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Strictly Singular and
Cosingular Multiplications

Mikael Lindström, Eero Saksman and Hans-Olav Tylli

Abstract. Let L(X) be the space of bounded linear operators on the Banach space X. We study the

strict singularity and cosingularity of the two-sided multiplication operators S 7→ ASB on L(X), where

A, B ∈ L(X) are fixed bounded operators and X is a classical Banach space. Let 1 < p < ∞ and p 6= 2.

Our main result establishes that the multiplication S 7→ ASB is strictly singular on L
(

Lp(0, 1)
)

if and

only if the non-zero operators A, B ∈ L
(

Lp(0, 1)
)

are strictly singular. We also discuss the case where

X is a L
1- or a L

∞-space, as well as several other relevant examples.

1 Introduction

Let X and Y be Banach spaces. Recall that the bounded linear operator U ∈ L(X,Y )

is strictly singular if the restriction U |M is not bounded below for any infinite-dimen-

sional subspaces M ⊂ X. Furthermore, U ∈ L(X,Y ) is strictly cosingular if

QMU : X → Y/M

is not surjective for any closed subspaces M ⊂ Y such that dim(Y/M) = ∞. Here

QM : Y → Y/M is the quotient map. The class of strictly singular operators X → Y

is denoted by S(X,Y ) and that of the strictly cosingular operators by P(X,Y ). These

fundamental classes of operators, which contain the compact operators K(X,Y ),

were introduced by Kato and Pełczyński, respectively. The classes S and P are of im-

portance, e.g., in the structure theory of Banach spaces and in Fredholm theory. Let

A ∈ L(X) be a fixed bounded linear operator. The left and right multiplication oper-

ators LA and RA on L(X) are defined by LA(S) = AS and RA(S) = SA for S ∈ L(X).

The basic two-sided multiplication operator LARB : L(X) → L(X) corresponding to

A,B ∈ L(X) is given by

S 7→ LARB(S) = ASB, S ∈ L(X).

Substantial studies have been made of qualitative and spectral properties of the oper-

ators LARB, as well as of their finite sums
∑n

j=1 LA j
RB j

(see the surveys [C, F, M1, M2]

as well as [ST1, ST2]). This paper focuses on the strict (co)singularity of the two-

sided multiplications LARB.
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Problem 1.1 Let X be a given Banach space. Characterize the operators A,B ∈ L(X)

for which LARB is strictly (co)singular L(X) → L(X).

The earliest related result is due to Vala [V]: if A,B ∈ L(X) are non-zero operators,

and X is an arbitrary Banach space, then LARB is a compact operator on L(X) if and

only if A and B are compact. By contrast, the conditions for LARB to be a weakly

compact operator on L(X) depend intrinsically on X, see, e.g., [ST1], [R], [LS].

It is a simple observation that if LARB is strictly singular L(X) → L(X) and A,B 6=
0, then A ∈ S(X) and B∗ ∈ S(X∗) (cf. Fact 2.1(ii) below). An analogous fact holds

for strictly cosingular multiplications LARB. We are here mainly interested in spaces

X where the converse implications hold. (Similar questions can obviously be raised

for the restriction LARB : K(X) → K(X), as well as in many other settings.)

Problem 1.2

(i) For which Banach spaces X is LARB strictly singular L(X) → L(X) whenever A ∈
S(X) and B∗ ∈ S(X∗)?

(ii) For which spaces X is LARB strictly cosingular L(X) → L(X) whenever A ∈ P(X)

and B∗ ∈ P(X∗)?

We obtain definitive results related to Problems 1.1 and 1.2 for certain classical

Banach spaces X, where S(X) or P(X) admit concrete characterizations. This is the

case, e.g., if X = Lp(0, 1) (1 ≤ p < ∞) or if X is a C(K)-space. Let 1 < p < ∞
and p 6= 2. The main result of this paper (Theorem 2.9) shows that for non-zero

A,B ∈ L
(

Lp(0, 1)
)

the multiplication LARB is strictly singular on L
(

Lp(0, 1)
)

if and

only if A,B ∈ S
(

Lp(0, 1)
)

. The argument is fairly complicated, and it combines

block diagonalization techniques applied in L
(

Lp(0, 1)
)

with classical estimates for

unconditional basic sequences in Lp(0, 1). The delicacy of the situation is partly ex-

plained by the fact (see Section 4) that a similar result holds for X = ℓp ⊕ ℓq, but fails

for X = ℓp ⊕ ℓq ⊕ ℓr (1 < p < q < r < ∞), where the latter space embeds into

Lp(0, 1) for certain combinations of the exponents.

In Section 3 we consider Problems 1.1 and 1.2 for the classes of L
1- and L

∞-

spaces. The non-trivial fact (due to Bourgain [B2]) that certain spaces of bounded

operators have the Dunford–Pettis property is a crucial ingredient in these cases.

Section 4 contains several examples which illustrate how, in general, the solution

to Problem 1.1 depends on X. [LT2], [LT3] are our standard sources for unexplained

notation and concepts related to the theory of Banach spaces.

2 Strict Singularity of Multiplications on L
(

L
p(0, 1)

)

The main purpose of this paper is to solve Problem 1.1 for strict singularity in the

case of X = Lp(0, 1), where 1 < p < ∞ and p 6= 2. In fact, in Theorem 2.9 we es-

tablish that Lp(0, 1) satisfies Problem 1.2(i). We begin with some basic observations.

Let E1, E2, E3, E4 be Banach spaces, and A ∈ L(E3, E4), B ∈ L(E1, E2) be fixed oper-

ators. Thus S 7→ ASB defines a bounded composition operator LARB : L(E2, E3) →
L(E1, E4). The following simple general facts are special cases of [LS, 2.1, 2.2, 2.3].
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Fact 2.1

(i) Suppose that A ∈ K(E3, E4) and B∗ ∈ S(E∗
2 , E

∗
1 ), or that A ∈ S(E3, E4) and

B ∈ K(E1, E2). Then LARB is strictly singular L(E2, E3) → L(E1, E4).

(ii) If A,B 6= 0 and LARB is strictly singular L(E2, E3) → L(E1, E4), then A ∈
S(E3, E4) and B∗ ∈ S(E∗

2 , E
∗
1 ).

Analogous results hold for the strict cosingularity of LARB (where one replaces S

by P in (i) and (ii)). These results are also valid for the restriction LARB : K(E2, E3) →
K(E1, E4).

Fact 2.1 provides the relevant extremal conditions for the strict (co)singularity of

LARB, and Problem 1.2 asks for spaces X where the maximal conditions are sharp. We

also note that the answer to Problem 1.1 follows from known results in the case of

the sequence spaces ℓp (1 ≤ p < ∞) and c0. Let W (E, F) denote the class of weakly

compact operators E → F.

Example 2.2 Let X = ℓp, where 1 ≤ p < ∞, or X = c0. Then the following

conditions are equivalent for non-zero A,B ∈ L(X).

