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Abstract. The title refers to the nilcommutative or NC-schemes introduced by M. Kapranov
in ‘Noncommutative Geometry Based on Commutator Expansions’, J. Reine Angew. Math
505 (1998) 73-118. The latter are noncommutative nilpotent thickenings of commutative
schemes. We also consider the parallel theory of nil-Poisson or NP-schemes, which are nilpo-
tent thickenings of commutative schemes in the category of Poisson schemes. We study several
variants of de Rham cohomology for NC- and NP-schemes. The variants include nilcommu-
tative and nil-Poisson versions of the de Rham complex as well as of the cohomology of the
infinitesimal site introduced by Grothendieck in Crystals and the de Rham Cohomology of
Schemes, Dix exposés sur la cohomologie des schémas, Masson, Paris (1968), pp. 306-358. It
turns out that each of these noncommutative variants admits a kind of Hodge decomposition
which allows one to express the cohomology groups of a noncommutative scheme Y as a sum
of copies of the usual (de Rham, infinitesimal) cohomology groups of the underlying commu-
tative scheme X (Theorems 6.1, 6.4, 6.7). As a byproduct we obtain new proofs for classical
results of Grothendieck (Corollary 6.2) and of Feigin and Tsygan (Corollary 6.8) on the rela-
tion between de Rham and infinitesimal cohomology and between the latter and periodic cyc-
lic homology.
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1. Introduction

In this paper we study the de Rham theory of the nilcommutative or NC-schemes
introduced by Kapranov in [17]. To start, let us recall the definitions of NC-algebras
and schemes and introduce differential forms for such objects. We consider algebras
and schemes over a fixed field k of characteristic zero. Recall an associative algebra R
is nilcommutative of order < [ or an NC-algebra if for the commutator filtration
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FoR=R,  F,R:=Y F,R-Fu1 ,R+Y ([F,R F, ,R]) (1)
p=1 p=0

we have F;, 1R =0. For every NCj-algebra R there is defined a noncommutative
locally ringed space Spec R. Its underlying topological space is the prime spectrum
of the commutative algebra 4 = R/F|R; the stalk at p € Spec 4 is the Ore localiza-
tion of R at the inverse image of p under the projection R — A. Prime spectra of NC-
algebras are called affine NCj-schemes. In general, an NC;-scheme is a locally ringed
space that can be covered by affine NCj-schemes. If ¥ = (Y, Oy) is an NC;-scheme
then Y = (Y, Oy/F,Oy) is a commutative (i.e. usual) scheme. In particular an
NCy-scheme is just a commutative or Comm-scheme. There is a natural notion of
differential forms for NCj;-schemes, as follows. For R e NC;, we define its
NC;— DGA of differential forms as the quotient

QueR =7 @)
of the usual DGA of noncommutative forms ([9]) by the /+ /th term of its commu-
tator filtration (taken in the DG sense). For example if R is commutative and / = 0,
then this is the usual commutative DGA of Kédhler forms. One checks that Qy, loca-
lizes (in the Gre sense), and thus defines a sheaf of NC; — DG A’s on Spec R which is
quasi-coherent in the sense that each term Qf, comes from an R-bimodule and its
(QOre) localizations (see Sections 2 and 4 below). Thus for every NC;-scheme Y there
is defined a quasi-coherent sheaf Qy¢, of NC; — DGA’s. We compute its cohomology
in the formally smooth case. Recall from [17] that an NCj-algebra R is formally NCj-
smooth if homyc,(R, -) carries surjections with nilpotent kernel into surjections. We
call an NCj-scheme formally NCj-smooth if it can be covered by spectra of formally
NCj-smooth algebras. We remark that Y formally NC;-smooth = Y% formally
Comm-smooth. We show (Corollary 6.2) that if Y is formally NC;-smooth, then
for X = Y0,

H*(Yzar» QNC,) = [H]*(XZHI" QNC,OY) = H*(Xzara QComm) = HzRX (3)

is just the usual de Rham cohomology of the underlying commutative scheme. In the
affine case, because of the quasi-coherence of the Zariski sheaf Qyc, its hypercoho-
mology is just the cohomology of its global sections (cf. (27)) and we have

H*(Qne,R) = H*(Spec R, Qn¢,) = H*(Spec 4, Qcomm) = H*(QcommA) =: HigA.

This contrasts with the fact that for every R € Ass the usual DGA of noncommu-
tative forms is acyclic, that is

k ifn=0,

H'(QR) = {0 if n #0.

Recall, however, that if we divide QR by its commutator subspace we get the image
of the periodicity map in cyclic homology ([19, 2.6.7])
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QR
() = §(HC,2R) ¢ HC,R,
<[QR,QR]) SUHCaR) € HC

which is nontrivial in general. For example if 4 is smooth commutative then
([19, 5.1.12])

Q4 L
" n([QA,QA]) = D Hix"'4

2m<n

We show (see 8.3.1 below) that if R is formally NCj-smooth, then for 4 = R/FiR,

o' QNC/R — GlaHermA
[Qnc, R, Qne, R] R

m=0

Note that H’d’;gz”’A is the nth cohomology of the complex

QZm A
. Comm 2m—+1
I'ZmQCommA- T om—1 — QCommA —> ... (4)
dQCommA

which has Q2" A4/dQZ"! 4 in degree zero. We show (Corollary 6.5) that if Y is a

Comm Comm

formally NCj-smooth scheme then for X = Yl

Q 1
”‘”"(YZM’ [QNC/NSNQD = @0 H"" (Xzar, TamQComm)- (5)
m=

Here X = Y and Q¢ /[Qnc;, Que,] and 12, Qcomm are the sheafified complexes. In
particular the Oth term of 75,,Qcomm 1S the sheaf cokernel of d: Qé”;;nln — QZC’me; itis
not a quasi-coherent sheaf. There is always a map HZ,;Z'”(X) — H"(X, 12,,Qcomm)
induced by the projection Qcomm[2/72] = T2, Qcomm but it is not an isomorphism in

general, not even if X is affine. Hence, in general

X Qe ) ( Que, R )
H*( Spec R, ———— H|—)). 6
< P [Qnc, Qe 7 [Qnc R, Qye R] ©

Next we consider a third type of de Rham complex; the periodic X-complex of [10].

Recall that if R is any algebra then XR is the 2-periodic complex with
. Q'R

&evenR:QOR:R’ %OddR:QIRu ::71
[R, Q' R]

and with the de Rham differential as coboundary from even to odd degree and the
Hochschild boundary from odd to even degree. We compute the cohomology of X
for formally NC.-smooth schemes. Such a gadget consists of a commutative scheme
X together with an inverse system of Zariski sheaves

OYOO: _»OYI_»OYI—I_» —»OYI%OYO :OX
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such that each Y;=(X,0y,) is a formally NC;-smooth scheme, that
Oy,/F/Oy, = Oy,_, and that the map Oy, - Oy,_, is the natural projection. We com-
pute the hypercohomology of the procomplex XOy, = {XOy,};; we show (Corollary
6.9) that

Hn(XPro—Zary %(OYN)) == l_[ H;jR_”X. (7)

2j=n

Moreover, the decomposition above is induced by the commutator filtration. On the
other hand we prove that for periodic cyclic homology

Hcl;er(X) = H*(XPro—Zar» .%wa) (8)
Putting (7) and (8) together we get the well-known formula ([19, 5.1.12], [23, 3.3])
HC () = [] H"x. ©)
2izn

Our proof gets rid of the usual finiteness hypothesis and shows that the so-called
Hodge decomposition (9) comes from the commutator filtration.

Each of the results for formally smooth schemes mentioned up to here is deduced
from a general theorem which holds without smoothness hypothesis. In the absence
of formal smoothness we need to replace de Rham by infinitesimal cohomology.
Recall that if X is a commutative scheme then its infinitesimal cohomology is the
cohomology of the structure sheaf on the infinitesimal site, which consists of all nil-
potent thickenings U< T of open subschemes U C X. One can also consider the
NC-infinitesimal site of any NCj-scheme Y, consisting of all nilpotent thickenings
U< T of open subsets U of Y with T"an NC;-scheme. We prove that for Y formally

NC;-smooth
H*(Yne—int, O) = H* (Yzar, Qne), (10)
(@] Qnc, >
H* Ync—ints —— | = H( Yzoo, ————). 11
( Nt o, 01) ( 2 (Oye, Qv (

The above generalizes the theorem of Grothendieck ([14]) which establishes the
case / = 0 of (10) (compare also [6, Th. 3.0]). For commutative but not necessarily
Comm-formally smooth X, we have (as part of theorems 6.1 and 6.4) the following
generalizations of (3) and (5)

H*(XNC/—inf’ O) = H*(XCOmm—infv O)

O\ _ oy o
H Xne i _ gty o omm
( NC;—inf [0, O]) ;.; Comm—inf don-1

Comm

In place of (7) and (8) we obtain (as part of Theorem 6.7)

Hcﬁer(X) = H”(Xchfinfs %) = 1_[ Hzm_n(XCommfinf’ O)

2m>=n
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Here n is any integer and NC,, — inf denotes the site of all nilpotent thickenings
U< T with T an NC-scheme of arbitrary order. In particular, we recover Feigin
and Tsygan’s formula ([13, Th. 5], [23, Th. 3.4]) without finiteness hypothesis and
by noncommutative methods, showing that also this instance of the Hodge decom-
position comes from the commutator filtration. In the commutative case there is an
equivalent definition of infinitesimal cohomology which also generalizes to NC-
schemes and is as follows. Assume first that X admits a closed embedding
. X— Y into a formally smooth scheme Y, with ideal of definition / C Oy. Then
it is known that the infinitesimal cohomology of X is the same thing as the hyper-
cohomology of the /-adic completion

H*(Xzary lilﬁCommOY) = H*(XCOmmfinfa O) (12)

The same is true in the case of NCj-schemes, with Qpy¢, and a formally NC;-smooth
scheme Y; substituted for Qcomm and Y (cf. Theorem 6.1). A similar statement holds
for O/[0, O] and Quc,/[Qnc;, Qne,], but we have to take pro-complex cohomology
rather than just complete (cf. Theorem 6.4). Back to the commutative theory, when
X cannot be embedded in a formally smooth scheme, one can still take an open cov-
ering U of X consisting of embeddable schemes (affine schemes are embeddable).
Then one can combine the completed de Rham complexes of each of the local
embeddings and of their intersections into a kind of Cech complex as done in [15,
p. 28]; the analogue of (12) holds for this complex. The same is true in the NC-case,
and (12) as well as its version for O/[O, O] hold for systems of local NC-embeddings
(defined in 3.2 below) substituted for single NC-embeddings (Theorems 6.1 and 6.4).

