÞ :¼ fX ,!Y#qþ1g we have Cq
Yð�Þ ¼ C0YðqÞ ð�Þ. Thus we may

assume q ¼ 0. For each T ¼ ðt : U ,!TÞ 2 XNCl�inf let

nT ¼ minfm5 1: kerðOT ! t
OUÞ
m
¼ 0g:

One checks that the exact functor

Pro� ShAbðXZarÞ 3fSngn 7!

� M
HomðT;YnT

Þ

t
ðSnTjUÞg

�
T

2 ShAbðXNCl�infÞ

is left adjoint to C0Yð�Þ. This finishes the proof for l <1; the case l ¼ 1 is proven

similarly. &

3.4. THE INDISCRETE INFINITESIMAL TOPOLOGIES OF AN NC-ALGEBRA

Let 04 l41, A 2 NCl. We write infðNCl=AÞ for the category of all surjective

homomorphisms with nilpotent kernel B�A. We equip the opposite category

infðNCl=AÞ
op with the indiscrete topology; this means that if B ¼ ðB�AÞ then

CovðBÞ is the set of all isomorphisms B!
ffi

B0 2 infðNCl=AÞ. A sheaf of abelian

groups on infðNCl=AÞ
op with this topology is the same thing as a presheaf, which

in turn is just a covariant functor G : infðNCl=AÞ ! Ab. Let X ¼ SpecA. With the

notations of [1] the functor

F: infðNCl=AÞ
op
! XNCl�inf; B 7!SpecB

is a morphism of topologies, and induces a functor between the categories of sheaves

of sets

f
 :¼ Fs : ShðXNCl�infÞ ! ShðinfðNCl=AÞ;

S 7! ðB 7!H 0ðSpecB;SÞÞ:

The left adjoint of f
 is the functor

f 
 :¼ Fs : ShðinfðNCl=AÞÞ ! ShðXNCl�infÞ; G 7!eG
where for each T 2 XNCl�inf,

eGT is the Zariski sheaf defined by (18). Because f 
 is

exact (i.e. ðf
; f

Þ is a morphism of topoi) we have a Leray spectral sequence

E
p;q
2 ¼ HpðinfðNCl=AÞ; ðR

qf
ÞðSÞÞ ) HpþqðXNCl�inf;SÞ: ð38Þ

Here

ðRqf
ÞðSÞðBÞ ¼ HqðSpecBZar;SSpecBÞ ðB 2 infðNCl=AÞÞ ð39Þ

For example, ifM is a sheaf ofNC-bimodules on infðNCl=AÞ then the Zariski sheaves

MT (T 2 XNCl�inf) are all quasi-coherent, whence (39) vanishes for q > 0, and
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H 
ðinfðNCl=AÞ;MÞ ¼ H 
ðXNCl�inf; ~MÞ: ð40Þ

If G : infðNCl=AÞ ! Ab is arbitrary, we still have a natural map

H 
ðinfðNCl=AÞ;GÞ ! H 
ðXNCl�inf;
~GÞ;

but this is not an isomorphism in general.The �Cech–Alexander pro-complex for the

indiscrete topology is constructed as follows. Assume first that l <1. Given a sheaf

G: infðNCl=AÞ ! Ab and a presentation 0! J! R�A! 0 of A as a quotient of

an algebra R 2 Ass, we put

C
p
NCl
ðR; J;GÞm ¼ G CylpðR; JÞm

FlCylpðR; JÞm

� �
ðm5 0Þ;

where CylpðR; JÞ is the pro-algebra of [6]. In case Rl :¼ R=FlR is formally l-smooth,

the procomplex CNCl
ðR; J;GÞ computes sheaf cohomology (cf. [5, 5.1])

H 
ðholimnCNCl
ðR; J;GÞnÞ :¼ H
ðSpec kPro�Zar;CNCl

ðR; J;GÞÞ
¼ H 
ðinfðNCl=AÞ;GÞ:

ð41Þ

We also put

C
p
NC1
ðR; J;GÞm ¼ C

p
NCm
ðR; J;GÞm ðm5 0Þ

If Rl is formally l-smooth for all l (e.g. if R is quasi-free in the sense of [9]) then (41)

holds for l ¼ 1 as well. As a particular case of (31) (or rather of its hypercohomo-

logy version) we obtain a spectral sequence

E
p;q
2 ¼ HpðlimqCNCl

ðR; J;GÞÞ ) HpþqðinfðNCl=AÞ;GÞ ð04 l41Þ

This spectral sequence degenerates for example when G maps surjections with nil-
potent kernel to surjections, as limq CNCl

ðR; J;GÞÞ ¼ 0 for q > 0. Hence if M is as

in (40) and in addition maps surjections with nilpotent kernel to surjections, then

H
ðXNCl�inf; ~MÞ ¼ H
ðlimCNCl
ðR; J;MÞÞ:

Remark 3:4:1: One can also consider the indiscrete topology on the category

infðAss=AÞ of all nilpotent extensions B�A, where B runs in the category Ass of

associative algebras. It was proved in [6] that for A 2 Ass

H
 infðAss=AÞ;
O
½O;O�

� �
¼ HCper
 A

We remark that the indiscrete infinitesimal cohomology of A 2 NCl as an associative

algebra does not agree with its cohomology as an NCl-algebra. For example if A is

formally Comm-smooth then HCper
 A is as in (9) while the indiscrete NCl-infinite-

simal cohomology H
ðinfðNCl=AÞ;O=½O;O�Þ is as calculated in 8.3.1 below. &
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4. NC-Differential Forms

4.1. NC-FORMS FOR NC-ALGEBRAS AND SCHEMES

We make some remarks regarding the definition of NCl-forms given in the introduc-

tion (2). We observe that the bimodule filtration (14) is included in the DG-commu-

tator filtration; we have FmO
pR � ðFmORÞ p ðm5 0Þ. In particular, Op

NCl
R 2 NClðRÞ.

Moreover, one checks that ONCl
localizes; if G � R is a multiplicative system, then

ONCl
ðR½G�1�Þ ffi ðONCl

RÞ½G�1�:

Thus the following NC-OSpecR-bimodules are isomorphic

gONCl
R ¼ ONCl

OSpecR:

It follows that, in general, if X 2 NCl � Sch then the sheaf ONCl
:¼ ONCl

OX is a

quasi-coherent sheaf of DG- algebras over OX. All this generalizes to the case

l ¼ 1 as follows. With the notations above, put

ONC1R ¼ fONCl
Rgl 2 Pro� R� Bimod:

If X is a scheme, then the Pro-Zariski sheaf ONC1 is defined in the obvious way.