(i) A,B ∈ K(X),

(ii) LARB is compact on L(X),

(iii) LARB is strictly singular on L(X),

(iv) LARB is strictly cosingular on L(X).

If X = ℓ1 or X = c0, then conditions (i)–(iv) are also equivalent to the weak

compactness of LARB on L(X). If 1 < p < ∞ and A ∈ K(ℓp) is a non-zero operator,

then LA and RA are weakly compact on L(ℓp), but they are neither strictly singular

nor strictly cosingular.

Example 2.2 combines several known results, which we briefly outline. The equiv-

alence of (i) and (ii) is a special case of [V]. The other equivalences follow from

Fact 2.1 and the classical fact that K(X) = S(X) = P(X) for X = ℓp (1 ≤ p < ∞)

and X = c0 (see [Pi, 5.1, 5.2]). The case X = ℓ1 also uses Gantmacher’s theorem

[Wo, II.C.6] and the equalities W (ℓ1) = K(ℓ1) and S(ℓ∞) = P(ℓ∞) = W (ℓ∞) (see

[LT2, 2.f.4]). Suppose next that X = ℓ1 or c0, and that LARB is a weakly compact

operator on L(X). Then the weakly compact version of Fact 2.1(ii) (see [ST1, 2.1] or

[LS]) yields that A,B ∈ W (X) = K(X), so that LARB is compact. Let 1 < p < ∞.

It follows from [ST1, 3.2] that LA and RA are weakly compact operators on L(ℓp)

whenever A ∈ K(ℓp).

Example 2.2 is rather exceptional, and in general there are plenty of non-compact

strictly (co)singular multipliers LARB on L(X) (see, e.g., Theorems 2.9 and 3.2). Fur-

ther examples, which illustrate the diversity of the conditions characterizing the strict

(co)singularity of LARB, are collected in Section 4.

Our study of Problems 1.1 and 1.2 for X = Lp(0, 1) is in part motivated by the

following fact:

• U /∈ S
(

Lp(0, 1)
)

if and only if there is M ⊂ Lp(0, 1) so that M ≈ ℓp or M ≈ ℓ2,

U defines an isomorphism M → U M, and M as well as U M are complemented in

Lp(0, 1) (see [KP, Theorem 2 and Corollary 1] for 2 < p <∞ and [W, Theorem]

for 1 < p < 2).

https://doi.org/10.4153/CJM-2005-050-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-050-7


1252 M. Lindström, E. Saksman, and H.-O. Tylli

This fact (vaguely) suggests a similarity between the strict singularity of multipli-

cations on L
(

Lp(0, 1)
)

and L(ℓp ⊕ ℓ2). Examples in Section 4 show that the maximal

condition from Problem 1.2 is sharp on L(X) for X = ℓp ⊕ ℓq, but that this is not

so for X = ℓp ⊕ ℓq ⊕ ℓr (where 1 < p < q < r < ∞) or X = Lp(0, 1) ⊕ Lq(0, 1)

(where p, q ∈ (1,∞)\{2} and p 6= q). On the other hand, since ℓp ⊕ ℓq ⊕ ℓr embeds

isomorphically into Ls(0, 1) for certain combinations of 1 < p < q < r < ∞ and

s ∈ (1,∞), one might be tempted to think that X = Ls(0, 1) does not satisfy Prob-

lem 1.2(i) for s 6= 2. However, Ls(0, 1) cannot contain any complemented copy of

ℓp ⊕ ℓq ⊕ ℓr (cf. [LT1, II.5.5] and [LT2, 2.c.14]), which still leaves open the possibility

that the maximal condition holds.

It is convenient to divide the lengthy argument of Theorem 2.9 into several dis-

tinct steps. We begin by isolating several auxiliary results, some of which also ap-

ply to more general composition operators LARB : L(E2, E3) → L(E1, E4), where

A ∈ L(E3, E4) and B ∈ L(E1, E2). (This flexibility will be useful for the case

ℓp ⊕ ℓq in Theorem 4.1). We always assume in addition that E1, . . . , E4 are reflex-

ive Banach spaces having the unconditional Schauder bases (en) ⊂ E1, ( fn) ⊂ E2,

(gn) ⊂ E3 and (hn) ⊂ E4, respectively. The following notation is fixed in this sec-

tion: let P
( j)
n stand for the natural basis projection of E j onto the first n basis el-

ements, Q
( j)
n = I − P

( j)
n and P( j)

m,n ≡ P( j)
m − P( j)

n . Here m, n ∈ N, n < m and

j = 1, 2, 3, 4. Recall that the unconditional basis constant of the unconditional ba-

sis (en) is sup
{

‖Mθ‖ : θ = (θ j) ∈ {−1, 1}N
}

, where Mθ ∈ L(E1) is defined by

Mθ(
∑∞

j=1 a je j) =
∑∞

j=1 θ ja je j for
∑∞

j=1 a je j ∈ E1.

We state a simple fact that will be used repeatedly in the sequel (and follows easily

by finite rank approximation).

Lemma 2.3 Suppose that E1 and E2 are reflexive Banach spaces having Schauder bases,

and let S ∈ K(E1, E2). Then limm→∞ ‖Q(2)
m S‖ = 0 and limm→∞ ‖SQ(1)

m ‖ = 0.

Let E1 and E2 be reflexive Banach spaces having the unconditional bases (en) and

( fn), respectively. By a block-diagonal sequence (Tk) ⊂ K(E1, E2) we mean here that

P(2)
nk,nk−1

TkP(1)
nk,nk−1

= Tk, k ∈ N, for some fixed strictly increasing sequence (nk) ⊂ N.

Our next lemma is a first step towards building a special block diagonal sequence of

operators associated to certain non-strictly singular multiplications on L
(

Lp(0, 1)
)

.

Lemma 2.4 Suppose that E1, . . . , E4 are reflexive Banach spaces having unconditional

bases. Assume that A ∈ L(E3, E4) and B ∈ L(E1, E2) are such that

LARB

(

L(E2, E3)
)

⊂ K(E1, E4).

Assume also that there is a sequence (Sk) ⊂ L(E2, E3), an increasing sequence (n j) ⊂ N

and constants c, c1, c2 > 0 so that

(i) c1 ≤ ‖Sk‖ ≤ c2,

(ii) Q(3)
nk

SkQ(2)
nk

= Sk,

(iii) ‖LARB(Sk)‖ = ‖ASkB‖ > c,

for k ∈ N. Then there is a subsequence (Sk j
) so that

(

LARB(Sk j
)
)

= (ASk j
B) is equiva-

lent (and as close as we wish) to a block-diagonal sequence (T j) ⊂ K(E1, E4).
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Proof Observe first that

LARB(Sk) = lim
m→∞

P(4)
m [LARB(Sk)]P(1)

m ,

in the operator norm for each fixed Sk by Lemma 2.3, since LARB(Sk) ∈ K(E1, E4)

by assumption. The construction of the desired subsequence (Sk j
) is by induction.

