
J. Functional Programming 5 (4): 549-581, October 1995 © 1995 Cambridge University Press 549

Communication lifting:
fixed point computation for parallelism

WILLEM G. VREE and PIETER H. HARTEL
Department of Computer Systems, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
(e-mail: {wimv, pieter}@fwi.uva.nl

Abstract

Communication lifting is a program transformation that can be applied to a synchronous
process network to restructure the network. This restructuring in theory improves sequential
and parallel performance. The transformation has been formally specified and proved correct
and it has been implemented as an automatic program transformation tool. This tool has been
applied to a small set of programs consisting of synchronous process networks. For these
networks communication lifting generates parallel programs that do not require locking.
Measurements indicate performance gains in practice both with sequential and parallel
evaluation. Communication lifting is a worthwhile optimization to be included in a compiler
for a lazy functional language.

Capsule Review

This paper concerns a program transformation, 'communication lifting', for lazy functional
languages. The transformation applies to programs which represent a certain class of process
networks. The essence is to replace a number of 'synchronized' streams by a stream of tuples
reducing the stream management overhead. The effect is that the pipeline parallelism is
transformed onto a parallel master-slave type of computation. This work appears to have
many applications.

1 Introduction

A process network is a system of communicating processes, which are connected
by streams. The communicating processes are functions and the streams are po-
tentially infinite lists of values upon which the functions operate. Programming
with process networks has a long history, which dates back to the seminal work
of Kahn (1974). Many special purpose languages such as Lucid (Ashcroft and
Wadge, 1977), Esterel (Berry and Cosserat, 1984), Signal (Gautier et al., 1987)
and Lustre (Caspi et al., 1987) have been developed to support programming with
streams and process networks. The disadvantage of developing a new language
is that it also requires a new implementation to be built. The approach that we
will take is to build process networks using a subset of a standard lazy func-
tional language, while taking special measures to guarantee good performance,

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

550 W. G. Vree and P. H. Hartel

both sequentially and in parallel. The evaluation mechanism of lazy functional
languages naturally supports programming with potentially infinite lists of val-
ues (Peyton Jones, 1987). The process networks are thus embedded in a general
purpose programming language, obviating the need for special compilers and lan-
guage support systems. This approach has been advocated amongst others by Kelly
(1989).

In an implementation of a lazy functional language, a stream is represented by
a finite list, which is terminated by a suspension. This is a calculation that is sus-
pended until further notice. A suspension can be revived and executed at any time
to compute further elements of the stream, together with a new trailing suspension.
The latter can be executed in turn to build further list elements, etc. In an imple-
mentation of a lazy functional language this mechanism of executing and building
suspensions is completely automatic. Lazy evaluation of programs implementing
process networks may incur considerable cost because each element in each stream
requires executing a suspension and constructing a new one. When a large number
of streams is involved, the cost may be prohibitively high. In practice large networks
will indeed arise, for instance in simulations of digital circuits. Here each flip-flop is
represented by two coupled nand functions that are mapped over streams of clock
and data values. Even a small circuit will contain a large number of flip-flops,
so that the simulation of such a circuit will require managing a large number of
streams (Vree, 1989).

The cost of managing a large number of streams can be considerably reduced when
the network is synchronous. In a synchronous network, executing one suspension
will cause all suspensions on connected streams to be executed as well. All such
closely related suspensions are said to belong to the same generation. It should
thus be possible to revive and execute all suspensions in the same generation at
the same time. The computations can be organized such that the management cost
is shared between all streams. All streams are advanced by one generation at the
same time.

The joint management of all suspensions in a synchronous network can be
performed as follows. The zip of all streams in a network is a single stream,
such that the original stream elements of one generation are gathered in one
state tuple. The network as a whole will compute generation after generation,
while managing only a single stream of tuples. Within a generation the functions
that used to operate on stream elements now operate on the elements of one
large tuple. The step from one generation of the state tuple to the next causes
only normal forms to be shared. Parallel evaluation of the components of the
state tuple is thus attractive because the parallel computations do not require
locking.

Practical networks are often synchronous; for instance a digital logic simu-
lation is synchronous because all circuits are essentially driven by a common
clock. Most of the special purpose languages that have been developed for pro-
gramming with networks are also synchronous. It is thus important to develop
efficient implementations of synchronous network programs. We claim that it
is an advantage to be able to build such an efficient implementation without

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 551

having to resort to developing a new language and a compiler for that lan-
guage.

The purpose of this paper is to present a program transformation called com-
munication lifting that takes a synchronous process network consisting of n streams
into a network with a single stream of w-tuples. The transformation is rooted in the
theory of recursive programs, based on the explicit calculation of fixed points of
sets of recursive equations. This is the subject of section 2. Section 3 discusses the
efficient implementation of programs that consist of synchronous process networks.
Section 4 formally defines synchronous process networks. Communication lifting
on simple process networks is described in Section 5. Section 6 describes a set of
transformations that bring a more general synchronous process network in the form
required for communication lifting proper. Performance measurements are reported
in Section 7. A comparison with related work is given in Section 8 and the con-
clusions follow in Section 9. The correctness proofs of the program transformation
may be found in the appendix.

2 Theoretical considerations: fixed points

Explicit calculation of the fixed point of a recursive program is both unusual (Allison,
1986) and inefficient (Manna et al., 1973). Efficient computation rules such as the
normal order rule, that can be shown to be safe (Vuillemin, 1973), are generally
preferred. Direct fixed point iteration is inefficient because it calculates a sequence
of approximations to the fixed point (if one exists). Each subsequent approximation
is either the same as the previous, or better. The basic idea behind communication
lifting is that as successive approximations are often the same, or almost the
same, it may be more efficient to calculate the changes in the approximations
only.

Consider as an example the system of Equations fib.a and fib.b over streams
(infinite lists) to calculate the Fibonacci numbers a = 0,1,1,2,3,5,.... (The required
auxiliary functions such as the family of functions mapjn are defined in Figure 4.)
The variables denoting streams are marked with a small wavy line (3) to render
these variables typographically distinct from other identifiers.

a = 0:b (fib.a)

5 = 1: map.2 (+) a b (fib.b)

Using the function fix as the fixed point operator and the standard domain con-
struction, the solution of these equations is given by:

(a,b) = fix fib (fib.fix)

fib (a,b) = (0 : b, 1 : map.2 (+) a b) (fib.def)

The communication lifting transformation causes the changes in the approxima-
tions to be computed as follows. Define a new stream z as the zip of the fixed

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

552 W. G. Vree and P. H. Hartel

point:

2 = zip.2 (fix fib)

= (by fib.fix)

z = zip.2 (5,5)

= (by fib.a and fib.b)

z = zip.2 (0 : b, 1 : map.2 (+) a b)

= (unfold zip.2)

z = (0,1} : zip.2 (b, map.2 (+) a b)

= (define plus x =fst x + snd x and use the definition of z)

z = (0,1) : zip.2 {map.I snd z, map.I plus z)

= (property of zipji, see law 3.35 in Jeuring (1992)

and define nextstate x = (snd x, plus x))

z = (0,1} : map A nextstate z

= (property of iterate.0)

z = iterate.0 nextstate (0,1)

Hence (the zip of) the fixed point of a system of equations over streams can
be calculated as follows: start with an initial state ((0,1)) and iterate.0 over
the state transformation function nextstate. Both the state transformation func-
tion and the initial state are systematically derived from the system of equa-
tions.

To complete the communication lifting transformation for the fib example, the
required output stream a must be recovered from the stream of pairs z. This, and
gathering the newly introduced definitions yields a complete program:

a = map.l fst (iterate.O nextstate (0,1))

nextstate s = (snd s, plus s)

plus s = fst s + snd s

As a finishing touch, the definition of nextstate can be simplified by unfolding the
definitions of plus, fst and snd and by using pattern matching thus:

a = map.l fst (iterate.O nextstate (0,1))

nextstate (a,b) = (b,c)

where

c = (+) a b

The communication lifting transformation is discussed in more detail in the following
sections of the paper. For now we note that for the application of map.2 in the
network one definition is generated under the where of the nextstate function, which
captures basically the same calculation as the map .2 . Also for each application of (:)
in the network, there is one element in the state tuple processed by the nextstate
function.

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 553

The iterate JO function controls the succession of generations of state tuples
and thereby captures all the recursion originally scattered throughout the network.
Given the tuple produced by the previous generation, the nextstate function (which
is not recursive!) calculates the tuple of the current generation. The expression
(iterate-0 nextstate (0,1)) computes the sequence of changes in the fixed point
approximation in the form of the sequence of state tuples:

(0,1), (1,1), (1,2),...