Remark 4:1:1: With the definitions above, the functor ONCl
: NCl ! DGNCl is

left adjoint to DGNCl ! NCl, L 7!L0. Indeed for R 2 NCl and L 2 DGNCl

HomDGNCl
ðONCl

R;LÞ ¼ HomDGAssðOR;LÞ

¼ HomAssðR;L0Þ ¼ HomNCl
ðR;L0Þ:

It follows from this that ONCl
R is formally NCl-smooth in the obvious DG-sense()

R is formally NCl-smooth. On the other hand

ONCl
R

F1ONCl
R
¼ OComm

R

F1R

� �
for every R 2 NCl. Thus if A is smooth commutative and if Rl is an NCl-smooth

thickening of A in the sense of [17, 1.6.1] then ONCl
Rl is a DG-NCl-smooth thicken-

ing of the smooth DG Comm-algebra OCommA. &

4.2. FORMS AND EMBEDDINGS

If R 2 Ass and J / R is an ideal we put

ONCl
ðR; JÞ :¼ ONCl

R

FlRþ J1

� �
2 Pro� Ab
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for 04 l41. Here as in [11], J1 is the pro-ideal of the powers of J. Similarly for

l <1 if Y ¼ ft: X ,!Yg is an NCl-embedding with ideal of definition J, we put

OY
NCl
¼ ONCl

t�1
OY

J1

� �� �
2 Pro� ShAbðXZarÞ: ð42Þ

In general, if Y ¼ fUi ,!Yi : i 2 Ig is a system of NCl-embeddings, O
Y
NCl

is the

total complex of the double pro-complex whose pth column is ðOY
NCl
Þ
p;

¼Q

i0<���<ip
i
OYi0 ;...;ip

NCl
. Here Yi0;...;ip :¼ fUi0;...;ip ,!Yi0;...;ipg and i : Ui0;...;ip ,!X is the open

immersion. If Z ¼ Yl ,!Ylþ1 ,! � � � is a system of NC1-embeddings we put

ðOZ
NC1
Þl;n ¼ ðO

Yl

NCl
Þn:

5. NP-Algebras and Schemes

The forgetful functors going from the category of Poisson algebras to vectorspaces

and to commutative algebras have each a left adjoint, which we write respectively

Poiss and P. We have an isomorphism of Poisson algebras

PSV ¼ SLV ¼ PoissV; ð43Þ

where V is a vectorspace, L : Lie�Alg! Vect is left adjoint to the forgetful functor

and S is the symmetric algebra. The Poisson bracket on SLV is induced by the Lie

bracket of LV. Recall from [8] that if A is any commutative algebra then PA carries a

natural grading

PA ¼
M1
l¼0

PlA ð44Þ

such that

fPlA;PmAg � Plþmþ1A; PlA � PmA � PlþmA:

In the case A ¼ SV this grading is the same as the grading

SLV ¼
M1
m¼0

SmLV; ð45Þ

induced by L0V ¼ V; Lmþ1V ¼ ½L0V;LmV �: Note that this is different from the

usual grading S ¼
L1

m¼0 Sm of the symmetric algebra. The analogue of the com-

mutator filtration for Poisson algebras is the Poisson filtration defined as follows.

Let P be a Poisson algebra. Put F0P ¼ P and inductively

Fmþ1P :¼
Xm
i¼1

FiP � Fmþ1�iPþ
Xm
i¼0

hfFiP;Fm�iPgi: ð46Þ
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For example, FlPA ¼
L

m5 l PmA: The analogues ofNCl-algebras and schemes in the

Poisson setting are called NPl-algebras and schemes. All what has been done for NC-

algebras and schemes translates immediately to the NP-setting. We shall not go into

the details of this translation here but shall make a few remarks about it. First of all

we note that the coproduct of two Poisson algebras as such is not the same as their

coproduct as commutative algebras or tensor product. If KP and KQ are the kernels

of the canonical maps Poiss P! P and Poiss Q! Q then

P
a

Q ¼
PoissðP(QÞ

hhKP;KQii
; ð47Þ

where hhX ii denotes the smallest Poisson ideal containing X (cf. [8]). Note that as

Poiss has a right adjoint, it must preserve coproducts, and that (47) simply expresses

this fact. Coproducts in NPl and products in NPl � Sch are defined accordingly. Sec-

ond of all the right definition for the DGP of differential forms of A 2 Poiss is not
OCommA, but is defined by the adjointness property HomDGPðOPoissA;QÞ ¼

HomPoissðA;Q0Þ: For example,

OPoissSLV ¼ SðLðV( dV ÞÞSðLV( dLV Þ ¼ OCommSLV;

where dV and dLV are intended to be meaningful notations for the graded vector-

spaces V½�1� and ðLVÞ½�1�. In general if A 2 Comm, then

OPoissPA ¼ POCommA; ð48Þ

where the P on the right hand side is the left adjoint of the forgetful functor

DGP! DG Comm. With this definition, the same considerations as to formal

smoothness remarked for NC-algebras (4.1.1) hold in the NP-case (see [8, 3.3]).

6. Statement of the Main Theorems

Before stating the first theorem we need some more notations. Recall that if g is a Lie
algebra and Ug its universal enveloping algebra then there is an isomorphism of

vectorspaces

e : Sg!
ffi

Ug; g1 . . . gn 7!
1

n!

X
s

sgðsÞgs1 . . . gsn ð49Þ

Here s runs among all permutations of n elements. The map e is called the symme-

trization map. In Theorem 6.1 below we use the particular case when g ¼ LV is as in

(43), so that Ug ¼ TV, the tensor algebra. We use a ^to indicate completion of a pro-

sheaf; thus for example if Y is a system of NCl-embeddings of a scheme X then

ÔY
NCl
¼ limnðO

Y
NCl
Þn: In the statement of 6.1 below we use the fact that, as follows

from Lemma 3.1.2, if X is a commutative scheme and 04 l41 then

H
ðXNCl�inf;O=F1OÞ ¼ H
ðXComm�inf;OÞ; ð50Þ
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where the O on the left-hand side is the structure sheaf of XNCl�inf while the one on

the right-hand side is that of XComm�inf. The same is true with XNPl�inf substituted for

XNCl�inf.

THEOREM 6.1. Let X be a separated commutative scheme, 04 l41, Y, Z and W
systems of local NCl-, NPl- and Comm embeddings of X. Write O for the structure

sheaf of each of the infinitesimal sites on X. Then there is a commutative square of

natural isomorphisms

H
ðXNPl�inf;OÞ H
ðXZar; Ô
Z
NPl
Þ

 

e
 

e0

H
ðXNCl�inf;OÞ �!
al

H
ðXZar; Ô
Y
NCl
Þ

 

p

 

p0

H
ðXComm�inf;OÞ �!
a0

H
ðXZar; Ô
W
CommÞ

Here e and e0 are induced by the symmetrization map ð49Þ and each of p, p0, p ! e and

p0 ! e0 by the natural projection O�O=F1O and the isomorphism ð50Þ. Moreover, if we

equip each of the four vertices of the top of the diagram with the filtration induced by

the corresponding commutator or Poisson filtration then all three edges are filtered

isomorphisms.

COROLLARY 6.2. Assume X is formally smooth. Then

H
ðXComm�inf;OÞ ¼ H
ðXZar;OCommÞ

¼ H
ðXZar;P4 lOCommÞ;
ð51Þ

for each 04 l <1. If moreover X admits a formally NCl-smooth thickening X ,!Yl,

then ð51Þ equals

H
ððYlÞZar;ONCl
Þ ¼ H
ððYlÞNCl�inf

;OÞ;
for each l <1.