Suppose that we have found Sk1
, . . . , Sk j−1

as well as 1 = m0 < m1 < · · · < m j−1, so

that

(2.1) ‖LARB(Skr
) − (P(4)

mr
− P(4)

mr−1
)[LARB(Skr

)](P(1)
mr

− P(1)
mr−1

)‖ <
1

2K
· 2−r−1

for r = 1, . . . , j − 1. Here K > 0 can be chosen in a uniform manner so that

(2.1) then guarantees, by the usual perturbation argument (cf. [LT2, 1.a.9]), that the

semi-normalized subsequence
(

LARB(Sk j
)
)

will be equivalent to the block-diagonal

sequence (T j), where

T j = (P(4)
m j

− P(4)
m j−1

)[LARB(Sk j
)](P(1)

m j
− P(1)

m j−1
), j ∈ N.

Note that K > 0 will depend on the bound c and the basis constants of (en) ⊂ E1

and (hn) ⊂ E4, but not on the particular sequence (m j) defining the block-diagonal

sequence (T j) (cf. the proof of Lemma 4.3 below). We indicate how to find Sk j
and

m j > m j−1 so that (2.1) holds for j. Note first that

(2.2) ‖P(4)
r ASkB‖ → 0 and ‖ASkBP(1)

r ‖ → 0 as k → ∞,

for r ∈ N. In fact, since Q(3)
nk

SkQ(2)
nk

= Sk for all k by (ii), Lemma 2.3 applied to the

finite rank operator P(4)
r A yields

‖P(4)
r ASk‖ ≤ ‖Sk‖ · ‖Q(3)

nk
‖ · ‖P(4)

r AQ(3)
nk
‖ → 0, k → ∞.

The second claim in (2.2) is seen in a similar manner from Lemma 2.3. In particular,

(2.2) implies that the differences

LARB(Sn) − Q(4)
mk−1

[LARB(Sn)]Q(1)
mk−1

= P(4)
mk−1

[LARB(Sn)]Q(1)
mk−1

+ Q(4)
mk−1

[LARB(Sn)]P(1)
mk−1

+ P(4)
mk−1

[LARB(Sn)]P(1)
mk−1

can be made arbitrarily small by picking n = k j big enough. Since LARB(Sk j
) ∈

K(E1, E4) by assumption, we again use Lemma 2.3 to get m j > m j−1 so that

‖Q(4)
m j−1

[LARB(Sk j
)]Q(1)

m j−1
− P(4)

m j
Q(4)

m j−1
[LARB(Sk j

)]Q(1)
m j−1

P(1)
m j
‖

is as small as we like. This yields our claim.
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We next record, for reader convenience, the version of a block diagonalization

principle for operators between Banach spaces having unconditional bases which will

be used repeatedly. A proof is contained in [LT2, 1.c.8 and Remark 1, p. 21].

Fact 2.5 (Unconditional Operator Blocking Principle) Let E1 and E2 be Banach

spaces having unconditional bases, and let (mk) and (nk) be strictly increasing sequences

of natural numbers (where m0 = n0 = 0). Then there is K > 0 (depending only on the

unconditional basis constants), so that

∥

∥

∥

∞
∑

k=1

P(2)
nk,nk−1

SP(1)
mk,mk−1

∥

∥

∥ ≤ K‖S‖, S ∈ L(E1, E2),

where the sum
∑∞

k=1 P(2)
nk,nk−1

SP(1)
mk,mk−1

converges in the strong operator topology.

We only formulate the remaining steps of the argument for Lp(0, 1). The Haar

basis (hn) is an unconditional basis for Lp(0, 1) (see [LT3, 2.c.5]), which will be the

fixed basis in our argument. Let P j and Q j = I − P j stand for the related basis

projections for j ∈ N. The following consequence of Mazur’s lemma will be our

basic tool of approximation related to certain multiplications LARB on L
(

Lp(0, 1)
)

.

Lemma 2.6 Suppose that A,B ∈ S
(

Lp(0, 1)
)

, where 1 < p < ∞. Then for any S ∈

L
(

Lp(0, 1)
)

and ε > 0 there is a convex combination θ1, . . . , θr ≥ 0,
∑r

j=1 θ j = 1,

and indices m1 < · · · < mr , so that

∥

∥

∥ASB − A
(

r
∑

j=1

θ jPm j
SPm j

)

B
∥

∥

∥ < ε.

Proof Recall that UV ∈ K(Lp(0, 1)) whenever U ,V ∈ S(Lp(0, 1)), see [Mi2,

Teor. 7]. Thus the range LARB

(

L(Lp(0, 1))
)

⊂ K(Lp(0, 1)), so that LARB is a weakly

compact operator on L(Lp(0, 1)) by [ST1, Corollary 2.4]. Let S ∈ L(Lp(0, 1)). It

follows that (APmSPmB) = (LARB(PmSPm)) has a weakly convergent subsequence

(APmk
SPmk

B) in L(Lp(0, 1)). Note that the WOT-limit of (APmk
SPmk

B) is ASB, since

〈x∗,APmk
SPmk

Bx〉 = 〈S∗P∗
mk

A∗x∗, Pmk
Bx〉 → 〈x∗,ASBx〉, k → ∞,

for x ∈ Lp(0, 1) and x∗ ∈ Lp ′

(0, 1). Conclude that APmk
SPmk

B
w
→ ASB in L(Lp(0, 1))

as k → ∞. The claim now follows from Mazur’s lemma.

We need a definition: The operatorψ : L
(

Lp(0, 1)
)

→ L
(

Lp(0, 1)
)

is said to reside

in the square (m, n] ⊗ (m, n] ⊂ N2 if there is a convex combination θ1, . . . , θk ≥ 0,
∑k

j=1 θ j = 1, as well as m < r1 < · · · < rk ≤ n so that

(2.3) ψ(S) =

k
∑

j=1

θ jPr j ,mSPr j ,m, S ∈ L(Lp(0, 1)).
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Here (m, n] = {m + 1, . . . , n} and Pn,m = Pn − Pm for m < n. We will say that ψ is

a convex projector that resides in (m, n] ⊗ (m, n] (note that ψ is not a projection on

L(Lp(0, 1)) if there is more than one term in (2.3)). The following lemma isolates a

technical ingredient needed for Proposition 2.8 below.

Lemma 2.7 Let 1 < p < ∞. Assume that (S j ) ⊂ L
(

Lp(0, 1)
)

is a normalized

sequence so that

(i) (S j) is an unconditional basic sequence in L(Lp(0, 1)),

(ii) there is an increasing sequence (n j) ⊂ N for which Pn j−1
S jPn j−1

= 0, j ∈ N.