This is a form of program synthesis as found in for instance Bird and Wadler
(1988, pp. 131-132). Our method is a powerful generalization of the procedure
described there.

3 Practical considerations: parallelism

There are two practical aspects to communication lifting. The first is the reduction
in the cost of managing a large number of streams, because after the transformation
only a single stream remains to be managed. We will come back to this issue in
Section 7.

The second aspect is the possibility to evaluate the components of the state tuple
in parallel. This has to be contrasted with the pipe-line parallelism of a process
network. Before discussing this point further, the fib example must be extended
slightly to introduce a possibility for parallel evaluation. The example as it stands
does not allow parallel evaluation at all because only one addition is performed (on
a stream of numbers). The extension consists of adding two more streams b and p to
the network, to produce a running total of the Fibonacci sequence in the stream o:

o = 0 :p

p = map-2 (+) 5 b

a = 0 :b

5 = 1:2

c = mapJ. (+) a b

The original sub expression mapJ. (+) a b has been put in a separate equation c.
This makes it easier to draw a diagram for the network. The Fibonacci-sum program
thus obtained will serve as the running example of the paper. The program generates
a stream of Fibonacci numbers a = 0,1,1,2,3,5,8... and then adds these numbers
to produce the stream b = 0,1,2,4,7,12,20....

To compare different ways of parallel evaluation it is illustrative to look at
diagrams of the untransformed process network and the communication lifted
version. The diagram for a synchronous process network shows the streams as
connections between the functions applied to the streams. The diagram of the
Fibonacci-sum network is shown in Figure 1. The name of a stream in the network
is used as the label on the corresponding edge. The label in a box is (the curried
version of) the appropriate stream processing function.

Figure 1 shows that the two processes map J. (+) may perform the additions with

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

554 W. G. Vree and P. H. Hartel

Fig. 1. The original Fibonacci-sum network with pipe-line parallelism.

pipe-line parallelism. With this example no speedup can be achieved in practice as
the additions represent too little work. In practical networks sufficient coarse grain
work should be available for the pipe-line to deliver speedups.

Communication lifting of the extended example produces the following program:

o = map A (seL3 1) {iterateJ) nextstate (0,0,1))
nextstate (o,a,b) = {p,b,c)

where
p= (+) o b
c= (+) a b

This transformation is analogous to that of the Fibonacci program. The formal
derivation will be given in Section 5.

The communication lifted program can be executed with master-slave style par-
allelism as follows. The master process is responsible for generating the successive
states, so it executes the calls to iterate!) and nextstate. The first state is the constant
tuple (0,0,1), to which the master thus applies nextstate. This calls on two slaves to
perform the two additions p = o + a and c = a + b. The slaves have both access to
the current tuple where the values of o, a and b are stored. Once the slave processors
are finished, the next tuple is ready. The master process now selects the appropriate
component of the new tuple for output via the application of mapJ (sel3 1). The
cycle is then complete and the whole sequence may begin again. This is schematically
shown in Figure 2. Here the dashed lines represent the flow of data used by the
master-slave communication. The solid lines are streams as before.

The master-slave parallelism shown in Figure 2 corresponds exactly to the pipe-line
that is present in the original program of Figure 1, where two processes map-2 (+)
and map-2 (+) are connected by streams. A pipe-line has thus been transformed
into a master slave relation by communication lifting. The calculations in each step

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 555

map.l
(set.3 1)

iterate.0 nextstate (0,0,1)
nextstate (o, a, b) = (p, b, c)
where c = a + b; p = o + b

Master process

(o, a, b)

r -L - i -, r •*- - -L -,

I c = a + b I I p = o + 6 I

Slave processes

J

Fig. 2. Fibonacci-sum network after communication lifting with master-slave parallelism
shown using dashed lines.

as performed by the slaves, are only dependent on the output produced by the
previous step and are otherwise completely independent of each other.

It is possible to build a parallel implementation with a special primitive function
that implements the required master-slave style parallelism. The tuples must then
be constructed such, that at least two components require enough computation
to outweigh the parallel overhead. The independence of the calculations on the
tuple components should allow for a relatively cheap and simple mechanism to
implement the parallel evaluation. Parallelism of a more general nature, such as
pipe-line parallelism, is more difficult to harness efficiently. A more rigid paradigm
(master-slave) allows the implementation more scope for optimisations than a more
lenient paradigm (pipe-line). A more lenient paradigm offers the programmer better
possibilities for clarity and conciseness. These claims are substantiated in Section 7.

4 The definition of a synchronous process network

In this section the notations involved in the communication lifting program transfor-
mation are formally introduced. A network of synchronous processes is a graph, with
synchronous processes as vertices and streams as edges. A process is synchronous
if it is one of (:), mapjt, iterates or tl. A synchronous process network should
be represented by a number of equations over streams, according to the syntax in
Figure 3. There must be one equation in the network for the stream 5, which by
convention, generates the output of the network. No two equations in a network
may have the same left hand side. The network graph must be connected, with the
equation for o as the root. Equations of the form v = vv are not permitted, they can
always be eliminated by substitution. All these restrictions are necessary to allow
communication lifting to be implemented as an automatic program transformation,
for instance as part of a compiler.

The free stream variables of a synchronous process network are taken to be

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

556

P

di

e

s
7,f
/ . g
5, v, w, 3c, y, z

s,v,w,x,y,z
i, i, k, I, m, n

::=

::=

::=
|

1
1
I
€
e
e
€
6

e

PK G. \

d\ ... dn

C, = e,

s : e
mapji f e\ ... en

iterate JI f s e\ ... en

tl e

V
F
F
b
D
IN

(equations of the form v = w are not permitted)

(arbitrary values)
(arbitrary functions on streams)

(arbitrary functions on stream elements)
(streams)

(arbitrary stream elements)
(natural numbers)

Fig. 3. Abstract syntax of the process network language.

provided as input to the network from outside. A network may have any number
of input streams, but need not have any.

The definitions of a number of useful stream processing and auxiliary functions
are shown in Figure 4. According to the syntax, only tl, (:), map-it and iterate _n
can be used as stream processing functions. The other functions and operators are
also shown here because of their use in the transformation process. The choice of
functions that may be applied to streams seems rather limited. However, considering
that the functions that may be applied to stream elements are not constrained, the
abstract syntax is actually quite general. Only three functions are required to build a
synchronous process network: one to extend a stream up front (:), one to trim the first
element off a stream (tl) and a third function to perform an arbitrary computation
on a stream element (map-n). A fourth function iterate JI has been included because
it captures the concept of a function that carries its own local state.

To be completely general, functions that add and remove arbitrary stream elements
should have been supported as well, for instance filter. We have chosen not to include
such functions as it makes it more difficult to guarantee that the networks constructed
are synchronous. Work is in progress on an extension of the method to also support
some forms of asynchronous networks, in which functions such as filter play a role.

Functions with a suffix jn represent a whole family of functions, because n is a
natural number. In an enumeration such as e\.. .en, n may also be equal to 0, which
means that there is not even a single expression e, present. The function sel.O is
ill defined, but map JO and iterate JO are valid functions. Note that the definition
of mapji does not correspond with the usual definition, because there is no test
whether any of the input streams v>\.. .vn are empty. This is consistent with the view
that streams are infinite (lists).

5 Communication lifting of a synchronous process network

The communication lifting transformation of a synchronous process network, as
defined according to the syntax of Figure 3, will now be presented in two steps. As

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 557

hd (x : x)
tl (x : x)

x!0

x!(i + l)
take 0 x

take (i + 1) x
selji i (vi,...,

mapjn f vt ..

iterate _n / s i

zip-n (Ci,...,t5.

Vn)

• Vn

">l • • • Vn

n)

= X

= X

= W X

= (t/ x)!i
= nil

= hd x : take i (tl x)

= f.

= w : mapM f (tl v\)...(tl

where

w = f (hd vx)...(hd vn

= s : iterate_M / s' (tl vt)..

where

= w :zip_n (tl vi,...,tl vn)

where

w = (hd Vi,...,hd vn)

(Vw > 1 A 1<

Vn)

)

•(tl vn)

<rc select i-th component)

Fig. 4. Definition of stream processing and auxiliary functions and operators.

the first step, we present the communication lifting of a simplified process network.
The second step (Section 6) brings a more general network that conforms to the
abstract syntax of Figure 3 into the simplified form.