We also consider the Poisson analogue of the commutator filtration, obtained
by substituting Poisson for Lie brackets in (1). This leads one naturally to the
notion of NP;-schemes, their differential forms, their nilpotent thickenings and
through the latter to their infinitesimal topologies. We show that if X is a com-
mutative scheme, then

H*(Xnp—inf, O) = H (Xn¢—int, O),

O ()
H* <XNP/—inf7 m) — H* (XNC/—infv m) )
H*(Xnp—inf> ) = H (X nc—inf, X). (13)

Here we write O for the structure sheaf of both the NC;- and NP;-infinitesimal
sites, and ) is a Poisson adaptation of the X-complex, similar to the adaptation of
the usual cyclic complex given in [4] and [18] (see 6.6-8 below).

The rest of this paper is organized as follows. In Section 2 the notion of a quasi-
coherent sheaf of bimodules on an NC-scheme is introduced, and its elementary
properties are proved. Then this is used to establish the NC-analogues of several
notions from elementary algebraic geometry and their basic properties. In Section
3 the NC-infinitesimal site of a scheme is introduced. The connection between this
site and the indiscrete infinitesimal site of an algebra considered in [5] and [6] is
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discussed (3.4). This section also contains a useful lemma regarding the Cech-Alex-
ander complex for infinitesimal topology (Lemma 3.3.1). Section 4 concerns NC-dif-
ferential forms and their elementary properties. In Section 5 the Poisson analogues
of what has been done in previous sections are discussed. In Section 6 the main
results of the paper are stated. These are packed into three theorems. The first
(6.1) computes the NC- and NP-infinitesimal cohomologies of the structure sheaf,
and the Zariski hypercohomology of the complexes of NC- and NP-forms. The sec-
ond (6.4) computes the cohomology of the structure sheaves modulo Lie and Poisson
brackets and compares them with the hypercohomology of the complexes of forms
modulo commutators and Poisson brackets. The third (6.7) computes the infinite-
simal hypercohomology of the Cuntz—Quillen complex and of its Poisson analogue.
All three theorems are stated in their fullest generality; for the reader’s convenience
the particular case of each theorem concerning formally smooth schemes has been
included as a corollary. The proofs of the main theorems are given in Section 8, after
a number of lemmas and auxiliary results which are the subject of Section 7. Among
these auxiliary results at least one is of independent interest (Prop. 7.9). It establishes
that if X is a commutative scheme, then

HP(XCOmm—inf» Qqumm) =0 for p = 0, q= 1.

2. Basic Properties of NC-Schemes

The first subsection below is an introduction to sheaves of bimodules on NC-
schemes. For sheaves of bimodules in a different context, see [20].

2.1. NC-BIMODULES AND ASSOCIATED SHEAVES

We extend the commutator filtration (1) to arbitrary R-bimodules M by FoM = M
and

n
FotM := " F,M - Fy R+ Fo1pR - F,M + ((F,M, F,_,R]). (14)
=0

As in [17] we write NC,; for the category of those algebras R such that F;, ;R = 0; in
addition we put NC,,(R) for those M € R— Bimod such that F,, M =0. Let
NCy = U5 oNCj, NCoxo(R) =U,»oNCp(R). Note that Re NC;= Re NC(R)
0</<o0). Ifr R—> R € NCy is a homomorphism and N is an R’-bimodule then
we can either take its commutator filtration as an R'— or an R— bimodule (via «).
For each 0 < n we have the inclusion

F{(N) C Ff (N). (15)
It follows that

N e NC,(R) = N € NCy(R). (16)
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In other words, the functor R — Bimod — R — Bimod induced by « sends NC,(R)
into NC,(R) (0 < n < 00). For n < co > the functor NC,(R') - NC,(R) has a left
adjoint given by

R ®rMQrR

M .
F,7+1(R/ QR M QR R,)

Note, however, that the functor NCoo(R') - NCx(R) does not have a left adjoint.

Fix Re NC; and M € NC,,(R); put 4 := R/F|R. The proof of [17, 2.1.5] shows
that any multiplicative subset [ C R satisfies both the right and the left Ore condi-
tions. Similarly the proof of [17, 2.1.7] shows that localization commutes with each
of the terms of the filtration (1). In particular FI(R[f_l]) = (F R)[f_l] C R[f‘l] isa
nilpotent ideal, whence an element of R[f ~11 is invertible if it is so in
R[f‘l]/(Fl R)[f ~11 which — by exactness of @re localization — is the same thing as
I'"' 4, the commutative localization at the image I' C 4 of I'. We have just shown
that R[f ~!7 depends only on I'. We shall therefore write R[I""'] to mean R[f‘l].
The identity

Sl — (Z sm_iad(sa)i(x)>s (se R xeM)
i=0

is proved in the same manner as [17, 2.1.5.1]. It shows that right multiplication by s is
surjective if left multiplication is. Similarly, by the same argument as in loc. cit.,
xs =0 implies s”"*'x = 0, whence also injectivity of left and right multiplication
are equivalent. It follows that there is a canonical isomorphism

M[T™:= R ®@r M= M®ezRI.
The same proof as in [17, 2.1.6] applies with M substituted for R and proves that
FMT™') = (F,MT'] (n>0). (17)

Here the F, on the left is taken in the sense of R[I'"']-bimodules, while that on the
right is taken in R — Bimod. In particular M[I""'] € NC,,(R[I'""']). Next we show
that M and its localizations define a sheaf M on Spec A. We need some notations.
If fe A, peSpecd and x e M we put D(f)={q e Specd : f¢q} and write M,
and M, for the localizations at {f”: n > 0} and at A\p respectively and x, for the
image of x in My. If U C Spec 4 is open, we put M(U) C [Iycy My for the subset
of all those elements ¢ which satisfy

Vb e U)EU D D(f)>p,xe Mp)(Vqg € D(f)), o04=xq. (18)
It turns out that

M(D(f)) = M;. (19)
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Seeing this amounts to showing that the sheaf condition holds for affine coverings of
affine open subsets, and one reduces immediately to the case when the affine open is
all of Spec A. For M = R, this is [17, 2.2.1(b)]. In view of (17) the same proof as in
loc. cit. works for arbitrary M. We put X = Spec R := (Spec 4, R) and Oy := R.
Note that Spec R is a locally ringed space (in the obvious noncommutative sense)
and that M is an Oy-bimodule. Note further the adjoint property

homo, Bimod(M, G) = homg_pimed(M, G(X)) (20)

for G € Oy — Bimod. The Oy-bimodule M is an example of the general notion of
NC,,-bimodule over Oy, which is defined as follows. If G is an Oy-bimodule, we
write F,G for the sheafification of the presheaf U~ F,(G(U)) (n = 0), with
F,(G(U)) taken in the sense of Oyx(U)-bimodules. Note the inclusion

F,(G(U)) C (F,9)(U). 2D

We say thig is an NC,,-bimodule over Oy and write G € NC,,(Oy) if F,,11G = 0.
For G = F, M the inclusion (21) together with the adjunction (20) give a sheaf map

F,M —> F,M 22)

which is an isomorphism by (17) and (19). In particular M is an object of NC,,(Oy).
We remark that the functor NC,,(R) — NC,,(Oy) which sends M to M is exact,
because Qre localization is. Suppose now a homomorphism «: R — R € NCy is
given. Then « descends to a homomorphism 4 — A" = R'/F|R’, which in turn indu-
ces a continuous map & Spec A’ — Spec A. The map & together with the induced
homomorphisms

R(D(f) = Ry = Ry =3.(RYD(f) (fe€A)

give rise to a map of locally ringed spaces X' := Spec R' — X. If G € NC,,,(Ox) then
8,.G € NC(Oy), by (16). If furthermore G= N for some N € NC,(R') then
4.G =,N,, where the subscript indicates that R acts through «. A left adjoint of
the functor a,: NC,,(Oy) — NC,,(Oy) is given by

Ox ®z10, ®G 410, Ox
Fui1(Oy ®s-10, ® G ®z-10, Ox)

oG = (23)

2.2. QUASI-COHERENT SHEAVES

Let X = (X, Oyx) — Spec k be a (not necessarily commutative) locally ringed space
over Spec k and 0 < / < oo. We say that X is an affine NCj-scheme if it is isomorphic
— as a locally ringed space over Spec k — to the spectrum of some R € NC;, and in
general that it is an NCj-scheme if every point p € X has an open neighborhood U
such that (U,Oyy) is an affine NCj-scheme. We write NC;— Sch for the
category of NCj-schemes and morphisms of locally ringed spaces and put
NCo — Sch =U;5 ¢NC; — Sch. Note that NCy — Sch is the usual category of
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commutative schemes over Spec k. Like in the commutative case, the global sections
functor is right adjoint to Spec; we have

Homyc,—sen(X, Spec R) = Hompyc (R, Ox(X)).

This is proved in two steps, first for X affine and then in general; the arguments of
the proofs of [12, 1.7.3] and [12, 2.2.4] apply verbatim to the NC-case.