Then for any sequence (ψ j) of convex projectors where, for every j ∈ N, ψ j resides in

(n j−1, n j] × (n j−1, n j], there is a constant d > 0 so that

(2.4)
∥

∥

∥

∞
∑

j=1

a jψ j(S j )
∥

∥

∥ ≤ d
∥

∥

∥

∞
∑

j=1

a jS j

∥

∥

∥

whenever
∑∞

j=1 a jS j converges in norm in L(Lp(0, 1)).

Proof By approximation and WOT-convergence it will be enough to prove that

there is d > 0 so that

(2.5)
∥

∥

∥

N
∑

j=1

a jψ j(S j )
∥

∥

∥≤ d
∥

∥

∥

N
∑

j=1

a jS j

∥

∥

∥

holds uniformly in a1, . . . , aN for each N under the assumptions of the lemma. Ob-

serve next that it will be enough to establish (2.5) with a uniform constant d > 0

in the particular case, where each convex projector ψ j has only one term in the

representation (2.3). In fact, suppose that ψ j(S) =
∑l j

k=1
θ j,kPr j,k ;n j−1

SPr j,k ;n j−1
for

S ∈ L
(

Lp(0, 1)
)

, where j = 1, . . . ,N . We may then actually write

(2.6)
N

∑

j=1

a jψ j(S j ) =

l1
∑

m1=1

· · ·

lN
∑

mN =1

θ1,m1
θ2,m2

· · · θN,mN

[

N
∑

j=1

a jPr j,m j
;n j−1

S jPr j,m j
;n j−1

]

.

To check (2.6) just note that

l1
∑

m1=1

· · ·

lN
∑

mN=1

θ1,m1
· · · θN,mN

a jPr j,m j
;n j−1

S jPr j,m j
;n j−1

= a j

l j
∑

m j=1

θ j,m j
Pr j,m j

;n j−1
S jPr j,m j

;n j−1

for each j = 1, . . . ,N , by summing the coefficients θk,mk
for which k 6= j. By using

the convex combination (2.6) one sees that it suffices to show that

∥

∥

∥

N
∑

j=1

a jPr j,m j
;n j−1

S jPr j,m j
;n j−1

∥

∥

∥
≤ d

∥

∥

∥

N
∑

j=1

a jS j

∥

∥

∥
,
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where d > 0 is independent of the indices (m j) and (r j). Hence it follows, after

applying Fact 2.5, that it will be enough to consider the case where each ψ j has only

one term.

We have thus reduced the verification of (2.5) to establishing that

∥

∥

∥

N
∑

j=1

a jPn j ,n j−1
S jPn j ,n j−1

∥

∥

∥ ≤ d
∥

∥

∥

N
∑

j=1

a jS j

∥

∥

∥

for all scalars a1, . . . , aN and N ∈ N. Put T j,k = Pn j ,n j−1
SkPn j ,n j−1

for j, k ∈
{1, . . . ,N}, and note that T j,k = 0 whenever j < k by assumption (ii). We first

apply the diagonal blocking map S 7→
∑N

j=1 Pn j ,n j−1
SPn j ,n j−1

to the operators S(ε) =
∑N

k=1 εkakSk, where ε = (ε1, . . . , εN ) ∈ {−1, 1}N is any sign sequence. The uniform

blocking principle (Fact 2.5), combined with the unconditionality of (S j ), yield that

(2.7)
∥

∥

∥

N
∑

k=1

akεk

(

N
∑

j=1

T j,k

)∥

∥

∥ ≤ d1

∥

∥

∥

N
∑

k=1

akSk

∥

∥

∥ ,

where d1 > 0 depends only on the unconditional basis constants of (S j) and the Haar

basis. Above
∑N

k=1 akεk(
∑N

j=1 T j,k) =
∑N

k=1 akεk(
∑N

j=k T j,k). Moreover, the left

hand operator norm in (2.7) only changes by a uniform constant if we multiply each

T j,k = Pn j ,n j−1
SkPn j ,n j−1

by ε j for j = 1, . . . ,N , since the Haar basis is unconditional

in Lp(0, 1). Hence it follows from (2.7) that

(2.8)
∥

∥

∥

N
∑

k=1

akεk

(

N
∑

j=k

ε jT j,k

)∥

∥

∥ ≤ d2

∥

∥

∥

N
∑

k=1

akSk

∥

∥

∥

for each ε = (ε1, . . . , εN ) ∈ {−1, 1}N , where d2 > 0 is a uniform constant. By

averaging (2.8) over the signs ε ∈ {−1, 1}N , and noting that
∑

ε∈{−1,1}N ε jεk = 0

whenever j 6= k, we get the desired inequality ‖
∑N

k=1 akTk,k‖ ≤ d2‖
∑N

k=1 akSk‖ for

scalars a1, . . . , aN and N ∈ N.

Our next result provides an important reduction in our argument for Theorem 2.9.

Here we reduce the study of certain LARB on L
(

Lp(0, 1)
)

to their restrictions to sub-

spaces spanned by block-diagonal sequences. Its proof is based on Lemmas 2.4, 2.6

and 2.7.

Proposition 2.8 Let 1 < p < ∞. Assume that A,B ∈ S(Lp(0, 1)) are such that

the multiplication LARB is a non-strictly singular operator L(Lp(0, 1)) → L(Lp(0, 1)).

Then there is a normalized block-diagonal sequence (Sk) ⊂ K(Lp(0, 1)), for which

• LARB is bounded below on [Sk : k ∈ N],
• (LARB(Sk)) = (ASkB) is equivalent (and as close as we wish) to a block-diagonal

sequence (Uk) ⊂ K(Lp(0, 1)).
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Proof By assumption, there exist c > 0 and a closed infinite-dimensional subspace

M ⊂ L(Lp(0, 1)) so that

‖LARB(S)‖ = ‖ASB‖ ≥ c‖S‖, S ∈ M.

We first construct by induction a sequence (Vk) ⊂ M so that

‖Vk‖ = 1,(2.9)

PkVkPk = 0,(2.10)

‖LARB(Vk) − LARB(QkVkQk)‖ ≤ b · 2−k(2.11)

for k ∈ N. Here b satisfies 0 < b < min{ c
24K2

p
, d

8‖A‖·‖B‖K2
p
}, where d > 0 is the

constant from (2.4) in Lemma 2.7 and Kp > 0 is the unconditional basis constant

of the Haar basis in Lp(0, 1). Suppose that we have chosen operators V1, . . . ,Vk−1

satisfying (2.9)–(2.11). Consider the closed infinite-dimensional subspace

Nk = {U ∈ M : PkU Pk = 0} ⊂ M.

Conditions (2.9) and (2.10) are satisfied if we agree to choose a normalized operator

Vk from Nk. In addition, we may ensure that Vk ∈ Nk satisfies

‖LARB(Vk) − LARB(QkVkQk)‖ ≤ b · 2−k.

