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Summary

In crosses between inbred lines, linear regression can be used to estimate the correlation of

markers with a trait of interest ; these marker effects then allow marker assisted selection (MAS)

for quantitative traits. Usually a subset of markers to include in the model must be selected: no

completely satisfactory method of doing this exists. We show that replacing this selection of

markers by ridge regression can improve the mean response to selection and reduce the variability

of selection response.

1. Introduction

When two inbred lines are crossed, linkage dis-

equilibrium is generated between genetic markers and

quantitative trait loci (QTL). Lande & Thompson

(1990) noted that this made marker assisted selection

(MAS) possible, by using regression of phenotype on

markertype to determine the markers associated with

the trait because of linkage to QTL and to estimate

the correlation between each marker and the trait

caused by this linkage. Combination of these marker

effects with phenotypic information using a selection

index gives a procedure which has been shown by

computer simulation to be more effective than

selection on phenotype alone when sample sizes are

large and heritability low (Zhang & Smith, 1992;

Gimelfarb & Lande, 1994a, b ; Whittaker et al., 1995).

However, Xie & Xu (1998) have pointed out that if the

cost of markertyping individuals is allowed for,

phenotypic selection may be more cost-effective than

MAS at present : widespread adoption of MAS may

therefore require further reductions in markertyping

costs.

In general, we cannot include all markers in the

regression model and so must select a subset of

markers to fit. No entirely satisfactory way of doing

this exists. Here we evaluate a method which replaces
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the subset selection procedure by ridge regression, a

method which often performs better than subset

selection in regression problems when prediction is of

primary interest (Breiman, 1995).

2. Methods

We shall consider an F2 population derived from a

cross between two inbred lines. We label the alleles at

the ith QTL in the first line Q
i
, and the alleles at the

jth marker locus M
j
. The corresponding alleles in the

second line are labeled q
i
and m

j
. For each individual

in the population we know the phenotype y and the

number of M
i
alleles at the ith marker locus, x

i
` ²0,1,

2´, so that the marker genotype of an individual is

described by x¯ (x
"
, x

#
,…x

k
). From these we wish to

construct an estimate zW of the genetic value of the

individual, z. Lande & Thompson (1990) suggested

using the linear estimator zW ¯ b
!
y­b

"
s where, for any

individual, the marker score s is given by

s¯β#
!
­3

i`!

β#
i
x
i
.

Here ! is the set of markers for which effects have

been fitted. We have considered the problems involved

in calculating b
!

and b
"

elsewhere (Whittaker et al.,

1997) ; in this paper we are concerned with the

calculation of the marker score s and so shall

concentrate on the model

zW ¯ 3
i`!

β#
i
x
i
,
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where the constant term β#
!

has been suppressed for

notational convenience. The marker effects βW
i

are

estimated by the usual least squares estimators

β# ¯ (XTX)−" XTy,

where y¯ (y
"
, y

#
, …,y

n
) for the n individuals in the

population and X is a n¬k matrix whose ith row gives

the markertype of the ith individual in the population.

(i) Subset selection

Usually we cannot include all markers in !. In an

extreme case there may be more markers than

individuals in the population, but even if this is not so,

fitting too many markers increases the variance of the

β# and so results in bad estimates of z (Zhang & Smith,

1992). The problem of choosing a linear model so as

to trade off the variance and bias of the estimator of

interest (here zW ), which increase and decrease re-

spectively as the number of variables included in the

model increases, and thus to minimize prediction

error, has been much discussed in the statistical

literature (Miller, 1990). This remains an active

research area.

A number of methods of selecting ! have been

suggested. Gimelfarb & Lande (1994a, b) used a

forward selection procedure to select the p markers

giving the largest reduction in residual sum of squares

(RSS). The forward selection procedure works well at

selecting the best p markers, in the sense of performing

similarly to examination of all possible models whilst

being much cheaper computationally, but does not

help us choose p : rather, p must be chosen in advance

by the researcher. As the optimum number of markers

to include varies with the number and distribution of

QTL, marker map, etc., and is therefore unknown,

this seems unsatisfactory. Accordingly Whittaker et

al. (1995) developed an automatic procedure based on

Mallows’ C
p

(Mallows, 1973).

For a linear model with p parameters, Mallows’ C
p

is defined as

C
p
¯

RSS

σ# #
e

®n­2p,

where RSS is the residual sum of squares from the

model under consideration, n is the number of

observations and σ# #
e

is an estimate of the error

variance σ# #
e
. Choosing p to minimise C

p
is a commonly

used way of selecting the number of variables to

include in a linear model. However, there are well-

known problems with this approach. The theoretical

justification of C
p

relies on comparing a single model

with p parameters with another model with p*

parameters. In most applications, including the cur-

rent one, we compare the best fitting model with p

parameters with the best fitting model with p*

parameters. The fact that these models have been

selected from a number of possible p and p* parameter

models invalidates this underlying theory and can lead

to the selection of far from optimal models. An

alternative would be to base a stopping rule for

forward selection on F-tests, but it is not clear what

the appropriate significance threshold is in these

subset selection problems (Miller, 1990).