Fix X € NC;; an NC,,-bimodule over Oy as defined in 2.1 above is called quasi-
coherent if every point p € X has an open affine neighborhood U such that the nat-
ural map

MU)S My (24)

is an isomorphism. Put QCoh,,(X) for the category of NC,,-quasi-coherent bimo-
dules. Recall [16, Prop. 5.4] that for / = 0 the definition we have just given is equi-
valent to the condition that (24) be an isomorphism for every affine open subset U.
The same is true for arbitrary m and /. To see this note that in 2.1 we have already
proved the analogues of Prop. 5.1 and 5.2 and of Ex. 5.3 of loc. cit. One checks, using
these results, together with elementary properties of Ore localization, that the proof
of Lemma 5.3 in loc. cit. goes through for arbitrary m and /. The NC,,-analogue of
Prop. 5.4 of loc. cit. is then immediate. As an application of all this as well as of
(22) and of the exactness of the functor ~ we get that if M € QCoh(X) and U is affine
then

M M)
FanU ~ F,M(U)

F,Myy = F,M(U) and (U affine). (25)

In particular, for each 0 < n </ < oo, the locally ringed space

Oy
F10x

X = (X, Oy), Oxm =

is an NC,-scheme. We have a canonical identification
QCoh(X) = QCoh,, (X" (0 < m < n).
If S is any abelian sheaf on the commutative scheme X%, we put
H*(Xzar, S) i= H* (X5, S), (26)

where the subscript indicates that cohomology is taken with respect to the Zariski
topology. If M is NC,-quasi-coherent then the commutator filtration induces a
cohomology spectral sequence

F,M
B — (x[z“lr, o M) = H'"(Xzue, M).
q+1

We remark that — by (25) — the sheaves F,, M/ F, | M are quasi-coherent (n > 0). Thus
for example if X happens to be affine then

H' (X700, M) =0 (n > 0). 27)
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As an application of (27) one obtains that the subcategory QCoh,,(X) C NC,,(Oy) is
closed under extensions; indeed the proof of [16, Prop. 5.7] applies. Now let
fiX— Y e NCy — Sch be a homomorphism. The inclusion (15) implies that the
functor f,: Oy — Bimod — Oy — Bimod sends NC,,(Oy) into NC,,(Oy). Formula
(23) defines a left adjoint functor f; of the induced functor f7": NC,(Ox) —
NC,,(Oy). It is clear from the affine case (2.1) that f always sends QCoh,,(Y)
into QCoh,,(X). The proof of [16, 5.8 ¢)] shows that if X% is noetherian, then also
S preserves quasi-coherence.

We say that the morphism fis a closed or an open immersion if it is so in the sense
of locally ringed spaces. The argument of the proof of [12, 4.2.2-b)] shows that if f'is
a closed immersion and Y is an affine NC;-scheme then also X € NC; and is affine.
One shows using this that for any closed immersion f the functor

f;n: NCm(OX) - NCm(OY) (28)

preserves quasi-coherence. As an application one obtains a one-to-one correspon-
dence between equivalence classes of closed immersions X — Y and quasi-coherent
two sided ideals of Oy.

LEMMA 22.1. Let X € NCoo, MSN e QCoh(X), g: M:= M/F\M — N the
induced map. Then

(1) g is surjective <= g is.
(i) Assume M = N. If g = idM, then SIFM = idr,um.

Proof. Part = of (i) is trivial. To prove the converse we may assume X affine.
Furthermore, by (27) it suffices to show that if R € NCy and i P — Q € NC/(R) is
such that / is surjective then so is s To prove this it suffices to show
hy: G, P = F,P/F,1 P — G,Q is surjective for all n > 1. Every element of G,Q is
represented by a sum of elements of the form a-x-b where
x=ad(r))o---oad(r)(q). Here g€ Q, r,....,rjeR, acFR beFR and
i+j+k=nIf h(p) =g mod F|Q, then

h(F,P)> h(a---ad(ri)o---o ad(r)(p)-b) =a-x-bmod F,10.

This proves (i). To prove (ii) assume that P = Q and that / is the identity. Then for
n,a,x and b as above,

h(a-x-b)=a-ad(r))o---oad(r;)(h(qg)) - b
=a-x-bmod F,P.

Forn=1[, F,;1 P =0, so = can be replaced by =. |

COROLLARY 2.2.2. Letf: X — Y € NCy — Sch. Then fis a closed immersion <=
S0 s,
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Remark 2.2.3. For open instead of closed immersions we still have
f: X — Y open immersion = f: XU — ¥y open immersion,

for each n > 0. O

2.3. PRODUCTS OF NC-SCHEMES; SEPARATED SCHEMES

For /< oo the categorical product of two affine NCj-schemes as objects of
NC;— Sch is given by
Rx R
Spec R x;Spec R = Spec ————— 29

P P P Fii(R*R) 29
where * is the coproduct in the category Ass of associative algebras. The product of
not necessarily affine X, X" € NC; — Sch denoted X x; X' is constructed by glueing
together products of affine ones, just as in the commutative case. Note that products
do not exist in NCo. We say that an NC; scheme is separated over Spec k—if the
diagonal map 6 X — X x; X is a closed immersion.

LEMMA 2.3.1. Let X, Y€ NC;, 00> 1>m>=0. Then

() (X x; V)M = xlm . ylnl,
(i) X is separated < X0 is separated.

Proof. To prove part (i). The projections X x; Y — X, Y induce a map
S (X x; V)M Xy e NC,, — Sch. To show f, is an isomorphism we may
assume X, Y are affine, in which case the lemma is immediate from (29). Part (ii) is
immediate from (i) and Corollary 2.2.2. ]

2.4. THICKENINGS

In this paper by a thickening of an NCo-scheme X we understand a closed immersion
7. X > T € NCy — Sch such that J; := ker(Or—»1,0y) is a nilpotent ideal. If both
X, T € NC;— Sch then we say that t is an NCj-thickening. For example if X € NCy
then for each 0 < m < [ the inclusion

Y s xin (30)

is an NC-thickening. We remark that all NC-thickenings considered in [17] are either
of the form (30) or colimits of such. However the definition given here is more gene-
ral, as it includes for example all thickenings of commutative schemes in the commu-
tative sense ([14, 4.1]); indeed these are precisely the NCy-thickenings. In fact we have

LEMMA 24.1. : X - T is an NCj-thickening < % X% — 7 s an NC,-

thickening.
Proof. Immediate from 2.2.2. |
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LEMMA 2.4.2. Lett: X< T € NCy — Sch be a thickening. Then X is affine < T is.

Proof. If T is affine then X must be affine since it is closed (cf. the discussion just
before (28)). To prove the converse, we may assume J2 = 0. Because 7 is a closed
immersion, 7,0y is a quasi-coherent O — NCy-bimodule (cf. (28)). Hence, J; is
quasi-coherent, and an object of NCw(Oy) since J> = 0 and 7 is a homeomorphism.
Because X = Spec R is affine, there is an R-bimodule M such that J, = M. Put
E = O4(T). Taking global sections in the exact sequence

0—>J,— O0r—1.0y—>0

and using (27) we get an exact sequence of E-modules
0—>M-—>FE—R—DO.

Applying the functor ~ to the latter sequence we get
0—>J, > E— 1,0y — 0.

It follows that the canonical adjunction map E — O is an isomorphism. O
COROLLARY 2.4.3. Let X be an NCq-scheme. Then

() X is affine & X is.
(i) If U,V C X are open affine subschemes and X is separated then UNV is affine.

2.5. PRO-SHEAVES

If C is any category, we write Pro — C for the category of countably indexed pro-
objects in C (cf. [2, 11]). Recall that Pro — C is Abelian if C is, and by [11, Prop.
1.1] has sufficiently many injectives if C does. In particular if X is an NC-scheme,
then the category Pro — ShAb(Xz,,) of pro-sheaves of Abelian groups has sufficiently
many injectives, and thus the right derived functors of the total global section functor

A Pro — ShAb(Xza) 3 S = (Si}ies > lim H°(X, S)) € Ab
e
are defined. We write
A0
H*(XPro—Zara S) = R*(H )S
There is a cohomology spectral sequence
EVY = HP(Xz4r, im?S) = H'(Xpro—zar, S). (31)

For example if M is an inverse system of quasi-coherent sheaves with surjective
maps

s Mo M (Mn € QCO/?OO(X)),
then by (27) and [15 Ch. 1 §4], the derived functors of lim vanish and we get
H*(Xpro—zar, M) = H*(Xzar, lim M). (32)

https://doi.org/10.1023/A:1022732008165 Published online by Cambridge University Press


https://doi.org/10.1023/A:1022732008165

DE RHAM AND INFINITESIMAL COHOMOLOGY 183

An important application of pro-sheaves is to fix the problem that usual sheaf coho-
mology does not commute with infinite products of Abelian sheaves; that is

H* (XZM, I1 S,1> # [ [ H*(Xzar, Sn).
n=1

— n=1

However, for the pro-sheaf

3 2
T8~ P s—~Ps.—~si,
n=I n=I1

we have
H* (XPro—Zar, ‘l_[’8> = lo_o[ H*(XZar» Sn) (33)
n=0

Hypercohomology of pro-sheaves in the Cartan—Eilenberg sense [22, App] is defined
in the obvious way, and the obvious generalizations of (32) and (33) hold for hyper-
cohomology. These observations will be used in the proofs of the main theorems
(Section 8) to obtain Hodge-type decompositions for various variants of de Rham
cohomology.

3. Infinitesimal Topologies
3.1. THE INFINITESIMAL TOPOLOGIES OF AN NC-SCHEME

Let 0 < /< o0, X an NCj-scheme. The NCj-infinitesimal site on X is the Grothen-
dieck topology Xwc,—inr defined as follows. The underlying category Cat(Xnc,—inf)
has as objects the NCj-thickenings U< T. We write (U, T) or even T to mean
U—T. Amap (U, T)— (U,T’) in Cat(Xyc—inr) exists only if U C U’ in which case
it is a morphism of NCj-schemes T'— T’ such that the obvious diagram commutes.
A covering of an object Tis a family {T; — T} of morphisms such that each 7; - T
is an open immersion and UT; = T. A sheaf S on Xy, —inr is the same thing as a com-
patible collection of Zariski sheaves {St € Sh(Tzar) : T € Xnc,—ine} (cf. [3 §5], [14,
4.1]). For example the infinitesimal structure sheaf O is defined by the collection
{Or}r of the structure sheaves of T € Xn¢,—inr. We remark that a sequence of NCj-
infinitesimal sheaves 0 — & — S — §” — 0 is exact &= the sequence of Zariski
sheaves

08, —>S8Sr—>8—>0 (34)

is exact for all T' € Xy —inr. An important feature of infinitesimal cohomology is that
it depends only on the underlying commutative scheme. Precisely, if X € NC; — Sch
then the inclusion 1: X% X is an object of X[/?,]C[_inf; thus by composition we obtain
a morphism of topologies F: Xyc,—inr — X[JS]CHM. With the notations of [1], we put

1, = F%: ShAb(X[]?/]Q—inf) - ShAb(XNCI*in)'
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LEMMA 3.1.1. H*(Xy¢,int, 1:8) = H* (XYL, i, S).

