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THE NAMING GAME IN LANGUAGE DYNAMICS REVISITED

By NICOLAS LANCHIER

Abstract

In this article we study a biased version of the naming game in which players are located
on a connected graph and interact through successive conversations in order to select a
common name for a given object. Initially, all the players use the same word B except
for one bilingual individual who also uses word A. Both words are attributed a fitness,
which measures how often players speak depending on the words they use and how often
each word is spoken by bilingual individuals. The limiting behavior depends on a single
parameter, ¢, denoting the ratio of the fitness of word A to the fitness of word B. The
main objective is to determine whether word A can invade the system and become the
new linguistic convention. From the point of view of the mean-field approximation,
invasion of word A is successful if and only if ¢ > 3, a result that we also prove for the
process on complete graphs relying on the optimal stopping theorem for supermartingales
and random walk estimates. In contrast, for the process on the one-dimensional lattice,
word A can invade the system whenever ¢ > 1.053, indicating that the probability of
invasion and the critical value for ¢ strongly depend on the degree of the graph. The
system on regular lattices in higher dimensions is also studied by comparing the process
with percolation models.

Keywords: Interacting particle system; naming game; language dynamics; semiotic
dynamics

2010 Mathematics Subject Classification: Primary 60K35
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1. Introduction

The naming game was first proposed by Steels [8] to describe the emergence of conventions
and shared lexicons in a population of individuals interacting through successive conversations.
Several variants of the model have been introduced and studied numerically by statistical
physicists; see [2, Section V.B] for a review of these variants. The naming game is popular in
the physics literature because it is similar mathematically to traditional models in the field of
statistical mechanics.

The model studied in this paper is a biased version of the spatial naming game considered by
Baronchelli ef al. [1]. Their system consists of a population of individuals located on the vertex
set of a finite connected graph that is to be regarded as an interaction network. For a given object,
each individual is characterized by an internal inventory of words that are synonyms describing
the object. All inventories are initially empty and evolve through successive conversations:
at each time step, an edge of the network is chosen uniformly at random. This causes the
two individuals connected by the edge to converse: one individual is chosen at random to be
the ‘speaker’ and the other is then the ‘hearer’. If the speaker has no word to describe the
object then she invents one, whereas if she already has some words in her inventory then she

© Applied Probability Trust 2014

139

https://doi.org/10.1239/jap/1417528472 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1417528472

140 N. LANCHIER

chooses one at random and speaks it to the hearer. As a result of this word being spoken, if
the hearer already has the spoken word in her inventory then this word is adopted as the norm
by both individuals (i.e. all other words are removed from the inventories of both individuals);
otherwise, the hearer adds the spoken word to her inventory. Based on numerical simulations,
Baronchelli et al. [1] studied the maximum number of words present in the system as well as
the time to global consensus, i.e. the time until all inventories consist of the same single word.

In contrast, we use the naming game to study whether a new word can spread into a population
that is already using another word as a convention. To do this, we assume that initially all
inventories consist of the same single word, B say, except for one individual whose inventory
includes another word, A say. Under the symmetric rules of the naming game, the probability
that A eventually becomes the new convention tends to 0 as the population size goes to oo, so
we look at biased versions of the naming game in which each word is attributed a fitness. In our
model, the fitness of each word has a dual role: it determines how likely it is for an individual
to be selected as a speaker rather than hearer, and how likely it is for each word to be selected
and spoken by bilingual individuals, i.e. individuals who possess both words in their internal
inventory.

Another significant difference between this paper and previous work on the naming game
is that we provide a rigorous analysis of the model on both finite and infinite graphs rather
than results based on numerical simulations which are necessarily restricted to finite graphs.
Throughout the paper, the network of interactions is denoted by G = (V, E), where V is the
vertex set and E the edge set. Also, we describe the dynamics in continuous time, i.e. we
assume that conversations occur at rate 1 along each edge; our model is then well defined for
both finite and infinite graphs.

1.1. Model description

To describe our biased version of the naming game more formally, let all inventories consist
initially of the single word B except for one individual, with inventory A. Then elements of
the set {A, B, AB} describe all possible inventories in any ensuing conversations. Let ¢4 and
¢p denote the fitnesses of words A and B, respectively. For all X,Y € {A, B, AB}, set

Gap = 5(pa+¢p) and pxy :=o¢x (x +éy) ",

where ¢4 p is the fitness of a bilingual individual (i.e. whose inventory is AB), and px y is the
probability that in a conversation between individuals with fitnesses ¢x and ¢y, the former is
the speaker. In particular then,

PX.x = % and pxy+prx =1

The fitnesses of individuals correspond to the fitnesses of their inventories. Furthermore, when
a bilingual individual is the speaker, the conditional probability that word A is spoken is equal
to the relative fitness p4_ p.

Conversations take place between pairs of individuals, each of whom has an inventory that
is one of the three types, so that, associating vertices of the network graph with the type
of an individual’s inventory, edges are then unordered pairs of vertices, and the result of a
conversation is again an unordered pair of vertices; edges (A, A) and (B, B) remain unaltered
by a conversation, while no conversation can yield an edge of type (A, B). An edge must be one
of the six possible types (A, A), (A, AB), (A, B), (AB, AB), (AB, B), and (B, B). Assume
that each edge becomes active at rate 1, independently for all edges.