(ii) Ridge regression

An alternative to subset selection is ridge regression

(e.g. Myers, 1992). Here all variables are included in

the model, but the normal least squares estimators

given above are replaced by

β# ¯ (XTX­λI)−"XTy,

where I is the identity matrix. That is, the usual

estimates are shrunk towards zero, with the degree of

shrinkage determined by the parameter λ. This

shrinking of all estimates towards zero by a constant

factor is sensible only if all variables have mean zero

and the same variance: therefore it is usual to centre

and standardize the variables so that we work with the

transformed variables x
i
U

x
i
®xa

i

sd
i

where xa
i
and sd

i
are

the sample mean and standard deviation of the

variable x
i
.

There has been much debate about the advantages

and disadvantages of ridge regression (Breiman, 1995),

but there is evidence that it outperforms subset

selection in some problems. Here we compare the

performance of subset selection and ridge regression

in MAS by simulation.

To perform ridge regression, we need some way of

choosing λ ; a number of ways of doing this exist

(Myers, 1992), but we are restricted by our need for an

automatic procedure to allow the use of simulation.

Write the (unknown) genetic values of the individuals

as z¯ (z
"
, z

#
,…z

n
) and suppose that for i¯1, 2,…n,

y
i
¯ z

i
­ε

i
with ε

i
independent and identically dis-

tributed with mean zero and variance σ#
e
. We want to

choose λ to minimize what Breiman (1992) called the

model error (ME); here

ME¯ 3
n

i="

(z
i
®zW

i
)#,

where zW
i
¯3k

j="
βW
j
x
ij

and β# ¯ (XTX­λI)−" XT y as

above. It can be shown (Mallows, 1973; Breiman,

1992) that a good estimator of the model error is

MW E¯RSS®nσ#
e
­2 σ#

e
tr[XTX(XTX­λI)−"],

where RSS is the residual sum of squares from the

model under consideration and tr(M) denotes the

trace of the n¬n matrix M. Thus we can evaluate MW E
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for a range of λ and choose the λ which minimizes

MW E. In practice, of course, σ#
e
must be replaced by an

estimate of the environmental variance, as in the

formula for Mallows’ C
p
.

Note a further advantage of ridge regression: the

addition of the λI term reduces collinearity and

prevents the matrix XTX becoming singular or near-

singular. Singular XTX often occur after several

generations of selection as the population becomes

increasingly inbred so this is potentially important

here.

3. Simulations

We compared the following three methods: selection

based solely on an individual’s phenotypic value

(PHENO), selection based on zW ¯Σι`! β#
i
x
i
where ! is

chosen using the Mallow’s C
p

scheme described in

Whittaker et al. (1995) (MARKER) and selection

based on ridge regression (RIDGE) as outlined above.

In all simulations, QTL are assumed to combine

additively both between and within loci. The genetic

map from which the data were simulated had 10

chromosomes, each of length 1 morgan; 5 marker loci

were spaced evenly along each chromosome.

Locations for 50 QTL were chosen from a uniform

distribution, with the QTL effects a
i
generated as in

Lande & Thompson (1990). Positive and negative

alleles were allocated at random between the two

lines. Simulations were run with heritabilities 0±1 and

0±2 and with 100 and 400 individuals of each sex. The

number of replicates was varied with the population

size, with the minimum number used being 300. In

every generation the top 20% of individuals of each

sex were selected and paired at random; each pair was

Table 1. Accumulated selection response (standard error) after 1, 2, 4, 8

generations of selection, for (a) n¯100, h#¯ 0±1 ; (b) n¯100, h#¯ 0±2;

(c) n¯ 400, h#¯ 0±1 and (d) n¯ 400, h#¯ 0±2

Generation PHENO MARKER RIDGE

(a) 1 0±0721 (0±0181) 0±1114 (0±0241) 0±1268 (0±0214)
2 0±1364 (0±0253) 0±2056 (0±0340) 0±2228 (0±0287)
4 0±2525 (0±0342) 0±3289 (0±0477) 0±3561 (0±0402)
8 0±4166 (0±0412) 0±4681 (0±0588) 0±5024 (0±0474)

(b) 1 0±1033 (0±0236) 0±1413 (0±0278) 0±1528 (0±0250)
2 0±1944 (0±0330) 0±2503 (0±0386) 0±2663 (0±0337)
4 0±3349 (0±0397) 0±3907 (0±0449) 0±4185 (0±0354)
8 0±5037 (0±0362) 0±5348 (0±0440) 0±5669 (0±0354)

(c) 1 0±0745 (0±0128) 0±1621 (0±0162) 0±1650 (0±0151)
2 0±1435 (0±0181) 0±2686 (0±0227) 0±2749 (0±0185)
4 0±2589 (0±0215) 0±3945 (0±0283) 0±4182 (0±0233)
8 0±4301 (0±0218) 0±5112 (0±0309) 0±5445 (0±0244)

(d) 1 0±1031 (0±0128) 0±1810 (0±0162) 0±1806 (0±0151)
2 0±1944 (0±0181) 0±2923 (0±0227) 0±2979 (0±0185)
4 0±3375 (0±0215) 0±4319 (0±0283) 0±4537 (0±0233)
8 0±5094 (0±0218) 0±5537 (0±0309) 0±5787 (0±0244)

then assumed to produce exactly five offspring of each

sex.