Proof. One checks that the left adjoint 1* of 1, is exact. On the other hand 1, is
exact by (34). The lemma follows from the Leray spectral sequence associated to the
morphism of topoi 1 = (i, 1*): Sh(X][\?]C/—inf) — Sh(Xnc,—inf)- O

If X is a commutative scheme and m < /< oo, then the natural inclusion
J: Xnc,—int = Xne—inf 15 @ morphism of topologies. An argument similar to that of
the proof of 3.1.1 shows that for j, :=j* and S € ShAb(Xnc, —inr) We have

LEMMA 3.1.2. H*(Xnc—int> jxS) = H*(Xnc, —inf, S)

m

3.2. FORMAL NC;-SMOOTHNESS; SYSTEMS OF EMBEDDINGS

Let 0 </ < 0o. An NCj-scheme X is formally NCj-smooth (I < oo) if it can be covered
by open affine schemes of the form Spec R with R formally /-smooth in the sense of
[17] and [8]. Equivalently, X is formally NC;-smooth if the representable sheaf X cov-
ers the final object * of the NCy-infinitesimal topos, i.e. the map X—»x* is an epi-
morphism (cf. [3, 5.28]). An NCj-embedding of X is a closed immersion 7: X <— Y
with Y formally /-smooth. If J = ker(Oy — 1,0y), we consider the n-th formal neigh-
borhood of X along X —Y

4,0
(Y)n = <X, T 1%) € XNC,—inf~

An NCy-embedding is a direct system V = {X— Y, Y, | < ---} where X — Y, is
an NC;-embedding and for m > /+ 1 each Y,,_;—Y,, is an NC,, embedding. A sys-
tem of (local) NC-embeddings of X is a family ) = {r; : U;—Y; : i € I} indexed by a
well ordered set I such that Y = {U; : i € I} is an open covering of X and each 7; is an
NCj-embedding. The utility of the order on 7 will be clear in 3.3 below. The definition
of a system of NC,-embeddings is analogous.

3.3. CECH-ALEXANDER COMPLEX

Let / < 0o, X be a separated NCj-scheme, ) := {U;—Y,;:i € I} a system of NCj-
embeddings, and S a sheaf of Abelian groups on Xy¢,—inr. For iy < --- < i, (ij € 1)
we consider the following object of Xn¢,—inf

Yigoihn = Uiy N O U= (Y X0 % Y5 )y).

The Cech— Alexander (pro—)complex of X relative to ) is the double pro-complex of
Zariski sheaves

S, =[] s (YW ) (35)

g<-<ip iQsmnip
d

with the horizontal coboundary being the alternating sum of the cofaces induced by
the natural inclusions and the natural projections
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i C Uio.v..v_..,..ip, Yio,...,ip_» Yio....v_ ..... ip

.......
i i
and with the vertical coboundary being the alternating sum of the cofaces induced by

the ¢ + 1 distinct projections Yxf_‘ffll—» Y3 . . In other words Cy"(S) is a semi-cosim-

plicial-cosimplicial pro-sheaf, regarded as a double cochain pro- complex in the usual
fashion. Next assume ) extends to a system of NCy-embeddings Z and let G be an
abelian sheaf on Xyc__ins. By definition Z is a sequence V;— V1< - - - of systems of
embeddings and compatible maps. Hence it gives rise to the following double com-
plex in ShAb(X)VN

C3" D =C3, Gixacudn  (m=1n=0). (36)
As a pro-object, (36) is isomorphic to the inverse system

Cz*(g)m = Cz*(g)erl,m (m=0).

LEMMA 3.3.1. Let 0 </ <00, X a separated NCj-scheme, Y ={U;—Y;:ie€l} a
system of formally NCj-smooth embeddings and S an abelian sheaf on X yc,—inr. Assume
either of the following hypothesis holds

(1) U={U;:iel}is locally finite.
(i1) (Y T € Xnc,—inf) the Zariski sheaf St is quasi-coherent in the sense of 2.2 above.
Then with the notations of 2.5 and 3.3,
H*(XNC,finfs S) = [H]*(XPronara Cy(S))
Proof. Assume / < oo. Consider the following objects of the infinitesimal NC;-
topos
(Yoo i=colim(Yp,.  V=][ (V)
iel

where (YN,-),, is the representable sheaf. Then
0
H (Xpro—int, C3(S)) = h'(H Cx(S))

= ker (Hom(jﬂ, S) — Hom (]_[ (f)\/;)oo X (f)\’_,/»)oo, S)))

i<j
(37)
where the map is the difference of those induced by the two projections
(Yoo x (Yj)o) = Y. Because Y -—»=x* is an effective epimorphism, (37) equals
H(Xnc,—inf, S) It remains to show that
H*(XmeZarv Cy()) (S H*(XProfzah C)/(S))

is a unversal J-functor. Under either of the hypothesis (i), (ii) of the lemma, the pro-
ducts appearing in (35) are exact. Indeed in the case of (i) this is clear, and for (ii) it
follows from (27) and [15, Ch.1§4]. Thus we may assume ) consists of a single
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embedding X < Y. It is clear from (34) that Cg,(~) is an exact functor for each ¢ > 0,
whence H*(Xpro—zar, Cy(+)) is a d-functor. It remains to show that the functor Cf{,(-)
preserves injectives; this will follow once we show it has an exact left adjoint. For
the product embedding Y@ := {X < Y**!} we have Ci() = Cg,u,)(). Thus we may
assume ¢ = 0. For each T= (1: U— T) € Xy¢,—inr let

nr =min{m > 1: ker(Or — 7.0p)" = 0}.
One checks that the exact functor

Pro — ShAb(Xzar) 9{3,7}"H{ - v:*(Snru)}} € ShAb(Xnc,—inf)
T

Hom(T. Y, ;)

is left adjoint to Cg(-). This finishes the proof for / < oo; the case / = oo is proven
similarly. ]

3.4. THE INDISCRETE INFINITESIMAL TOPOLOGIES OF AN NC-ALGEBRA

Let 0 </< 00, A€ NC;. We write inf(NC;/A) for the category of all surjective
homomorphisms with nilpotent kernel B— A. We equip the opposite category
inf(NC;/A)” with the indiscrete topology; this means that if B = (B—4) then
Cov(B) is the set of all isomorphisms B— B € inf(NC;/A4). A sheaf of abelian
groups on inf(NC;/A)” with this topology is the same thing as a presheaf, which
in turn is just a covariant functor G: inf(NC;/A) — Ab. Let X = Spec 4. With the
notations of [1] the functor

F: inf(NC1/A)" — Xnc,—int, B> Spec B

is a morphism of topologies, and induces a functor between the categories of sheaves
of sets

Ji = F": Sh(Xnc,—inf) — Sh(inf(NC;/ A),
S — (B H'(Spec B, S)).

The left adjoint of f is the functor
[* = F, : Sh(inf(NC// A)) - Sh(Xnciin). G+ G

where for each T € Xyc,—inf, ér is the Zariski sheaf defined by (18). Because /™ is
exact (i.e. (f, /™) is a morphism of topoi) we have a Leray spectral sequence

E}* = HP(inf(NC)/ A). (RU)(S) = H' (X xciint, S)- (38)
Here

(RIf)(S)(B) = HI(SpecBzar, Sspecs) (B € inf(NC;/ A)) (39)

For example, if M is a sheaf of NC-bimodules on inf(NC,/A) then the Zariski sheaves
My (T € Xyc,—inr) are all quasi-coherent, whence (39) vanishes for ¢ > 0, and

https://doi.org/10.1023/A:1022732008165 Published online by Cambridge University Press


https://doi.org/10.1023/A:1022732008165

DE RHAM AND INFINITESIMAL COHOMOLOGY 187

H*(inf(NC)/A), M) = H*(Xn¢,-int, M). (40)
If G : inf(NC;/A) — Ab is arbitrary, we still have a natural map
H*(inf(NC;/ A), G) — H*(Xx¢,—in: O).

but this is not an isomorphism in general. The Cech-Alexander pro-complex for the
indiscrete topology is constructed as follows. Assume first that / < co. Given a sheaf
G: inf(NC;/A) — Ab and a presentation 0 - J — R— 4 — 0 of 4 as a quotient of
an algebra R € Ass, we put

CylP(R,J)
? (R — AR m >
CNC[( ’ J’ g)m g(F[Cylp(R, J)m (m 0)7
where CyF(R,J) is the pro-algebra of [6]. In case R; := R/FR is formally /-smooth,
the procomplex Cy¢,(R,J,G) computes sheaf cohomology (cf. [5, 5.1])

H*(holimnCNc,(R, J, g)n) = I]-I]*(Spec kprofzar, CNC/(Rs J, g))

. (41)
= H*(inf(NC;/ A), G).

We also put
C‘]]j\/(foo (R’ J’ g)m = C?VC,” (R’ J’ g)m (Wl = 0)

If R, is formally /-smooth for all / (e.g. if R is quasi-free in the sense of [9]) then (41)
holds for / = oo as well. As a particular case of (31) (or rather of its hypercohomo-
logy version) we obtain a spectral sequence

EP = HP(lim?Cye, (R, J, G)) = H'H(inf(NC;/A),G) (0 < < 00)

This spectral sequence degenerates for example when G maps surjections with nil-
potent kernel to surjections, as lim? Cy¢,(R,J,G)) =0 for ¢ > 0. Hence if M is as
in (40) and in addition maps surjections with nilpotent kernel to surjections, then

H*(Xne—ints M) = H*(lim Cye (R, J, M)).

Remark 3.4.1. One can also consider the indiscrete topology on the category
inf(Ass/A) of all nilpotent extensions B—A, where B runs in the category Ass of
associative algebras. It was proved in [6] that for 4 € Ass

H* (inf(Ass/A), %) = HCM 4

We remark that the indiscrete infinitesimal cohomology of 4 € NC) as an associative
algebra does not agree with its cohomology as an NCj-algebra. For example if 4 is
formally Comm-smooth then HC?®"A4 is as in (9) while the indiscrete NC-infinite-
simal cohomology H*(inf(NC;/A4), O/[O, O)) is as calculated in 8.3.1 below. ]
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4. NC-Differential Forms
4.1. NC-FORMS FOR NC-ALGEBRAS AND SCHEMES

We make some remarks regarding the definition of NC-forms given in the introduc-
tion (2). We observe that the bimodule filtration (14) is included in the DG-commu-
tator filtration; we have F,,Q’ R C (F,,QR)” (m = 0). In particular, O} R € NC(R).
Moreover, one checks that Qyc, localizes; if I' C R is a multiplicative system, then

Qne (RIC') =2 (Que, I
Thus the following NC-Ogpecg-bimodules are isomorphic
QI\//E//R = QNC/(/)SpecR~

It follows that, in general, if X € NC;— Sch then the sheaf Qpy¢, := Qnc,Ox is a
quasi-coherent sheaf of DG- algebras over Oy. All this generalizes to the case
[ = oo as follows. With the notations above, put

Qnc, R ={Qn¢, R}, € Pro — R — Bimod.
If X is a scheme, then the Pro-Zariski sheaf Quc_, is defined in the obvious way.