The communication lifting transformation proper is given by Rule TO of Figure 5.
The notation employed is more or less standard (see for example Ferguson and
Wadler (1988)). The transformation rules take a syntactic argument enclosed in
emphatic brackets [[and J. Pattern matching is used to choose between alternative
clauses. The matching order is top down, thus Clause Ob is a catch-all clause, fitting
any network that does not match Clause Oa. The matching of some clauses (e.g.
Clause Oa) is further constrained by a guard, written as a conditional (if...) ==>
connecting the left- and right-hand sides of the clause. A clause protected with a
guard matches only if both the pattern and the guard are satisfied. If either fails,
the next clause will be tried.

A simplified synchronous process network must match the left hand side of Clause
Oa. This means that the first k equations must contain an application of (:) and
that the next m equations must contain an application of map-n. The remaining
/ equations must use tl. At this stage applications of iterates, equations of the
form v = w, or nested expressions are not permitted. These restrictions are neces-
sary to make the presentation of the communication lifting transformation proper
reasonably succinct. The lifting of the restrictions is the subject of the next section.

Some of the stream variables x, and jty in the left hand side of Clause Oa will be
the same as some of the variables o, vh wt or t,. The x, and y,j that are not defined
within the network act as the input streams to the network. These input streams are
identified by the set {«!...«/,}.

The guard in Clause Oa ensures that the streams z\.. .2/, and the states s\.. .Sk, and

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

558 W. G. Vree and P. H. Hartel

TO Id = s, : x, (Oa)
v2 = s2 : x2

h = sk : xk

wi = mapji, fi yn...ytni

vvm = mapjim fm ym\...ymnm

h = tl zi

~t, = tl z,]] (if { z i . . . 2 , } n ^ = 0 A

freevars{s\.. .Sk} d^V = 0 A
freevars{fi.. ./„} n ^" = 0) = >

5 = map-1 (selJi 1) (iterateJi nextstate {si,...,st) U\...Uh)

~tx = tl Si

t, = t/ 2,

nextstate s u\...Uh = (x i , . . . , x t)

w/iere

(o,t;2,...,t>0 = s

''m jm ym\' • •ymnm

where ui...fij, are defined as

JO [p J (ot/ienvise) = > p (Ob)

Fig. 5. Communication lifting transformation.

the functions f\.. .fm are not dependent on any of the streams 5, vi-. .Vk and w\.. .wm.
This is necessary because the transformation removes the definitions of the streams
Vi and Wj.

The best way to understand Rule TO is to try it out on a simple example. The
program produced by applying Rule TO to the Fibonacci network of Section 3
yields:

5 = si : 5ci | o = 0 : p
v2 = s2 : x2 | a = 0 : b
Vi = S3 : X3 I o = 1 : c = >

H>2 = mapJ. /i yn yi2 | p = map.2 (+) o b
w2 = map_2 f2 y2i P22 I c = mapJ. (+) a B

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 559

Here we have shown the correspondence between formal and actual identifiers of
the Rule TO. The guard of Clause Oa is satisfied: because there are no e q u a t i o n s
of type ~t = tl z, and because s\ = 0, S2 = 0, S3 = 1, / 1 = (+) , and fi = (+•) d o
not depend on Jf = {o,a,b,p,c}. For the Fibonacci-sum program the set {Si. ..u/,}
is empty, which means that the network does not use external input s t reams:

o = mapj {selJ 1) {iterateJO nextstate (0,0,1))
nextstate s = {p,b,c}

TO where
(o,a,b) = s
p = (+) o b
c = (+) ab

6 Simplifying transformations

A synchronous process network specified according to the syntax of Figure 3 has to
be transformed into a simplified form that is acceptable to Rule TO. Figure 6 shows
the simplifications that are performed by the successive application of the Rules Tl,
T3 and T5. We will explain the purpose of each of these rules in turn.

First we note, that the Fibonacci-sum program as discussed in Section 3 is actually
the outcome of applying the simplifying transformations to the following program:

o = iterate.1 (+) 0 (tl a) n
5 = 0 : 1 : rnapJ. (+) a (tl a) ==>

This program cannot be transformed directly by Rule TO because: it uses the
iterate.1 function; it uses nested function applications and the output stream b
is not an application of (:). The purpose of the simplifying transformations is to
eliminate these constructs.

Rule Tl: removing nested function applications

The first problem to solve is to remove nested function applications. This is the
purpose of Rule Tl, which defines a new equation for each nested expression.

Rule Tl applies Rule T2 to all equations of the network. Clause 2a introduces
extra stream equations for all nested expressions that occur in the synchronous
process network. The pattern v = f • • (g- • •) • • • is matched by an equation that
starts with an application of some function / and that contains a nested applica-
tion (g...). If there is more than one nested application that can be matched by
(g...), the left most is chosen. This choice is arbitrary as T2 is reapplied to the
results v = / • • • w • • • and w = (g...) so that remaining nested applications will
be dealt with eventually. According to the syntax, the functions / and g must
be one of tl, (:), mapji or iterateJI. On the right-hand side of Clause 2a the
newly introduced equation bears a name w that must not appear anywhere else
in the network. Rule T2 is applied recursively until all arguments of each appli-
cation of / are simple stream identifiers. The default Clause 2b terminates the
recursion.

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

560 W. G. Vree and P. H. Hartel

Tl
T2

T2

T3

T4

I
I

n
II

di

~v

V

d\

V

...dn B

= / • •

= e l
...dn]

• • (g . . -) "

]
= iteratejn f :

B

S X\...Xn B

=> T2 P
=> T2 I

where

=> 0 =

=> 74 P
=> 0 =

l l

VV

e

'ill

s

=

is a

: vv

/ • •

new

T4 I

• vv • • • B

variable

i<y

15 [5 = j mapM f x,\...xn

d2 ...dm\ p

vv = map-m f v xi...xn

where v and vv are new variables and m ••

d

T5 I o =k f (hd X,) . . . (hd xn) :v
V =k tl W

vv =k mapjn f X[...xn

d2 ... dm\ p

where v and vv are new variables

T5

T5

T5

I o
vv
di

lv
w
di

I v
vv
d-i

=k
= j

=k
= j

=k
=j

tl
s :

dm

tl
s :

dm

tl

w
: x
B p

vv
: x

B P

w
mapsx f x\...xn

dm B p

=> T5 [

=> T5 I

[(vv

d3

[(«
d-i

=j s

• • • d m

=j s

...dn,

:o
) [5/X]] p

: x
) [x/v] B P

T5 I vv = ; / (hd xx)...(hd xn) :v
v =j map-n f y\...%
Pi =k tl xi

pn =k tl xn

di...dmj (pU {(/,*)})
where y\...yn are new variables

T5 I p B p (otherwise) •

(1)
(2a)

(2b)

(3)
(4a)

(4b)

(5a)

(5b)

(5c)

(5d)

(5e)

Fig. 6. Simplifying transformations: p' = T5 (T3 (Tl p)) 0.

Applying Rule Tl to the Fibonacci-sum program as given above introduces four
new equations for b, c, d and q to remove the nested function applications. The
result of this transformation is:

5 = iterate A (+) 0 q

q = tl a

TI a = 0 :b T3
= = > b = 1 :c = >

c = tnap-2 (+) 5 5

2 = tl a

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 561

Rule T3: removing calls to the function iterate JI

The purpose of Rule T3 is to simplify the network by replacing all occurrences of
the function iterate JI by applications of the simpler mapjn function.

Rule T3 applies Rule T4 to all the equations of the network, which after appli-
cation of Rule Tl contain a single function application each. Each equation with
iterate JI is transformed into an equation with (:) and an equation with map-m.
Clause 4b retains all other equations as they are.

Application of Rule T3 to the Fibonacci-sum network as delivered by Rule Tl
replaces the equation for o by two new equations. The equations for a.. .d and q
remain unchanged:

o = 0 :p

p = mapJl (+) o q

q = tl a

=> a = 0 : b = >

b = 1 :c

c = map-2 (+) a d

d = tl a

Rule T5: removing redundant calls to tl

The goal of the final simplifying Rule T5 is to remove as many applications of tl as
possible. Rule T5 also ensures that the output stream is defined as an application
of (:). These apparently different purposes have to be served by one transformation,
as both involve calls to the function tl.

Before discussing Rule T5 proper, a further explanation is appropriate about
the pattern matching of clauses such as Clause 5c, which process several equations
simultaneously. The variable vv on the left-hand side of the Clause 5c occurs twice in
the pattern, which means that both occurrences must match the same stream. This
links two equations of the process network. Thus far no ordering on the equations
in the process network has been assumed, because rules T2 and T4 can be applied
in any order. For Rule T5 it is convenient to regard the equations that define
the process network under consideration as a proper set. Any subset of equations
satisfying the constraints specified by the patterns may be chosen. Clause 5c will
thus select any equation v = tl w and the corresponding equation vv = s : x. The
remaining equations are named d} ... dm and retained so that they can be processed
by the recursive call to Rule T5.