Proof. Immediate from 6.1, (26), (48) and 3.1.1. &

Notation for sheaf cokernels 6.3. In Theorem 6.4 and further below, the expression

O=½O;O� denotes the quotient of the sheaf of rings O by the subsheaf generated by
the sheafification of the presheaf ½O;O�ðUÞ ¼ ½OðUÞ;OðUÞ�: In other words, the
sheafification symbol is omitted. This is done to avoid further decorating already

involved symbols. The same abuse is committed with the subpresheaf generated by

brackets in a sheaf of Poisson algebras, and the subpresheaf generated by exact

differentials in the sheaves of differential forms.

THEOREM 6.4. Let X, l, Y, Z, W and O be as in Theorem 6:1: Assume the

underlying open coverings of Y, Z and W are locally finite. Then with the convention of

6.3 there is a commutative square of natural isomorphisms
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H
 XNPl�inf;
O
fO;Og

� �
H
 XPro�Zar;

OZ
NPl

fOZ
NPl

;OZ
NPl
g

� �
 

�e

 

�e0

H
 XNCl�inf;
O
½O;O�

� �
!
�al H
 XPro�Zar;

OY
NCl

½OY
NCl

;OY
NCl
�

� �
 

g

 

g0

Ql
m¼0

H
 XComm�inf;
Om

dOm�1

� �
!
b Ql

m¼0

H
ðXPro�Zar; tmO
W
CommÞ

ð52Þ

Here tmOComm is the complex of sheaves

tmOComm:
Om
Comm

dOm�1
Comm

!
d
Omþ1
Comm!

d
Omþ2
Comm!

d
� � � ;

where Om
Comm=dO

m�1
Comm is in degree 0. Each of �al, �e, and �e0 in ð52Þ is induced by the

unbarred map with the same name in Theorem 6:1; it is filtered for the respective com-

mutator and Poisson filtrations. Each of g, g0 is a filtered isomorphism for the commu-

tator filtration of its source and the filtration F0r ¼
Q

m4 rð�Þ of its target. The map b is a

product of isomorphisms

bm : H 
 XComm�inf;
Om
Comm

dOm�1
Comm

 !
!
�
H
 XPro�Zar; tmO

W
Comm

� �
of which b0 ¼ a0 is the map of Theorem 6:1:

COROLLARY 6.5. Assume X is formally Comm-smooth. Then

H
 XComm�inf;
Om

dOm�1

� �
¼ H
ðXZar; tmOCommÞ; ð53Þ

H
 XZar;
P4 lOComm

fP4 lOComm;P4 lOCommg

� �
¼
Yl

m¼0

H
ðXZar; tmOCommÞ: ð54Þ

If, moreover, X admits a formally NCl-smooth thickening X ,!Yl then ð54Þ equals

¼ H ðYlÞZar;
ONCl

½ONCl
;ONCl

�

� �
¼ H ðYlÞNCl�inf

;
O
½O;O�

� �
:

Notations for cyclic homology 6.6. Let X be an NC1-scheme. The periodic cyclic

homology of X is

HCper
 ðXÞ :¼ H
ðXPro�Zar; CCperÞ;
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where CCper is the sheafification at each level of the 2-periodic pro-complex

CCper ¼
Mn�1
m¼0

Om

 !
( On

\

( )
n

called yO in [10]. In particular for the Hochschild boundary b, On
\ :¼ On=bOnþ1. We

remark that as CCper is 2-periodic, the Cartan-Eilenberg resolution can also be taken
2-periodic. Indeed the procedure for the construction of CE-resolutions described in

[21, Proof of 5.7.2] yields periodic resolutions for periodic complexes. At level n ¼ 1,

CCper is the periodic de Rham complex

called X in [10]. We also consider the analogue of the latter complex for Poisson alge-

bras, which is defined as follows. Recall from [4] that if A is a Poisson algebra then
there is a boundary map

d : O
CommA�!O
�1CommA;
dðp0dp1 ^ � � � ^ dpnÞ

¼
Xn

i¼0

ð�1Þiþ1fp0; pigdp1 ^ � � � ^ cdpi ^ � � � ^ dpnþ

þ
X
i<j

ð�1Þiþjp0dfpi; pjg ^ dp1 ^ � � � ^ cdpi ^ � � � ^
cdpj ^ � � � ^ dpn:

We put

;

where On
d ¼ On

Comm=dO
nþ1
Comm. We shall abuse notation and write X and Y for the shea-

fification ofX andY on the various topologies for schemes considered in this paper. If
Y and Z are systems of NCl- and NPl-embeddings then one can form the procom-

plexes of sheavesXY andYZ in the same way as was done with the complexOY in (42).

THEOREM 6.7. Let n 2 Z, X , Y, Z as in the case l ¼ 1 of theorem 6:4 above, and

X, Y as in 6:6: Then there is a commutative diagram of natural isomorphisms
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The map f1 sends the filtration F 0r ¼
Q

m4 rð�Þ isomorphically onto the filtration induced

by the Poisson filtration ð46Þ; both f2 and f20 are filtered isomorphisms. The isomorph-

isms f3 and f30 are induced by the symmetrization map ð49Þ; they map the filtration

induced by ð46Þ isomorphically onto that induced by ð1Þ.

COROLLARY 6.8 ðCompare ½13; Th: 5�; ½23; Th: 3:4� Þ. There is a natural isomor-

phism HCpern ðXÞ ffi
Q
2j5 n H2j�nðXComm�inf;OÞ &

COROLLARY 6.9 Assume X is formally smooth. Then with the notations of 2:5

above

HCper
 ðXÞ ¼ H
ðXPro�Zar;Y
PO

P5 nO

� �
n

� �
ð55Þ

If in addition X admits a formally NC1-thickening X ,!Y1 then the group ð55Þ is also

isomorphic to H
ðXPro�Zar;XOY1Þ. &

7. Auxiliary Results

PROPOSITION 7.1. Let R 2 Ass be a quasi-free algebra, TR the tensor algebra,

JR :¼ kerðTR�RÞ, s 2 HomAssðR;TR=JR2Þ a section of the canonical projection,

J / R an ideal and l5 0. Then there are maps of pro-complexes

and homotopies d: ab! 1 and g: ba! 1 all of which are natural with respect to R, s, J

and l, and interchange commutators and graded commutators. In particular

CNCl
ðR; J;O=½O;O�Þ is naturally homotopic to ONCl

ðR; JÞ=½ONCl
ðR; JÞ;ONCl

ðR; JÞ�:

Proof. It suffices to check that the map a :¼ 1� p : �CðR; 0;OÞ 7!OR of the

proof of [6, 2.4] which by the proof of [6, 3.1] preserves both the J-adic filtration

and the commutator subspace, preserves also the commutator filtration, and to

construct a natural homotopy inverse for it with the same properties. The proof

that a preserves the commutator filtration is similar to the proof that it preserves
the commutator subspace; one just considers the action of the full symmetric group

