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Eisenstein Series Arising from Jordan
Algebras

Marcela Hanzer and Gordan Savin

Abstract. We describe poles and the corresponding residual automorphic representations of Eisen-
stein series attached tomaximal parabolic subgroups whose unipotent radicals admit Jordan algebra
structure.

1 Introduction

Let G be a simple, simply connected algebraic group deûned over a global ûeld k.
Assume that G has a maximal parabolic subgroup P = MN such that N is abelian
and P is conjugated to the opposite parabolic P = MN . _en N admits structure of
a Jordan algebra (J , ○). _e main goal of this article is to study poles and residues
of the degenerate Eisenstein series E(s) attached to the parabolic P under an addi-
tional assumption that the algebra identity element e ∈ J can be written as a sum
e = e1 + ⋅ ⋅ ⋅ + er , for a system of perpendicular and absolutely indecomposable idem-
potent elements e i . _is assumption allows us to use the technique of Fourier–Jacobi
series, due to Ikeda [11], and build an argument inductive on r. Examples of such
Jordan algebras are Jr(D), the algebras of r × r hermitian symmetric matrices with
coeõcients in a composition algebra D over k. In addition, for r = 2, there is a class of
Jordan algebras J2(D) parameterized by quadratic spaces D over k. Let d denote the
dimension of D. In order to understand the structure of residual automorphic rep-
resentations, it is necessary to understand the structure of local degenerate principal
series representations I(s) attached to P at reducibility points. For real groups, in the
setting of this paper, this was accomplished by Sahi in [20, 21]. On the other hand,
for p-adic groups, Weissman [23] analyzed the structure of the degenerate principal
series representations using a Fourier–Jacobi functor. In a nutshell, this method is a
local analogue of Ikeda’s method.

More precisely, the contents of this paper are as follows. In Section 2 we describe
the groups and related Jordan algebras. Sections 3–5 are devoted to local results.
Weissman looks only at the case of split, simply laced groups, so in Section 3 we gen-
eralize his results to non-split groups. In Section 5 we summarize the results of Sahi in
the real case. In order to keep the exposition simple, we assume here that D is either
split or totally anisotropic and d ≡ 0 (mod 4). Section 6 is devoted to global results.
_e local Fourier–Jacobi functor works well with Ikeda’s method, and we combine
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the two to obtain sharper results. Our ûnal result is a complete description of poles
and the corresponding residual representations in a natural family of cases that does
not exhaust all possible cases that can be addressed by the methods of this paper. If
we assume that d ≡ 0 (mod 4) and some additional minor assumptions that are au-
tomatically satisûed if r > 2, then the Eisenstein series E(s) has simple poles at the
sequence of odd integers 1, 1+ d/2, . . . , 1+(r − 1)d/2, and the residual representation
is isomorphic to the co-socle of the global induced representation I(s) at the same
points.

Study of Eisenstein series attached to degenerate principal series has a long history,
o�en intertwined with the classical theta correspondences and the Siegel–Weil for-
mula ( [15, 16]). In particular, Ikeda’s work deals with symplectic and unitary groups,
which, in the language of this paper, are the cases J = Jr(D)where D = k or K, a qua-
dratic extension of k. A diòerent, more combinatorial approach is taken in [8–10].
Yamana [24] has taken Ikeda’s work further, to quaternionic groups. _is works goes
beyond the conûnes of classical groups and is motivated by a Siegel–Weil formula in
the setting of exceptional theta correspondences, a work in progress of the second
author with Wee Teck Gan.

2 Groups

Following [14], we will describe the groups G and Jordan algebras appearing in this
paper, starting with split groups. _e general case is obtained by Galois descent.

2.1 Split Groups and Algebras

So assume that G is split i.e., it is a Chevalley group. Let g be the Lie algebra of G
and let Φ be the root system arising from a maximal split Cartan subalgebra t ⊆ g.
In particular, for every α ∈ Φ, we have the corresponding root space gα ⊆ g. Fix
∆ = {α1 , . . . , α l}, a set of simple roots. Now every root can be written as a sum
α = ∑l

i=0 m i(α)α i for some integers m i(α). Every simple root α j deûnes a maximal
parabolic subalgebra p = p j = m ⊕ n where the nilpotent radical n is the direct sum
of gα such that m j(α) > 0. Let β be the highest root. _e algebra n is commutative if
and only if m j(β) = 1. In the following table we list of all possible pairs (g,m) with n
commutative and p conjugate to the opposite parabolic by an element in G.

g Cn A2n−1 D2n E7 Bn+1 Dn+1

mder An−1 An−1 × An−1 A2n−1 E6 Bn Dn
dimn n(n + 1)/2 n2 n(2n − 1) 27 2n + 1 2n

r n n n 3 2 2
d 1 2 4 8 2n − 1 2n − 2

_e integers r and d are invariants of the (split) Jordan algebra structure (J , ○) on
n that we will describe in a moment. Before that, we recall the deûnition of Jordan
algebra structure (cf. [12, p. 6]). A Jordan algebra J is an algebra (not necessarily as-
sociative) over a ûeld F of characteristic diòerent from 2 in which the multiplication,
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denoted by ○, satisûes the following identities for each a, b ∈ J ∶

a ○ b = b ○ a,

((a ○ a) ○ b) ○ a = (a ○ a) ○ (b ○ a).

Now we return to the table above. _e integer r is the cardinality of any maximal set
S = {β1 , . . . , βr} of strongly orthogonal roots α such that gα ⊆ n. Observe that r = 1 if
and only if G = SL2. For every β i ∈ S, take an sl2-triple ( f i , h i , e i) where e i ∈ gβ i and
f i ∈ g−β i . Let

f =
r

∑
i=1
f i , h =

r

∑
i=1

h i , and e =
r

∑
i=1
e i .

Since the roots β i are strongly orthogonal, ( f , h, e) is also an sl2-triple. _e semi-
simple element h preserves the decomposition g = n⊕m⊕n. More precisely, [h, x] =
−2x for all x ∈ n, [h, x] = 0 for all x ∈ m, and [h, x] = 2x for all x ∈ n. _e triple
( f , h, e) li�s to a homomorphism φ ∶ SL2 → G. _e element

(2.1) w0 = φ (
0 1
−1 0)

normalizes M and conjugates n into n, and vice versa. _e Jordan algebra multiplica-
tion ○ on J = n is deûned by

x ○ y =
1
2
[x , [ f , y]] .

Note that e is the identity element. _e elements e i are mutually perpendicular
(e i ○ e j = 0 if i ≠ j) and idempotent (e i ○e i = e i) elements in J such that e1+⋅ ⋅ ⋅+er = e.
_ese idempotent elements give a Pierce decomposition of J,

J = ⊕
1≤i≤r

J i i ⊕ ⊕
1≤i< j≤r

J i j ,

where

J i i = {x ∈ J ∣ e i ○ x = x},

J i j = {x ∈ J ∣ e i ○ x = 1
2 x and e j ○ x =

1
2 x} .