Remark 4.1.1. With the definitions above, the functor Qyc,: NC; — DGNC; is
left adjoint to DGNC; — NC,, A A°. Indeed for R € NC, and A € DGNC;

Hompgne,(Qne, R, A) = Hompgags(QR, A)
= Homag(R, A) = Homyc (R, A%).

It follows from this that Qy¢, R is formally NC;-smooth in the obvious DG-sense <
R is formally NCj-smooth. On the other hand

Qne, R Q R
FiQve, R~ ™\ FR

for every R € NC,. Thus if A is smooth commutative and if R; is an NC;-smooth
thickening of 4 in the sense of [17, 1.6.1] then Qy¢,R; is a DG-NCj-smooth thicken-
ing of the smooth DG Comm-algebra QcommA. O

4.2. FORMS AND EMBEDDINGS

If R € Ass and J< R is an ideal we put

QNC/(Ra J) = QNC/( € Pro — 4b

R
FiR + J®
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for 0 < /< oo. Here as in [11], J* is the pro-ideal of the powers of J. Similarly for
[<ooif Y ={t: X—7Y}is an NC;-embedding with ideal of definition J, we put

(0
Qe = Qe <r 1(})}:)) € Pro — ShAb(Xza). (42)
In general, if Y ={U;—~Y;:iel} is a system of NC;-embeddings, Q%Q is the
total complex of the double pro-complex whose pth column is (Q%Cl)p’*z

i) 5ees

Yio-ip L\ PR L A - I . 1
Hi0<m<i], .Qye, - Here YO :={Uj, i, =Y, i} and 1: Uj, ;<> X is the open

immersion. If Z=Y,— Y;;;— --- is a system of NCy-embeddings we put

(Q%Cm)l,n = (Q%[C,)n

5. NP-Algebras and Schemes

The forgetful functors going from the category of Poisson algebras to vectorspaces
and to commutative algebras have each a left adjoint, which we write respectively
Poiss and P. We have an isomorphism of Poisson algebras

PSV = SLV = PoissV, (43)

where V' is a vectorspace, L : Lie — Alg — Vect is left adjoint to the forgetful functor
and S is the symmetric algebra. The Poisson bracket on SLV is induced by the Lie
bracket of LV. Recall from [8] that if A4 is any commutative algebra then PA carries a
natural grading

o0
PA = @ PA (44)
=0

such that
{P[A, PmA} - P1+m+1Aa PiA-PuAC P/+mA-

In the case 4 = SV this grading is the same as the grading

o0
SLV = @ S,LV, (45)

m=0

induced by LoV =V, L,V =[LoV,L,V] Note that this is different from the
usual grading S =@, _, 5" of the symmetric algebra. The analogue of the com-
mutator filtration for Poisson algebras is the Poisson filtration defined as follows.

Let P be a Poisson algebra. Put Fy P = P and inductively
m m

Fp1Pi=Y " FP-Fyu1 P+ Y ({FP, Fy P}). (46)
i=1 i=0
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For example, F;PA = @, ; PnA. The analogues of NCj-algebras and schemes in the
Poisson setting are called NP;-algebras and schemes. All what has been done for NC-
algebras and schemes translates immediately to the NP-setting. We shall not go into
the details of this translation here but shall make a few remarks about it. First of all
we note that the coproduct of two Poisson algebras as such is not the same as their
coproduct as commutative algebras or tensor product. If KP and KQ are the kernels
of the canonical maps Poiss P — P and Poiss Q — Q then

__ Poiss(P® Q)
e =" %0y “

where ((X')) denotes the smallest Poisson ideal containing X (cf. [8]). Note that as
Poiss has a right adjoint, it must preserve coproducts, and that (47) simply expresses
this fact. Coproducts in NP; and products in NP; — Sch are defined accordingly. Sec-
ond of all the right definition for the DGP of differential forms of A € Poiss is not
QcommA, but is defined by the adjointness property Hompgp(Qpoiss A, Q) =
Homp,iss (A, Q°). For example,

Qpoiss SLV = S(L(V & dV)S(LV & dLV) = QcommSLV,

where dV and dLV are intended to be meaningful notations for the graded vector-
spaces V[—1] and (LV)[—1]. In general if 4 € Comm, then

QPoissPA = PQCommAa (48)

where the P on the right hand side is the left adjoint of the forgetful functor
DGP — DG Comm. With this definition, the same considerations as to formal
smoothness remarked for NC-algebras (4.1.1) hold in the NP-case (see [8, 3.3]).

6. Statement of the Main Theorems

Before stating the first theorem we need some more notations. Recall that if g is a Lie
algebra and Ug its universal enveloping algebra then there is an isomorphism of
vectorspaces

e

e:Sg Ug, 81 ~--gn'_)%ZSg(o)ga| - -8on (49)
g

Here ¢ runs among all permutations of n elements. The map e is called the symme-
trization map. In Theorem 6.1 below we use the particular case when ¢ = LV is as in
(43), so that Ug = TV, the tensor algebra. We use a”to indicate completion of a pro-
sheaf; thus for example if ) is a system of NC-embeddings of a scheme X then
fz%a = lim,,(Q%Cl)n. In the statement of 6.1 below we use the fact that, as follows
from Lemma 3.1.2, if X is a commutative scheme and 0 < /< oo then

H*(XNC/finfs O/Fl O) = H*(XCommfinf, O)s (50)
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where the O on the left-hand side is the structure sheaf of Xnc,_inr While the one on
the right-hand side is that of Xcomm—inf. The same is true with Xyp,_inr substituted for
XNC—int-

THEOREM 6.1. Let X be a separated commutative scheme, 0 < [ < 00, ), Z and W
systems of local NCj-, NP;- and Comm embeddings of X. Write O for the structure
sheaf of each of the infinitesimal sites on X. Then there is a commutative square of
natural isomorphisms

H*(Xnp,inf, O) H*(Xzar, Q)

le le

H*(XNC,—inf’ O) l) H*(XZar» Q%CI)

H*(XCommfinfs O) i) H*(XZah QW )

Comm

Here e and ¢’ are induced by the symmetrization map (49) and each of n, @', m o e and
7' o € by the natural projection O — O/ F\O and the isomorphism (50). Moreover, if we
equip each of the four vertices of the top of the diagram with the filtration induced by
the corresponding commutator or Poisson filtration then all three edges are filtered
isomorphisms.

COROLLARY 6.2. Assume X is formally smooth. Then

H*(XCommfinfs O) - H*(XZarv QComm)

) (51
= H"(Xzar, P < 1Qcomm)

for each 0 < | < oco. If moreover X admits a formally NCj-smooth thickening X — Y,
then (51) equals

[H]*((Y[)Zar’ QNC/) = H*((YI)NC[—inf’ 0)7
for each | < oo.
Proof. Immediate from 6.1, (26), (48) and 3.1.1. O

Notation for sheaf cokernels 6.3. In Theorem 6.4 and further below, the expression
O/[0, O] denotes the quotient of the sheaf of rings O by the subsheaf generated by
the sheafification of the presheaf [O, O(U) = [O(U), O(U)]. In other words, the
sheafification symbol is omitted. This is done to avoid further decorating already
involved symbols. The same abuse is committed with the subpresheaf generated by
brackets in a sheaf of Poisson algebras, and the subpresheaf generated by exact
differentials in the sheaves of differential forms.

THEOREM 6.4. Let X, [, Y, Z, W and O be as in Theorem 6.1. Assume the

underlying open coverings of Y, Z and W are locally finite. Then with the convention of
6.3 there is a commutative square of natural isomorphisms
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[oXd
H*(X _.7L) H*  Xpro_zar, —20—
NP;—inf (0,0} Pro—Zar {QiP/'QJZ\"P/}
I I
| 0 ] " O,
H (XNC/finfv m) E— H XPr()fZarvm (52)
NC)>""NCy

X I

/ /
om [5‘ % w
1_[ H* (XCommfinfs W) — l_[ H (XProfzar, TmQC()mm)

m=0 m=0

Here 1,Qcomm i the complex of sheaves

Q¢ d d d
. Comm m+1 7+2
TmQComm: dQT - QComm - QComm IR
Comm
where Q. /dQZ-L is in degree 0. Each of a, &, and & in (52) is induced by the

unbarred map with the same name in Theorem 6.1; it is filtered for the respective com-
mutator and Poisson filtrations. Each of y, V' is a filtered isomorphism for the commu-
tator filtration of its source and the filtration F. = [ (-) of its target. The map P is a
product of isomorphisms

m<r

Qn ~
Bm tH* <XComminfv ﬁ) —H (XProfzah 7;11Qg)mm)

Comm

of which B, = o is the map of Theorem 6.1.

COROLLARY 6.5. Assume X is formally Comm-smooth. Then

QI’H .
H*(XCOmm—inf’ de_]> =H (XZarv T QComm), (53)
P<IQC0mm > !
H* ( Xzar, < = [T H (Xzar, 1,2 . 54
< zar {PélQComm’ PélQComm} nl;[() ( zar Comm) ( )

If, moreover, X admits a formally NCj-smooth thickening X — Y, then (54) equals

B Qnc, . @
- H(( Yl)Zar’ [QNCI, QNC,]) - H(( Yl)NC,—inf’ [O, O]) °

Notations for cyclic homology 6.6. Let X be an NCy-scheme. The periodic cyclic
homology of X is

HCECF(X) = H*(XmeZarv Ccper)’
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where CCP*" is the sheafification at each level of the 2-periodic pro-complex

n—1
CCPeT — { <@ Qm) ® Q/tq}
m=0 n

called 0Q in [10]. In particular for the Hochschild boundary b, Q} := Q"/ Yt We
remark that as CCP*" is 2-periodic, the Cartan-Eilenberg resolution can also be taken
2-periodic. Indeed the procedure for the construction of CE-resolutions described in
[21, Proof of 5.7.2] yields periodic resolutions for periodic complexes. At level n = 1,
CCP? is the periodic de Rham complex

d
Ba¥e)!
X: QO - Qh

called X in [10]. We also consider the analogue of the latter complex for Poisson alge-
bras, which is defined as follows. Recall from [4] that if A is a Poisson algebra then
there is a boundary map

5:08  A— Qi A

Comm 'Comm

O(podp1 A -+ Adpy)
=3 (=D"{po. pitdpr A Adpi Ao A dpyt
i=0

—l—Z(—l)"ﬂpod{p[,p,}/\dpl A Adpi Ao Adpi A Adpy
i<j
We put
N
9: A QlA,
é

where QF = Q2 /6Q¢FL . We shall abuse notation and write X and @) for the shea-

fification of X and §) on the various topologies for schemes considered in this paper. If
Y and Z are systems of NC;- and NP;-embeddings then one can form the procom-
plexes of sheaves XY and 97 in the same way as was done with the complex Q” in (42).