This is possible, since Nk ⊂ M is an infinite-dimensional subspace and the operator

LARB − LAQk
RQkB = LAPk

RQkB + LAQk
RPkB + LAPk

RPkB

is strictly singular on L
(

Lp(0, 1)
)

in view of Fact 2.2(i), the assumption A,B ∈

S
(

Lp(0, 1)
)

, and the fact that U ∈ S
(

Lp(0, 1)
)

if and only if U ∗ ∈ S
(

Lp ′

(0, 1)
)

(see [Mi2, p. 19] and [W, Corollary 2]).

We next apply Lemma 2.4 to (Tk) ⊂ L
(

Lp(0, 1)
)

, where Tk = QkVkQk for

k ∈ N. This is allowed, since LARB

(

L
(

Lp(0, 1)
))

⊂ K
(

Lp(0, 1)
)

whenever A,B ∈

S
(

Lp(0, 1)
)

(see the proof of Lemma 2.6). Moreover, ‖LARB(QkVkQk)‖ > c/2 by

(2.11) and the choice of b > 0, so that ‖QkVkQk‖ > c
2‖A‖·‖B‖ for k ∈ N. Hence

Lemma 2.4 gives a subsequence (Tmk
) of (Tk) so that

(2.12) Pmk
Vmk

Pmk
= 0 for k ∈ N, and (LARB(Tmk

)) is equivalent (and as close as

we wish) to a block-diagonal sequence (Uk) ⊂ K(Lp(0, 1)).

We may assume above that ‖Uk‖ >
c
2

for k ∈ N. Note that the block-diagonal

sequence (Uk) is an unconditional basic sequence (since the Haar basis is uncondi-

tional in Lp(0, 1)), and that the basis constant of (Uk) is at most K2
p (cf. the proof

of Lemma 4.3 below). If we assume that
∑∞

k=1 ‖ATmk
B − Uk‖ < c/8K2

p, then by

following the proof of [LT2, 1.a.9] it is seen that the basis constant of
(

ATmk
B
)

is
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at most 3K2
p (note that here (Uk) is a semi-normalized basic sequence). By apply-

ing the argument in [LT2, 1.a.9] once more, it follows from (2.11) and the choice of

b > 0 that (AVmk
B) is equivalent to (ATmk

B), and hence also to (Uk). Moreover, since

(Vmk
) ⊂ M and LARB is bounded from below on M, we get from (2.12) that

(2.13) (Vmk
) is an unconditional basic sequence in L

(

Lp(0, 1)
)

.

We get the desired final sequence (S j ) from (Vmk
) with the help of Lemma 2.6. To

this end we first inductively choose a subsequence (R j) = (Vmk j
) and a sequence (ψ j)

of convex projectors, whereψ j resides in (mk j
,mk j+1

]× (mk j
,mk j+1

] for j ∈ N, so that

for j ∈ N,

‖R j‖ = 1,(2.14)

(R j) is an unconditional basic sequence in L
(

Lp(0, 1)
)

,(2.15)

Pmk j
R jPmk j

= 0,(2.16)

∥

∥LARB(R j) − LARB

(

ψ j(R j)
)∥

∥ < b · 2− j .(2.17)

Here the constant b > 0 is as above.

We outline the inductive choice of the subsequence (R j). Condition (2.14) is clear,

and (2.15) will be satisfied, by (2.13). Suppose that we have chosen R1, . . . ,R j−1, in-

dices k1 < · · · < k j and convex projectors ψ1, . . . , ψ j−1 satisfying (2.16) and (2.17).

We put R j = Vmk j
, so that (2.16) holds. We next apply Lemma 2.6 to the operator

S = Qmk j
R jQmk j

. We get an index k j+1 > k j and a convex projector ψ j that resides in

(mk j
,mk j+1

] × (mk j
,mk j+1

] so that

∥

∥LARB(Qmk j
R jQmk j

) − LARB

(

ψ j(Qmk j
R jQmk j

)
)∥

∥ < b · 2− j−1.

Since ‖LARB(R j) − LARB(Qmk j
R jQmk j

)‖ < b · 2− j−1 by (2.11), and one clearly has

ψ j(Qmk j
R jQmk j

) = ψ j(R j), it follows that (2.17) holds for j.

We define Ŝ j = ψ j(R j) for j ∈ N. Note that (Ŝ j) ⊂ K
(

Lp(0, 1)
)

is a block-

diagonal sequence. It remains to verify that LARB is bounded below on the subspace

[Ŝ j : j ∈ N]. For this purpose we use Lemma 2.7, condition (2.17) and the fact that

[R j : j ∈ N] ⊂ M, to obtain that

∥

∥

∥

∞
∑

j=1

a j Ŝ j

∥

∥

∥ =

∥

∥

∥

∞
∑

j=1

a jψ j(R j)
∥

∥

∥ ≤ d
∥

∥

∥

∞
∑

j=1

a jR j

∥

∥

∥ ≤
d

c

∥

∥

∥

∞
∑

j=1

a jLARB(R j)
∥

∥

∥

≤
2d

c

∥

∥

∥

∞
∑

j=1

a jLARB

(

ψ j(R j)
)

∥

∥

∥ =
2d

c

∥

∥

∥LARB

(

∞
∑

j=1

a j Ŝ j

)∥

∥

∥

whenever
∑∞

j=1 a j Ŝ j converges in K
(

Lp(0, 1)
)

. The next to last estimate follows from

(2.17) by a standard perturbation argument (cf. [LT2, 1.a.9]), and the constant d > 0

is the one from (2.4). Finally,

c

2‖A‖ ‖B‖
≤ ‖ψ j(R j)‖ ≤ K2

p
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for each j by construction. We obtain a norm-1 sequence (S j ) after normalizing (Ŝ j)

(this does not affect the convergence, since the above basic sequences are uncondi-

tional).

Let Kp > 0 be the unconditional basis constant of the Haar basis (hn) in Lp(0, 1).

Clearly any normalized block basic sequence ( fn) of (hn) is unconditional with K ≤
Kp, where K is the unconditional basis constant of ( fn). Let 2 < p < ∞. We will

need the following classical estimates: there are Ap,Bp > 0, so that any normalized

block basic sequence ( fn) of (hn) satisfies

∥

∥

∥

∞
∑

n=1

an fn

∥

∥

∥ ≤ Ap

(

∞
∑

n=1

|an|
2
) 1/2

for (an) ∈ ℓ2,(2.18)

Bp

(

∞
∑

n=1

|an|
p
) 1/p

≤
∥

∥

∥

∞
∑

n=1

an fn

∥

∥

∥ for

∞
∑

n=1

an fn ∈ [ fn : n ∈ N].(2.19)

Above (2.18) can be deduced, e.g., from [KP, Theorem 1f], while (2.19) can be seen,

e.g., by modifying the proof of an analogous fact [Ro, pp. 209–210] for Lr(0, 1) in the

case 1 < r < 2.