Figure 6 shows that all equations of Rule T5 are labelled with a subscript (=,).
This is necessary to ensure that Rule T5 will terminate on all inputs. The labels are
used in the guard (if (j, k) g p) => of Clause 5d to avoid this clause from looping
on a pair of definitions such as v = tl vv; vv = map A f v. The labelling can be
added to a system of equations, by numbering each equation and using the equation
number as the label number. The only assumption about the labels is that they are
all different when they are first assigned.

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

562 W. G. Vree and P. H. Hartel

Clause 5a unfolds the definition ofmap-ti once and introduces two new equations
so that 5 = . . . : . . . as required.

Clause 5c resolves a combination of v = tl w and w = s : x by replacing every
free occurrence of v in the process network by 3c. This replacement is expressed as
(...) [x/v]. The equation for v is then removed. The tl is thus cancelled against
the (:). A combination of v = tl w and w = mapji ... (Clause 5d) can be resolved
in a similar way, after unfolding the definition of mapjn once. Then the tl can be
cancelled against the (:).

Clause 5b is a special case of Clause 5c. Both clauses cancel an application of tl
against an application of (:), but the output stream of the network o must be treated
specially. If Clause 5b were omitted, Clause 5c applied to v = tl o would remove
the equation for o from the network. This would make it impossible for Rule TO
later to retrieve the output stream from the network.

Rule T5 has no case for combinations such as v = tl w with w = tl x, because
a combination of two or more tl applications is resolved by cancellation of the
last tl against either mapji or (:), followed by cancellation of the penultimate tl
etc. A combination of equations involving applications of tl can not be removed
by cancellation if the last tl is applied to an input stream. This case is adequately
handled by Rule TO and will not concern Rule T5.

When applied to the Fibonacci-sum example program, Rule T5 cancels the
applications of tl by using Clause 5c twice. This yields the Fibonacci-sum network
in a compact form, ready for the final Rule TO. It is the same program as the one
we started with in Section 3 and also in Section 5.

5 = 0 :p

p = map-2 (+) o b

£> a = 0:b

b = 1 :c

c = mapj. (+) a b

The simplifying transformations as defined in Figure 6 are necessary and sufficient
to bring a system of equations over streams as specified according to the syntax of
Figure 3 into the form required by the communication lifting transformation proper
as given by Rule TO.

7 The performance of a number of small networks

The communication lifting transformation consists of a number of fold/unfold
steps (Burstall and Darlington, 1977) and uses algebraic properties of stream func-
tions such as map-n and zip Jt. The communication lifting transformation incor-
porates a strategy that decides which steps to take, to guarantee delivery of an
equivalent but completely restructured program. Communication lifting can thus be
viewed as a transformation skeleton (Darlington et al., 1991).

Communication lifting as a programming tool is only useful if the transformed
programs will run faster, and/or use less space, than the original programs. Three

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 563

Table 1. Synchronous process networks with an indication of their size and purpose.
Execution times are reported in milliseconds.

system sequential master-slave pipe
program source orig. trans. trans, orig. tuple stream

lines (ms) (ms) (ms) (ms) size length

fibsum"
flipflop6

fftc

wave4'i

6
28
190
264

627
2434
3045
2041

493
760
2956
2131

477
581
1364
1111

536
974
1504
1151

3
13
8
3

3000
1600

5
200

" Sums the first 3000 Fibonacci numbers.
b Simulation of a D-flipflop over 1600 state transitions (Vree, 1989).
c A 1024-point fast Fourier transform using arrays (Hartel and Vree, 1992).
•* Predicts the water heights and velocities in a square area of 4 x 4 grid points of the North

Sea over 200 time steps (Vree, 1989).

important performance issues can be distinguished. The first is the gain or loss in
sequential performance due to transformation, the second is the difference between
sequential and master-slave parallel performance, the third issue is the difference be-
tween master-slave parallel performance of the transformed programs and pipe-line
parallel performance of the untransformed programs. These issues will be discussed
in the three following sections. To make measurements possible, communication
lifting has been implemented and applied to a small set of synchronous process
networks. The transformation has been implemented in Miranda* (Turner, 1985)
and the input and output of the transformations are also Miranda programs. The
abstract syntax of Figure 3 can be embedded in that of Miranda.

7.1 Sequential performance

To asses the impact of communication lifting on sequential performance, the set
of synchronous process networks has been compiled and executed both before and
after the complete set of transformations. The programs are compiled by the FAST
compiler (Hartel et al., 1991; Langendoen and Hartel, 1992), which amongst others,
provides efficient arrays for the benefit of the f f t and the wave4 applications. The
programs are executed on a stand alone Motorola 88000 processor board with
64Mb of memory. This allows execution time to be measured with an accuracy of 1
millisecond. For each program, Table 1 gives an indication of the size, the execution
times of four versions of the program, the size of the state tuple, the number of
elements of the streams that are evaluated and an explanation of the purpose of
the program. The programs are sorted by the number of lines of source text. This
count is exclusive of standard library functions as provided by Miranda, comments
and blank lines.

The columns sequential /orig. and sequential / trans, show the sequential execution

* Miranda is a trademark of Research Software Ltd.

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

564 W. G. Vree and P. H. Hartel

times (in milliseconds) of a program before and after transformation. The sequential
performance of most programs is improved, which shows that communication lifting
is a viable optimisation technique for sequential programs. The significant perfor-
mance gain in the f l ipf lop program is due to the fact that instead of managing 13
lists, as is the case before the transformation, the transformed program only needs
to manage 2 lists, which can be done more efficiently. The effect is strongest for the
f l ipf lop program, because it uses more streams than the others. For the fibsum
program, there are three streams before the transformation and still two streams
after the transformation. So only a small reduction of the stream management effort
is the result.

The large networks that occur in real programs will lead to huge tuples. However,
the implementation creates the state tuples in a single heap allocation, whereas
a network of streams gives rise to more heap claims of smaller cells, which is
thus more costly. The selection of an element of a tuple is performed in unit
time, which is the same as in a stream network. When a small amount of work
is involved in computing the stream elements, communication lifting will allow
sequential performance gains on practical programs. For programs that involve
large amounts of work on the stream elements, such as wave4 and f f t, sequential
performance will not be affected much.

7.2 Parallel performance of the master-slave system

The sequential performance improvement for most of the programs indicates that
communication lifting is a valid point of departure for parallel evaluation of in-
dependent tuple elements. Parallel evaluation always introduces overhead. This
overhead should be kept small in comparison to the amount of real work in-
volved in the evaluation of the state tuples. For example, two of the three tuple
elements in the transformed wave4 program represent a large amount of compu-
tation. To assess the parallel performance of the programs after communication
lifting, an implementation has been built that supports the required master-slave
parallelism. The Motorola 88000 system has four CPUs, four instruction caches
and four coherent data caches and 64 MB shared memory. Cache coherency is
handled by the hardware. The four processors are numbered 0,1,2 and 3. Proces-
sor 0 is the master processor, which begins execution. The other three processors
are initially idle. The runtime system of the FAST compiler supports master-slave
parallelism through a special primitive function pforce, which when applied to a
tuple allocates the evaluation of each component of the tuple to a separate pro-
cessor. The scheduling strategy is as follows: processor p first evaluates component
p to full normal form (not just to head normal form). Then, as soon as this ter-
minates, processor p evaluates component p + 4 to full normal form, then p + 8
etc. Parallel evaluation continues until all components of the state tuple have been
evaluated to full normal form. The function pforce thus has a completely strict
semantics.

During parallel evaluation the master processor behaves as an ordinary slave pro-
cessor. Processor 0 becomes master again as soon as all tuple components have been

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 565

evaluated, at which point a new tuple is formed by the master processor. All other
processors remain idle until the master encounters the next application of pforce.

In the communication lifted version of the Fibonacci-sum program the forming
of the tuple is expressed as follows:

o = mapJ {selJ 1) {iterateJO nextstate (0,0,1))

nextstate s = pforce (p,b,c)

where

(o,a,b) = s

p = (+) o b

c = (+) ab

The two additions (+) a b and (+) o b are thus evaluated in parallel. The first tuple
ever created by the program contains three numbers, all of which are normal forms:
(0,0,1). Because of the strict semantics of pforce as required by the master-slave style
parallel evaluation, each subsequent tuple will be fully normalized when created.
The sharing between computations is maintained as usual. In the example, both
additions use the variable b, which is obtained from the current tuple and made
available to all processors that need the value through the shared heap.