_e space J i i is one-dimensional and spanned by e i . _e dimension of J i j , for i < j,
is d. It is independent of i < j. Let D = J12. _en D is a quadratic space with a split
quadratic form

q(x) = 1
2κ([ f1 , x], [ f2 , x]) ,

where κ( ⋅ , ⋅ ) is the Killing form normalized by κ( f1 , e1) = 1. If r > 2, then one can
identify all J i j with D and, using J12 ○ J23 ⊂ J23, endow D with a multiplication such
that q(xy) = q(x)q(y), for all x , y ∈ D, i.e., D is a composition algebra.
Each triple ( f i , h i , e i) li�s to a homomorphism of algebraic groups φ i ∶ SL2 → G.

By restricting φ i to the torus of diagonal matrices in SL2, we obtain a homomorphism
(a co-character) ω∨i ∶ Gm → M,

(2.2) ω∨i (t) = φ i (
t 0
0 t−1) .
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Let Tr ⊆ M be the torus generated by all ω∨i (t). Any element in Tr(k) is uniquely
written as a product of ω∨i (t i) for some t i ∈ k×. One checks that the restricted root
system with respect to Tr is of the type Cr . Since G is simply connected, the group of
characters Hom(M ,Gm) ≅ Z has a canonical generator ω, which, when restricted to
the torus T , is the fundamental weight corresponding to the simple root α j , deûning
M. Moreover, the kernel of ω is Mder, the derived group ofM. A simple computation
with the root data shows that

(2.3) ω(ω∨i (t)) = t.

2.2 Fourier–Jacobi Tower

Let Q = LV be the standard parabolic subgroup of G such that the roots of Lder are
perpendicular to the highest root β. In other words, the Lie algebra of Lder is the
centralizer in g of the sl2-triple corresponding to β. _e unipotent radical V is a
Heisenberg group with the center Z = exp(gβ). _e group Lder is semi-simple and,
by inspection, has a unique simple factor G1 that is not contained in M. Let M1 =

G1 ∩ M and N1 = G1 ∩ N . _en P1 = M1N1 is maximal parabolic subgroup of G1.
_e unipotent radical N1 has a Jordan algebra J1 structure that is easily related to J.
Indeed, if we pick the set S = {β1 , . . . , βr} of strongly orthogonal roots such that
β1 = β, then J1 is the sum of the pieces in the Pierce decomposition where all the
indexes are greater than 1. _is process can be continued, and will give a sequence of
simple groups G ,G1 , . . . ,Gr−1 ≅ SL2 and maximal parabolic groups with unipotent
radicals N ,N1 , . . . ,Nr−1 ≅ k. Moreover, this process gives us a canonical choice of S
such that β i is the the highest root of G i−1. _is sequence is the Fourier–Jacobi tower
referred to in the title, and the last group SL2 is the terminal group. _is process is
summarized by the following table:

g Cn A2n−1 D2n E7 Bn+1 Dn+1

mder An−1 An−1 × An−1 A2n−1 E6 Bn Dn

lder Cn−1 A2n−3 A1 × D2n−2 D6 A1 × Bn−1 A1 × Dn−1
g1 Cn−1 A2n−3 D2n−2 D6 A1 A1

mder
1 An−2 An−2 × An−2 A2n−3 D5 0 0

We need the following remark. Let φ ∶ SL2 → G arising from this S. _enw0, deûned
by the equation (2.1), permutes the simple roots of M.

2.3 Non-split Groups

In [14] it was proved that the centralizer of φ(SL2) in Aut(G) is precisely Aut(J).
_erefore, by functoriality of Galois cohomology, a class c ∈ H1(k, Aut(J)) deûnes a
class in H1(k, Aut(G)). Hence, the class c deûnes a Jordan algebra Jc , a form of J, and
a form Gc of G whose Lie algebra contains the triple ( f , h, e). Hence, Gc contains a
form Pc of P whose unipotent radical is isomorphic to Jc . Moreover, if the form Jc
arises from a form of D, i.e., Jc contains the absolutely indecomposable idempotents
e i , then the Lie algebra ofGc contains the triples ( f i , h i , e i), andGc contains the split
torus Tr , deûned above. _is torus is maximal if D is anisotropic.
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Henceforth, we shall omit the subscript c, and G will denote a group arising from
a Jordan algebra J ≅ Jr(D), where D is a composition algebra if r ≥ 3, and simply a
quadratic space if r = 2. In particular, G contains the maximal parabolic subgroup
P = MN such that N ≅ J, and the Heisenberg parabolic subgroup Q = LV , such that
the center of V is Z ≅ J11, and G is the ûrst term of a Fourier–Jacobi tower where
the next group is G1 with the the maximal parabolic subgroup P1 = M1N1 such that
N1 ≅ J1, where J1 ≅ Jr−1(D), etc.

3 Representations of p-adic Groups

In this section, k is a p-adic ûeld. _e goal of this section is to extend the results of
Weissman in [23] to non-split groups.

3.1 Fourier–Jacobi Functor

We ûx a non-trivial additive character ψ of Z ≅ k, the center of the unipotent radical
V of the parabolic Q = LV . Let ωψ be the corresponding irreducible representation
of V with the central character ψ. Note that Lder = [L, L] (or its 2-fold cover) acts on
ωψ , via the Weil representation. Let π be a smooth representation of G and πZ ,ψ the
maximal quotient of π on which Z acts as ψ. _en πZ ,ψ is a multiple of ωψ , and

FJ(π) = HomV(ωψ , πZ ,ψ)

is naturally a Lder-module. _e Fourier–Jacobi functor π ↦ FJ(π) is exact [23].
Let ω be the character of M giving the isomorphism of M/Mder ≅ Gm (cf. (2.3)).

Let χ be a quadratic character and ∣ ⋅ ∣s the absolute value character, taken to the power
s ∈ C, of k× = Gm(k). We can pull back these two characters to M via ω. Let I(χ, s) =
IndG

P (χ ⊗ ∣ ⋅ ∣s) be the degenerate principal series representation of G. _e modular
character ρP can be expressed in terms of ω using the relation ω(ω∨1 (t)) = t. _e
conjugation action of ω∨1 on N ≅ Jr(D) is given by multiplication by t2 on J11 ≅ k,
and by t on each J1, i ≅ D, for 1 < i ≤ r. _us, ρP(m) = ∣ω(m)∣2+(r−1)d , where
d = dimD. _e trivial representation is a quotient of I(1, 1 + (r − 1) d2 ).