Sm on �Tm rather than only that of the cyclic group. The map s of the proof of

[6, 3.1] extends to a Sm-equivariant contracting homotopy y of the augmented
resolution �Tm

� k. Using y and the perturbation lemma [6, 2.5] one obtains a
contracting homotopy of the mapping cone of a, h:Mn ¼ �Cn ( OnR!Mn�1 with

the matricial form
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h ¼
g b
0 0

� �
: Mp ¼ Cyl

p
R( Op�1

!Mp�1

It follows that b is a cochain map with ab ¼ 1 and that g is a homotopy 1! ba. One
checks, using the equivariance of y and s and the formulas of [6, 2.5] that both g and
b preserve both the commutator subspace and the commutator filtration and are
continuous for the J-adic filtration. &

LEMMA 7.2. Let A 2 Comm, R 2 Ass, p : R�A a surjective homomorphism,

pl;n:Rl;n :¼ R=Flþ1Rþ ðkerpÞ
nþ1

�A the induced map, G � B :¼ R=F1R a multi-

plicative system and Ĝ ¼ p�1ðGÞ. Then there is a commutative diagram with horizontal

isomorphism

Proof. Both R 7!Rl½G�1� and R 7!ðR½Ĝ
�1
�Þl are universal (initial) among all those

algebra homomorphisms going from R to an NCl-algebra which invert G. Therefore
they are isomorphic R-algebras. By naturality we get a commutative diagram

where c is the natural isomorphism of R-algebras just defined. Thus c maps

K :¼ kerðpl½G�1�Þ ¼ ðkerplÞ½G�1� isomorphically to K 0 :¼ ðkerp½Ĝ
�1
�Þl. One checks,

using [17, 2.1.5.1] that Kn ¼ ðkerplÞ
n
½G�1�. The map f of the lemma is that induced

by c upon passage to the quotient. &

LEMMA 7.3. Let G ¼ G0 ( G1 ( � � � ( Gl be a graded commutative algebra. Assume

G is additionally equipped with an associative but not necessarily commutative product

F ¼
Pl

p¼0 Fp:G� G! G such that F0 is the original commutative product, and Fp is

homogeneous of degree p and a bidifferential operator. Consider the associative algebra

R ¼ ðG;FÞ. If G � G0 is a multiplicative system, then Ĝ ¼ fsþ gþjs 2 G; gþ 2
(n51Gng � R is a multiplicative system and R½Ĝ�1� ffi ðG�1G;G�1FÞ.

Proof. Note first that the product G�1F is associative because the associator

localizes

AðG�1FÞ ¼ G�1FðG�1Fð; Þ; Þ � G�1Fð;G�1Fð; ÞÞ

¼ G�1AðFÞ ¼ 0:
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On the other hand, that Ĝ is multiplicatively closed is clear from the fact that

FðG5n � G5mÞ � G5 nþm. One checks that, upon localization of G0-modules, the

projection G�G0 becomes a surjective algebra homomorphism G�1p:R0 ¼
ðG�1G;G�1FÞ�G�1G0. Thus an element x 2 R0 is invertible if and only if G�1pðxÞ
is invertible. It follows that the obvious homomorphism R! R0 maps each element

of Ĝ to an invertible element, whence we have a natural map f:R½Ĝ
�1
� ! R0. To

prove that f is an isomorphism proceed as follows. Consider the filtration

R ¼ R0 � R1 � � � � � Rl, Rn ¼ ðG5n;FjG5 n�G5 n
Þ. Each Rn is an ideal of R, and by

exactness of Øre localization, the associated graded ring is

Ml

n¼0

Rn½Ĝ
�1
�

Rnþ1½Ĝ
�1
�

¼
Ml

n¼0

G�1Gn ¼ G�1G:

Thus f is an isomorphism because it is so at the graded level. &

LEMMA 7.4. Let V be a vectorspace, T ¼ TV the tensor algebra, T4 l ¼ T=Flþ1T.

Also let P ¼ PoissV be the free Poisson algebra, and for the Poisson analogue of the

commutator filtration, P4l ¼ P=Flþ1P. Assume a multiplicative system

G � P4 0 ¼ T4 0 ¼ S :¼ SV is given, and let Ĝ � T4 l be the inverse image of G under

the projection T4 l�S. Then the symmetrization map ð49Þ induces an isomorphism

G�1P4 l

fG�1P4 l;G�1P4 lg
ffi

T4 l½Ĝ
�1
�

½T4 l½Ĝ
�1
�;T4 l½Ĝ

�1
��

:

Proof. Apply Lemma 7.2 with R ¼ T, A ¼ B ¼ S to obtain an isomorphism

T4 l½G�1� ffi T ½Ĝ
�1
�=Flþ1T ½Ĝ

�1
�. Thus

T4 l½G�1�

½T4 l½G�1�;T4 l½G�1��
¼

T ½Ĝ
�1
�

Flþ1T½Ĝ
�1
� þ ½T½Ĝ

�1
�;T½Ĝ

�1
��

:

Now ½T ½Ĝ
�1
�;T ½Ĝ

�1
�� is the image of the Hochschild boundary

b: O1T ½Ĝ
�1
� ! T ½Ĝ

�1
�; xdy 7! ½x; y�:

But O1T ½Ĝ
�1
� ¼ T ½Ĝ

�1
�dVT ½Ĝ

�1
� ffi T ½Ĝ

�1
� � V� T ½Ĝ

�1
� as T ½Ĝ

�1
�-bimodules.

Hence,

O1T ½Ĝ
�1
�

bO2T ½Ĝ
�1
�

¼
O1T ½Ĝ

�1
�

½T ½Ĝ
�1
�;O1T ½Ĝ

�1
��

ffi T ½Ĝ
�1
� � V

and, therefore,

½T ½Ĝ
�1
�;T ½Ĝ

�1
�� ¼ ½T ½Ĝ

�1
�;V�: ð56Þ

196 GUILLERMO CORTIÑAS
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On the other hand, by [8, 2.1 (1)] the map e induces a vectorspace isomorphism

P4 l ffi T4 l, whence T4 l is identified with the algebra with underlying vectorspace

P4 l and multiplication

Fðx; yÞ :¼ e�1ðexeyÞ: ð57Þ

By [8, 2.1 (2)] and [7, 2.2], Lemma 7.3 applies to G ¼ P4 l whence T4 l½Ĝ
�1
� ffi

ðG�1P+l;G�1FÞ. Thus, modulo Flþ1T ½Ĝ
�1
�, (56) gets identified with the subspace gen-

erated by the elements of the form

Xl

p¼1

ðG�1FÞpðs
�1x; vÞ � ðG�1FÞpðv; s

�1xÞ ðx 2 P 4 l; s 2 G; v 2 VÞ: ð58Þ

By [7, 1.1] the homogeneous part of degree one of (58) is fs�1x; vg 2 fG�1P4 l;Vg.