In all four programs that we have used, the only sharing that occurs is between
the elements of the state-tuple that is passed as an argument to nextstate. Because
of the completely strict semantics of pforce, all state tuple elements are fully nor-
malized before nextstate is entered. Therefore, no locking/blocking mechanism is
needed to prevent concurrent reduction of shared expressions. The implementation
of master/slave parallelism for communication lifted programs is thus simple and
fast. No locking overhead is incurred and scheduling is equally simple and fast.
As we will see in the next section it is more complicated to implement pipeline
parallelism.

Not all programs that one might wish to transform by communication lifting will
have the property that only normal forms are shared. In general, CAF's may be
shared between processes so that a locking mechanism is needed. In future work
we will identify extra conditions on synchronous process networks to guarantee that
only normal forms are shared after communication lifting.

The column master-slave/trans, in Table 1 shows the parallel performance of
the four test programs after communication lifting on the 4-processor system. The
performance of three programs is improved by parallel execution, that of the f ibsum
program is not affected.

The granularity of the f ibsum program is only one addition, just about sufficient to
compensate the overhead of process creation by pforce. But the flipf lop program,
still quite fine grained, is already faster then the sequential version. This shows that
the overhead of pforce is indeed low.

The fft program has four coarse grain and four fine grain processes (the tuple
size is 8). However, there is a substantial amount of sequential processing before and
after these processes are created. About half of the time is spent in the sequential
parts of the program. The speedup is about 2.2.

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

566 W. G. Vree and P. H. Hartel

The wave4 program has three processes (the tuple size is 3), two of which contain
a significant amount of work. This explains the speedup of about 1.9.

7.3 Parallel performance of a pipeline implementation

The performance of the master-slave parallel system will now be compared with a
pipeline parallel system. The best way to do this is by using two implementations
that are similar in as many ways as possible, so that the differences can be attributed
to the differences between master-slave and pipeline parallelism.

The master-slave parallel system provides most of the mechanism required to
implement pipelines on the shared memory system. The process networks that
must be executed in a pipeline parallel fashion may be annotated as shown be-
low:

pforce (take x 5 , take x a) where 5 = 0 : mapJ. (+) 5 b

a = 0 :b

5 = 1 : mapJ. (+) a b

The pforce primitive takes the same steps as before, which in this case means that
both the expressions take x o and take x a will be fully evaluated in parallel.
The variable x gives the number of elements of each stream that we wish to be
evaluated, which should be 3000 in the case of the Fibonacci-sum example. See
the column stream length in Table 1 for the values required by the other network
programs.

The pforce expression above behaves as a pipeline that computes the streams a
and o in parallel. Figure 7 shows the slightly simplified configurations of the graphs
that arise during the first two graph reduction steps taken by the two processors. The
processors are notionally separated by the dotted line, there is no physical separation
as the processors use a shared heap. The boxes represent suspended computations,
all other nodes represent data. Applications of hd and tl (see the definitions of map
and take in Figure 4) have been omitted to avoid clutter.

Initially, both Processor 1 and Processor 2 are in a state whereby the next action
will be to evaluate the suspended computations map-2 (+) Processor 1 requests
input from Processor 2. This is indicated by the pointer that crosses the dotted
line, and which points at the shared object 1. Both processors will be able to use
this shared object without synchronisation because it is data. After some time, both
processors will have progressed to the state shown as Step 2 in Figure 7. At this stage,
both processors will start to evaluate the suspended applications of +. It is now
apparent that for the pipe-line parallel system to work properly, a locking/blocking
mechanism is required.

To support pipelines, a low overhead locking/blocking mechanism has been built
into the runtime system to avoid two or more processors from reducing the same
sub-graph. The locking mechanism uses the XMEM machine instruction to read a
memory location and to replace its contents immediately with a known lock value.
The hardware implements this as an atomic transaction. Should the lock thus

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 567

I
map.2 I J

a :

8
o

map-2

Step 1

map.2

map-2

Step 2

Fig. 7. Two processors performing pipe-line parallel graph reduction in a shared memory
system. Processor 1 computes the Fibonacci-sum stream 5 and Processor 2 computes the

Fibonacci stream 3. The boxes represent suspended computations, all other nodes
represent data.

accessed be unavailable, then the processor requesting the lock will block, which is
implemented as a busy-wait until the locked object becomes available.

Mapping the two parallel pipeline processes onto a system with two processors is
straight forward, but as the number of processes exceeds the number of processors,
a suitable static mapping of pipeline processes onto processors is hard to find.
We have tried several static mappings, using both fine grained and course grained
parallel execution. The best results are shown in the column marked pipe/orig. of
Table 1. We do not expect a dynamically scheduled pipe-line to be much better,
because measurements have shown that the statically scheduled pipe-line spends at
most 8% of its time busy waiting. A dynamically scheduled pipeline requires some
execution time of its own, so it may be at most 8% better than a statically scheduled
pipeline.

Because a low overhead locking mechanism has been combined with the best
possible static process schedule, the figures in Table 1 represent the best speed up for
a statically scheduled pipeline implementation. The master-slave implementation is
consistently faster than the pipeline. The parts of the programs that run sequentially
on the master slave system offer some additional parallelism for the pipeline system.
This effect is particularly strong on the f f t program. The overhead of the required
locking mechanism is apparently not compensated by the extra parallelism available
to the pipeline.

It is possible to conceive a pipeline mechanism that does not require locks
(Kelly, 1989). Such a mechanism will not be able to exploit more parallelism than the
master-slave implementation combined with communication-lifting. The advantage
of a real pipeline is lost. Moreover, we expect that such an implementation will result
in more overhead than our implementation, because a complex synchronization
mechanism is required, that exchanges normalized stream elements between the pipe

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

568 W. G. Vree and P. H. Hartel

processes. Communication lifting essentially extracts the synchronization mechanism
at compile time, resulting in the iteration of the function nextstate. This function
contains the knowledge of the communication pattern, while iterate provides the
synchronisation in the most efficient way.

8 Related work

Many languages have been developed to support programming with process net-
works, which gives an indication of the importance of work in this area. Lu-
cid (Ashcroft and Wadge, 1977) is one of the first languages based on the notion
that variables represent not a single value, but a potentially infinite history of val-
ues. This notion is also central to the work on Esterel (Berry and Cosserat, 1984),
Signal (Gautier et al, 1987), Lustre (Caspi et ah, 1987) and others. Languages such
as these offer special operators to manipulate the histories, whereby the aim has
often been to make programs look like more conventional programs by hiding the
history character of the variables involved.

The language that bears most resemblance to our work is Lustre (Caspi et al.,
1987). The differences lie in the realisation: the Lustre implementation is conven-
tional in the sense that it uses a special purpose compiler. Our synchronous process
network language is a true subset of a standard lazy functional language, and
thus requires no special purpose compiler. However, to achieve a good sequential
performance for the synchronous networks embedded in a lazy functional pro-
gram we use program transformation techniques. Program annotations are used
to achieve speedup through parallel evaluation of components of the process net-
works.

The core of Lustre (its data and sequence operators) is equivalent to the syn-
chronous process network language, as defined in Figure 3. To illustrate this point
consider the implementation of the Lustre data operators + and its four sequence
operators pre, —>, when and current using only the four stream functions (:), tl,
mapjn and iterate _n as defined in Figure 4.

Each Lustre sequence represents a stream of values, with which a clock is asso-
ciated. A clock can be thought of as a stream of boolean values. The zip of the
stream of values and the associated clock is thus a sensible representation of a
Lustre sequence:

clock x = map A c x

where

c x = (True,x)
The Lustre sequence operators pre and -* correspond to (:) and tl, respectively:

pre x = {True, _L) : x

x —> y = hi x : tl y

A Lustre data operator applies some function to the elements of sequences. The
+ operator for example performs pairwise addition of the elements of two input
sequences. The Lustre semantics specify that the two sequences must be on the same

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 569

clock, so that additions will only take place when the clocks of both input streams
are True (see the first clause of the function p below). When both clocks are False,
an undefined value (False, J_) appears in the output stream (second clause of p).
Should the sequences be on different clocks, a semantic error is produced (last clause
ofp):

x + y = map .2 p x y

where

p (True,x) (True,y) = (True,x + y)

p (False, x) (False, y) = (False, ±)

p x y = _L

All other Lustre data operators can be expressed in a similar way using mapjx and
an appropriate auxiliary function. The Lustre sampling operator when can also be
implemented using map.2:

e when b = map.2 web

where

w (True,e) (True,True) = (True,e)

we b = (False, A.)