We are now ready for the main result of this paper, which characterizes the strictly

singular multiplications LARB on L
(

Lp(0, 1)
)

for 1 < p < ∞. The easy case p = 2

is contained in Example 2.2, so that we will assume here that p 6= 2. The proof of

the implication (ii) ⇒ (i) will require considerable work, even with Proposition 2.8

available. The fact which characterizes U /∈ S
(

Lp(0, 1)
)

is not useful as such for this

purpose.

Theorem 2.9 Let 1 < p < ∞ and p 6= 2. Then the following conditions are equiva-

lent for non-zero A,B ∈ L
(

Lp(0, 1)
)

.

(i) LARB is strictly singular L(Lp(0, 1)) → L(Lp(0, 1)),

(ii) A,B ∈ S(Lp(0, 1)).

Proof (i) ⇒ (ii). Fact 2.1(ii) implies that A ∈ S(Lp(0, 1)) and B∗ ∈ S(Lp ′

(0, 1)),

where p ′ is the conjugate exponent of p. It then follows from [W, Corollary 2] that

also B ∈ S(Lp(0, 1)).

(ii) ⇒ (i). We will argue by contradiction. We begin by observing that it is enough

to prove that LARB is a strictly singular operator L(Lp(0, 1)) → L(Lp(0, 1)) whenever

A,B ∈ S(Lp(0, 1)) in the case p > 2. In fact, then the same result holds also in

the case 1 < p < 2. This is checked by using the linear isometry S 7→ S∗ from

L(Lp(0, 1)) onto L(Lp ′

(0, 1)), which transforms LARB to LB∗RA∗ , and the fact that

U ∗ ∈ S(Lp ′

(0, 1)) if and only if U ∈ S(Lp(0, 1)) (see [W, Corollary 2]). Thus we

may (and will) assume that 2 < p <∞ in the remainder of the argument. The Haar

basis (hn) will be our fixed unconditional basis for Lp(0, 1), and Kp > 0 will denote

its unconditional basis constant.

Assume that A,B ∈ S(Lp(0, 1)) and suppose to the contrary that LARB is a non-

strictly singular operator L(Lp(0, 1)) → L(Lp(0, 1)). Proposition 2.8 implies that
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there is a normalized block-diagonal sequence (Sk) ⊂ K(Lp(0, 1)) so that LARB de-

fines a linear isomorphism [Sk : k ∈ N] → [ASkB : k ∈ N], and (LARB(Sk)) =

(ASkB) is equivalent to (and as close as we wish to) some block-diagonal sequence

(Uk) ⊂ K(Lp(0, 1)). The above block-diagonal sequences are with respect to (hn).

Fix c > 0 so that ‖LARB(U )‖ ≥ c‖U‖ for U ∈ [Sk : k ∈ N]. We next combine the

strict singularity of A and B with (2.18), (2.19), and the Kadec–Pełczyński dichotomy,

in order to deduce the crucial observation that [Sk : k ∈ N] ⊂ K(Lp(0, 1)) is unique

up to isomorphism in our situation.

Claim 1 There is a subsequence of (Sk), still denoted by (Sk) for simplicity, and con-

stants C p,C
′
p > 0 so that

(2.20) C p‖(ck)‖s ≤
∥

∥

∥

∞
∑

k=1

ckSk

∥

∥

∥
≤ C ′

p‖(ck)‖s, (ck) ∈ ℓs,

where s satisfies 1
2

=
1
p

+ 1
s

(that is, s =
2p

p−2
).

Proof of Claim 1 Observe first that there is a subsequence (Sk j
) of (Sk) and a block

sequence (x j) ⊂ Lp(0, 1) (with respect to (hn)) so that ‖x j‖ = 1 and ‖ASk j
Bx j‖ ≥

c
2Kp

for j ∈ N. The simple induction is based on Lemma 2.3. Indeed, suppose that

we have found operators Sk1
, . . . , Skn

and blocks x1, . . . , xn as desired. Fix r ∈ N

so that Qrx j = 0 for j = 1, . . . , n. Note that AS jBPr = AS j(Q j−1BPr), where

‖Q j−1BPr‖ → 0 as j → ∞ by Lemma 2.3 (applied to the compact operator BPr).

Hence there is an index kn+1 > kn so that ‖ASkn+1
BQr‖ ≥ c − ‖ASkn+1

BPr‖ ≥ 3c
4

. Pick

a norm-1 element y ∈ Lp(0, 1) so that ‖ASkn+1
BQr y‖ > c

2
. By truncating the vector

Qr y, where ‖Qr y‖ ≤ Kp, in the Haar basis (hn) we find after normalization a norm-1

block vector xn+1 ∈ Lp(0, 1) satisfying ‖ASkn+1
Bxn+1‖ ≥ c

2Kp
. For simplicity we retain

the notation (S j ) for the subsequence (Sk j
) in the sequel.

Observe that xk
w
−→ 0 in Lp(0, 1) as k → ∞, since (xk) are block vectors of (hn) in

Lp(0, 1). Similarly, (SkBxk) and (ASkBxk) are weak-null sequences in Lp(0, 1), where

‖Bxk‖ ≥ ‖SkBxk‖ ≥ c
2Kp‖A‖ for k ∈ N. By applying, if necessary, the Bessaga–

Pełczyński selection theorem [LT2, 1.a.12], we may pass to a further subsequence of

(xk) (and consequently also of (Sk)), still denoted by (xk), so that (xk), (Bxk), (SkBxk)

and (ASkBxk) are basic sequences in Lp(0, 1).

We next invoke the Kadec–Pełczyński dichotomy [KP, Theorems 2 and 3, Corol-

lary 1]: Any normalized basic sequence ( fn) of Lp(0, 1), where 2 < p < ∞, has a

subsequence ( fnk
), so that [ fnk

: k ∈ N] ⊂ Lp(0, 1) is complemented, and ( fnk
) is

either equivalent to the unit vector basis in ℓp or in ℓ2. By repeated applications of

the dichotomy we may ensure that the following properties hold (again by passing to

further subsequences).

(2.21) If (yk) stands for any one of the sequences (xk), (Bxk), (SkBxk) or (ASkBxk),

then either (yk) is equivalent to the unit vector basis in ℓ2 or equivalent to

the unit vector basis in ℓp. For simplicity we denote the above by (yk) ≈ ℓ2

or (yk) ≈ ℓp.
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(2.22) [SkBxk : k ∈ N] is complemented in Lp(0, 1).

The strict singularity of the restrictions B : [xk : k ∈ N] → [Bxk : k ∈ N] and

A : [SkBxk : k ∈ N] → [ASkBxk : k ∈ N] enables us to reduce the number of

possibilities in (2.21). In fact, we claim that

(xk) ≈ ℓ2, (Bxk) ≈ ℓp, (SkBxk) ≈ ℓ2, and (ASkBxk) ≈ ℓp.