Interpret the conversation protocol in terms of possible outcomes. This yields the matrix
below of the rates of transitions of any given edge of type (X, Y) to one of type (X', Y’) as a
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result of a conversation (g4 = pAB,BPA.B>4B = PAB,ADB.A):

~ (A.A) (A.AB) (A.B) (AB,AB) (AB.B) (B.B)]
(A, A) 1 0 0 0 0 0
(A,AB) 1—gqg 0 0 4B 0 0
(A, B) 0 PA.B 0 0 PB.A 0 (1)
(AB,AB) paB 0 0 0 0 PB.A
(AB, B) 0 0 0 qa 0 1 —gq4
(B, B) 0 0 0 0 0 ]

Then, when the fitnesses are equal, we recover the transition probabilities of the unbiased
naming game of [1]. While we formulate the dynamics using two parameters so as to have
notation that preserves the symmetry between both words, the long-term behavior of the process
depends only on the ratio ¢ := ¢4 /¢p, in terms of which

1

_ ¢ 1
+¢  "T3rg

3p+1°

PB.A = qB = (1.2)

¢
14+¢°
1.2. Mean-field model

PAB =

Before stating our results for the spatial stochastic model, we consider its nonspatial deter-
ministic mean-field approximation, i.e. the model obtained by assuming that the population is
well mixed. This results in the following system of differential equations for the functions u x
that denote the relative frequencies of type-X individuals for X € {A, B, AB}:

iia=ususp (1 —2qp) —uaup pp.a~+uip PA.B
iip=upusp (1 —2qa) —uaup pa.s+uip PB.A.
liap =uauap (2qp — 1) +upuap 2qa— 1) fusup —uip.
The mean-field model has two trivial equilibria, namely,
es:=(1,0,0) and ep:=(0,1,0),

corresponding to the configurations in which all individuals are of types A and B, respectively.
We say that word A can invade word B in the mean-field model whenever the system starting
from any initial state different from ep converges to the trivial equilibrium e4.

Irrespective of the ratio ¢ := ¢4 /¢p, the frequency of type-A individuals might decrease
because the boundary u 45 = 0 is repelling. To examine this, consider the difference between
the frequencies of individuals using words A and B. This yields

g —iip =usuap (1 —2qp) —upuap (1 —2qa) + waup +uip)(pa.p — Pp.a)

3p —1 ¢—3 ¢—1

= 3¢+IMAMAB+¢+3MBMAB+¢+1

which is positive for all ¢ > 3 when ug # 1 and up # 1. This implies that, when ¢ > 3,

there is no equilibrium other than the two trivial equilibria and that word A can invade word B.

This condition is sharp in the sense that ep is locally stable when ¢ < 3. Indeed, the Jacobian
matrix of the system of differential equations at the point ep reduces to

2
(waup +uyp),

—ppa O 0
Fes = | —rap 0 1—2g4
10 2ga—1
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FIGURE 1: Solution curves of the mean-field model with ¢ = 1, ¢ = 1.5, and ¢ = 4, respectively.

The eigenspace associated with the eigenvalue 0 is generated by the vector (0, 1, 0) which is
not parallel to the two-simplex containing the solution curves. The other two eigenvalues are
—ppAa=—(p+ D! <0and2gs — 1 = (¢ —3)(¢+3)~', both of which are negative when
¢ < 3. In particular, for all ¢ < 3, the equilibrium ep is locally stable; therefore, word A
cannot invade.

The obvious symmetry of the model now implies that both trivial equilibria are locally
stable when % < ¢ < 3. Numerical simulations of the mean-field model suggest that, in this
case, there is an additional nontrivial fixed point which is a saddle point; therefore, the system
is bistable: for almost all initial conditions, the system converges to one of the two trivial
equilibria (see Figure 1 for the solution curves).

1.3. Spatial stochastic model

We now look at the spatial stochastic naming game defined by (1.1). For the stochastic
process, the main objective is to study the probability that word A invades the population and
is selected as a new linguistic convention when starting with a single bilingual individual and
all other individuals are of type B. Most of our discussion until the end of Section 3 concerns
homogeneous graphs; onwards from Section 4 we consider nonhomogeneous graphs for which
this probability depends on the location of the initial bilingual individual.

Let n; (x) be the state of the individual at vertex x at time ¢, and let P, denote the law of the
process starting with no(x) = AB and no(y) = B forall y € V, y # x. Define the probability
of invasion by

pa = inf ]P’x{ lim n,(y) = Aforally € V}.
xeV —>0o0

Our results indicate that p4 depends strongly on the topology of the network of interactions,
suggesting that on regular graphs it is decreasing with respect to the degree of the network;
this property cannot be captured by the mean-field model because that model excludes any
spatial structure. In particular, we expect p4 to be minimal on complete graphs, with a critical
value for the ratio of the fitnesses equal to 3 as in the mean-field model, and maximal on the
one-dimensional lattice, with a critical value for the ratio significantly smaller. Our results
strongly support this conjecture.

We start by looking at finite graphs for which our first theorem extends the first result found
for the mean-field model.

Theorem 1.1. Let G be finite, and suppose that ¢ > 3. Then pp > 1 —max{3¢~", 371} > 0.

Note that, on finite graphs, p4 is always positive but may tend to O as the population size
increases to co. In contrast, Theorem 1.1 shows more particularly that p4 is bounded from
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below by a constant that depends on ¢ but not on the number of vertices. The idea of the proof
is to show first that a certain function of the numbers of type-A and type-B individuals is a
supermartingale with respect to the o -algebra generated by the process and then to apply the
optimal stopping theorem. The result can be understood intuitively as follows: when ¢ > 3,
each time there is a conversation between a type-B individual and a bilingual individual, the
probability that word A is spoken is given by pag B pa.B = qa, with

_ daB DA _ P4 _ 1) >l
(paB +¢B)(Pa +éB) Pa+3dp ¢+3 2

implying that, in each conversation involving two individuals both of whom know both words,
A is always more likely to be spoken and, therefore, A becomes the new linguistic convention
with positive probability uniform in the population size.

Our next result indicates that the invadability condition in Theorem 1.1 is sharp for complete
graphs in the sense that, when ¢ < 3, pg4 — Oas N — oo.

qa (1.3)

Theorem 1.2. Let G be the complete graph with N vertices. Then, for all ¢ < 3,
li =0.
Ngnoo pa

In the proof of Theorem 1.1, the dynamics of the numbers of type-A and type- B individuals
are expressed as a function of the number of edges of different types. The complete graph is
the only graph for which the number of edges of different types can be expressed as a function
of the number of individuals of different types. Also, one of the keys to proving the theorem is
to use the fact that, on complete graphs, the number of individuals in different states becomes a
Markov chain. Taking both theorems together indicates that the dynamics of the naming game
on complete graphs are captured well by the mean-field approximation.

Our next result shows more interestingly that this is not true for the process on the infinite
one-dimensional lattice, suggesting that the probability of invasion decreases with the degree
of the graph.

Theorem 1.3. In one dimension, py > 0 whenever ¢ > c, where
¢ = s (23 +/6097) ~ 1.053 satisfies 48¢* —23¢ —29 = 0.