The implementation of the Lustre projection operator current requires the use of
tl and iterate-1. The state maintained by iterate A is used to remember the last
stream element, so that this can be inserted in place of stream elements with a False
clock value. The tl is necessary to remove the first, irrelevant stream element that is
produced by iterate A :

current y = tl (iterated c (True,!.) y)

where

c s (True,e) = (True,e)

c s (False, e) = s

The Lustre operators can thus all be implemented using the four stream functions (:),
tl, mapji and iterate JH as defined in Figure 4. The functional forms of Lustre can
all be implemented in Miranda without difficulty.

When viewed as a high level optimization technique, communication lifting is
related to deforestation (Wadler, 1988; Gill et al, 1993). Restricted to lists, defor-
estation removes the need for intermediate list structure. An expression such as
map A f (mapA g x) is transformed into map A (f.g) x. For deforestation it
is essential, that the producer (here map A g) and the consumer (here map A f)
of an intermediate list can be identified. Communication lifting operates on any
set of lists and does not require such lists to be in a producer-consumer rela-
tionship. Instead communication lifting requires the lists to be manipulated in a
synchronous fashion. Communication lifting is thus supplementary to deforesta-
tion.

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

570 W. G. Vree and P. H. Hartel

9 Conclusions

Many languages have been developed to support programming with synchronous
streams (Esterel, Signal, Lustre, etc.). This indicates how important programming
with synchronous networks is as a technique for developing practical applica-
tions.

The disadvantage of developing a new language is that it also requires a new
implementation to be built. The approach we take is to build process networks using
a subset of a standard lazy functional language. As an example we show that this
subset is equivalent to the special purpose stream-language Lustre.

When a large number of streams is involved, which will be often the case in
practical applications, the cost of lazy evaluation is high. Therefore we developed
a program transformation called communication lifting, which takes a synchronous
process network consisting of n streams into a network with only a single stream
carrying n-tuples.

Measurements show that for three out of four test programs, managing the
single stream of n-tuples is cheaper than managing the original n streams. The
performance of the fourth program stays within 5% of the untransformed version.
This result indicates that the use of communication lifting in sequential applications
is worthwhile.

We have also investigated the possibility to evaluate the components of the n-
tuples, resulting from communication lifting, in parallel. This gives rise to a simple
master/slave kind of parallelism, which we have implemented on a four processor
shared memory machine.

Comparing this master/slave implementation to the conventional way of paral-
lelising process networks, in a pipe-line fashion, shows that communication lifting
outperforms a pipe-line implementation which uses an optimal static schedule.

The communication lifting transformation has been specified formally. This
makes it possible to prove the correctness of the transformation (see appendix)
and to implement communication lifting as an automatic tool. Annotation by
the programmer is necessary to indicate which set of streams must be trans-
formed.

Acknowledgements

We thank Marcel Beemster, Andy Gravell, Koen Langendoen, Henk Muller and
the two referees for their comments on a draft version of the paper. Andy Grav-
ell suggested the derivation of the communication lifting transformation in Sec-
tion 2.

Appendix - Correctness of the transformation

To establish the correctness of the Rules TO to T5, a few auxiliary lemmas are used,
which are shown below. The zip-, and map-lemmas can easily be proved by complete
induction on i. The proofs of the remaining lemmas are given. It is essential for

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 571

all these proofs that streams are infinite lists; the stream elements may assume any
value, including -L

The zip-lemma

Given Vn € INA x i , . . . , x n € D, then:

Vi e I N : (zip JI (3c,,...,3cB))!i = ((3c,!0,...,(XB!i)>

This can be proved by induction on i.

The map-lemma

Given V x i . . . x n e D A f e F, then:

Vi 6 IN : (mapjn f x,...xn)!i = f (X, !i) . . . (xn!i)

This can be proved by induction on i.

The iterate-lemma

Given Vxi...xn € DA f e FA s € D, then:

Vi € I N : (iterate_n / s x i . . . x R) ! i = y \ i
where
y = s : mapjn f y x\.. .xn

m = n + 1

To prove this lemma, consider the special case that n = 1. Then given x & D and
the binary function f & F, the iterate-lemma is:

Vi e IN : (iterate J f s x)li = y\i
where
y = s : map-2 f y x

The proof is by induction on i. Base case:

(iterate J f s x)!0

= hd (iterateJ f s x) (unfold !)

= hd (s : iterateJ f (f s (hd x)) (tl x)) (unfold iterateJ)

= s (unfold hd)

= y\0 (new definition, fold !)

where

y = s : mapJ2 f y x D

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

572 W. G. Vree and P. H. Hartel

Induction step:

(iterateJ f s x)!(i + 1)

= (tl (iterateJ f s x))\i

= (tl (s : iterateJ f (f s (hd 5c)) (tl x)))H

= (iterateJ f (f s (hd x)) (tl x))H

= y\i

where

y = f s (hd x) : tnap.2 f y (tl x)

= y\i

where

y = map-2 f (s : y) (hd x :tl x)

where

(s : y) = s : map.2 f (s : y) x

= z ! (i + l)

where

z = s : map-2 f z x n

A similar proof can be given of the general case for n > 2.

(unfold !)

(unfold iterate A)

(unfold tl)

(hypothesis)

(fold map .2

(fold !, hd and tl)

(define z = s : y)

Corollary of the iterate-lemma

Given Vxi.. .xn e DA / e FA s G DA m = n + 1, then:

y = s : mapjn f y x\...xn

Vi € IN : y\i = (iterate_n / s 5Li...xn)H

y = iterate-n f s 3ci...5cn

(iterate-lemma)

(element-lemma)

Given Vx,y e D then:

The element-lemma

x = y = Vi e IN : xli = y\i

To prove the element-lemma an auxiliary result is needed to give the correspondence
between list comprehensions and the function take, so that the take-lemma (Bird
and Wadler, 1988, pp. 182-183) can be used. Given x e D, then:

Vi e IN : take i x = [x\k \ fc«-[0..i- 1]]

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 573

The proof of the auxiliary lemma is by induction on i. Base case:

take 0 3c

= D (unfold take)

= [x\k | k<— \\] (list comprehension)

= [x\k | k<-[0.. - 1]] • (arithmetic)

Induction step:

take (i + 1) x

= hd x : take i (tl x) (unfold take)

= hd x : [(tl x)\k | k+-[0..i- 1]] (hypothesis)
= hd x : [(tl x)\(h - 1) | fc<-[l..i]] (k = h-\)

= x!0 : [x\h | /i*—[l..r]] (fold !)
= [x\h \ h<—[0..i]] D (list comprehension)

The unfold step is permitted because streams are infinite lists and not partial lists.
The element-lemma can now be proved as follows:

x = y

= (take-lemma)
Vi € IN : take i x = take i y

= (auxiliary lemma)
Vi e IN : [x\k | /c<-[0..i - 1]] = [y\k | k<-[0..i- 1]]

= (list comprehension)
Vie IN : xli = yli D

The stream-lemma

W h e n given z\.. .ZH S DA z\.. .Zh € DA A e F A A e F a n d the fol lowing 4 c o n d i t i o n s
a re m e t :

(i) A zx...zh = eo[zi---Zh,ai...am]
where

am = em[z1...zA,a1...5m]
(ii) ^ zx...zh = eo[zi.--Zh,a\...am]

where

a\ = el[zi...zh,ai...am]

am = em[zi...zh,a\...am]

(iii) there are no free occurrences of either A or A in ?o.. .em or eo. •
(iv) Vi € IN A0<j<m we have:

(ej[zi.. .zh,a{.. .am])\i = ej[z{ \ijzv. lh\i/zh,ax \i/ax.. .am\i/am]

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

574 W. G. Vree and P. H. Hartel

Then the stream-lemma asserts that:

(v) A = mapJi A

In the stream-lemma and its proof some special notation will be used. For an
expression e, in which the variables ai...am occur free we write e[ax...am] and the
notation e[bx/ax...bm/am] is an expression e in which the free variables a\...am are
simultaneously replaced by respectively b\...bm. For brevity we use a superscript in
the proof to denote projection on tuples rather than the function seljn:

V \<k<m : (ax,...,am)k = ak

We begin the proof by associating a function J} with each of the expressions
ej[z1...zh,ax...am] in (i), such that:

V 0<j<m :fj =Aut.eJ[ul/zl...u
h/zh,t

l/al...t
m/am]

Thus fj {z\,...,Zh) (ax,...,am) = es. In the same way associate functions fo...fm

with the expressions eo- • -̂ m- As the second step rewrite (iv) in terms of the functions
/o . . ~fm and /o . . .fm.