We now compute the action of the Fourier–Jacobi functor on I(χ, s). In order to
state the result, we need some additional data arising from the Weil representation
ωDψ of SL2(k) on C∞0 (D) (cf. [22]). For every t ∈ k×, let h(t) be the element in the
universal central extension of SL2(k), introduced by Steinberg, projecting to ( t 0

0 t−1 ).
In particular, h(t)h(s) = h(ts)(t, s), where (t, s) is the Steinberg symbol. _en, for
every f ∈ C∞0 (D),

ωDψ (h(t))( f )(x) = χD(t)∣t∣d/2 f (tx),

where χD(t) is a fourth root of 1. If dimD is odd, then χD(t)χD(s) = χD(ts)(t, s)2
where (t, s)2 is the Hilbert symbol. If dimD = 2n, then χD is independent of ψ. It is
a quadratic character of k× that corresponds to the quadratic algebra K = k(

√
∆), by

the local class ûeld theory, where ∆ is the discriminant of the quadratic form q on D.
More precisely, if q = a1x2

1 + ⋅ ⋅ ⋅ + a2nx2
2n , then ∆ = (−1)na1 ⋅ ⋅ ⋅ ⋅ ⋅ a2n . If (D, q) is a

direct sumof n-hyperbolic planes, or if the anisotropic kernel of (D, q) is a quaternion
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algebra, then χD is trivial. However, if the anisotropic kernel of (D, q) is a quadratic
ûeld K, then χD corresponds to K by the local class ûeld theory.

_eorem 3.1 Let I(χ, s) be the degenerate principal series corresponding to the pair
(G , P) where the unipotent radical of P is isomorphic to the Jordan algebra Jr(D). Let
(G1 , P1) be the next pair in the Fourier–Jacobi tower. _en

FJ(I(χ, s)) = I1(χ χD , s).

Proof _is is proved by Weissman in [23] if G is split and simply laced. _e proof
given there extends easily to the more general class of groups considered here. (Note
that G is split and simply laced precisely when D, considered as a quadratic space, is
isomorphic to a direct sum of hyperbolic planes.)

3.2 Decomposition of Degenerate Principal Series

Let π be an irreducible representation of G. If π is not the trivial representation, then
there exists a non-trivial characterψ of Z such that πZ ,ψ ≠ 0. _e group L acts on Z by
conjugation and, therefore, on non-trivial characters of Z. If this action is transitive,
then, without loss of generality, we can ûx a non-trivial characterψ of Z, and then π is
non-trivial if and only if FJ(π) ≠ 0. In this case _eorem 3.1 can be used to compute
points of reducibilities of the degenerate principal series I(χ, s) using the induction
on r.

Since the Pontrjagin dual of Z is isomorphic to Z, over local ûelds, the group L acts
transitively on non-trivial characters if and only if acts transitively on non-trivial ele-
ments in Z. _is is true over the algebraic closure of k, and it holds over k ifH1(k,C)
is trivial, where C is the centralizer of e1 in L. (We use Z ≅ J11 = k ⋅ e1.) If G is not
of the absolute type C2r or A2r−1, then C = Lder. Since k is p-adic, the Galois coho-
mology of simply-connected groups is trivial, and the transitivity holds. It also holds
for G = SL2r . Hence it fails only if G = Sp2r or SU2r i.e., J = Jr(k) or Jr(K), respec-
tively, where K is a quadratic ûeld extension of k. In these two cases, C/Lder ≅ µ2
and K 1, respectively, where K 1 is the group of elements of norm one in K×. _us the
orbits of non-trivial characters are parameterized by the classes of squares in k× and
k×/NK/k(K×), respectively.

_us, in _eorems 3.2 and 3.3, we can use _eorem 3.1 to get the length of the
degenerate principal series.

_eorem 3.2 Let I(χ, s) be the principal series of G arising from the maximal par-
abolic subgroup P whose radical N is isomorphic to the Jordan algebra J2(D) where
dimD > 2. Assume that χ is a quadratic character and s real.
(i) dimD = 2n−2, and the discriminant of the quadratic form q is trivial, i.e., χD = 1.

If χ ≠ 1, then I(χ, s) is irreducible unless s = 0, and then it is a direct sum of two
non-isomorphic irreducible representations. If χ = 1, then I(χ, s) is irreducible un-
less s = ±1,±n and then it has a non-split composition series of two non-isomorphic
irreducible representations.

(ii) dimD = 2n − 2, and the discriminant is non-trivial, i.e., χD = χK where K is a
quadratic ûeld extension of k. If χ ≠ χK , then I(χ, s) is irreducible unless s = 0,
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and then it is a direct sum of two non-isomorphic irreducible representations, or
χ = 1 and s = ±n where the trivial representation occurs. If χ = χK , then I(χ, s)
is irreducible unless s = ±1, and then it has a non-split composition series of two
non-isomorphic irreducible representations.

(iii) dimD = 2n − 1. _en I(χ, s) is irreducible unless s = ±1/2, and then it has a
non-split composition series of two non-isomorphic irreducible representations, or
χ = 1 and s = ±(n + 1/2) where the trivial representation occurs.

Proof We shall use the Fourier–Jacobi functor, note that G1 = SL2(k) (or its two-
fold cover) in all three cases, since r = 2. Consider the ûrst case. _e location of
the trivial representation is at χ = 1 and s = ±n, as previously noted. _e Fourier–
Jacobi functor is exact, takes I(χ, s) to I1(χ, s), and kills only the trivial representation.
Hence, if (χ, s) ≠ (1,±n), then a non-trivial composition series in I(χ, s) will give
one for I1(χ, s). _e decomposition of the principal series of SL2(k) is well known.
It follows that I(χ, s) reduces (possibly) only for χ = 1 and s = ±1, or χ ≠ 1 and
s = 0. Irreducibility of I(0, χ) implies existence of the complementary series, which
must end before the points where the trivial representation is contained. _is forces
reducibility for χ ≠ 1, s = 0, and 1, s = ±1. Parts (ii) and (iii) are proved similarly; for
(iii) one uses that the principal series of S̃L2(k) reduces at s = ±1/2.

_eorem 3.3 Let I(χ, s) be the principal series of G arising from the maximal para-
bolic subgroup P whose radical N is isomorphic to the Jordan algebra Jr(D) such that
χD = 1. Let d = dimD. Assume that χ is quadratic and s real. If χ ≠ 1, then I(χ, s) is
irreducible unless s = 0, and then it is a direct sum of two non-isomorphic representa-
tions. If χ = 1, then I(χ, s) is irreducible unless s = ±1,±(1+d/2), . . . ,±(1+(r−1)d/2),
and then it has a non-split composition series of two non-isomorphic irreducible repre-
sentations.