I claim that each homogeneous part of degree p5 2 of (58) is zero. For s ¼ 1, the

claim is just the fact that e commutes with the adjoint action of the Lie subalgebra

L � T generated by V –[19, 3.3.5]– and in particular with its restriction to V. Recall

both Fpðv; Þ and Fpð; vÞ are differential operators of order 4 p ([7, 2.2]). Thus the

identity

Fðs�1aÞ ¼
Xp

j¼0

Xp

i¼j

ð�1Þi
i
j

� � !
s�ðjþ1ÞFðs�1aÞ ðs 2 G; a 2 P4 lÞ

holds for both F ¼ Fpðv; Þ;Fpð; vÞ. The general case of the claim follows from this

observation and the case s ¼ 1. We have shown that under our identifications

½T4 l½G�1�;T4 l½G�1�� gets identified with fG�1P4 l;Vg. It is clear that the latter coin-

cides with fG�1P4 l;G�1P4 lg. &

LEMMA 7.5. Let V be a vectorspace, S ¼ OCommSV ¼ SðV( dVÞ the commutative

DGA. Let PþS ¼ (n5 1PnS be the part of positive degree in the DG-Poisson envelope

ð44Þ. Then there is a contracting homotopy h: PþS! PþS which is right S-linear,

homogeneous of degree zero for the Poisson gradation and maps SðLV( dLVÞ \ PþS

to itself.

Proof. Define a k-linear map q : W :¼ V( dV!W, qdv ¼ v, qv ¼ 0. Extend q
first to g ¼ LW as a derivation for the Lie bracket and then to all of Sg ¼ PS as a

derivation for the (skew-) commutative product. Put D ¼ ½q; d �. Write jj for homo-
genous degree with respect to (45). Consider the grading o of Sg determined by
oðgÞ ¼ jgj þ 1. If x is homogeneous with respect to o, then Dx ¼ oðxÞx. Rescale the
restriction of D to Sþgþ (notation as in [8, 1.0]) to obtain a k-linear map

k : Sþgþ ! Sþgþ with kdþ dk ¼ 1.

h : PþS ¼ Sg0 � Sþgþ ! PþS; hðx� yÞ ¼ ð�1Þdeg xx� kðyÞ:

One checks that h is right Sg0-linear and that dhþ hd ¼ 1. &

DE RHAM AND INFINITESIMAL COHOMOLOGY 197

https://doi.org/10.1023/A:1022732008165 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022732008165


LEMMA 7.6. Let V be a vectorspace, P ¼ PoissV, i5 0. Write iOCommP for the

homogeneous part of degree i with respect to ð45Þ. Then there is a k-linear map

H : Or
CommP! Orþ1

CommP; r5 1

such that

ðiÞ ðHdþ dHÞo ¼ o if o 2 Or
CommP, r5 2.

ðiiÞ HðiO


CommPÞ �i�1 O


þ1
CommP.

ðiiiÞ The restriction of H to iO
r
CommP is a differential operator of SV-modules.

Proof. Put L ¼ LV,

Ca
r;i :¼ Pi � ðL

rLÞa�ðrþiÞ; Ca
r :¼ a�r O

r
CommP ¼

Ma�r

i¼0

Ca
r;i: ð59Þ

We have dCa
r;i �

L
j5 i C

a
r�1;j, whence Ca is a subcomplex of the complex

C ¼ ðOCommP; dÞ, and C ¼
L

a5 0Ca. The homogeneous component of degree 0 of

d:Ca
r ! Ca

r�1 is the restriction of 1� d0, where d0:LrL! Lr�1L is the Chevalley-

Eilenberg boundary

d0ðg1 ^ � � � ^ grÞ ¼
X
i<j

ð�1Þiþj
½gi; gj� ^ g1 ^ � � � _

i
� � � _

j
� � � ^ gr

Because L is free, there is a k-linear map H0 : LnL! Lnþ1L (n5 1) such that

H0d0 þ d0H0 ¼ 1 on L5 2L. Because d0 is homogeneous of degree þ1 for the chain com-
plex decomposition induced by L ¼

L
n5 0 Ln, we may assume H0 homogeneous of

degree �1. Put

Ha;0 :¼ 1� H0 : Ca
r ! Ca

rþ1 ðr5 1Þ

Then Ha;0 is homogeneous of degree 0 for the decomposition (59). By the perturba-

tion Lemma ([6, 2.5]) there exists, for each n5 1, a k-linear map Ha;n : Ca
r ! Ca

rþ1

homogeneous of degree n (with respect to (59)) such that Ha :¼
P1

n¼0 H
a;n verifies

Hadþ dHa ¼ 1 on Ca
r (r5 2). Moreover, from the formulas of [6, 2.5] and the fact

that each of the components of d is a differential operator -because f; g is bidifferen-
tial- it follows that the same is true of each Ha;n. Therefore the map H ¼

L
a H

a satis-

fies the conditions of the lemma. &

LEMMA 7.7. Let V be a vectorspace, S ¼ SV, P ¼ PoissV. Consider the complex

Nn
¼

Pi; if n ¼ 2i
iO
1
CommP

di�1O2CommP
; if n ¼ 2iþ 1

(
ðn5 0Þ;

with coboundary maps d : N2i ! N2iþ1 and d : N2iþ1 ! N2iþ2 (i5 0). Then N is natu-

rally homotopy equivalent to OCommS in such a way that each of the natural homotopy
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equivalences and homotopies involved is continuous for the adic topology induced by

any ideal I / S.

Proof. Put

NOn
i ¼

Nn; if n4 2iþ 1
iOr
CommP

di�1Orþ1
Comm

P
; if n ¼ 2iþ r ðr5 2Þ:

(
Make NOn

i into a cochain complex with boundary map qn : NOn
i ! NOnþ1

i given by

qn
¼

d; n odd and 4 2i� 1;
d; n even or 5 2i:

�
Let h and H be as in Lemmas 7.5 and 7.6. Define maps

as follows

an ¼
1; n4 2iþ 1;
�hd; n5 2iþ 2;

�
bn ¼

1; n4 2iþ 1;
�Hd; n ¼ 2iþ 2;
�ðHdþ dHÞ; n5 2iþ 3;

8<:
gn ¼

0 n4 2iþ 2;
Hhd n5 2iþ 3;

�
En ¼

0 n4 2iþ 2;
hðdH� 1Þ n5 2iþ 3;

�
One checks that a and b are cochain maps as well as that the following identities hold

ab� 1 ¼ Eqþ qE; ba� 1 ¼ gqþ qg:

Thus ðOCommS; dÞ ¼ ðNO0; qÞ is naturally and adically continuously homotopy
equivalent to N ¼ colimðNO0!

b
NO1!

b
NO2!

b
� � �Þ: &

LEMMA 7.8. Let U and V be vectorspaces, a; b5 0, g ¼ aþ b. Let Sa;b :¼ Sa # Sb

act on T gU� T gV as follows:

ðs; tÞðu1 . . . ug � v1 . . . vgÞ

¼ ðsgtÞus1 . . . usauaþt1 . . . uaþtb � vs1 . . . vsavaþt1 . . . vaþtb:

Then

S aðU� V Þ � Lb
ðU� VÞ ffi ðT gU� T gVÞSa;b

:

Proof. Straightforward. &

PROPOSITION 7.9. Let X be a separated commutative scheme.