The proof of Theorem 1.3 is based on the analysis of the interface between individuals in
different states, which is only possible in one dimension. The bound c is not sharp, but our
approach to proving the theorem together with the obvious symmetry of the model implies that
the critical ratio is between ¢~ ! and ¢, which suggests that the critical ratio is equal to 1, i.e.
that the probability of a successful invasion is positive if and only if ¢ > 1.

Finally, we look at the naming game on regular lattices in higher dimensions. In this case,
using a block construction to compare the process properly rescaled in space and time with
oriented site percolation (see, e.g. [3]), it can be proved that the probability of invasion is
positive for sufficiently large ¢.

Theorem 1.4. In any dimension, pa > 0 whenever ¢ is large enough.

Our approach to proving the theorem can be used to obtain an explicit bound for the critical
value of ¢, but this bound is far from being optimal. We conjecture as in one dimension that
the critical ratio is equal to 1; this is supported by numerical simulations of the process. More
generally, we conjecture that, on connected graphs in which the degree is uniformly bounded by
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a fixed constant d, the critical value is equal to one in the sense that the probability of invasion
is bounded from below by a positive constant that depends only on d, in disagreement with the
mean-field model.

Before giving details of our proofs, we conclude with some comments on natural general-
izations of our biased naming game involving n words, say

words 1, 2, ..., n with respective fitnesses ¢1, ¢2, ..., ¢n.

In this case, the numerical results of Baronchelli ef al. [1] suggest that, even in the neutral
case when all the fitnesses are equal, the process clusters so a word is selected at random to
become the linguistic convention. Allowing the fitnesses to be different, standard coupling
arguments for particle systems show that the probability of invasion of word 1 is nondecreasing
with respect to ¢ and nonincreasing with respect to the other fitnesses, so, everything else
being fixed, we again expect the existence of a unique phase transition: word 1 invades with
a positive probability uniform in the size of the graph if and only if ¢; is larger than some
nondegenerate critical value. In fact, our proof of Theorem 1.4 easily extends to the naming
game with n words to show that, for the system starting with a single individual with word 1 in
her internal inventory,

P{ lim 7,(x) = 1 forall x € Zd} ~ 0 when min{¢;/¢;} is large.
t—00 i#1

Note however that the inclusion of additional words may modify the critical value for the
ratio of the fitnesses. Assuming for instance that ¢, = - - - = ¢, and observing that the worst-
case scenario for word 1 to be spoken is when an individual who knows all n words interacts
with an individual who does not know word 1, the heuristic argument (1.3) suggests that word 1
can invade whenever

1+ —Dg)d1+C2n—1g)  d1(p1+m—Dg) ' > 1

which gives the condition for invadability, ¢1 /¢2 > 2n — 1. Our proof of Theorem 1.1 easily
extends to show that this condition is indeed a sufficient condition for invadability of word 1
on finite graphs. Also, even though our proof of Theorem 1.2 does not extend to this case, we
conjecture that the critical value for the ratio ¢1 /¢ is strictly increasing with respect to the
number of words n.

2. Preliminary results

In this section we describe some basic properties of the naming game that are useful in
subsequent sections. A common aspect of all our proofs is to think of the process as being
constructed graphically from independent Poisson processes that indicate the time of the
interactions, a popular idea in the field of interacting particle systems due to Harris [6]. In
the case of the naming game, additional collections of uniform random variables must be
introduced to also indicate the outcome of each interaction. More precisely, for every edge
(x,y) € E,

(a) let {T;,(x, y): n > 1} be the arrival times of a rate-1 Poisson process;
(b) let {U, (x, y): n > 1} be independent uniform random variables on (0, 1); and

(c) collections of random variables attached to different edges are also independent.
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TaBLE 1: Coupling between the processes (7;) and (&;).

n; -transition U, (x, y) condition  Possible & -transition
1A (A,A) — (A, A) None Any
2A (A,AB) — (A, A) U,(x,y) <1—gqp 2A,3A,3B,4A, 4B, 5A, 5B, 6B

2B (A,AB) — (AB,AB) U,(x,y)>1—gp 2B,3B,4B,5A,5B, 6B
(excludes 3A, 4A)

3A (A, B) > (A, AB) Un(x,y) < pas 3A,5A,5B,6B

3B (A, B) — (AB, B) Uy(x,y) > pa,B 3B, 5B, 6B (excludes 5A)

4A  (AB,AB) — (A,A)  Un(x,y) <pap  4A, 5A,5B, 6B

4B (AB,AB) — (B, B) Uy(x,y) > pa,B 4B, 5B, 6B (excludes 5A)

5A (AB,B) — (AB,AB) U,(x,y) <qa 5A, 6B
5B (AB,B) — (B, B) Uy(x,y) >qa 5B, 6B
6B (B,B) — (B, B) None Only 6B

The process is then constructed as follows: at time 7, (x, y), the states at x and y are simulta-
neously updated according to the transitions in the left column of Table 1. Since interactions
involving both words can each result in two different outcomes depending on whether word A
or word B is spoken, the upper (respectively, lower) bound on the random variable U, (x, y)
in the middle column of the table gives the probability (respectively, the complement of the
probability) of the indicated transition, listed earlier at (1.1), where

qa = paBBPAB and gp = DAB.A PB.A-

Thus, g4 is the probability that word A is spoken in a conversation involving a bilingual
individual and a type-B individual. Based on this graphical representation, processes with
different parameters or starting from different initial configurations can be coupled to prove
important monotonicity results. For instance, our first lemma shows a certain monotonicity
of the naming game with respect to its initial configuration; it can be viewed as the analog of
attractiveness for spin systems. We use this result in proving Theorem 1.3.

Lemma 2.1. Let (,) and (&) be two copies of the naming game. Then
P{&(x) = A} < P{n:(x) = A} and P{§(x) = B} = P{n;(x) = B}
forall (x,t) € V x (0, 00) provided this holds for all (x,t) € V x {0}.