THEOREM 6.7. Letne Z, X ,)Y, Z as in the case | = 0o of theorem 6.4 above, and
X, 9 as in 6.6. Then there is a commutative diagram of natural isomorphisms

sz >N sz_n ( XComm-—inf O)

:
H"(XNP oo —infs D) — . H"(Xpro - Zar, D%)

l 3 lf.%'
f;

H (XNC oominy £) ————> H*( Xpro - zar, )

|

HCR(X)
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The map f\ sends the filtration F, = [],, < .(-) isomorphically onto the filtration induced
by the Poisson filtration (46); both f> and fy are filtered isomorphisms. The isomorph-
isms f3 and fy are induced by the symmetrization map (49); they map the filtration
induced by (46) isomorphically onto that induced by (1).

COROLLARY 6.8 (Compare [13, Th. 5], [23, Th. 3.4]). There is a natural isomor-

phism HCY(X) =[], , HY (X Comm-—int, O) O
COROLLARY 6.9 Assume X is formally smooth. Then with the notations of 2.5
above
. PO
HEE (0 = H (o) {5 5] ) (55)
PZ”O n

If in addition X admits a formally NCyo-thickening X — Y, then the group (55) is also
isomorphic to H*(Xpro—zar, XOv,.). O

7. Auxiliary Results

PROPOSITION 7.1. Let R € Ass be a quasi-free algebra, TR the tensor algebra,
JR :=ker(TR — R), s € Homag(R, TR/JR?) a section of the canonical projection,
J< R an ideal and | = 0. Then there are maps of pro-complexes

o

Cnc/(R,J,0) Qne, (R, JT)
B

and homotopies o: oy — 1 and y: fo. — 1 all of which are natural with respect to R, s, J
and I, and interchange commutators and graded commutators. In particular
Cnc, (R, J,0/[0,0)) is naturally homotopic to Qnc,(R,J)/[Qnc, (R, ), Qnc (R, J)].

Proof. Tt suffices to check that the map o:=1Q®p: C(R,0, O)> QR of the
proof of [6, 2.4] which by the proof of [6, 3.1] preserves both the J-adic filtration
and the commutator subspace, preserves also the commutator filtration, and to
construct a natural homotopy inverse for it with the same properties. The proof
that o preserves the commutator filtration is similar to the proof that it preserves
the commutator subspace; one just considers the action of the full symmetric group
¥, on T™ rather than only that of the cyclic group. The map s of the proof of
[6, 3.1] extends to a Z,-equivariant contracting homotopy 6 of the augmented
resolution 7" — k. Using 0 and the perturbation lemma [6, 2.5] one obtains a
contracting homotopy of the mapping cone of o, h: M" = C" & Q"R — M"! with
the matricial form
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h= <(V) g) M =CyI'Re ¥~ — mP~!

It follows that f§ is a cochain map with «ff = 1 and that y is a homotopy 1 — fa. One
checks, using the equivariance of § and s and the formulas of [6, 2.5] that both y and
f preserve both the commutator subspace and the commutator filtration and are
continuous for the J-adic filtration. ]

LEMMA 7.2. Let A€ Comm, Re Ass, n: R—+A a surjective homomorphism,
Tun: Ripi= R/Fi R+ (kern)"™™' —A4 the induced map, T C B:= R/FIR a multi-
plicative system and [= n~!("). Then there is a commutative diagram with horizontal
isomorphism

4 .
Rl,n[P—I] _>R[F_]]l,n

P—1
EZ.H[F\I]A l”[r bin

Al

Aol
Proof. Both R R[T""']and R—(R[I" ]), are universal (initial) among all those
algebra homomorphisms going from R to an NCj-algebra which invert I'. Therefore

they are isomorphic R-algebras. By naturality we get a commutative diagram

Y

~

Ry[T~"] —= (R[],
l(ﬂ[f‘"ll)z
1A

m[T 1]

where  is the natural isomorphism of R-algebras just defined. Thus i maps
K := ker(m[I"""]) = (kerm))[[ '] isomorphically to K’ := (kern[f_l]),. One checks,
using [17, 2.1.5.1] that K = (kerm;)"[I""']. The map ¢ of the lemma is that induced
by y upon passage to the quotient. O

LEMMA 7.3. Let G=Gy® G| D - -- D G be a graded commutative algebra. Assume
G is additionally equipped with an associative but not necessarily commutative product
D= Z;zo D,: G® G — G such that @ is the original commutative product, and ®, is
homogeneous of degree p and a bidifferential operator. Consider the associative algebra
R=(G,®). If T C Gy is a multiplicative system, then I = {s+gilsel, g e
®,>1G,} C R is a multiplicative system and R[f‘l] o (F_IG, o).

Proof. Note first that the product I'"'® is associative because the associator
localizes

AT\ @) =T\ 'd(,),) — T'd(, T, )
=T TA®) =0.
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On the other hand, that I is multiplicatively closed is clear from the fact that
DG, ® G=p) C G yim- One checks that, upon localization of Gy-modules, the
projection G — G, becomes a surjective algebra homomorphism I''m R =
(I''G, T7'®) »I'"'Gy. Thus an element x € R’ is invertible if and only if T~ !z(x)
is invertible. It follows that the obvious homomorphism R — R’ maps each element
of I' to an invertible element, whence we have a natural map ¢: R[f_ ]— R. To
prove that ¢ is an isomorphism proceed as follows. Consider the filtration
R=Ry DRI D---DR;, R, =(Gz,Pc.,06.,) Each R, is an ideal of R, and by
exactness of Qre localization, the associated graded ring is

Thus ¢ is an isomorphism because it is so at the graded level. O

LEMMA 7.4. Let V be a vectorspace, T = TV the tensor algebra, T <; = T/Fi1T.
Also let P = PoissV be the free Poisson algebra, and for the Poisson analogue of the
commutator  filtration, P<;= P/Fi.1P. Assume a multiplicative  system
I'C Pcoy=T<o=S:=SVisgiven, and let [c T« be the inverse image of T under
the projection T< —S. Then the symmetrization map (49) induces an isomorphism

A —1
r_lpgl ~ Té/[r ]
P TPl B o)

Proof. Apply Lemma 7.2 with R=T, A =B =S to obtain an isomorphism

T 0= TR TE '] Thus

T I T ]

X

T e R N R}

Now [T [f_l], T[f_l]] is the image of the Hochschild boundary
b QT = TIE], xdvis [x, )],

But Q'7[ 1= 7 v 12 T e Ve T[] as T J-bimodules.

Hence,
1 ~A—1 1 ~A—1
QT[FA_I] _ 31 T[T ]A_1 T o v
PO’TIT 1 [T 1L.Q'TIC ]
and, therefore,
(T[], T = (7L L (56)
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On the other hand, by [8, 2.1 (1)] the map e induces a vectorspace isomorphism
P ;=2 Ty, whence T ¢, is identified with the algebra with underlying vectorspace
P <; and multiplication

D(x, y) := e !(exey). (57)

A —

By [8, 2.1 (2)] and [7, 2.2], Lemma 7_13 applies to G = P<; whence T¢I’ 1] =
(C~'P_;, T~'®). Thus, modulo Fi, T[I" ], (56) gets identified with the subspace gen-
erated by the elements of the form

/
> @) sy o) = T D) (0, 57'x) (xeP<lLseT,vel). (58)
=1

By [7, 1.1] the homogeneous part of degree one of (58)is {s~'x, v} e (T 'P ., V).
I claim that each homogeneous part of degree p > 2 of (58) is zero. For s = 1, the
claim is just the fact that e commutes with the adjoint action of the Lie subalgebra
L C T generated by V' —[19, 3.3.5]- and in particular with its restriction to V. Recall
both ®@,(v, ) and ®,(, v) are differential operators of order < p ([7, 2.2]). Thus the
identity

As™'a) = i(i(—l)i<;))s(f+l)F(sla) (seT,aePc)

Jj=0 \ i=j

holds for both F'= ®,(v,), ®,(,v). The general case of the claim follows from this
observation and the case s = 1. We have shown that under our identifications
[T </T~", T < /[T ~'] gets identified with {T""' P ;, V'}. It is clear that the latter coin-
cides with {T™'P ., T'P ). O

LEMMA 7.5. Let V be a vectorspace, S = QcommSV = S(V @ dV) the commutative
DGA. Let P.S = @, > 1P,S be the part of positive degree in the DG-Poisson envelope
(44). Then there is a contracting homotopy h. P,.S — P.,S which is right S-linear,
homogeneous of degree zero for the Poisson gradation and maps S(LV & dLV)N P,.S
to itself.

Proof. Define a k-linear map 0: W:= V& dV — W, 0dv = v, 0ov = 0. Extend 0
first to @ = LW as a derivation for the Lie bracket and then to all of Sg = PS as a
derivation for the (skew-) commutative product. Put A = [0, d]. Write || for homo-
genous degree with respect to (45). Consider the grading w of Sg determined by
w(g) = |g| + 1. If x is homogeneous with respect to w, then Ax = w(x)x. Rescale the
restriction of A to S;g, (notation as in [8, 1.0]) to obtain a k-linear map
K:Sya, — Syq, with kd+dk = 1.

h: PoS =53, ®S:q, — P.S.  h(x®))=(—D*"x@ k().
One checks that 4 is right Sqy-linear and that dh + hd = 1. O
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LEMMA 7.6. Let V be a vectorspace, P =Poiss V, i = 0. Write QcommP for the
homogeneous part of degree i with respect to (45). Then there is a k-linear map

V:Q. P QFl pooy

Comm Comm™ °

1

\Y

such that

1) (Vo+V)o =0 if v e QegmmP. 7= 2.
(11) V(1’Q>’(<3()mm1-)) Ci-1 Qét)llnmp‘

(ili) The restriction of V to O P is a differential operator of SV-modules.