Then

HnðXComm�inf;O
p
CommÞ ¼ 0 ðp5 1; n5 0Þ:
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Proof. By (38), (39) and (40) it suffices to show that if U is a vectorspace and

I � S ¼ SU is an ideal, then the normalized pro-complex �CðS; I;Op
Þ is contractible.

We shall show this for the case I ¼ 0; a routine verification shows that all the cochain

maps and homotopies we shall define are continuous for the adic topology of any

ideal I, proving the general case. Let V 
 and W 
 be the cosimplicial vectorspaces of

[6, 1.2]. We have

S�mþ1 ¼ SðU(U� V mÞ ¼ SðW mÞ: ð60Þ

Hence by the lemma above

Op
CommS�mþ1 ¼

M
a50

M
qþb¼p

Oq
CommSU� ðT aþbU� T aþbV mÞSa;b

:

Pro-completion with respect to the ideal hU� Vmi � S�mþ1 gives the pro-space

Cm
n :¼ CmðS; 0;Op

Þn ¼
M

04a4 n

M
qþb¼p

Oq
CommSU� ðT aþbU� T aþbVmÞSa;b

;

where (m5 1). Recall from the proof of [6, 2.4] that for the normalized complex

T rV 
 we have

T rV m ¼ 0; for r > m and T mV m ¼ k½Sm�:

Thus �C m is the constant pro-vectorspace

�C m ¼
M
04r4m

M
p�r4q4p

Oq
CommSU� ðT rU� TrV mÞSr�pþq;p�q

:

Recall from the proof of Proposition 7.1 that there is a Sm-equivariant homotopy

equivalence p : TmV! k½�m�. It follows that 1� p passes to the quotient modulo

the action of the symmetric group, giving a homotopy equivalence between C and

a complex having

Dm :¼
M

p�m4 q4 p

Oq
CommSU� Lm�pþqU� Sp�qU

in degree m. This vectorspace can be interpreted as a piece of the DG-module of

m-differential forms of the DGA OCommSU. Namely Dm ¼pO
m
DG�CommðOCommSU Þ:

Here the subindex p denotes weight with respect to the grading of OCommSU deter-

mined by degðuÞ ¼ 0, degðduÞ ¼ 1. One checks further that the coboundary map is

the restriction of d 0, the de Rham differential for forms on OSU. We have

ODG�CommOCommSU ¼ SðU( dU( d 0ðU( dU ÞÞ

¼ SðU( d 0UÞ � SðdU( d 0dU Þ

ffi ODG�CommSU� ODG�CommSðdU Þ:
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It is clear that ODG�CommSðdU Þ is contractible by means of a weight preserving con-

tracting homotopy h. Thus 1� h is a contracting homotopy for D. This concludes

the proof. &

LEMMA 7.10. Let n;m5 0. Then

ðiÞ Let O1\ be the NC1 � inf sheaf cokerðb: O2! O1Þ. Then HnðXNC1�inf;O
1
\ Þ ¼ 0.

ðiiÞ Let ðmO
1
CommPÞd be the Comm� inf sheaf cokerðd : m�1O

2
CommP!mO

1
CommPÞ,

where the subscript on the left hand corner indicates degree with respect to the grading

ð44Þ. Then HnðXComm�inf; ðmO
1
CommPÞdÞ ¼ 0.

Proof. (i) It suffices to show that if Comm 3 A ¼ R=I with R quasi-free then for

the presheaf cokernel �O 
 ¼ O
=bO
þ1, the complex CðR; I; �O 1Þ is naturally con-

tractible. A similar argument as that given in the proof of 7.1 above shows that the

homotopy equivalence of the proof of [6, Lemma 5.6]

1� p : CðR; I; �O1Þ !
O 
þ1R( O 
R

N
 þ G1;1
¼

�O 
þ1R( �O 
R

G1;1

preserves the commutator filtration.

(ii) By the proof of Lemma 7.4, for R ¼ TV, S ¼ SV, and the presheaf cokernel
�O 
Comm :¼ O
Comm=dO


þ1
Comm the symmetrization map induces an isomorphism of

pro-complexes
Q1

m¼0CðS; I;m �O
1

CommPÞ ffi CðR; I; �O 1Þ: &

LEMMA 7.11. Let V be a vectorspace, S ¼ SV, T ¼ TV, L ¼ LV, P ¼ PoissV,

I � S an ideal, A ¼ S=I and J � T the inverse image of I under the projection

T!! T=F1T ¼ S. Then the map

Z : OCommP! OT;

Zða� dg1 ^ � � � ^ dgnÞ ¼ eðaÞ �
X
s2Sn

sgðsÞdgs1 . . . dgsn ðgi 2 LÞ

induces a homotopy equivalence of pro-complexes

OComm
P

P51 þ I1P

� �
; d

� �
!
�

O
T

F1Tþ J1

� �
; b

� �
:

Proof. Consider the associative product x ? y ¼ e�1ðexeyÞ for x; y 2 SL ¼ P; put

Q :¼ ðP; ?Þ. The map e induces a chain isomorphism between OQ ¼ ðOP; bQÞ and
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ðOT; bÞ. Moreover, it follows from [7, 2.2], [8, 2.1] and [8, 2.6] that the map e induces

a chain pro-isomorphism

O
P

P1 þ I1P

� �
; bQ

� �
ffi O

T

F1Tþ J1

� �
; b

� �
:

Let a : SdL ¼ LL! dOP,

aðdg1 ^ � � � ^ dgnÞ ¼
X
s2Sn

sgðsÞdgs1 . . . dgsn:

Note Z ¼ e ! ð1� aÞ. By [18, Th. 3-a)], 1� a is a chain map. It induces a chain
pro-map

OComm
P

P51 þ I1P

� �
! O

P

P51 þ I1P
: ð61Þ

We must show (61) is a homotopy equivalence. For this we shall construct a homo-

topy inverse b : OQ! OCommP of 1� a and homotopies g : bð1� aÞ ! 1 and

k : ð1� aÞb! 1 each of which will be continuous for the linear topologies of the

filtrations

fkerðOCommP!! OCommP=P5 n þ I nPÞgn

and fkerðOP!! OP=P5 n þ I nPÞgn:

We point out that the first of these topologies coincides with that of the filtration

fInOCommPþ
L

l5n lOCommPgn. Write K : ðOComm � P; d0Þ!
E

P for the augmented

Q�Qop-resolution denoted ðL0; b0Þ in [18, Prop. 3] and R : ðOP� P; b0Þ!
m

P for the

augmented Hochschild resolution. By [18, Lemma 9] the continuous map

1� a� 1:K! R a chain Q�Qop-module homomorphism. It suffices to construct

continuousQ�Qop-homomorphisms b0: R! K, g0: R! R½1� and k0: K! K½1� such

that b0b0 ¼ d0b, and such that g0 and k0 be homotopies b0ð1� a� 1Þ ! 1 and

1! ð1� a� 1Þb0. In turn for this it suffices to show that both R and K have contin-

uous k-linear contracting homotopies. For then the standard procedure for lifting the

identity in dimension zero to a chain map b0 using a contracting homotopy for K

yields a continous b0, and similarly for the standard procedure for constructing the
homotopies g0 and k0. The map a 7! 1� a, o� x 7!dw� x defines a continuous con-

tracting homotopy for the augmented resolution R. To obtain a continuous contract-

ing homotopy for K proceed as follows. Put mK
 :¼
L

iþj¼m iOCommP� Pj We have

K ¼
M1
m¼0

mK; d0ðmK Þ �
M
p5m

pK:

Let d0n be the homogeneous component of degree n5 0. By [7, 2.2] each d0n is a con-
tinuous map. Hence, if h0 is a continuous contracting homotopy for ðK; d00Þ then the
map h ¼

P1
m¼0 hm of the perturbationLemma [6, 2.5] is a continous contracting homo-

topy for ðK; @ 0Þ. We remark that ðK; @00Þ is the standard Koszul resolution of P as a

module over P� P with its commutative structure. Thus, essentially the same argu-

ment as in the proof of Lemma 7.5 gives a continuous homotopy h0 as wanted. &
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8. Proofs of the Main Theorems

8.1. PROOF OF THEOREM 6.1.

We first do the case l <1. To start, we prove the existence of the isomorphism al.

Assume first X ¼ Spec A. Choose a presentation

0! J! R!
p

A! 0 ð62Þ

of A as quotient of a quasi-free R 2 Ass. Put Rl ¼ R=Flþ1R and assume Y is the
following system of embeddings

Y :¼ fX ,!Y :¼ Spec Rlg ð63Þ

By Lemma 7.2, for f 2 A and R � G ¼ p�1f f n : n5 0g we have canonical isomor-

phisms

CYðOÞ pðDð f ÞÞ ¼ fOY
p
n
ðDð f ÞÞg ¼ CNCl

ðR½G�1�; Jf;OÞ; ð64Þ

where Jf ¼ kerðR½G�1��AfÞ. Note R½G�1� is quasi-free, whence by Proposition 7.1
we have a natural homotopy equivalence between the pro-complex (64) and

ONCl
ðR½G�1�; JfÞ: ð65Þ

Now because the Dð f Þ form a basis for the Zariski topology, (65) determines a

unique pro-complex of sheaves; by Lemma 7.2 this pro-complex must be OY . Next,

if 0! J 0 ! R0l ! A! 0 is any presentation of A as quotient of a formally

l-smooth R0l 2 NCl, then by [5, 3.3] a choice of a map Rl ! R0l covering the identity

of A induces a homotopy equivalence ONCl
ðR; J Þ!

�
ONCl
ðR0; J0Þ which, in turn, gives a

homotopy equivalence OY
NCl
!
�
OY0

NCl
for Y0 ¼ fX ,!Y0g. Now no longer assume X is

affine. If Y consists entirely of affine embeddings, say Y ¼ fSpec Ai ,!Spec Ri
lg for

some affine open covering fSpec Aig of Spec A, then each n-fold intersection

Spec Ai0 \ � � � \ Spec Ain ,! Spec R
ij
l #l � � � #l Spec Rin

l ¼ SpecðR
i0
l 
 � � � 
 Rin

l Þl

ð66Þ

is of the form (63) (by 2.4.3), so from the affine case we obtain a homotopy equi-

valence CYðOÞ!
a
OY

NCl
. If Y is arbitrary then there is a finer system Y0 which consists

entirely of affine embeddings; the argument of [15, Remark on page 28] shows the

refinement map OY
NCl
!
a
OY 0

NCl
is a quasi-isomorphism. Next we construct the map e

of the theorem. Assume first X ¼ Spec A, choose a presentation (62) with

R ¼ TV, a tensor algebra and let Y be as in (63). Further, consider the system of
NPl-embeddings Z consisting of the single embedding Spec A ,!Spec Poiss4 lV

induced by the composite

Poiss4lV ¼ P4lSV0SV ffi
R

F1R
0A:

Then by Lemmas 7.2 and 7.3 and by [8, 2.1 and 2.6], the map (49) induces an

isomorphism of pro-complexes of Abelian sheaves CZðOÞ!
e

�
CYðOÞ. This proves
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the isomorphism e in the affine case. For general X one chooses Y to consist entirely
of affine embeddings as above, and Z as the associated NCl- system; then use the

affine case and the argument of (66), taking into account that the free product of

tensor algebras is again a tensor algebra. To construct the map e0 in the affine case

one uses a DG-version of the same argument as for the construction of e. As per the

arguments above, the affine case generalizes to the case when Y consists of affine
NCl-embeddings, and Z is the associated NPl-system. It has already been shown that

the hypercohomology of OY
NCl
is independent of the choice of Y; the same argument

shows that of OZ
NPl
is independent of the choice of Z. To finish the proof it suffices to

show that there is a choice of Y, Z and W for which p0 ! e0 is a cohomology iso-

morphism. Choose an affine open covering U of X. For each U 3 U ¼ Spec AU

choose a presentation AU ¼ SVU=IU and let

W ¼ fSpec AU ,!Spec SVU : U 2 Ug;
Z ¼ fSpec AU ,!Spec Poiss4lVU : U 2 Ug;
Y ¼ fSpec AU ,!Spec T4lVU : U 2 Ug:

Then, by the argument of (66), we are reduced to showing that if A ¼ SV=I then the

projection

y : P4lOCommðSV=I1Þ ffi
Poiss4lðV( dV Þ

I1Poiss4lðV( dV Þ

�
SðV( dVÞ

I1SðV( dV Þ
ffi OCommðSV=I1Þ

is a homotopy equivalence. This follows from Lemma 7.5, and the fact that

ker y ¼
Ml

m¼1

PoissmðV( dVÞ

I1PoissmðV( dVÞ
:

This concludes the proof of the case l <1 of the theorem. Because the cohomology

isomorphisms we found come from natural cochain equivalences which are compa-

tible with the inclusions NCl � NClþ1 and NPl � NPlþ1, the case l ¼ 1 follows.

Remark 8:2: A similar argument as that of the last part of the proof above shows

that

HnðXcomm�inf;PmÞ ¼ 0 ðm5 1; n5 0Þ:

Indeed because Pm is quasi-coherent it suffices by (40) to show that for A a commu-

tative algebra,

HnðinfðComm=AÞ;PmÞ ¼ 0 ð67Þ

With the notations of the proof, we see using Proposition 7.1 that (67) equals

¼ Hnðlim
r

PmOCommðSV=IrÞÞ

which is zero by Lemma 7.5.
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8.3. PROOF OF THEOREM 6.4.