Proof. The result follows from a coupling of the two processes constructed simultaneously
from the same graphical representation. Assume that, forall z € V,

{§0(z) = A= no(z) = A} and {no(z) = B = §0(z) = B},

and that both processes are constructed from the same Poisson processes and the same col-
lections of uniform random variables. The construction given by Harris [6], which relies on
arguments from percolation theory, implies that, for any small enough time interval, there exists
a partition of the vertex set into almost surely finite connected components such that any two
vertices in two different components do not influence each other in the time interval. Since the
number of interactions in each component in the time interval is almost surely finite, the result
can be proved for each of these finite space—time regions by induction. Assume that, for all
zeV,
§i-@=A=n-()=A} and {n_(z)=B=§_(2) =B}

for some arrival time ¢ := T,(x, y). To prove that the previous relationship between both
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processes is preserved at time ¢, observe that the interaction between the individuals at x and
y can result in ten different transitions depending on the state of both individuals. These
transitions are listed in the left-hand column of Table 1 and can be divided into two types:

(i) the transitions that create an A or remove a B, which are labeled 2A-5A,
(ii) the transitions that create a B or remove an A, which are labeled 2B-5B.

As previously mentioned, except for transitions 1A and 6B, every other pair of states for the
neighbors can result in two possible transitions depending on whether word A or word B is
spoken during the conversation. The last column of the table indicates that, for all possible
simultaneous updates of both processes, the ordering between both processes is preserved at
time t,i.e. forallz € V,

{6:z) = A= n(z) = A} and {n:(2) = B = &(z2) = B}.

Referring again to Table 1, to prove, as indicated in the last column, that a transition 2B in the
first process indeed excludes the transitions 3A and 4A in the second process, observe that

1 —gp =pa,B+ PB,A— DAB,A PB.A = PA,B-

so that
{Un(x,y) >1—g} = {Un(x,y) > pa,B}, (2.1)

proving the exclusion of type-3A and type-4A transitions in Table 1. Similarly,

{Un(x,y) > pa,p} = {Un(x,y) > paB,B PA.B = qa}, (2.2)

showing that the transitions 3B and 4B in the first process exclude transition 5A in the second
process. The lemma now follows from the fact that all possible simultaneous updates of both
processes given in the last column preserve the desired ordering.

3. The naming game on finite graphs

This section is devoted to the proofs of Theorems 1.1 and 1.2 about the naming game on finite
connected graphs. The key to proving Theorem 1.1 is to show that a certain process that depends
on the difference between the number of individuals using word A and the number using word B
is a supermartingale with respect to the natural filtration of the naming game; this allows us
to deduce the theorem directly from the optimal stopping theorem. To prove Theorem 1.2,
which specializes Theorem 1.1 to the process on complete graphs, the idea is to observe that,
as long as bilingual individuals do not interact with each other, there is no type-A individual in
the population and the number of bilingual individuals evolves as a subcritical birth-and-death
process that goes extinct quickly. Throughout this section, for all X, Y € {A, B, AB}, let

X, := number of type-X individuals at time ¢,
e:(X, Y) := number of edges connecting individuals of types X and Y at time ¢.

To motivate our proof of Theorem 1.1 and explain the assumption, observe that the transitions
labeled 2A—5A in Table 1, which are the transitions that increase the number of individuals
using A or decrease the number of individuals using B, all occur with probability at least one
half if and only if ¢ > 3. As shown in the next lemma, this property can be used to construct
a certain supermartingale with respect to the natural filtration of the process: the o-algebra ¥;
generated by the realization of the naming game until time 7.
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Lemma 3.1. Assume that ¢ > 3, and set M; = a8, where a :== max{3/¢, %}. Then, for
all s > t,
E[M; | ] < M;.

Proof. Using the transition probabilities in Table 1,

Jim W 'EIMh — My | F1]

2
> (@) — )M, lim h"P(Myyp = My + j | 1)
= h—0

(@—1) My [e;(A, AB)(1 — q) + e/ (A, B)pa g + e (B, AB)qal
+(a" = 1) M;[e/(B, AB)(1 — qa) + e;(A, B)pp.a + e (A, AB)g5]
+ M;e/(AB, AB)[(a> — 1) pa.p + (@ > = 1) pp.al

= My(e;(A, AB)[(a — )(1 — gp) + (a~" — 1)gp]
+e(B,AB)[(a—1)ga+ @' — D1 —qa)]

+ei(A, B)[(a—Dpag+(a ' —1ppal

+e(AB, AB) [(a®> — Dpa.s + (a* — D)pp.al).

In the last expression, M, is nonnegative and uniformly bounded (because N is finite), and so
too are all four quantities e; (A, AB), ..., e;(AB, AB). Each of these quantities has a multiplier
of the form

@-DU-m)+ @' - Do=@-DU-ol+a"),

where (a’ ZD_) = (Cl, CIB), (a9 1 - CIA)’ (Cl, 1 - pA,B)» and ((12, 1 - pA,B)’ reSpeCtiVely. The
multiplier of (& — 1) here is nonnegative if and only if @ ~! < 1 4+ «~!. In each of these four
cases this condition is met if and only if (and here we use the relations at (1.2))

1 3 1 2
-—, a< —, a< —, a®” < ¢,
3¢ ¢ ¢
respectively. For all ¢ > 3 and a as stated, all these inequalities hold, and consequently we
then have

a <

}}in%) h_lE[MH-h -M; | #]1=<0,

showing that (M,) is a supermartingale for ¢ = max{3¢~',37!}.
Applying the optimal stopping theorem to (M;) gives the following result.
Lemma 3.2. Forall ¢ > 3,
A= ;25 P.{A; = N for some t} > 1 —max{3¢~",37!} > 0.
Proof. Throughout the proof, we consider the naming game starting with a single bilingual
individual at vertex x where vertex x is such that
pa :=Py{A; = N for some t}.

Note that the existence of such a vertex follows from the finiteness of the vertex set. In order
to apply the optimal stopping theorem, introduce the stopping time

T :=inf{t: A, — B, € {—N, N}},
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where N denotes the number of vertices. Since the naming game on any finite graph converges
almost surely to the configuration in which all individuals are monolingual of the same type,
the stopping time T is finite almost surely. Moreover, by the definition of x,

P {Ar —Br =N}=1-P{Ar — Br = —N} = pa.