4. Results and discussion

The results obtained are shown in Table 1 as

percentages of the maximum genetic value obtainable,

that is the genetic value of an individual possessing all

favourable alleles. As usual, marker-assisted methods

are increasingly favoured, in comparison with selec-

tion on phenotype, by increasing population size and

decreasing heritability (e.g. Moreau et al., 1998; Van

Berloo & Stam, 1999). In all cases RIDGE performs

slightly better than both MARKER and PHENO.

Also, the standard errors of selection response are

smaller for RIDGE than for MARKER, so that

RIDGE is the more reliable selection method. This is

probably because ridge regression is a very stable

procedure in the sense that small changes in the data

do not produce large changes in the estimated

regression coefficients : subset selection is unstable and

so produces more variable response to selection.

Note that in practice we would combine the marker

score s with phenotypic information via a selection

index, so that zW ¯ b
!
y­b

"
s. Calculation of b

!
and b

"

requires estimation of Cov(z ; s). This is difficult when

subset selection is used, but an approach based on

cross-validation appears to work reasonably well

(Whittaker et al., 1997). Cross-validation could be

used again here ; alternatively the estimator of ME

described above is easily modified to give an estimator

for Cov(z ; s).

A number of other subset selection approaches,

such as the non-negati�e garrote (Breiman, 1995) or

the lasso (Tibshirani, 1994), have been suggested; it
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would be interesting to examine their performance in

MAS. The Bayesian interpretation of ridge regression

also suggests a number of promising alternative

methods. In addition, reversible jump MCMC (Green,

1995; Sillanpa$ a$ & Arjas, 1998) is another approach

that has great potential.

References

Breiman, L. (1992). The little bootstrap and other methods
for dimensionality selection in regression: X-fixed predic-

tion error. Journal of the American Statistical Association
87, 738–754.

Breiman, L. (1995). Better subset selection using the
nonnegative garrote. Technometrics 37, 373–384.

Gimelfarb, A. & Lande, R. (1994a). Simulation of marker-
assisted selection in hybrid populations. Genetical Re-

search 63, 39–47.
Gimelfarb, A. & Lande, R. (1994b). Simulation of marker

assisted selection for non-additive traits. Genetical Re-
search 64, 127–136.

Green, P. J. (1995). Reversible jump Markov Chain Monte
Carlo computation and Bayesian model determination.
Biometrika 82, 711–732.

Lande, R. & Thompson, R. (1990). Efficiency of marker-
assisted selection in the improvement of quantitative
traits. Genetics 124, 743–756.

Mallows, C. L. (1973) Some comments on C
p
. Technometrics

15, 661–675.
Miller, A. J. (1990). Subset Selection in Regression. London:

Chapman and Hall.
Moreau, L., Charcosset, A., Hospital, F. & Gallais, A.

(1998) Marker assisted selection efficiency in populations
of finite size. Genetics 148, 1353–1365.

Myers, R. L. (1992). Classical and Modern Regression
Analysis, 2nd edn. New York: Wiley.

Sillanpa$ a$ , M. J. & Arjas, E. (1998). Bayesian mapping of
multiple quantitative trait loci from incomplete inbred
line data. Genetics 148, 1373–1388.

Tibshirani, R. (1994). Regression Selection and Shrinkage
Via the Lasso. Technical Report 9401. Toronto University
of Toronto, Department of Statistics.

Van Berloo, R. & Stam, P. (1999) Comparison between
marker-assisted selection and phenotypic selection in a set
of Arabidopsis thaliana recombinant inbred lines. Theor-
etical and Applied Genetics 98, 113–118.

Whittaker, J. C., Curnow, R. N., Haley, C. S. & Thompson,
R. (1995). Using marker-maps in marker-assisted selec-
tion. Genetical Research 66, 255–265.

Whittaker, J. C., Haley, C. S. & Thompson, R. (1997)
Optimal weighting of information in MAS. Genetical
Research 69, 137–144.

Xie, C. Q. & Xu, S. Z. (1998) Efficiency of multistage
marker-assisted selection in the improvement of multiple
quantitative traits. Heredity 80, 489–498.

Zhang, W. & Smith, C. (1992). Computer simulation of
marker-assisted selection utilizing linkage disequilibrium.
Theoretical and Applied Genetics 83, 813–820.

https://doi.org/10.1017/S0016672399004462 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672399004462