'Comm

Proof. Put L=1LYV,
Cf,i = Pi ® (ArL)ocf(rvLi)’ Cf =ar szommp = @ Cz,i' (59)
i=0

We have 6CY, C€P;.,C);, whence C* is a subcomplex of the complex
C = (QcommP,d), and C =P, > o C*. The homogeneous component of degree 0 of
3:C* — C*_, is the restriction of 1 ® &', where : A’L — A""'L is the Chevalley-
Eilenberg boundary
" i
F@ A ng) =S (=D¥gglag AV ng
i<j

Because L is free, there is a k-linear map V': A"L — A""'L (n > 1) such that
V'§' + 8’V =1 on A% >L. Because &' is homogeneous of degree +1 for the chain com-
plex decomposition induced by L =&, . (, L,, we may assume V' homogeneous of
degree —1. Put

V0= 1V (= Yy (r=1)

Then V** is homogeneous of degree 0 for the decomposition (59). By the perturba-
tion Lemma ([6, 2.5]) there exists, for each n > 1, a k-linear map V*" : C} — CZ
homogeneous of degree n (with respect to (59)) such that V*:= """ V*" verifies
V¥ +0V* =1 on C* (r = 2). Moreover, from the formulas of [6, 2.5] and the fact
that each of the components of § is a differential operator -because {, } is bidifferen-
tial- it follows that the same is true of each V*". Therefore the map V = @, V* satis-

fies the conditions of the lemma. O

LEMMA 7.7. Let V be a vectorspace, S = SV, P = Poiss V. Consider the complex

" P,', ifl’l =2i
_ ol
N = 5,’?8)2“1“11)1)’ ifn="2i+1 (n=0),
=122Comm

with coboundary maps d: W* — N2 and §: N2 - N2 (i >0). Then N is natu-

rally homotopy equivalent to QcommS in such a way that each of the natural homotopy
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equivalences and homotopies involved is continuous for the adic topology induced by
any ideal 1<4S.
Proof. Put

N ifn<2i+1

N =14 .. . .
i {<71P ifn=2i+r (r=2).
St p

‘Comm

Make NQ into a cochain complex with boundary map 9": NQ! — NQ'H! given by

o = 0, noddand <2i—1,
" ld, nevenor >2i

Let 4 and V be as in Lemmas 7.5 and 7.6. Define maps

On
—_— Vi -1 € -1
nQ’ NQL, NQ BNQ"' and NQJ, B NQY

—— 1 ’
n

as follows
. 1, n<2i+1,
an:{l,hé n<>221ﬂ-12, g, =1 —Vvd, n=2i+2,
—ho, n=2i+2, —(Vd+dV), n=2i+3,
Lo m<2it2 [0 n<2i+2,
MEANVRS n=2i43, T WOV -1) n=2i+3,

One checks that o and f§ are cochain maps as well as that the following identities hold
oaff — 1 = €0 + O, po—1 =70+ Oy.

Thus (QcommS,d) = (IQ,0) is naturally and adically continuously homotopy

equivalent to 9 = colim(MNQy—NQ;—>NQp— - - +). O

LEMMA 7.8. Let U and V be vectorspaces, o, f 2 0,7 =a+ . Let X, p := X, X Xp

act on T"UQ® TV as follows:

(o, D)(ur...uy @uy...1vp)

= (sgf)uol o UgglUypgl - Uyt Q Vgl - - - Vg Vol - - - Votzf-

Then
SURV)@NURN=(T'URT V),

Proof. Straightforward. O

PROPOSITION 7.9. Let X be a separated commutative scheme.
Then
H"(Xcomm-—inf» Qpcomm) =0 (p=Ln=0).
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Proof. By (38), (39) and (40) it suffices to show that if U is a vectorspace and
I C S = SU is an ideal, then the normalized pro-complex C(S, I, Q°) is contractible.
‘We shall show this for the case 7 = 0; a routine verification shows that all the cochain
maps and homotopies we shall define are continuous for the adic topology of any

ideal I, proving the general case. Let V'* and W* be the cosimplicial vectorspaces of
[6, 1.2]. We have

SEH —SUSUR V™) = S(W™). (60)

Hence by the lemma above

0%

Comm

S®m+l — @ @ Ql] SU® (TaJrﬂU@ Tot+ﬂ Vm)z

'Comm
=0 g+p=p

o’

Pro-completion with respect to the ideal (U ® V") C S®"*! gives the pro-space

Cr=C"8.0.¥),= P P UpnSUST*PUR T V™)

0< o< ng+p=p

of?

where (m > 1). Recall from the proof of [6, 2.4] that for the normalized complex
TTV* we have

TV"=0, forr>m and T"V" =kZ,)

Thus C™ is the constant pro-vectorspace

"= P B UwnSUST VSTV, .
Osr<m p—r<qsp
Recall from the proof of Proposition 7.1 that there is a X,,-equivariant homotopy
equivalence p: T"V — k[—m]. It follows that 1 ® p passes to the quotient modulo
the action of the symmetric group, giving a homotopy equivalence between C and
a complex having
"= P QmSURAN" U SU

Comm
p—m<qg<p

in degree m. This vectorspace can be interpreted as a piece of the DG-module of
m-differential forms of the DGA QcommSU. Namely D" =,Q7 - m(QcommSU).
Here the subindex p denotes weight with respect to the grading of QcommSU deter-
mined by deg(u) = 0, deg(du) = 1. One checks further that the coboundary map is
the restriction of d’, the de Rham differential for forms on Qgy. We have
QpG-commQcommSU = S(U edUa d/(U 57 dU))
=SUed'U)®SdUad'dU)

= QDGfCommSU ® QDG7C0mmS(dU)-
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It is clear that Qpg_commS(dU) is contractible by means of a weight preserving con-
tracting homotopy /4. Thus 1 ® 4 is a contracting homotopy for D. This concludes
the proof. O

LEMMA 7.10. Let n,m = 0. Then

(i) Let Q] be the NCo, — inf sheaf coker(h: Q° — Q). Then H"(Xyc, —ins. Q}) = 0.
(ii) Let (,Q . P)s be the Comm — inf sheaf coker(d: ,,_1Q%,, P —, Qb P),
where the subscript on the left hand corner indicates degree with respect to the grading
(44) Then Hn(XCOmmfinfv (mQ(ljommP)(S) =0.

Proof. (i) It suffices to show that if Comm > 4 = R/I with R quasi-free then for
the presheaf cokernel Q* = Q*/bQ**!, the complex C(R,I,Q") is naturally con-
tractible. A similar argument as that given in the proof of 7.1 above shows that the
homotopy equivalence of the proof of [6, Lemma 5.6]

Q*'ReQ*R Q' R®Q*R
N*+gl,oo - gl,oo

1®p: C(R,1,Q") —

preserves the commutator filtration.
(i1) By the proof of Lemma 7.4, for R =TV, S = SV, and the presheaf cokernel

Qb o= Qe /OQEHT the 1symrnetrization map induces an isomorphism of
pro-complexes [ C(S, 1, QcommP) = C(R, I, Q). O

LEMMA 7.11. Let V be a vectorspace, S=SV, T=TV, L=LV, P=PoissV,
1CS an ideal, A= S/I and JC T the inverse image of I under the projection
T—> T/F\T=S. Then the map

n: QcommP — QT,

na®dgi A+~ Adg,) =e(@® Y se(0)dgsr...dgm (g€ L)

oex,

induces a homotopy equivalence of pro-complexes

P ~ T
(2o e) )~ (o))

Proof. Consider the associative product x » y = e~ !(exey) for x, y € SL = P; put
Q:= (P, *). The map e induces a chain isomorphism between QQ = (QP, b%) and
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(QT, b). Moreover, it follows from [7, 2.2], [8, 2.1] and [8, 2.6] that the map e induces
a chain pro-isomorphism

(7)) o))

Let a: SAL = AL — dQP,
odgy A+ Adgy) =Y sg(0)dgs ... dgan.

oeX,

Note n =eo (1 ®@a). By [18, Th. 3-a)], 1 ® « is a chain map. It induces a chain
pro-map

P P
Q Q . 61
Comm <P>oo n IOOP) TP r P D)

We must show (61) is a homotopy equivalence. For this we shall construct a homo-
topy inverse f5: QO — QcommP of 1®a and homotopies y: f(1 ® o) — 1 and
k:(1®a)f — 1 each of which will be continuous for the linear topologies of the
filtrations

{ker(QCommP —> QCommP/PZ n+ InP)}n
and {ker(QP —> QP/P- , + I"P)},.

We point out that the first of these topologies coincides with that of the filtration
{I'QcommP + D)=, Qcomm P}, Write K: (Qcomm ® P, 5/)—£>P for the augmented
0 ® Q%-resolution denoted (L', ') in [18, Prop. 3] and R:(QP ® P, b’)—ﬂ>P for the
augmented Hochschild resolution. By [18, Lemma 9] the continuous map
1®a® 1: K— R a chain Q ® Q”-module homomorphism. It suffices to construct
continuous O ® Q°’-homomorphisms * R — K,y: R — R[1]and x": K — K[1]such
that f'#' = &', and such that 7/ and k' be homotopies f(1®ax® 1) — 1 and
1 - (1®a® 1) In turn for this it suffices to show that both R and K have contin-
uous k-linear contracting homotopies. For then the standard procedure for lifting the
identity in dimension zero to a chain map f’ using a contracting homotopy for K
yields a continous /', and similarly for the standard procedure for constructing the
homotopies 9" and x’. The map a1 ® a, w ® x — dw ® x defines a continuous con-
tracting homotopy for the augmented resolution R. To obtain a continuous contract-
ing homotopy for K proceed as follows. Put ,,K, := @H_j:m QcommP ® P; We have

K= éK §(,.K) c P,k
m=0

p=m

Let 6/, be the homogeneous component of degree n > 0. By [7, 2.2] each §/, is a con-
tinuous map. Hence, if A is a continuous contracting homotopy for (K, d,) then the
maph =Y ", hy of the perturbation Lemma [6, 2.5] is a continous contracting homo-
topy for (K, 0’). We remark that (K, d)) is the standard Koszul resolution of P as a
module over P ® P with its commutative structure. Thus, essentially the same argu-
ment as in the proof of Lemma 7.5 gives a continuous homotopy /4y as wanted. []
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8. Proofs of the Main Theorems
8.1. PROOF OF THEOREM 6.1.