Using the fact that (M;) is a supermartingale, deduce from the optimal stopping theorem that,
whenever a = max (3(1)_1, 37 <1,

E[Mr] = E[a*" 811 =a" ps +a ™V (1 — pa) < E[Mo] = E[a?0B0] = g~ N=D,

In particular,

a—N=1) _ =N

PAZ g = oy = l—a=1-max{3p7,37) >0,

proving the lemma.

Theorem 1.1 follows directly from Lemma 3.2 because the probability p4 is the same in the
statements of both the lemma and the theorem.

We now specialize to the complete graph. In this case, the number of edges of each type
can be expressed as a function of the number of individuals of each type, so (A;, B;) is now
a continuous-time Markov chain. As previously mentioned, to prove that p4 tends to O as
the number of vertices goes to oo, the idea is to observe that, as long as bilingual individuals
do not interact with each other, there is no monolingual individual of type A and the number
of bilingual individuals evolves according to an inhomogeneous time change of a subcritical
birth-and-death process.

To make the argument precise, call the event that two bilingual individuals interact a collision.
Let

tc :=inf{t: t = T,,(x, y) for some x, y € V for which n,_(x) = n;—(y) = AB}

be the time of the first collision. Observe that word A invades the system only if this stopping
time t¢ is finite; this is one of the main keys to our proof. We also introduce the linear birth-
and-death process (Z;) starting with a single individual, and with birth rate g4 and death rate
1-— qA, i.e.

iga forj=i+1,

imh '"P{Zp=j | Zi =i} =
ity e =TT 20 =0 =000 forj =i 1.

The next lemma relies on basic properties of (Z;) to show that the probability that a collision
ever happens tends to 0 as the number of individuals goes to co.
Lemma 3.3. Forevery ¢ < 3 and ¢ > 0, there exists finite N, such that

Pltc <00 | Ag=0and Bo=N —1} <& forall N > Ne.

Proof. Startby observing that, before the time ¢ of the first collision, there is no monolingual
individual of type A in the population. In particular, using the expression for the transition
probabilities in the second column of Table 1 and introducing

ri(G, j) = lim W '"P{Ajin = A, +iand By = B, + j | ),
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we obtain, before the first collision,
r:(0, —1) = ga e;(B, AB), ri(+2,0) = pa,p e:(AB, AB),
(0, +1) = (1 — ga) e:(B, AB), (0, +2) = pp.a e:(AB, AB);

while r;(i, j) = O for all other (i, j). The two transition rates on the left indicate that, before
the first collision, the number of bilingual individuals evolves according to an inhomogeneous
time change of the birth-and-death process (Z;). In particular, let

Ji=card{t: Z; #Z,—} and K := card{t < tc : 1 # ni-}

be the total numbers of jumps of the birth-and-death process and of the naming game before
the first collision, respectively. Then J is stochastically larger K, that is,

P{J <n} <P{K <n} foralln e N. (3.1)

In addition, since the fitness ratio ¢ < 3,

Pa/2 @ 3

4A = PAB.B PA.B = = < = 1—qa,
$pap+oép  H+3  H+3
from which it follows that the birth-and-death process dies out, so
P{J <00 | Zg =1} = P{Z, =0 for some finite t | Zy = 1} = 1. (3.2)

With these preliminary results to hand, the lemma follows by conditioning on the possible
values of the number of jumps K before the first collision. First, combining (3.1) and (3.2), we
obtain the existence of a large n,, fixed from now on, such that

Pltc <00 | K = n}P{K = n) < P(K 2 n;} < P{J 2 n} < 36, (33)

indicating that the number of jumps by time 7¢ cannot be too large. Now, in the event that the
number of jumps is not too large, the probability that a collision ever occurs is small on large
graphs. Indeed, when K < n., the number of bilingual individuals before the first collision
cannot exceed g, so, at each jump, the probability of a collision is bounded by N~!n.. In
particular, the conditional probability given that the number of jumps is small is

Plrc <00 | K <ng}P{K <ng} < Pltc <o | K <n.} < N'(n)* < e (3.4)

for all sufficiently large N. The lemma simply follows by observing that the probability to be
estimated is bounded by the sum of the probabilities in (3.3) and (3.4).

Theorem 1.2 directly follows from the next lemma.
Lemma 3.4. Fix ¢ < 3 and ¢ > 0. Then, for all sufficiently large N,
P{A; = N for somet | Ag =0and (AB)y = 1} < ¢.
Proof. Since there is no type-A individual before the first collision,

P{A; = N forsome ¢ | Ag =0and (AB)g = 1}
< P{n;(x) = A for some (x,7) € VxR, | Ap =0and (AB)g = 1}
<P{tc <0 | Ag =0and (AB)y = 1}

<é&

for all sufficiently large N according to Lemma 3.3.
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4. The naming game in one dimension

This section is devoted to the proof of Theorem 1.3, in which without loss of generality the
network graph consists of the lattice points Z = {..., —1,0, 1, 2, ...} on the x-axis, and the
only edges joined to vertex x are (x, x + 1) and (x, x — 1). Our ultimate goal is to establish
a sufficient condition for it to be possible for a single vertex with inventory A to invade a
population in which the common inventory of all others is B, i.e. we give a condition implying
that p4 > 0. We do this in two stages. First we establish a condition under which, for every
vertex x, lim;_, oo P{n;(x) = A} = 1 when initially

no(x) =A forallx <0 and no(x) =B forallx > 0. (4.1)
We then use this to show that p4 > 0 for the weaker initial configuration
no(0) =A and no(x) =B forallx € Z\ {0}. (4.2)

The main difficulty in proving the result for (n;) starting from (4.1) is that the evolution
rules in (1.1) can create infinitely many possible interface configurations, where the interface
consists of the region from the rightmost type A that has only type A to her left to the leftmost
type B that has only type B to her right. In particular, the size of the interface is not bounded.