We shall assume X affine and l <1. The same argument as in the proof of Theorem

6.1 applies to deduce the theorem from this particular case. Let X ¼ Spec A; choose

R, p and J as in (62) and let Y be as in (63). Proceed as in the proof of Theorem 6.1 to
obtain a natural homotopy equivalence of pro-complexes of vectorspaces

CYðOÞðDð f ÞÞ
½CYðOÞðDð f ÞÞ; CYðOÞðDð f ÞÞ�

!
�al

�

ONCl
ðR½G�1�; JfÞ

½ONCl
ðR½G�1�; JfÞ;ONCl

ðR½G�1�; JfÞ�
ð68Þ

for each f 2 A. Because �al is natural and because sheafification depends only on the

value of the presheaf on a basis of the topology, (68) induces a homotopy equi-

valence of pro-complexes of sheaves

CY
O
½O;O�

� �
¼

CYðOÞ
½CYðOÞ; CYðOÞ�

!
�al

�

OY
NCl

½OY
NCl

;OY
NCl
�
: ð69Þ

This cochain map gives the cohomology isomorphism of the theorem. The same argu-

ment as in the proof of Theorem 6.1 shows that the homotopy type of the complexes

(69) is the same as that of those obtained from a different choice of NCl-embedding

Y0 ¼ fX ,!Spec R0lg. Assume now R ¼ TV, a tensor algebra, and choose Y, Z andW
as in the proof of Theorem 6.1. Then by Lemmas 7.2, 7.3, and 7.4, [8, 2.1 and 2.6] and

sheafification, we have isomorphisms of pro-complexes of Zariski sheaves

Ml

m¼0

CWððPmÞdÞ!
g

ffi
CZ

O
fO;Og

� �
!
�e

ffi
CY

O
½O;O�

� �
;

where Pm is as in Remark 8.2 above and the subscript indicates the sheaf cokernel

of the restriction of the coboundary map d of 6.6 to m�1OCommP, i.e. the shea-

fification of

Dð f Þ 7!
PmAfP

iþj¼m�1fPiAf;PjAfg
:

A DG-version of the same argument gives isomorphisms

Ml

m¼0

ðPmO
W
CommÞd 

g0

ffi

OZ
NPl

fOZ
NPl

;OZ
NPl
g
!
�e0

ffi

OY
NCl

½OY
NCl

;OY
NCl
�
:

By naturality, we get a homotopy equivalence CWððPmÞdÞ!
�
ðPmO

W
CommÞd Next, con-

sider the truncation t2mN of the complex of Lemma 7.7. By 7.9, 8.2 and Proposition
7.9, we have a commutative diagram of homotopy equivalences

TotCWðtmNÞ �!
� CWððPmÞdÞ

  

TotCWðtmOÞ �!
� CW Om

Comm

dOm�1
Comm

� �
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with as rows the natural projections and as columns the maps induced by that of

Lemma 7.7. To finish the proof we must show that the natural projection

TotCWðtmOCommÞ!
� C0WðtmOCommÞ ¼ tmðOComm

W
Þ ð70Þ

is a homotopy equivalence. Recall W ¼ fSpec A ,! Spec Sg, where S ¼ SU is the

symmetric algebra of some vector space U and A ¼ S=I. Thus by (60) we have an

isomorphism (where Cyl is as in [6])

CylpðSUÞ ¼
SðU(U� VpÞ

hU� Vpi1
:

Grade SðU(U� VpÞ by jðu; 0Þj ¼ 0, jð0; u� vÞj ¼ 1. Then there is an inclusion

tmOCommSU,!
i
tmOCommCyl 
SU ¼ C
ðSU; 0; tmOCommÞ

of the constant co-simplicial cochain pro-complex as the part of degree zero of the

Čech–Alexander pro-complex. The map i is a right inverse for the natural projection
m: C
ðSU; 0; tmOCommÞ� tmOCommSU. The Cartan homotopy associated to the

degree derivation DðxÞ ¼ jxjx gives a homotopy im! 1 which is compatible with

the cosimplicial structure, localization and the I-adic topology. Thus upon sheafi-

fication we get that (70) is a homotopy equivalence. &

Remark 8:3:1: It follows from 7.1 and the proof above that, if R is formally NCl-

smooth (l <1) and A ¼ R=F1R, then

Hn infðNCl=AÞ;
O
½O;O�

� �
¼ Hn ONCl

R

½ONCl
R;ONCl

R�

� �
¼
Mn

m¼0

Hnþ2m
dR A:

8.4. PROOF OF THEOREM 6.7.

Let A 2 Comm, X ¼ Spec A, R, J and p as in ð62Þ. For l5 0 put

Rl ¼ R=Flþ1R � Jl ¼ Jþ Flþ1R=Flþ1R, Yl ¼ Spec Rl, Y ¼ fX ,!Y1 ,! Y2 ,! � � �g

the associated formally NC1-smooth embedding. By Goodwillie’s theorem

ð½10; Th: 10:1�), we have a natural isomorphism

HCper
 ðXÞ :¼ H
ðXPro�Zar; CCperÞ ffi H
ðXPro�Zar; ðCCperÞYÞ:

To prove the isomorphism f4 it suffices to show that the natural pro-complex

projection

CCperðR1=J11Þ0XðR1=J
1
1Þ ð71Þ

is a quasi-isomorphism. Because (71) comes from a map of mixed complexes, it will

suffice to show that the map between the corresponding Hochschild complexes

ðOðR1=J11Þ; bÞ�ðXðR1=J
1
1Þ; bÞ
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https://doi.org/10.1023/A:1022732008165 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022732008165


is a quism. By [5, 3.3] it suffices to prove this in the case when R ¼ TV, a tensor

algebra. With the notation of Lemma 7.11, we have a commutative diagram

ðOCommðPSV=I1PSV þ P1SVÞ; dÞ �!
Z

�
ðOðR1=J11Þ; bÞ

  

ððPSV=I1PSVþ P1SVÞ; dÞ �!
Z

ffi
ðXðR1=J11Þ; bÞ

where the top and bottom rows are, respectively, a homotopy equivalence and an

isomorphism by Lemma 7.11 and its proof. By Lemma 7.6, the first vertical arrow

is a quism, whence so is the second. This gives isomorphisms f4 and f30 . It follows

that all the coface maps of the Čech–Alexander co-simplicial pro-complex CYðXÞ
are homotopy equivalences, which gives isomorphism f2. A similar argument produ-

ces an isomorphism f20 for Z ¼ fX ,!Spec P41SV ,! Spec P42 ,!� � �g; the passage

from this to the case when P41SV is replaced by an arbitrary formally NP1-smooth

pro-algebra is done as in the NC1-case. The Poisson grading (44) induces a pro-

cochain complex decomposition

Y
PSV

P5 nSV

� �
n

� �
ffi

YðPSVÞ

F1YðPSVÞ
¼

Yn
l¼0

N½�2l�

( )
n: ð72Þ

From (72), Lemma 7.7 and (33) we obtain the isomorphism f1. This finishes the

proof of the theorem in the affine case; the general case follows from this by the same

argument as in Theorems 6.1 and 6.4. &
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