Proof In view of the previous theorem, we can assume that r ≥ 3. Hence D is a
composition algebra. Moreover, the condition χD = 1 implies that D is either split
(and even dimensional) or a quaternion algebra. In the former case G is split and
simply laced, so this case was covered by Weissman. Hence, it remains to do the case
when D is a quaternion algebra. _is is proved by induction on r. Assuming the
result for r− 1, the Fourier–Jacobi functor implies that reducibility points are possibly
only those listed, and the length of the composition series is not longer than two. In
the next section we will show that, for χ = 1, the spherical representation is a proper
subquotient at the indicated points; see Corollary 4.6.

4 Intertwining Operators

We collect some facts we need about principal series representations. In this section
k is a local ûeld.

4.1 c-function for Split Groups

Here we assume that G is split and simply laced; i.e., D is a sum of hyperbolic planes,
and let B be the Borel subgroup, corresponding to our choice of simple roots. Let χ
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be an unramiûed character of T , forw in theWeyl group of G we have standard local
intertwining operators A(χ,w),

A(χ,w)∶ IndG
B (χ) Ð→ IndG

B (w(χ)).

In this deûnition, the choice of the Haar measure on k is such that, in the p-adic case,
the measure of the ring of integers is 1. Let fχ ∈ I(χ) be the unique spherical vector
normalized so that fχ(1) = 1. _en A(χ,w)( fχ) = c(χ,w) fw(χ) where the factor for
c(χ,w) is given by the Gindikin–Karpelevič formula (cf. [4] for archimedean ûelds
and [17] for p-adic ûelds)

c(χ,w) = ∏
α∈Φ+ ,
w(α)<0

L(0, χ ○ α∨)
L(1, χ ○ α∨)

,

where α∨ is the co-root corresponding to a root α and L-functions are Iwasawa–Tate’s
L-functions. If χ ○ α∨ = ∣ ⋅ ∣s , then L(0, χ ○ α∨) = ζ(s) and L(1, χ ○ α∨) = ζ(s + 1),
where

ζ(s) = (1 − q−s
)
−1

if k is a p-adic ûeld with the residual ûeld of order q, and

ζ(s) = π−
s
2 Γ(s/2)

if k ≅ R. We use this formula to determine the action of the standard intertwining
operator A(s)∶ I(s) → I(−s),

A(s)( f )(g) = ∫
N
f (w0ng) dn

on the spherical vector, wherew0 is the element deûned by equation (2.1). It permutes
simple roots ofM andmaps the roots that spanN to the roots that spanN . Concretely,
it is the product of the longest Weyl group elements of G and M. Let fs ∈ I(s) be the
spherical vector normalized by fs(1) = 1. Let χs be an unramiûed character of T such
that I(s) is a subrepresentation of IndG

B (χs). _en A(s)( fs) = c(χs ,w0) f−s , which
reduces the computation to a combinatorial exercise. We summarize the result in the
following lemma.

Lemma 4.1 Let I(s) be the degenerate principal series for split, simply laced G arising
from a parabolic P = MN such that N ≅ Jr(D). Let d = dimD. Let fs ∈ I(s) be
the normalized spherical vector, and c(s) the complex function deûned by A(s)( fs) =
c(s) f−s . _en

c(s) =
r−1

∏
i=0

ζ(s − id/2)
ζ(s + id/2 + 1)

,

where ζ(s) is the local zeta function as above.

Now one can easily understand the poles and zeroes of c(s), using the poles of
ζ(s). In the p-adic case, for s real, ζ(s) never vanishes and has a simple pole at s = 0.
It follows that c(s) has simple poles at s = 0, d/2, . . . , (r − 1)d/2 and simple zeros at
s = −1,−1−d/2, . . . ,−1−(r−1)d/2. _us, at these points, I(s) has a composition series
of length two and the spherical representation is a unique irreducible submodule. In
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the real case, ζ(s) has a simple pole at negative even integers. _us, if d is divisible
by 4, c(s) has zeros at negative odd integers and poles at even positive integers. We
summarize with the following corollary.

Corollary 4.2 If G is split, the local ûeld k is p-adic or real, and d ≡ 0 (mod 4) then
c(s) is not vanishing at odd positive integers, in particular, at

s = 1, 1 + d/2, . . . , 1 + (r − 1)d/2.

For split p-adic groups, the Satake parameters of the irreducible spherical quo-
tients, at positive reducibility points, have a nice description. As previously, let S =

{β1 , . . . , βr} be amaximal set of strongly orthogonal roots spanningN . Let φ i ∶ SL2 →

G be the homomorphism corresponding to β i , for every i. For j = 2, . . . , r, let
ψ j ∶ SL2 → G, be the homomorphism given by the product of φ1 , . . . , φ j−1, and ψ1
is the trivial homomorphism. (_e actual choice of S is not important, since for
diòerent choices of S, resulting ψ j are G-conjugated.) _e corresponding unipotent
class in G is ( j − 1)A1 in the Bala–Carter notation. Let Ĝ(C) be the Langlands dual
group. Let ψ̂ j ∶ SL2 → Ĝ(C) be the homomorphism that corresponds to ψ j via the
Spaltenstein order reversing map from unipotent orbits of G to unipotent orbits of
Ĝ(C) [2]. _en the Satake parameter of the spherical quotient of I(s) at the reducibil-
ity point s0 = 1 + (r − j)d/2 is

ψ̂ j (
q1/2 0
0 q−1/2) .

If d ≡ 0 (mod 4), then each ψ̂ j corresponds to a distinguished unipotent orbit in
Ĝ(C) i.e., one that it is not contained in a proper Levi. It follows that the Aubert dual
of the spherical representation is a square integrable representation. For the deûnition
of the Aubert duality, we refer the reader to [1]; for the unitarity of the Aubert duals of
square-integrable representations of classical groups, we refer the reader to [6, 7, 18].
We record the following proposition.

Proposition 4.3 If G is split, the local ûeld k is p-adic or real, and d ≡ 0 (mod 4)
then the spherical quotients at s = 1, 1+d/2, . . . , 1+(r−1)d/2 are Aubert duals of square
integrable representations.

4.2 c-function for Non-split Groups

In this section k is a p-adic ûeld with the residual ûeld of order q andD is a quaternion
algebra over k. Let O be the maximal order in D and π a prime element in O. For
every x ∈ D let ∣x∣ be the reduced norm composed with the usual absolute value on k.
In particular, ∣π∣ = q−1. Let I(s) be the principal series for SL2(D) deûned as the set
of all smooth functions on SL2(D) such that

f (( a b0 c )g) = ∣a/c∣
s
2+1 f (g)

for all choices of data. Consider the intertwining map A(s)∶ I(s) → I(−s) deûned by

A(s)( f )(g) = ∫
D
f (( 0 1−1 0 )(

1 x
0 1 )g) dx ,
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where dx is the invariant measure on D normalized so that the volume of O is 1.