Indeed, observe first that if (xk) ≈ ℓ2 and (Bxk) ≈ ℓ2, or if (xk) ≈ ℓp and (Bxk) ≈ ℓp,

then B cannot define a strictly singular operator [xk : k ∈ N] → [Bxk : k ∈ N].

Moreover, if (xk) ≈ ℓp and (Bxk) ≈ ℓ2, then B is compact [xk : k ∈ N] → [Bxk : k ∈
N] by Pitt’s theorem (see [LT2, 2.c.3] and recall that p > 2). This would then imply

the contradiction that ‖Bxk‖ → 0 as k → ∞, since (xk) is weakly null. A similar

argument applies to the sequences (SkBxk) and (ASkBxk).

We next show that the resulting (sub)sequence (Sk) satisfies Claim 1. Let (ck) ∈ ℓs,

where s satisfies 1
2

=
1
p

+ 1
s
. We first verify that the right hand inequality in (2.20)

follows from (2.18) and (2.19). (Actually, the argument shows that the upper ℓs-

estimate in (2.20) holds for any normalized sequence of block-diagonal operators in

K(Lp(0, 1)).) This inequality also implies that the norm convergent sum
∑∞

k=1 ckSk

defines a compact operator on Lp(0, 1) for (ck) ∈ ℓs.

Let (Rk) stand for a fixed sequence of disjoint basis projections onto the supports

(with respect to (hn)) in Lp(0, 1) of the block-diagonal operators (Sk), in the sense

that SkRk = Sk for k ∈ N. Suppose that x ∈ Lp(0, 1). Since (hn) is an unconditional

basis for Lp(0, 1) we get from unconditionality and (2.19) that

(2.23)
(

∞
∑

k=1

‖Rkx‖p
) 1/p

≤ B−1
p Kp‖x‖, x ∈ Lp(0, 1).

Since Sk = SkRk for each k, we get from (2.23) and (2.18) together with Hölder’s

inequality (with 1
2

=
1
p

+ 1
s
) that

∥

∥

∥

∞
∑

k=1

ckSkx
∥

∥

∥
=

∥

∥

∥

∞
∑

k=1

ckSkRkx
∥

∥

∥
≤ Ap

(

∞
∑

k=1

|ck|
2‖SkRkx‖2

) 1/2

≤ Ap

(

∞
∑

k=1

|ck|
s
) 1/s

·
(

∞
∑

k=1

‖Rkx‖p
) 1/p

≤ ApB−1
p Kp

(

∞
∑

k=1

|ck|
s
) 1/s

‖x‖.

The proof of the left-hand inequality in (2.20) needs more care. According to (2.22)

there is a linear projection P of Lp(0, 1) onto [SkBxk : k ∈ N]. We know that the

restriction of P(
∑∞

k=1 ckSk) defines a compact operator [Bxk : k ∈ N] → [SkBxk :

k ∈ N] for (ck) ∈ ℓs. To circumvent the minor inconvenience that the restriction

of P(
∑∞

k=1 ckSk) to [Bxk : k ∈ N] need not be a block-diagonal operator (the off-

diagonal terms SkBx j are not known for k 6= j), we first apply the unconditional

blocking principle (Fact 2.5) to P(
∑∞

k=1 ckSk) with respect to the unconditional bases

(Bxk) ≈ ℓp and (SkBxk) ≈ ℓ2. For this purpose, let ∆ : [Bxk : k ∈ N] → [SkBxk :
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k ∈ N] denote the resulting diagonal operator: ∆(
∑∞

j=1 a jBx j) =
∑∞

j=1 c ja jS jBx j

for
∑∞

j=1 a jBx j ∈ [Bxk : k ∈ N]. Thus

(2.24) ‖∆‖ ≤ K ·
∥

∥

∥P
(

∞
∑

k=1

ckSk

)

: [Bxk : k ∈ N] → [SkBxk : k ∈ N]
∥

∥

∥

for some uniform constant K > 0. Fix constants d1, d2 > 0 so that

∥

∥

∥

∞
∑

k=1

akBxk

∥

∥

∥ ≤ d1

(

∞
∑

k=1

|ak|
p
) 1/p

, (ak) ∈ ℓp,(2.25)

d2

(

∞
∑

k=1

|bk|
2
) 1/2

≤
∥

∥

∥

∞
∑

k=1

bkSkBxk

∥

∥

∥ , (bk) ∈ ℓ2.(2.26)

Suppose that (a j) ∈ ℓp satisfies ‖(a j)‖p ≤ 1/d1. The estimates (2.24)–(2.26) yield

that

∥

∥

∥

∞
∑

k=1

ckSk

∥

∥

∥
≥ ‖P‖−1

∥

∥

∥
P
(

∞
∑

k=1

ckSk

)

: [Bxk : k ∈ N] → [SkBxk : k ∈ N]
∥

∥

∥

≥ ‖P‖−1K−1‖∆‖ ≥ ‖P‖−1K−1
∥

∥

∥
∆

(

∞
∑

j=1

a jBx j

)∥

∥

∥

= ‖P‖−1K−1
∥

∥

∥

∞
∑

k=1

ckakSkBxk

∥

∥

∥ ≥ d2‖P‖−1K−1
(

∞
∑

k=1

|ck|
2|ak|

2
) 1/2

.

By taking the supremum of the right-hand side over (a j) ∈
1
d1

Bℓp we get that

∥

∥

∥

∞
∑

k=1

ckSk

∥

∥

∥ ≥ d−1
1 ‖P‖−1K−1d2‖(ck)‖s,

where s satisfies 1
2

=
1
p

+ 1
s
. The above inequality is seen from a standard duality

argument and Hölder’s inequality. This completes the proof of Claim 1.

To resume the proof of the implication (ii) ⇒ (i) recall that (following our initial

work) LARB is an isomorphism [Sk : k ∈ N] → [ASkB : k ∈ N], where we may ensure

that limk ‖ASkB − Uk‖ = 0 as quickly as we wish for some block-diagonal sequence

(Uk) ⊂ K
(

Lp(0, 1)
)

. We have

∥

∥

∥

∞
∑

k=1

ckASkB
∥

∥

∥ ≥ c ′
(

∞
∑

k=1

|ck|
s
) 1/s

, (ck) ∈ ℓs,

by Claim 1, where c ′ = cC p > 0. Fix a sequence (Rk) of disjoint basis projections

in Lp(0, 1) onto the supports (with respect to (hn)) of the block-diagonal sequence
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(Uk), so that UkRk = Uk for k ∈ N. For technical reasons we actually need a lower es-

timate of ‖
∑∞

k=1 ckASkBRk‖. We may ensure above that (
∑∞

k=1 ‖Uk −ASkB‖s ′)1/s ′ <
c ′/6Kp, where s ′ is the dual exponent of s. Write

∞
∑

k=1

ckASkBRk =

∞
∑

k=1

ckASkB +

∞
∑

k=1

ck(ASkB −Uk)Rk +

∞
∑

k=1

ck(Uk − ASkB)

and use the Hölder inequality to get that

∥

∥

∥

∞
∑

k=1

ckASkBRk

∥

∥

∥ ≥ c ′
(

∞
∑

k=1

|ck|
s
) 1/s

− 2Kp

(

∞
∑

k=1

‖Uk − ASkB‖s ′
) 1/s ′(

∞
∑

k=1

|ck|
s
) 1/s

≥
2c ′

3

(

∞
∑

k=1

|ck|
s
) 1/s

,

for (ck) ∈ ℓs. This estimate yields that

(2.27)
∥

∥

∥

∑

k∈ J

SkBRk

∥

∥

∥ ≥
2c ′

3
‖A‖−1 · card( J)1/s

for all finite subsets J ⊂ N.