Vi € IN A 0<j<m :

(ej[zi.. .zh,a\...am])U = ej[zx \i/zx..lh\i/zh,ax \i/ax.. .am\i/am]

= (use the definitions of /o. . .fm and /o. . .fm)

{fj (z i , . . . , z f t > (a x , . . . , a m)) \ i = fj (z x \ i , . . . , z h \ i) { a x \ i , . . . , a m \ i)

= (s u b s t i t u t e z = (zx,...,Zf,) a n d a = (ax,...,am) a n d u se t h e z i p - l e m m a)

(vi) (Jj z a)H = fj {{zipJi z)\i) {{zipMI fl)!i)

The third step is to reformulate the definition of A from given (i):

(vii) A zx...zh

= / o <z, , . . . ,z h) (a 1 , . . . , 5 m) (given (i))

•where

ax = /] (zx,...,zh) (5 i , . . . , a m)

am = fm (zx,...,Zh) (ai,...,am)

= / o (zx,...,zh) (ax,...,am) (tupling)

w h e r e

(a x , . . . , a m) = (/ i (z x , . . . , z h) (a x , . . . , a m) , . . . , f m { z x , . . . , z h) (a x , . . . , a m))

= (abstraction and fixed point)

/ o (z x , . . . , z h) {fix{Xa.(fx (z x , . . . , z h) a,...,fm (z x , . . . , z h) a)))

= B (z x , . . . , Z h) (introduce B, E)

where

B = Iz.fo z E[z]

E[z] = fix{ka.(fx z a,...,fm z a))

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 575

Rewrite definition (ii) of A in a similar way to yield:

(viii) A z\...ih = B (zi,...,zh)

where

B = Xz.U z E[z]

E[z] =fix(ka.(fi z a,...,fm z a))

Omitting the where expression of B (viii) looks like this:

A z\...zh = B (zi,...,zh)

= (Let z\...lh £ D and use the element-lemma)

Vi € IN :

A (z{\i)...(zh\i) = B (z , U , . . . , z h \ i)

= (zip-lemma)

Vi e IN :

A (z{\i)...(zh\i) = B ((zipJh (zu..,zh)V.i)

= (map- and element-lemma)

mapJi A z\...2h = map A B (zipJh (zi,..., 2/,})

Compare this to (vii), which relates A and B:

A z{...zh = B (zu...,zh)

To prove the stream-lemma (v) it thus remains to show that:

B (zi,...,zh) = map.l B {zipJi (zu...Jh))

= (element-lemma)

v; e IN :
(B (zu...,zh))\i = {mapA B {zipJh (zu...,zh)))\i

= (map-lemma)

Vi e IN :

(B (zu...,zh))\i = B {{zipJi {zu...,zh))\i)

Using the definitions of B and B we can derive the following fixed point equation
for (zip.in E[z])\i:

Vi e IN :

(zipjn E[z\)\i

= {zipjn (fix(Aa.(fi z a,...,fm z a))))li (unfold £)

= (zipjn (/, z E[z],...jm z E[z]))\i (unfoldfix)

= ((/, z E[z])li,...,(fm z E[z])\i) (zip-lemma)

(by (vi))

(/, ((zipJh z)\i) ((zipjn E[z])M),...Jm ((zip.h z)\i) ((zipjn E[z))\i))

= (abstraction)

(Aa.(/, ((zipJi z)\i) a,...,fm ((zipJh z)\i) a)) ((zipjn E[z])\i)

= fix(Xa.{fi ((zipJi z)\i) a,...,fm ((zipJi z)\i) a)) (fixed point)

= E[(zipJi z)\i/z] (fold £)

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

576 W. G. Vree and P. H. Hartel

So for all /i-tuples z we also have:

(ix) Vie IN : (zip_m E[z])\i = E[(zipJi z)\i/z]

The proof of the stream-lemma can now be completed as follows:

(B {zu...,zh))\i

= ((Az./o z £[z]) <2i,..,2*»!« (unfold B)

= (/o (2,,...,2*) £[(2i,...,zfc>])!i (reduction)

= /o ((zipJi (z,,...,z*»!«) ((zipjn £[(z!,...,zA)])!0 (by (vi))

= /o ((zipJi <2,,...,2*»!i) £[(zip_Ji <z,,...,2fc»!i/z] (by (ix))

= (Az./o z £[z]) ((zi/>-h (2,,...,2*»!i) (abstraction)

= B ((zipJi (zu...,zh))U) a (foldB)

Correctness of the simplifying transformations

The correctness of each of the Rules Tl, T3 and T5 will now be proved. The
correctness of the composition of these transformations then follows, because each
represents a total function (p—*p). The partial correctness of the clauses in Fig-
ure 6 will be proved first. Then the termination of the transformations will be
established.

Partial correctness of the simplifying transformations

Using the auxiliary lemmas, the correctness of Clause 4a can be proved as follows.
Define Vn G DSFA / € FA s € DA xi. . .xn € D :

y = s : mapjn f y xi ... xn

m = n + 1

Then:

v = iterateJI f s X\ ... xn

= (element-lemma)

Vi e IN : v\i = (iterate_u / s xi . . . xn)\i

= (iterate-lemma)

Vi G IN : v\i = f (y\i) (xi !i) . . . (xn!i)

= (map-lemma)

Vi e IN : D!i = (mapjn f y x\ ... xn)\i

= (element-lemma)

v = mapjn f y x,\ ... xn

The fact that for all n,f,s,x\...xn the stream v prior to transformation is equal to
that after transformation establishes the correctness of Clause 4a.

The proofs for the remaining clauses present no difficulties. The Clauses 1, 2b, 3,
4b and 5e by themselves make no changes. Clause 2a introduces a new equation,
which is equivalence preserving. An unfold in recursive equations such as those

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 577

under consideration here is always equivalence preserving (Manna et al., 1973). Rule
T5 uses unfolds and introduces new definitions: Clause 5a unfolds the definition of
mapjx as given in Figure 4 and introduces new equations; Clauses 5b and 5c unfold
the definitions of vv and tl. For Clause 5b this gives the equation o = 3c and for (5c)
we have v = x. These equations can be eliminated by renaming x to 5 and v to x
respectively. Clause 5d unfolds the definitions of map_n, w and tl and introduces
new equations. Rule T5 is thus equivalence preserving, which concludes the proofs
of the partial correctness of the simplifying transformations.

Termination of the simplifying transformations

All simplifying transformations terminate because a bound can be given for the
number of times each individual clause is applied.

Clauses 1, 3 and 5e are each applied once. The number of function applications
in the original process network is an upper bound for number of times Clauses 2a,
2b, 4a or 4b is applied. Clause 5a will be applied at most once. The only clause of
Rule T5 that matches an equation of the form o = ... : ... is (5c), which will never
replace that equation by one of the form that can be matched again by (5a).

To derive an upper bound on the number of times Clauses 5b, 5c or 5d may
be called, let the number of applications of tl and mapjn. be t respectively m.
The way the labelling of the equations is created and maintained guarantees that
Clause 5d will be applied at most m x t times. The upper bound on the number
of times Clauses 5b or 5c are applied is given by the number of tl applications,
which are either present originally, or introduced by Clause 5a or 5d. This number
is bounded because there is an upper bound on the number of times (5d) is
applied.

Summarizing, we have now established the fact that the simplifying transforma-
tions preserve equivalence and terminate.

Correctness of the communication lifting transformation

The termination proof of Rule TO (Figure 5) is immediate. To prove the partial
correctness of Rule TO, the (:) and mapji equations on the left-hand side of
Rule TO are tupled; the tl equations are left unchanged. The guard in Clause Oa
ensures that the tl equations are independent of the remaining equations. Therefore,
it is correct to consider the network without the tl equations. From now on let
v\ = o. Then:

h = Sk : xk

vv>i = map MI / i yu---hm

,wm = mapjim fm ym\...ymnm .