Lemma 4.4 Let fs ∈ I(s) be the unique SL2(O)-invariant function such that
fs(1) = 1, and let c(s) be the function deûned by A(s)( fs) = c(s) f−s . _en

c(s) =
ζ(s)

ζ(s + 2)
,

where ζ(s) = (1 − q−s)−1.

Proof _is is surely well known, but we include a short proof for convenience. _e
value c(s) is equal to A(s) fs(1). Write D as a union

O ∪ π−1
(O ∖ (π)) ∪ π−2

(O ∖ (π)) ∪ ⋅ ⋅ ⋅ .

_e function x ↦ f (( 0 1−1 0 )(
1 x
0 1 )) is equal to 1 on O and to q−n(s+2) on π−n(O∖(π)).

_is leads us to the sum

c(s) = 1 + (q2
− 1)q−(s+2)

+ (q4
− q2

)q−2(s+2)
+ (q6

− q4
)q−3(s+2)

+ ⋅ ⋅ ⋅ ,

which can be easily summed to give the claimed result.

Nowwe can compute the c-function for the degenerate principal series I(s) for the
group G corresponding to the Jordan algebra Jr(D), by factoring the standard inter-
twining map A(s)∶ I(s) → I(−s) as a product of intertwining maps corresponding to
simple root re�ections in the restricted root system (of type Cr). We summarize the
computation in the following lemma.

Lemma 4.5 Assume that G corresponds to Jr(D) where D is a quaternion algebra.
Let c(s) be the function such that A(s) fs = c(s) f−s where A(s)∶ I(s) → I(−s) is the
standard intertwining operator. _en, up to a non-zero constant,

c(s) =
r−1

∏
i=0

ζ(s − 2i)
ζ(s ± (2i + 1))

,

where the signs in the denominator alternate in i, so that the sign is + for i = r − 1. In
words, c(s) has a simple pole at even integers 0, 2, . . . , 2(r− 1) and a simple zero at odd
integers −1 − 2(r − 1), 1 + 2(r − 2),−1 − 2(r − 3), . . .

Corollary 4.6 If G corresponds to Jr(D) where D is a quaternion algebra, then the
spherical vector generates a proper submodule of I(s) for

s = −1 − 2(r − 1), 1 + 2(r − 2),−1 − 2(r − 3), . . . .

Proof _e standard intertwining operator is always non-zero, and at these points
the c-function vanishes.

Remark In particular, the quotient at s = 1 + 2(r − 2) (a minimal representation)
is not spherical. _is agrees with results of Gan and Savin [3] where it was observed
that minimal representations of tame non-quasi split groups are not spherical.
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5 Real Groups

In this sectionwe assume that k is a real or complex ûeld and J = Jr(D) and d = dimD
is even. If k = R, then D is assumed to be either split or an anisotropic quadratic
space of dimension divisible by 4. (Either of these conditions will assure that χD =

1.) If D and hence G are split, then the principal series I(s) reduces at the points
1, 1+ d/2, . . . 1+ (r − 1)d/2, and the spherical representation is the unique irreducible
quotient [21].

Now we move to G corresponding to Jr(D) where D is an anisotropic quadratic
space of dimension divisible by 4. We need the following facts from [20]; the notation
is taken from Section 2. _ere is a maximal split torus Tr in G that gives rise to a re-
stricted root system of typeCr . Amaximal compact subgroupK ⊂ G is the centralizer
of an involution given by conjugation action of

φ (
0 −1
1 0 ) ,

where φ ∶ SL2 → G arises from a set S = {β1 , . . . , βr} of strongly orthogonal roots.
Note that the matrix ( 0 −1

1 0 ) is conjugated to the matrix ( i 0
0 −i ) in SL2(C) by the clas-

sical Cayley transform matrix. Since the centralizer of

φ (
i 0
0 −i)

in gC is mC, it follows that the Cayley transform conjugates KC to MC. Let γ i be the
weights for KC obtained by transporting the weights β i by the Cayley transform. Now
for every r-tuple of integers a1 ≥ ⋅ ⋅ ⋅ ≥ ar , we have a K-type that corresponds to the
irreducible representation of KC with the highest weight

a1γ1 + ⋅ ⋅ ⋅ + arγr .

_ese types appear in the degenerate principal series I(s) with multiplicity one. Sahi
[20] has described the composition series of I(s) as well as the Jantzen ûltration
which, in this case, simply measures the order of vanishing of the intertwining map
A(s)∶ I(s) → I(−s) on each K-type. We shall look only at the reducibility points
1, 1+ d/2, . . . , 1+(r − 1)d/2. If we ûx a reducibility point 1+(i − 1)d/2, then the com-
position series of I(s) has a shape of a truncated pyramid consisting of irreducible
subquotients Vp,q such that p, q ≥ 0 and r − i ≤ p + q ≤ r. _e subquotients of the
Jantzen ûltrations are the �oors of the pyramid, in particular, they are isomorphic to
direct sums of Vp,q where p+q = t, a constant. _e socle is the bottom �oor i.e., t = r,
and the co-socle is the top �oor, i.e., t = r − i. _e types of the irreducible quotients
Vp,q of I(1+ (i − 1)d/2), in particular p+ q = r − i, are particularly nice. _ey form a
cone

(p − q) d4 (γ1 + ⋅ ⋅ ⋅ + γr) + (a1γ1 + ⋅ ⋅ ⋅ + arγr),

where ap+1 = ⋅ ⋅ ⋅ = an−q = 0.
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6 Global Results

In this section k is a global ûeld unless otherwise speciûed.

6.1 Global Fourier–Jacobi Method

We follow here thework of Ikeda [11]. Let Z ≅ Ga be the root subgroup corresponding
to the highest root β. Recall that Q = LV is the standard parabolic subgroup such that
the Levi factor L corresponds to the simple roots perpendicular to β. _e unipotent
radical V is a Heisenberg group with the center Z. Recall that P = MN is a maximal
parabolic subgroup in a standard position such that the unipotent radicalN is abelian.
In particular, P contains V , and

V = (V ∩M) ⋅ (V ∩ N).