Numerical simulations, however, suggest that the size of the interface is relatively small
most of the time. We therefore investigate a process (&;) which is modified from (7;) in such
a way that its interface is ‘small’ a/l the time; this fact makes it mathematically tractable. We
require the process (&;) to satisfy the constraint

(X5 +j)=B forall j >3, (4.3)

where Xf :=sup{x € Z: &(y) = Aforall y < x}. This constraint is achieved by defining
(&;) to be the process that has initial configuration (4.1) and evolves according to the naming
game protocol at (1.1) except that, at any instant that the configuration would otherwise violate
condition (4.3), the inventory at vertex X,S + 3 is immediately set to B. This new rule and
Lemma 2.1 imply that, for all x € Z and ¢ > O,

P{& (x) = A} < P{n;(x) = A} and P{§(x) = B} = P{n;(x) = B},
from which it follows that lim;_, oo P{1;(x) = A} = 1 for all x € Z whenever

lim X f = oo almost surely. (4.4)
—0o0

Our goal now is to exhibit conditions under which (4.4) holds.
It is easily checked that at any time # > 0, the interface configuration Y (u), say, of the
process (&) must be one of the following three types.

o Y(u) = (0): & (X5 + j) = Bforall j > 1.
o Y(u) = (1): £(X5 + 1) = AB and £,(X5 + j) = B forall j > 2.
o Y(u) = (2): £u(X5 +1) = &,(X5 +2) = AB and &,(X5 + j) = B forall j > 3.

Furthermore, for any s > 0 at which a transition occurs, starting from Y (s—) = (0) or (1),
the only possible transitions Y (s—) — Y(s+) are (0) — (1), (1) — (0), and (1) — (2),
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TABLE 2: Matrix of transition rates: (Y (s—)) — (Y (s+), X§+ — Xf,).
/! 0,0) O, 0,2 d€,-D (1,0) 1Ln 2= 20

0) 0 0 0 1—pap  PAB 0 0 0
(D 1 —qga 1 —gp 0 0 0 0 qB qA
2) 1-—pas 0 PA.B 0 l—ga 1—gs qB qA

TABLE 3: Nonnegative transition rates of the configuration process Y (-), where r := g4 + ¢gB.

(V) (GO I ¢))
) 0 1 0
1 2-r 0 r
2) 1 2—r r

while, when Y (s—) = (2), so that the vertices {Xf.f, Xi + 1, Xi + 2, Xi + 3} have the
respective inventories {A, AB, AB, B}, it is one of the three edges determined by these four
vertices that becomes active and makes (§54+) # (§,-). In Table 2 we present the nonzero
rates of all possible transitions from configuration (j), j = 0, 1, 2, to the pair (j, k), where k
denotes the difference Xf =X f_ at the transition epoch s.

The functional Y (-) of (&) is in fact a continuous-time Markov chain on the state space
{(0) (1) (2)}; its nonnegative transition rates can be compiled from Table 2 and are shown in
Table 3.

Then Y (-), being irreducible on a finite state space, has a stationary distribution (7o, 71, 72)
and is ergodic. This distribution can be computed from the stationarity equations in Lemma 4.1
below, where the left-hand side is the (stationary) rate of events {Y(s—) = j # Y(s+)} (i.e.
exit from state j) and the right-hand side the rate of entry into state j. Solving the system of
linear equations, two at (4.5) and the relation Z?:o j =1, leads to (4.6).

Lemma 4.1. The limits 7; := lim;_ oo P{Y (t) = j} exist and, withr := qa + qp, satisfy

o = 2 — r)m + 7, @B —=r)m =rmy, (4.5)
so that
( ) 6 —4r +r? 3—r r 4.6)
T TT1 T = . .
O T =N 4 42 9—dr 112 9—4r + 12

To establish Theorem 1.3, we first prove that (4.4) holds under the conditions of the theorem.
The first ingredient in this proof is the stationary distribution at (4.6). For the rest, observe that
transitions in the process (&;) can occur only at a subset of the points of a Poisson process at
rate 3 (because at any point in time there can never be more than three edges that can become
active at the points of the Poisson processes T, (edge) as in Section 2). Then the process X f,
which can change only at such points and then by at most 2 as in Table 2, has its rate of change
bounded by 6, uniformly. Consequently, sup,- E[le o Xfl] < 6h for all h > 0. These
change points are the jump epochs of the continuous-time irreducible Markov process Y on
finite state space, and Y has a well-defined stationary distribution, so it follows that

2 & 3 . 2

. CEIXS,, - X v =]

Jim === = lim p =;)nij, (4.7)
]=
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where the mean drift rates D; := limy o h_lE[Xerh — Xf | Y() = jlfor j = 0,1,2.
From Table 2 and (1.2),

1
Dy = — - 4.8a
0 DB,A ST 1 (4.82)
2
Di=(0—-qp) —qp =1— , 4.8b
1=0-gp) —gs 1 (4.8b)
Dy=(0—-¢qB)—gp+2pap=2+2Dy+ D. (4.8c)

Finally, since Y is ergodic, the Markov chain property

X,s = Z (X§+ — Xf_) ~ (mgDo + m1 D1 + 2 D))t ast — oo,
s€[0,t]

where the summation is over transition epochs s of Y, shows that (4.4) holds provided the sum
at (4.7) is positive, i.e. to prove Theorem 1.3, it suffices to show that

7o Do+ 1Dy +my Dy >0 forall ¢ > c. (4.9)

A standard approach now is to exploit expressions for the 7r; and D; as functions of ¢ as in
(4.6) and (4.8). Doing so shows that positivity as at (4.9) holds for ¢ larger than the largest real
root of a certain polynomial of degree 6, but it is not obvious how to compute this root. Instead,
we observe that, when both fitnesses are close to each other, ¢ is close to 1 and the rate r close
to % The next two lemmas show that the left-hand side of (4.7) is larger than its counterpart
obtained by computing 7 ; under the assumption that » = %, which allows us to express ¢ more
simply as the largest root of a polynomial of degree 2. (Interestingly, evaluating the polynomial
of degree 6 around c indicates that the largest real root of this polynomial differs from ¢ by less

than 107, showing albeit a posteriori the advantage of our approach.)
Lemma 4.2. For all positive ¢4 and ¢p, % <r<I1.
Proof. Foru > 0,2 <u+u~! < o0, so, for b > 1, the function

h(u; b) ! + ! 1 il
u; b) = =1-
1+bu  14+bu-! 1+bw+ul)y+5n2

satisfies 2/(1 + b) < h(u; b) < 1 for u > 0. The lemma now follows immediately on writing,

from (1.2),
r= ! + ! = h<¢—A; 3).
1+3/¢p  143¢ dB

Lemma 4.3. For all positive ¢4 and ¢p,

sgn(woDo + w1 D1 + 72 Dy) > sgn(48¢2 — 23¢9 — 29). (4.10)