We first do the case / < co. To start, we prove the existence of the isomorphism o;.
Assume first X = Spec 4. Choose a presentation

0—>J—>R54—0 (62)

of A as quotient of a quasi-free R € Ass. Put R, = R/F;;1R and assume ) is the
following system of embeddings

Y :={X— Y := Spec R} (63)
By Lemma 7.2, for fe A and R DT =n~'{f" : n > 0} we have canonical isomor-
phisms

Cy(O)"(D(f)) = {Oyr(D(f))} = Crne,(RIT '], I, 0), (64)

where J; = ker(R[T~']— Ay). Note R[I" '] is quasi-free, whence by Proposition 7.1
we have a natural homotopy equivalence between the pro-complex (64) and

Qe (RITT'], J). (65)

Now because the D(f) form a basis for the Zariski topology, (65) determines a
unique pro-complex of sheaves; by Lemma 7.2 this pro-complex must be Q”. Next,
if 0> J — R,— A — 0 is any presentation of 4 as quotient of a formally
l-smooth R € NCj, then by [5, 3.3] a choice of a map R; — R covering the identity
of A induces a homotopy equivalence Quc, (R, J —>Q ~e,(R',J') which, in turn, gives a
homotopy equivalence Q%c, ;Q%/C[ for Y = {X— Y’}. Now no longer assume X is
affine. If Y consists entirely of affine embeddings, say )V = {Spec 4; — Spec Rj} for
some affine open covering {Spec A4;} of Spec A4, then each n-fold intersection

Spec 4;, N ---N Spec A4;, — Spec R;f X+ X7 Spec Rj" = Spec(Rﬁ0 ERERE R;"),
(66)

is of the form (63) (by 2.4.3), so from the affine case we obtain a homotopy equi-
valence Cy(O) = Q%C/. If Y is arbitrary then there is a finer system )’ which consists
entirely of affine embeddings; the argument of [15, Remark on page 28] shows the
refinement map Q%Q % Q?v}/c, is a quasi-isomorphism. Next we construct the map e
of the theorem. Assume first X = Spec 4, choose a presentation (62) with
R =TV, a tensor algebra and let ) be as in (63). Further, consider the system of
NP;-embeddings Z consisting of the single embedding Spec 4 — Spec Poiss ;1
induced by the composite

POiSSéIV: Pg[SV—»SV%%—»A,

Then by Lemmas 7.2 and 7.3 and by [8, 2.1 and 2.6], the map (49) induces an
isomorphism of pro-complexes of Abelian sheaves CZ(O)—‘>Cy(O). This proves
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the isomorphism ¢ in the affine case. For general X one chooses ) to consist entirely
of affine embeddings as above, and Z as the associated NC;- system; then use the
affine case and the argument of (66), taking into account that the free product of
tensor algebras is again a tensor algebra. To construct the map ¢’ in the affine case
one uses a DG-version of the same argument as for the construction of e. As per the
arguments above, the affine case generalizes to the case when ) consists of affine
NC-embeddings, and Z is the associated NP;-system. It has already been shown that
the hypercohomology of QIJ\}/C, is independent of the choice of ); the same argument
shows that of Qip, is independent of the choice of Z. To finish the proof it suffices to
show that there is a choice of ), Z and W for which 7’ o ¢’ is a cohomology iso-
morphism. Choose an affine open covering U/ of X. For each U > U = Spec Ay
choose a presentation Ay = SVy /Iy and let

W = {Spec Ay <> Spec SVy : U e U},
Z = {Spec Ay — Spec Poiss,Vy : U € U},
Y = {Spec Ay Spec T<;Vy: U e U}.

Then, by the argument of (66), we are reduced to showing that if 4 = SV/I then the

projection
Poiss¢ (Ve dV)
0: P4Q V/I®) = —
<Keomn(SV/I™) = 1op sV @ dv)
S(Vedrb)

m =~ Qcomm(SV/I™)

is a homotopy equivalence. This follows from Lemma 7.5, and the fact that

i .
B Poiss,, (V& dl)
ker 0 = % I=Poiss, (V@ dV)’

This concludes the proof of the case / < oo of the theorem. Because the cohomology
isomorphisms we found come from natural cochain equivalences which are compa-
tible with the inclusions NC; ¢ NCyyy and NP; C NPy, the case [ = oo follows.

Remark 8.2. A similar argument as that of the last part of the proof above shows
that
Hn(Xcomm—infa Pm) =0 (Wl >1,n=> 0)

Indeed because P, is quasi-coherent it suffices by (40) to show that for 4 a commu-
tative algebra,

H'(inf(Comm/A4), P,,) =0 (67)
With the notations of the proof, we see using Proposition 7.1 that (67) equals

= H"(hm PmQComm(SV/Ir))

which is zero by Lemma 7.5.
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8.3. PROOF OF THEOREM 6.4.

We shall assume X affine and / < co. The same argument as in the proof of Theorem
6.1 applies to deduce the theorem from this particular case. Let X = Spec 4; choose
R, mand Jasin (62) and let ) be as in (63). Proceed as in the proof of Theorem 6.1 to
obtain a natural homotopy equivalence of pro-complexes of vectorspaces

Cy(O)(D(/)) o Qe (RIC'], Jp)
[CHOND(S)), CYOND(N] ~ [Qwe,(RIT], Jp), Qe (RIT], Jp)]
for each f'e 4. Because &; is natural and because sheafification depends only on the

value of the presheaf on a basis of the topology, (68) induces a homotopy equi-
valence of pro-complexes of sheaves

o CO) & e
; _ - 69
Y ([0, 0]) [C(0), Cy(O)] ~ [, W] )

(68)

This cochain map gives the cohomology isomorphism of the theorem. The same argu-
ment as in the proof of Theorem 6.1 shows that the homotopy type of the complexes
(69) is the same as that of those obtained from a different choice of NC;-embedding
Y = {X < Spec R}}. Assume now R = TV, a tensor algebra, and choose ), Z and W
as in the proof of Theorem 6.1. Then by Lemmas 7.2, 7.3, and 7.4, [8, 2.1 and 2.6] and
sheafification, we have isomorphisms of pro-complexes of Zariski sheaves

! . 10) F 0
D w2 ¢:(5.07) £ &((o.7)

m=0

where P, is as in Remark 8.2 above and the subscript indicates the sheaf cokernel
of the restriction of the coboundary map 6 of 6.6 to ,,_1QcommP, i.€. the shea-
fification of

Py
Zi+j:m—l {Pidy, PiAs} .

A DG-version of the same argument gives isomorphisms

D(f)—~

! Qﬁp
w ! I
®(P177QC0mm)(5 (; Qz QZ
m=0 - { NP> NP/}

By naturality, we get a homotopy equivalence Cyy((Py);) > (PmQEVomm)a Next, con-

sider the truncation 1,,t of the complex of Lemma 7.7. By 7.9, 8.2 and Proposition
7.9, we have a commutative diagram of homotopy equivalences

TOtCW(‘L’m%) ; CW((Pm)é)

TotC(t,®)  —>  Cov(ap)

‘Comm
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with as rows the natural projections and as columns the maps induced by that of
Lemma 7.7. To finish the proof we must show that the natural projection

TotCw(TmQcomm) — Cop(TmComm) = Tm(Qcomm””) (70)

is a homotopy equivalence. Recall W = {Spec 4 — Spec S}, where S = SU is the
symmetric algebra of some vector space U and A = S/I. Thus by (60) we have an
isomorphism (where Cy!/ is as in [6])

SUae U 17?)

Cyl’(SU) = (U Vr)>®

Grade S(U® U® VP) by |(u,0)] =0, [(0,u ® v)| = 1. Then there is an inclusion
1 QComm SU T Qomm Cy1*SU = C*(SU, 0, 7,y Qcomm)

of the constant co-simplicial cochain pro-complex as the part of degree zero of the
Cech-Alexander pro-complex. The map 1 is a right inverse for the natural projection
w C*(SU,0,1,Qc0mm) = TmQcommSU. The Cartan homotopy associated to the
degree derivation D(x) = |x|x gives a homotopy ¢ — 1 which is compatible with
the cosimplicial structure, localization and the /-adic topology. Thus upon sheafi-
fication we get that (70) is a homotopy equivalence. |

Remark 8.3.1. 1t follows from 7.1 and the proof above that, if R is formally NCj-
smooth (/ < oo) and 4 = R/F|R, then

. O Qe R ) u
H'(inf(NC//A),—— | = H"| ————— | = HE2m 4,
( NCID 1o, 0]) ([QNC,R, avr) =D i
8.4. PROOF OF THEOREM 6.7.

Let 4eComm, X=SpecA4d, R, J and = as in (62). For />0 put
R =R/Fiyn\RDJ=J+F 1 R/Fip R, Y=Spec R, Y={X—>Y > Yy .-}
the associated formally NCy-smooth embedding. By Goodwillie’s theorem
([10, Th. 10.1]), we have a natural isomorphism

Hci)er(X) = H*(XPro—Zarv Ccper) = H*(XPro—Zarv (Ccper)y)'

To prove the isomorphism f4 it suffices to show that the natural pro-complex
projection

CC™ (R /IZ) > X(Roo [ T) (71)

is a quasi-isomorphism. Because (71) comes from a map of mixed complexes, it will
suffice to show that the map between the corresponding Hochschild complexes

(AR /IZ), b)>(X(Roo /L), b)
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is a quism. By [5, 3.3] it suffices to prove this in the case when R = TV, a tensor
algebra. With the notation of Lemma 7.11, we have a commutative diagram

(Qcomm(PSV/ICPSV + PxSV),8)  —>  (QRso/J2). )

| }

(PSV/IP°PSV + PuSV),5)  —  (X(Reo/J), b)

where the top and bottom rows are, respectively, a homotopy equivalence and an
isomorphism by Lemma 7.11 and its proof. By Lemma 7.6, the first vertical arrow
is a quism, whence so is the second. This gives isomorphisms f4 and f3. It follows
that all the coface maps of the Cech—Alexander co-simplicial pro-complex Cy(X)
are homotopy equivalences, which gives isomorphism f;. A similar argument produ-
ces an isomorphism f> for Z = {X' < Spec P<;SV < Spec P<; — ---}; the passage
from this to the case when P<,, SV is replaced by an arbitrary formally NP.,-smooth
pro-algebra is done as in the NCy-case. The Poisson grading (44) induces a pro-
cochain complex decomposition

g PSV L ey e
{75 ) = moviesia - m”[ 2”}” &

From (72), Lemma 7.7 and (33) we obtain the isomorphism fi. This finishes the
proof of the theorem in the affine case; the general case follows from this by the same
argument as in Theorems 6.1 and 6.4. O
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