One checks that V ∩N is a maximal abelian subgroup of V . Write Y = V ∩M. Let X
be the unique abelian subgroup of V , normalized by the torus T , trivially intersecting
Z, such that V ∩ N = XZ. _us, we can write V = XYZ = YXZ, where XZ and
YZ are maximal abelian subgroups of V . Let ψ denote a global or local, non-trivial
additive character of Z. _e group commutator gives a Z-valued pairing between X
and Y . We recall the p-adic analogue of the Stone-von Neumann theorem. _ere is a
unique smooth irreducible representation ωψ ofV with central characterψ. We call it
the Heisenberg representation (cf. for example in [19]; the treatment in [23, Section 2]
is particularly suited to our purposes). _e pairing and ψ deûne a Fourier transform
from S(X) and S(Y) the spaces of Schwartz functions. Each of the two spaces realizes
the Heisenberg representation of V , locally and globally (cf. [23, p. 283]). We will
use S(X) unless speciûed otherwise. Let G1 = [L, L] or an appropriate factor. Let
J = G1V = VG1 be the Jacobi group. _en the Weil representation ωψ of J is the
unique extension of the Heisenberg representation of V to J. Let A be the ring of
adelés over k. Let Λ be a functional on S(X(A)) deûned by

Λ(ϕ) = ∑
x∈X(k)

ϕ(x) = ∑
x∈X(k)

(ωψ(x)(ϕ))(0)

for every ϕ ∈ S(X(A)). Now every ϕ deûnes an automorphic function Θϕ =

Λ(ωψ(g)ϕ) on J. Let fs ∈ I(χ, s) be a global holomorphic section. _en the Eisen-
stein series

E(s)(g) = ∑
γ∈P(k)/G(k)

fs(γg)

converges for R(s) large enough. If f is a smooth function on Z(k)/G(A), deûne

fψ(g) = ∫
Z(k)/Z(A)

f (zg)ψ(z) dz.

WriteG(k) = ⋃w∈S P(k)wQ(k), as a union of double cosets, and E(s) = ∑w∈S E(s)w

by breaking up the sumover individual cosets. It follows, from [23, Lemma 4.2.2], that
E(s)wψ = 0 except for w = wβ , representing the open double coset. It follows that, for
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g1 ∈ G1,

∫
V(k)/V(A)

Eψ(vg1)Θϕ(vg1) dv = ∫
V(k)/V(A)

∑
γ∈P(k)/P(k)wβQ(k)

fs(γvg1)Θϕ(vg1) dv .

Recall that P1 = G1 ∩ P. It is easy to compute w−1
β Pwβ ∩ Q and verify that

P/PwβQ = wβ ⋅ (YZ × P1/G1).

Now the above integral can be written as

∫
V(k)/V(A)

∑
γ2∈Y(k)Z(k)

∑
γ1∈P1(k)/G1(k)

fs(wβγ2γ1vg1)Θϕ(γ2γ1vg1) dv ,

where we used Θϕ(vg1) = Θϕ(γ2γ1vg1). A�er the change of integration v ∶= γ−1
1 vγ1,

we can contract the integral and the ûrst sum, giving

∫
X(k)/V(A)

∑
γ1∈P1(k)/G1(k)

fs(wβvγ1g1)Θϕ(vγ1g1) dv .

Finally, using the deûnition Θϕ , we arrive to

∫
V(A)

∑
γ1∈P1(k)/G1(k)

fs(wβvγ1g1)ωψ(vγ1g1)(ϕ)(0) dv .

For g1 ∈ G1(A), let

Fs(g1) = ∫
V(A)

fs(wβvg1)ωψ(vg1)(ϕ)(0) dv .

_en Fs ∈ I1(χ χD , s), and we have shown that

∫
V(k)/V(A)

Eψ(vg1)Θϕ(vg1) dv = ∑
γ1∈P1(k)/G1(k)

f1,s(γ1g1) = EF(s)(g1)

the Eisenstein series on G1 attached to Fs . Of course, so far, this works for R(s) large
enough. We now show that Fs extends to a holomorphic section for R(s) > 0. Con-
sider ûrst the local situation. For R(s) large enough, the local integral

Fs(g1) = ∫
V
fs(wβvg1)ωψ(vg1)(ϕ)(0) dv

deûnes an intertwining a map from I(χ, s) ⊗ ωψ onto I1(χ χD , s), intertwining the
action of J = G1V .

Lemma 6.1 Recall the notation from Section 2.1. _e local intertwining map
( fs , ϕ) → Fs from I(χ, s) ⊗ ωψ to I1(χ χD , s) extends holomorphically to the region
R(s) > −(r − 1) d2 . _e map is non-zero for every s in the region.

Proof We construct the continuation by writing the integral as an iterated integral,
ûrst integrating over X. We can assume that g1 = 1, and write v = xyz. Note that
w−1
β xwβ ∈ P, so fs(wβxyz) = fs(wβ yz). Since ωψ(v)(ϕ)(0) is equal to

ϕ(x)ψ([y,−x])ψ(z),
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integrating over X amounts to taking the Fourier transform of ϕ and evaluating at y.
_us the local integral is equal to

∫
YZ
fs(wβ yz)ψ(z)ϕ̂(y) dydz.

Next, by an easy SL2-computation, the integral of fs(wβ yz) over Z is absolutely con-
verging ifR(s) > −(r − 1) d2 , and the output depends polynomially on ∣y∣. Since ϕ̂(y)
is rapidly decreasing, it follows that the integral over YZ is absolutely converging in
the same range of s. By analytic continuation, the map ( fs , ϕ) → Fs given by the iter-
ated integral, intertwines the actions of J = G1V , since it does so for largeR(s). _e
map is easily seen to be non-zero, as ϕ̂ can be arbitrary.

We continue in the setting of the previous lemma, and compute the local integral
explicitly in the p-adic case, assuming that all data are unramiûed. In that case, ϕ̂ is
the characteristic function of Y(O), where O is the ring of integers in the local ûeld.
Hence we can assume that y ∈ Y(O); then fs(wβ yz) = fs(wβz), and the integral
reduces to

∫
Z
fs(wβz)ψ(z)dz = 1 − χ(ϖ)

1
qs+1+(r−1) d2

= L( s + 1 + (r − 1)
d
2
, χ)

−1
,

where the quantity on the right hand side is obtained by a very easy SL2-computation
(cf. e.g., [5, Proposition 1.6.5]). Here q is the order of the residue ûeld of O and ϖ
is the uniformizer. _e product of these local factors is convergent and non-zero if
R(s) > −(r − 1) d2 . Hence, we have an analytic continuation of the global integral as
well.

Lemma 6.2 Assume thatR(s) > −(r − 1) d2 , and we are in a local, p-adic, situation.
Assume that the assumptions of _eorems 3.2 or 3.3 are met. Let fs ∈ I(χ, s) and ϕ ∈

S(X). _e map ( fs , ϕ) → Fs from I(χ, s) ⊗ ωψ to I1(χ χD , s) is surjective. Moreover,
if fs is contained in the unique irreducible submodule of I(χ, s), then Fs is contained in
the unique irreducible submodule of I1(χ χD , s).