= (s, :xu...,sk :xk)

where

yu...y\nx

wm = mapjim fm ym\...ymnm

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

578 W. G. Vree and P. H. Hartel

The function composition unzip A o zipJc is the identity function on a tuple of
streams, thus the left hand-side of Clause Oa is equivalent to:

(vu...,vk) = unzipJc {zipJc {s\ :xu...,sk :

= (unfold zipJc)

(vi,...,vk) = unzip Jc ((su...,sk) :(zipJc (xu...,xk)))f

Next a new equation s for the stream of/c-tuples is introduced, and the free variables
of the network &i...Uh are made explicit. This yields the following set of equations,
again equivalent to the left-hand side of Clause Oa:

{v\,...,vk) = unzip.k s

s = (su...,sk) :(zipJc (xi,...,xfc))t

= (make unzip Jk equation local)

S = <si,...,sfc) :(zipJi (xi,...,x/(})t

where

(iJi,...,vk) = unzip Jc s

= (introduce function A and make free variables explicit)

s = (su...,sk) : (A s u\...uh)

A s iii...uh = zipJi (xi,...,Xfc)t

where

(v\,...,vk) = unzip A s

In the last step of this derivation, we have used the fact that the states si...sk are
independent of the stream variables v\...vk and vvi...ivm (see Figure 5).

As shown in Figure 8, the final step brings the system of equations in a form
that fits the structural requirements of the stream-lemma. The function A as derived
from the equations on the left-hand side of Clause Oa is shown to the left, while
the corresponding elements of the definitions for the stream-lemma are shown to
the right.

The stream-lemma states that A = mapJi A, provided stream-lemma condition
(iii) holds Vi e IN A 0<j<k + m. This is verified as follows:

For ; = 0 w e have that eo=zipJk (5ci,...,Xfc> and also that eo=(xu---,xk). This can
be proved as follows:

Vi e IN :

(zipJc (xi,...,Xfc»!i

= (xi ! i , . . . , x k \ i) (zip-lemma)

= (xi,...,xfc)[xi!i/xi,...,Xfc!i/x<£] •

The where equations for wj.. .wm have been omitted.

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

A zx...zh

= e0

where

a, =

ak =

ak+l =

: ei

: h
: e/t+i

Communication lifting

left- and right-hand side of Clause Oa stream-lemma functions A and A

A S UX...UH

= zip Jc (xi,...,x*)

where

Vi = selJk 1 (unzipJc s)

Dt = se/Jc fc (unzipJc s)

Vvi = mapjti f\ y\\...y\ni

J rn jtnX • • •j'mtii

A s u\...Uh

= (X[,...,Xk)

where

vi = se/Jc 1 s

Vk = se/Jc k s
wi = / i yn---y\ni

Fig. 8. Structural correspondence between the stream-lemma and TO.

579

A zi...zh

= e0

where

= ei

For \<j<k we have that e^selJk j (unzip^k s) and also ej=sel.k j s because:

Vi e IN :

(sel-k j (unzip-k s))li

= (selJi j (unzipJc (zipJc (sj : x i , . . . , s t :xjt))))!i (u n f o l d s)

= (selJi j (si :xi,-..,Sk : xk))\i (identity)
= (SJ :XJ)U (unfold sel-k)

= (seLk j <(s, : S,)!i,...,(st : 5ck)!i» (fold se/-A)
= se/Jc 7 {(zipJi (si :x\,...,Sk :xfc))!i) (zip-lemma)
= sel-k j (~sH) (fold s)
= (se/.A: 7 s)[S!«7s] •

For k + l<k+j<k + m we have ek+j=mapjnj fj yj\...yjnj and ek+j=fj yji...yjnj

since:

Vi e IN :

(map_n; fj yji...yJnj)U

= fj (~ynH)...(y}nj\i)

= (fj yji---yjnj)\yji tyyji,• • -Jjnj]-i/yjnj] •

(map-lemma)

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

580 W. G. Vree and P. H. Hartel

Given the definition of nextstate as in Figure 5, (which is the same as A here) we

have:

s = (su...,sk) :(A s ui...fih)

= (stream-lemma)

S = (su...,sk) :(mapJi A s u\...uh)

= (A = nextstate and corollary of iterate-lemma)

s = iterateJi nextstate (si,...,Sk) u\...Uh •

This completes the correctness proof of transformation Rule TO.

References

Allison, L. (1986) A Practical Introduction to Denotational Semantics. Cambridge University
Press.

Ashcroft, E. A. and Wadge, W. W. (1977) Lucid, a non procedural language with iteration.
Communications of the ACM, 20(7) :519-526, July.

Berry, G. and Cosserat, L. (1984) The ESTEREL synchronous programming language and
its mathematical semantics. In: S. D. Brookes, A. W. Roscoe and G. Winksel, eds., Seminar
on concurrency. Lecture Notes in Computer Science 197, pp. 389-448. Springer-Verlag.

Bird, R. S. and Wadler, P. L. (1988) Introduction to Functional Programming. Prentice Hall.
Burstall, R. M. and Darlington, J. (1977) A transformation system for developing recursive

programs. Journal of the ACM, 24(l):44-67, January.
Caspi, P., Pilaud, D., Halbwachs, N. and Plaice, J. A. (1987) LUSTRE: A declarative

language for programming synchronous systems. In: 14th Conference on the Principles of
Programming Languages, pp. 178-188. Munich, Germany, January.

Darlington, J., Field, A. J., Harrison, P. G., Harper, D., Jouret, G. K., Kelly, P. H. J.,
Sephton, K. M. and Sharp, D. W. (1991) Structured parallel functional programming.
In: H. W. Glaser and P. H. Hartel, eds., 3rd Implementation of Functional Languages on
Parallel Architectures, pp. 31-51. Southampton, UK, June. (Also available as CSTR 91-07,
Department of Electrical and Computer Science University of Southampton, UK.)

Ferguson, A. B. and Wadler, P. L. (1988) When will deforestation stop? In: C. Hall, R. J. M.
Hughes and J. T. O'Donnell, eds., Functional Programming, pp. 39-56., Rothesay, Isle of
Bute, Scotland, August. (Also Research report 89/R4, Department of Computer Science,
University of Glasgow, Scotland.)

Gautier, T, le Gueric, P. and Besnard, L. (1987) SIGNAL: A declarative language for syn-
chronous programming of real-time systems. In: G. Kahn, ed., 3rd Functional Programming
Languages and Computer Architecture. Lecture Notes in Computer Science 274, pp. 257-277.
Springer-Verlag.

Gill, A., Launchbury, J. and Peyton Jones, S. L. (1993) A short cut to deforestation. In: 6th
Functional Programming Languages and Computer Architecture, pp. 223-232. Copenhagen,
Denmark, June.

Hartel, P. H., Glaser, H. W. and Wild, J. M. (1991) Compilation of functional languages using
flow graph analysis. Software - Practice and Experience, 24(2):127-173, February.

Hartel, P. H and Vree, W. G. (1992) Arrays in a lazy functional language - a case study: the
fast Fourier transform. In: G. Hains and L. M. R. Mullin, eds., 2nd Arrays, Functional Lan-
guages, and Parallel Systems (ATABLE), pp. 52-66. Publication 841, Dept. d'informatique
et de recherche operationelle, Univ. de Montreal, Canada, June.

Jeuring, J. (1992) Theories for algorithm calculation. PhD thesis, Department of Computer
Science, University of Utrecht, The Netherlands.

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

Communication lifting 581

Kahn, G. (1974) The semantics of a simple language for parallel programming. In: J. L.
Rosenfeld, ed., Information processing, pp. 471-475. Stockholm, Sweden, August.

Kelly, P. H. J. (1989) Functional Programming for Loosely-coupled Multiprocessors. Pitman.

Langendoen, K. G. and Hartel, P. H. (1992) FCG: a code generator for lazy functional
languages. In: U. Kastens and P. Pfahler, eds., Compiler Construction (CC): Lecture Notes
in Computer Science 641, pp. 278-296. Springer-Verlag.

Manna, Z., Ness, S. and Vuillemin, J. E. (1973) Inductive methods for proving properties of
programs. Communications of the ACM, 16(8):491-502, August.

Peyton Jones, S. L. (1987) The Implementation of Functional Programming Languages. Prentice
Hall.

Turner, D. A. (1985) Miranda: A non-strict functional language with polymorphic types. In:
J.-P. Jouannaud, ed., 2nd Functional Programming Languages and Computer Architecture.
Lecture Notes in Computer Science 201, pp. 1-16. Springer-Verlag.

Vree, W. G. (1989) Design considerations for a parallel reduction machine. PhD thesis, Depart-
ment of Computer Science, University of Amsterdam, December.

Vuillemin, J. E. (1973) Proof techniques for recursive programs. PhD thesis, Computer Science

Department, Stanford University, October. Technical report STAN-CS-73-393.

Wadler, P. L. (1988) Deforestation: Transforming programs to eliminate trees. In:
H. Ganzinger, ed., European Symposium on Programming (ESOP 88). Lecture Notes in
Computer Science 300, pp. 344-358. Springer-Verlag.

https://doi.org/10.1017/S0956796800001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001477