Proof. Substitution of the expressions for g into (4.5) and D7 into (4.8) gives

2
sgn(Z yerj) =sgn([2m) — (2 — r)m]Dgy + 71 Dy + m2[2 + 2Dg + D1])
i=0

=sgn([2Dg 4+ D1l +[2 4+ rDo + D1]m2)
=sgn([2Do + D113 —r) +[2+rDo + D1lr),
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where in the last step we have used (4.6) and deleted the nonnegative factor 1/(9 — 4r + r).
The last argument is expressible, on using (4.8), as

6 —2r + r2

2r +[6—2 21Dy +3Dy = 2r — 3—
r+ r+r°1Do + 3D, r b+l + 3+ 1

=:g(p, 1),

where the bivariate function g is defined on % <r < land ¢ > 1. By inspection, g is
increasing in ¢ for every r, while dg/or =2+ 2(1 —r)/(¢ + 1) > 0, so g is also increasing
in r for every ¢. By Lemma 7, r > %, s0, since sgn(-) is a nondecreasing function,

sgn(g(¢, r)) > sgn(g(¢. %))

and

1\ 214 6 48¢? —23¢ —29
g<¢,—)—4—¢+1— (4.11)

2 3p+1 4@+ DB +1)
This proves Lemma 4.3. The quadratic expression in the numerator is positive when ¢ exceeds
its larger zero which equals c as asserted in Lemma 4.4 below.

Lemma 4.4. Letcbethelargerzeroof (4.11). The right-hand side of (4.10) is positive whenever

23 + 4/6097
96

¢ >c, where c:= ~ 1.053.

The condition ¢ > ¢ implies that]P’{Xf — ooast — oo} = 1,s071 :=sup{r > 0: Xf <0}
is a well-defined random variable that is finite almost surely. It then follows that

P{X% > 0forall t} > 0.

We have thus established something stronger than the conclusion of Theorem 1.3, but under
the stronger initial condition (4.1). We now retain the condition ¢ > c, but weaken the initial
configuration on (7;) to (4.2).

When word A invades (7;) starting from (4.2), such invasion is monitored via the progress
of the boundary processes

X i= Sug{m(o) =) =--=nk—-1) =nkx) = A},
X, = Sug{m(O) === =n(=x+1) =n(—x) = A},

for which X(')|r = X, = 0. Now couple these processes with the boundary process (X ) defined,
analogously to the process (Xf) introduced around (4.3), for the process starting from (4.1).
This coupling implies that, under the assumptions of the theorem, the probability that the word
A invades the population starting from (4.2) is larger than

P{X;" > 0and X;” > O forall > 0}
>P{X;" >3and X; >3forallt > 1| X{ = X; =3}P{X{ = X =3}
> [P{X, > Oforallr > 0}]* P{X| = X] =3}
> 0.

Since there is positive probability that, for the process starting with a single bilingual
individual at the origin, the origin is of type A at time 1, this completes the proof of Theorem 1.3.
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5. The naming game in higher dimensions

This section is devoted to proving Theorem 1.4, which relies on a block construction. We
use ideas from oriented site percolation (see, e.g. Durrett’s work [3, 5]). For economy of
notation, we prove the result only in the case d = 2, but our approach easily extends to higher
dimensions. The idea of the block construction is to couple a certain collection of good events
related to the process properly rescaled in space and time with the set of open sites of oriented
site percolation on the oriented graph #; with vertex set

H = {(z,n) = ((z1,22),n) € Z* X Zy: 71 + 22 + n is even}
and in which there is an oriented edge
(z,n) = (¢',n’) ifandonlyif 7z =zZe; forsomei=1,2andn’ =n-+1,

where e; is the ith unit vector in two dimensions. (See the left-hand side of Figure 3 below for
a picture of this oriented graph in d = 1.) To rescale the process and define the collection of
good events later in the proof of Lemma 5.1, let T := /¢ and, for all (z, n) € H, introduce
the collection of space—time blocks

B(z,n) == {(x, 1) = ((x1, x2), 1) € Z*> x [0, o0) such that
xj€{zj,zj+1}forj=1,2andnT <t <(n+1)T}.

This implicitly defines two coverings of space into 2 x 2 squares and one partition of time into
intervals of length T which together define a covering of the space—time universe. The key to
proving invasion of word A is to show that the set of sites

(z,n) € H suchthat n;(x) =A forall (x,t) € B(z,n),

which we call A-sites for short, dominates stochastically the set of wet sites in an oriented
site percolation process whose parameter can be made arbitrarily close to 1 by choosing the
parameter ¢ sufficiently large. More precisely, introduce

X, ={z¢€ VAR (z,n) € H and is an A-site},

and let W? be the set of wet sites at level n in a 2-dependent oriented site percolation process
in which sites are open with probability 1 — €.

Lemma 5.1. For all ¢ > 0, there exists large ¢ > 0 and a coupling of the naming game and
oriented site percolation such that

Wy C X, foralln whenever Xo=Wj.
Proof. Say that the interaction along edge (x, y) at time T,,(x, y) is
a good interaction if U, (x,y) < g4 = ¢ (¢ + 3)_1
and a bad interaction otherwise. Referring to Figure 2, let G(z, n) be the event that

(i) between time nT and time (n + 1) T, there are at least two good interactions along each
of the eight edges labeled 1 on the left-hand side; and

(ii) between time n7T and time (n + 1) T, there is no bad interaction along any of the sixteen
edges labeled 2 on the left-hand side.

https://doi.org/10.1239/jap/1417528472 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1417528472

The naming game in language dynamics revisited 155

PR -
R e
B R
----- Lobdbds e

FIGURE 2: Picture related to the block construction.