Proof We remark that Ikeda proves surjectivity by an explicit calculation. Here we
present another argument in the p-adic case that gives the additional information
about submodules. _emap is clearly non-zero, and it intertwines the actions ofG1V
where V acts trivially on I1(χ χD , s). In particular, Z acts trivially on I1(χ χD , s) and
themapdescends to a non-zeromap from I(χ, s)Z ,ψ⊗ωψ to I1(χ χD , s). By [23, Propo-
sition 3.2] and _eorem 3.1, I(χ, s)Z ,ψ ≅ I1(χ χD , s) ⊗ ωψ , as G1V-module. Since V
acts trivially on I1(χ χD , s), the map descends to a map from I1(χ χD , s)⊗(ωψ⊗ωψ)V
to I1(χ χD , s) intertwining the actions of G1. Here (ωψ ⊗ ωψ)V denotes the maximal
quotient on whichV acts trivially. It is one-dimensional by Schur’s lemma. Hence, we
get a non-trivial map from I1(χ χD , s) to I1(χ χD , s). By our assumption on G, I1(s),
if reducible, is of length 2, multiplicity free and indecomposable, this map must be
a multiple of the identity map. From this description of the map ( fs , ϕ) → Fs , it is
straightforward to check the lemma.
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Proposition 6.3 Assume that G arises from a Jordan algebra Jr(D). Let d = dimD.
Let χ be a Grossencharacter satisfying χ2 = 1. Let E(s) be the Eisenstein series arising
from a holomorphic section fs of the principal series I(χ, s).
(i) Assume that χD = 1. _en E(s) is holomorphic at s0 > 0 except, possibly, when

χ = 1 and s0 = 1, 1 + d/2, . . . , 1 + (r − 1)d/2.
(ii) Assume that r = 2.

(a) Assume that d = 2n− 1. _en E(s) is holomorphic at s0 > 0 except, possibly,
when s0 = 1/2, or χ = 1 and s0 = n + 1

2 , where the trivial representation is
the residue.

(b) Assume that d = 2n − 2. Let χD be the Grossencharacter attached globally
to D. _en E(s) is holomorphic at s0 > 0 except, possibly, when χ = χD and
s0 = 1, or χ = 1 and s0 = n, where the trivial representation is the residue.

_e possible poles are at most simple. Moreover, if the local component of fs0 at any
p-adic place is contained in the unique submodule of I(χ, s0), then E(χ, s)( f ) is holo-
morphic at s0 .

Proof For notational convenience we deal with the ûrst case. Fix R(s0) > 0, and
expand

E(s)(g) =
f (g)

(s − s0)l + higher powers of (s − s0)

where f (g) is the residual form. _en for s0 = 1 + (r − 1)d/2 and χ = 1, we have
l = 1 and the residual representation is the trivial representation; this is a well known
case. So assume that s0 ≠ 1 + (r − 1)d/2 or χ ≠ 1. Let A be the residual automorphic
representation. (We work with spaces of K-ûnite functions.) We claim that there
exists f ∈ A such that the global Fourier coeõcient fψ(1) is non-zero. Assume that
fψ(g) = 0 for all non-trivial charactersψ and g ∈ G(A). _en f is le� Z(A)-invariant.
Let v be a local place and letAv be the ring of adelés with the local factor kv removed.
By the weak approximation theorem, f is determined by its restriction to G(Av).
Since G(Av) and Z(kv) commute, it follows that f is le� Z(kv)-invariant. If this
is true for every f , then the v-adic component of A is the trivial representation, a
contradiction to the assumption on s. Hence, there exists f ∈ A and g ∈ G(A) such
that fψ(g) ≠ 0. We write g = g∞g f , where g∞ denotes the archimedean part, and
g f the part belonging to the ûnite adeles. We easily get rid of the g f –part by a right
translation, so we can assume that fψ(g) ≠ 0 for g ∈ G(A∞) (i.e., G(R), if we are
working over Q). Since f is K–ûnite it is analytic, and then fψ is analytic as well. So
we expand this non-trivial fψ near identity, and there exists an element of the universal
enveloping algebra, sayD, such thatD( fψ)(1) ≠ 0, butD( fψ)(1) = (D f )ψ(1), so we
have found h ∈ A such that hψ(1) ≠ 0.

So let f ∈ A such that fψ(1) ≠ 0. _ere exists ϕ ∈ S(X(A)) such that

g1 z→ ∫
V(k)/V(A)

fψ(vg1)Θϕ(vg1) dv

is a non-trivial function on G1. It follows that EF(s) has a pole of order l . By the
induction assumption, l = 0 or 1 and l = 1 only if s0 is one of the listed values. Fur-
thermore, by the induction assumption and Lemma 6.2, E(s) has no pole if the local
component of fs0 is in the irreducible submodule of I(s0).
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6.2 Main Result

To prove existence of the poles i.e., the if and only if result, one could argue as Ikeda
and prove that the local integral is surjective at the archimedean places. Instead we
compute the constant term of the Eisenstein series along the unipotent radical of the
minimal parabolic. _e full constant term involves a complicated sum over the Weyl
group; however, we shall look only at the summand where the intertwining operator
A(s) appears. _is will give us not only existence of the pole, but also a control of
the structure of the residual representation. In order to keep arguments as simple
as possible, we shall henceforth work with Jr(D) such that d ≡ 0 (mod 4) and D
has trivial discriminant i.e., χD = 1. _en Proposition 6.3 simply says that E(s) has
possible simple poles at odd integers 1, 1 + d/2, . . . , 1 + (r − 1)d/2.

_eorem 6.4 Assume G corresponds to Jr(D) such that d ≡ 0 (mod 4). In addition,
assume that
(i) the discriminant of the quadratic space D is trivial, i.e., χD = 1;
(ii) the quadratic space D is either split or totally anisotropic;
(iii) for every real place v, Dv is either split or totally anisotropic.
_en the Eisenstein series E(s) has simple poles at s0 = 1, 1+ d/2, . . . , 1+ (r − 1)d/2. At
each s0 the residual representation is square integrable and isomorphic to the co-socle of
the global degenerate principal series I(s0).

Observe that conditions (i)–(iii) are automatically satisûed if r ≥ 3.