From (2.1)—(2.2) and the probabilities in Table 1, it follows that an interaction involving at
least one individual using word A can only result in one of the transitions 1A—5A in the table.
In particular, whenever site (z, n) is an A-site and our good event G (z, n) occurs, all twelve
vertices marked with a filled circle on the right-hand side of the figure are monolingual of type A
attime (n 4+ 1) T. In other words, with A(z, n) denoting the event that (z, n) is an A-site,

A(z,n)NG(z,n) C A(zte,n+1) fori=1,2. (5.1)

Now, let X and Y be the number of good and bad interactions that occur along one given edge
in a given time interval of length 7. Since interactions occur along each edge of the lattice at
rate 1 and are independently good with probability g4,

X =Poi(Tgqy) and Y =Poi(T(1 —gqy)).

In particular, for all ¢ > 0, the probability of the good event equals

P{G(z,n)} > 1 —8P{X < 1} — 16 P{Y # 0}
=1-8(1+Tqga)e T4 —16(1 —e TU7a1))
48T
>1—8(1+Tqa)e 194 - ——
> ( qa) 513
3/2 1/2
- 8[1 n ﬂ]e—aﬁ/z/w%) 5?7
¢+3 ¢+3
>1—c¢ (5.2)

for all large enough ¢. Finally, observe that the good event G (z, n) is measurable with respect
to the graphical representation in the space—time region

(z,nT) + {{-2,-1,0,1,2,3}*> x [0, T)} C Z* x [0, o0).

This, inclusion (5.1), and lower bound (5.2) are exactly the comparison assumptions of Theo-
rem 4.3 of [5], from which the lemma directly follows.

Introduce the function f: {0, 1} > {0, 1} defined by
FUWE: n > 0)) = 1{card{n: z € W} = oo forall z € Z?}.
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Taking positive € < 1 — (the critical value of 2-dependent oriented site percolation), and using
the coupling given in the previous lemma for this value of ¢ as well as the monotonicity of the
function f, we obtain, for all (x, ) € Z? x Ry,

P{ns(x) = A for some s > t} > P{card{n: z € X,;} = oo forall z € 7%}
=E[f({Xy:n>0})]
> E[f({W;,: n > 0})]
= P{card{n: z € Wi} = ocoforall z € 7%}
> 0.

This proves that the probability of survival of word A in the naming game starting with a single
bilingual individual is positive, but it does not show that extinction of word B has positive
probability as required by the theorem. In fact, a weak form of survival can be proved in the
general case when ¢ > 3 by simply using techniques similar to those in the proof of Lemma 3.1
to show that the number of individuals using word A is a submartingale. However, extinction
of word B with positive probability cannot be deduced from this approach.

Instead, to complete the proof of the theorem, we use the coupling of the rescaled naming
game with oriented site percolation given by Lemma 5.1 combined with an idea of the author
[7] that extends a result of Durrett [4] from discrete-time to continuous-time processes. This
result states that sites which are not wet do not percolate for oriented site percolation models
in which sites are open with probability close to 1.

Lemma 5.2. For all large enough ¢, pa > 0.

Proof. Throughout the proof, think of the naming game as being coupled with oriented site
percolation as in the statement of Lemma 5.1. To begin with, we follow [7] by introducing
the new oriented graph #f> with the same vertex set as #| but in which there is an oriented
edge (z,n) — (z/,n’) if and only if either (7’ = z + ¢; forsome i = 1,2 andn’ =n + 1) or
(z/ = z & 2¢; for some i = 1,2 and n’ = n); see the right-hand side of Figure 3 for a picture
ind = 1. Say that a site is dry if it is not wet for oriented site percolation on the graph #.
Also, for j = 1, 2, write

(w,0) —; (z,n)

and say that there is a dry path in J¢; connecting both sites if there exist

(2z0,0) = (w, 0), (z1,n1), ..., @k—1,1%-1), @k, 1) = (z,n) € H
such that the following two conditions hold:
(i) foralli =0,1,...,k—1, (zj,n;) = (Zi+1,n;+1) is an oriented edge in #;; and
(i1) the site (z;, n;) isdry foralli =0,1,..., k.

Note that a dry path in #] is also a dry path in #f>, but the converse is false because the latter
has more oriented edges than the former.

The key to the proof is the following result: if sites are closed with small enough probability
e > 0 and |Cy| = oo is the event that percolation occurs, then

lim P{(w, 0) = (z, n) for some w € 7? | |Co| = o0} =0. (5.3)
n— oo
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FIGURE 3: Picture of the oriented graphs #¢; and #> in dimension d = 1.

In other words, if the density of open sites is close enough to 1 then dry sites do not percolate
even with the additional edges in #>. The proof for dry paths in the graph #; follows directly
from Lemmas 4-11 of [4], but, as pointed out in [7], the proof easily extends to give the analog
for dry paths in the oriented graph #>.
The last step in the proof is to show the connection between dry paths and A-sites. Assume
that
n(x) # A for some (x,t) € B(z,n), where (z,n) € H. (5.4)

Since word B cannot appear spontaneously, this implies the existence of
xo,Jq,...,xmzer2 and so=0<s)1 < - <S$pg1 =t
such that the following two conditions hold:
(i) forall j =0,1,...,m,ns(x;) # Afors € [sj, sj+1]; and
(i) forall j =0,1,...,m — 1, vertices x; and x ;1 are connected by an edge.
With the coupling in Lemma 5.1, this further implies that
(w,0) =1 (z,n) for some w € Z2. (5.5)

Note however that this does not imply the existence of a dry path in #, which is the reason
why we introduced a new graph with additional edges. Now the event at (5.4) is a subset of
(5.5), so the probability of the former is dominated by that of the latter for which the limit is
shown at (5.3). These facts imply that

tl_i)nolo]P’{m(x) # A | |Co| = oo}
< lim P{(w,0) =2 (z,n) for some w € Z* | |Co| = oo}
n—oo
=0

for all sufficiently large ¢ according to Lemma 5.1. In particular, the probability that word A
invades the lattice for the naming game starting with all four sites in {0, 1}> occupied by
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individuals of type A is larger than the percolation probability, which itself is close to 1 when ¢
is large. Since, for the process starting with a single bilingual individual at the origin, there is
positive probability that at time 1 all sites in {0, 1}? are of type A, the lemma and Theorem 1.4
follow.
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