Proof Let E(s) be the Eisenstein series attached to a holomorphic section f (s) =

⊗v fv(s) in I(s) = ⊗v Iv(s). Let s0 be one of the points and let v be a p-adic place
where G is split. (G is split at almost all primes, as we shall argue in a moment.) If
fv(s0) belongs to the irreducible submodule of Iv(s0) then E(s) is holomorphic at
s0. In particular, only the irreducible spherical quotient at the place v can contribute
to the residual representation. By Proposition 4.3, the spherical quotient of Iv(s0) is
the Aubert dual of a square integrable representation. It follows that the residual rep-
resentation is square integrable. Hence, it decomposes as a direct sum of irreducible
representations, so it must be a quotient of the co-socle of I(s0). In order to show
that the residual representation is the full co-socle, we need to show that the pole is
achieved as the section f (s) passes through types belonging to irreducible represen-
tations in the co-socle.

Let Φ denote the root systemofG relative to amaximal split torus. IfD is split, then
G is a split (Chevalley) group; if D is anisotropic, then for the maximal split torus we
can take is Tr as in Section 2. LetW be the correspondingWeyl group. Let P0 = M0N0
be aminimal parabolic subgroup containing the split torus, corresponding to a choice
of positive roots Φ+ in Φ, and we can assume that the parabolic group P = MN is in
the standard position i.e., M0 ⊆ M andN ⊆ N0. Let Φ+

M ⊆ Φ+ be the positive roots for
M. Let W(M) = {w ∈ W ∶ w(Φ+

M) > 0}. _e element w0, the product of the longest
Weyl group elements for G andM, belongs toW(M). We shall use thatw0 permutes
Φ+

M and that w0(ω) = ω−1. _e degenerate principal series I(s) = IndG
P (∣ω∣s) is

naturally embedded in the principal series IndG
P0
(χs), where χs is a character of M0.
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_e just mentioned properties ofw0 imply thatw0(χs) = χ−s . If E(s) is the Eisenstein
series built from a holomorphic section f (s), its constant term along N0 is naturally
a function on M0. As such, it is a sum

∑
w∈W(M)

dw(s)w(χs),

where dw(s) are meromorphic functions that depend on f (s). We look at the sum-
mand corresponding to w0. Assume ûrst that G is split. Let fv(s) be the normal-
ized spherical vector in the local principal series representations Iv(s). If s > 0,
then Iv(s) is generated by fv(s). Let E(s) be the Eisenstein series corresponding to
f (s) = ⊗v fv(s). _e contribution of w0 to the constant term is the restriction to M0
of A(s)( f (s)) = c(s) f (−s), where, by Lemma 4.1

c(s) =
r−1

∏
i=0

ζ(s − id/2)
ζ(s + id/2 + 1)

.

Here ζ(s) is the global Dedekind ζ-function corresponding to the the number ûeld
k. It is well known that ζ(s) has a simple pole at s = 1, hence dw0(s) = c(s) has simple
poles at the points of interest. We now look at the case of anisotropic D.

Lemma 6.5 For almost all places v, the quadratic space Dv is split.

Proof Assume that v is a p-adic place. Since the discriminant of Dv is trivial, Dv
is either split or has a 4-dimensional anisotropic kernel isomorphic to a quaternion
algebra. _e isomorphism class is determined by the isomorphism class of theCliòord
algebra attached to Dv . But this algebra is a localization of the global Cliòord algebra
attached toD. _eCliòord algebra is a central simple algebra and localizes to amatrix
algebra for almost all places. _is proves the lemma.

So let S be the ûnite set of places such that Dv is split for v ∉ S. We consider the
Eisenstein series E(s) corresponding to the constant section f (s) = ⊗v fv(s) where,
for all v /∈ S, fv(s) is the spherical vector, while for v ∈ S, fv(s) is arbitrary. _en the
contribution of w0 to the constant term is again given by A(s) f (s). Since we know
how to compute the action of the intertwining operator on the spherical vector at the
places v ∉ S, we have

A(s) f (s) = c(s)( ⊗
v∈S
cv(s)−1Av(s) fv(s)) ⊗ ( ⊗

v∉S
fv(−s)) .

Since cv(s)−1 are non-zero by Corollary 4.2 and the local intertwining operators are
always non-zero, we see dw0(s) has poles at the points of interest. In fact, since the
holomorphic properties of Av(s) re�ect the Jantzen ûltration, we see that the pole is
achieved for fv in any K-type belonging to the co-socle of Iv(s).

It remains to show that the pole, at the point s0, of thew0-summand in the constant
term is not cancelled out by a pole of the w-summand for some other w ∈ W(M).
_e cancellation can happen only if

w(χs0) = w0(χs0).

_us, we need to show that there is no such w ∈ W(M). _is is an easy check le� to
the reader in the case of split groups, but we provide details if D is totally anisotropic.
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In this case Φ is of the type Cr and ΦM of the type Ar−1. Any real character of M0 is
determined by the restriction to the maximal split torus Tr . Recall that any element
in Tr is uniquely written as a product of ω i(t i), where ω∨i are the co-characters de-
ûned by equation (2.2). _us any real character χ of Tr is determined by an r-tuple
(s1 , . . . , sr) of real numbers deûned by χ(ω i) = ∣ ⋅ ∣s i . In these coordinates themodular
character is

ρ = ( 1 + (r − 1)d , . . . , 1 + d , 1) .

Note that the diòerence between the consecutive entires is d, which re�ects the fact
that short root spaces are d-dimensional. In order to compute χs we observe that the
(group) root spaces corresponding to ±α where α is a short simple root (i.e., a simple
root ofM) generate a group isomorphic to Spin(H ⊕D) where H is a 2-dimensional
hyperbolic plane. _e degenerate principal series for this group, with respect to the
maximal parabolic subgroup whose unipotent radical is the root space of α, contains
the trivial representation as a submodule for s = −d. It follows that s i − s i+1 = −d
for the coordinates of χs . _ese equations pin down a line, and the linear parameter
s is ûxed by demanding that w0(χs) = χ−s and χs0 = −ρ for s0 = −1 − (r − 1)d/2.
(At this point, both series of representations contain the trivial representation as a
submodule.) Putting everything together yields

χs = (s, s, . . . , s) + d
2 (1 − r, 3 − r, . . . , r − 1).

We claim that χs0 is regular at the reducibility points. To that end, recall that a char-
acter χ = (s1 , . . . , sr) is singular if it is contained in a wall s i = 0, s i − s j = or s i + s j = 0.
Since the coordinates of χs0 form a strictly increasing sequence of odd integers, it is
clear that χs0 cannot satisfy the ûrst two equations. Since d is divisible by 4, the coor-
dinates of χs0 are congruent modulo 4. _e equation s i + s j = 0 implies that s i and s j
are opposite integers. But two opposite odd integers are never congruent modulo 4,
hence s i + s j = 0 cannot hold.

If k = Q and J = J3(O) where O is the Cayley-Graves octonion algebra, then the
residual representation at s = 5 and s = 1 contains the singular modular form on the
exceptional tube domains of weights 4 and 8, respectively, discovered by Kim [13].
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