The strategy of the rest of the argument is to derive a contradiction from the

strict singularity of B on Lp(0, 1) together with the following technical consequence

of (2.27).

Claim 2 There is (mk) ⊂ N and a normalized block sequence (xk) ⊂ Lp(0, 1) so that

mk+1 − mk > k − 1,(2.28)

‖Tkxk‖ ≥
c ′

2Kp‖A‖
· k1/s(2.29)

for Tk =
∑mk+k−1

j=mk
S jBR j and k ∈ N.

Proof of Claim 2 The induction is again based on Lemma 2.3. Suppose that we have

found finite sums T1, . . . ,Tk, integers m1 < · · · < mk and block vectors x1, . . . , xk ∈
Lp(0, 1) satisfying (2.28) and (2.29). Fix r ∈ N so that Qrx j = 0 for j = 1, . . . , k.

We have
∑n+k

j=n S jBR jPr =
∑n+k

j=n S j(Qn−1BPr)R j , where ‖Qn−1BPr‖ → 0 as n → ∞
by Lemma 2.3 (note that R jPr = PrR j for each j and r, since R j = Pn j+1

− Pn j
for a

suitable sequence (n j)). Hence

∥

∥

∥

n+k
∑

j=n

S jBR jPr

∥

∥

∥
≤ (k + 1)Kp‖Qn−1BPr‖ → 0 as n → ∞.
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Moreover, ‖
∑n+k

j=n S jBR jQr‖ ≥ 2c ′

3‖A‖ · (k + 1)1/s −‖
∑n+k

j=n S jBR jPr‖ by (2.27). Hence

there is n = mk+1 > mk + k and, after truncation, a normalized block xk+1 ∈ Lp(0, 1)

satisfying Qrxk+1 = xk+1 and ‖Tk+1xk+1‖ = ‖
∑mk+1+k

j=mk+1

S jBR jxk+1‖ ≥ c ′

2Kp‖A‖ ·(k+1)1/s.

This completes the proof of Claim 2.

To continue the main argument we fix ε so that 0 < ε < c ′

4‖A‖ ·
Bp

K2
pAp

(where

Ap,Bp > 0 are as in (2.18) and (2.19)). We estimate the growth of ‖Tkxk‖ for k ∈ N,

where Tkxk =
∑mk+k−1

j=mk
S jBR jxk are from Claim 2. Define J1(k) and J2(k) by

J1(k) =
{

j ∈ {mk, . . . ,mk + k − 1} : ‖BR jxk‖ > ε‖R jxk‖
}

,

J2(k) =
{

j ∈ {mk, . . . ,mk + k − 1} : ‖BR jxk‖ ≤ ε‖R jxk‖
}

,

for k ∈ N, so that card
(

J2(k)
)

≤ k. For each k ∈ N we have

‖Tkxk‖ ≤
∥

∥

∥

∑

j∈ J1(k)

S jBR jxk

∥

∥

∥ +
∥

∥

∥

∑

j∈ J2(k)

S jBR jxk

∥

∥

∥ ≡ Σ1 + Σ2,

where Σ1 and Σ2 will be estimated separately.

The term Σ2 is handled by applying (2.18) and (2.19) to the unconditional block

vector sums
∑

j∈ J2(k) S jBR jxk and
∑

j∈ J2(k) R jxk. We get from Hölder’s inequality

(with 1
2

=
1
p

+ 1
s
), ‖S j‖ = 1 = ‖xk‖ and the definition of J2(k) that

(2.30) Σ2 ≤ Ap

(

∑

j∈ J2(k)

‖S jBR jxk‖
2
) 1/2

≤ Ap

(

∑

j∈ J2(k)

‖BR jxk‖
2
) 1/2

≤ Apε
(

∑

j∈ J2(k)

‖R jxk‖
2
) 1/2

≤ Apε
(

∑

j∈ J2(k)

‖R jxk‖
p
) 1/p

· card
(

J2(k)
) 1/s

≤ Apε
(

mk+k−1
∑

j=mk

‖R jxk‖
p
) 1/p

· k1/s ≤ ApB−1
p ε

∥

∥

∥

mk+k−1
∑

j=mk

R jxk

∥

∥

∥

p
· k1/s

≤ ApB−1
p Kpε‖xk‖ · k1/s

= ApB−1
p Kpε · k1/s.

To handle Σ1 we next formulate the specialized instance of the extraction of basic

sequences in Lp(0, 1) that we will need here to complete the argument.

Lemma 2.10 Let 2 < p <∞ and U ∈ S
(

Lp(0, 1)
)

. Suppose that (yk) ⊂ Lp(0, 1) is

a normalized sequence such that

(i) yk
w
→ 0 as k → ∞,

(ii) ‖U yk‖ ≥ a > 0 for k ∈ N.

Then there is a constant d > 0 (which is allowed to depend on a > 0, U ∈ S
(

Lp(0, 1)
)

,

and the sequence (yk)), so that ‖yk‖L2(0,1) ≥ d for k ∈ N.
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We complete the main argument before indicating how to get Lemma 2.10 from

[KP]. The term Σ1 is estimated by applying the preceding lemma to the sequence

(BR jxk), where j ∈
⋃

k∈N
J1(k). Here ‖B(

R j xk

‖R j xk‖
)‖ > ε for these j and k, where

B ∈ S
(

Lp(0, 1
)

and the sequence (
R j xk

‖R j xk‖
) determined by

⋃

k∈N
J1(k) is weakly null.

Thus Lemma 2.10 yields a constant d > 0 (which is allowed to depend on B, ε and

(
R j xk

‖R j xk‖
)), so that ‖R jxk‖L2(0,1) ≥ d‖R jxk‖ for all j ∈

⋃

k∈N
J1(k). In particular,

‖BR jxk‖ ≤ d−1‖B‖ · ‖R jxk‖L2(0,1) for these j and k. Thus we get from (2.18) and

‖S j‖ = 1 = ‖xk‖ that

(2.31)

Σ1 ≤ Ap

(

∑

j∈ J1(k)

‖S jBR jxk‖
2
) 1/2

≤ Apd−1‖B‖
(

∑

j∈ J1(k)

‖R jxk‖
2
L2(0,1)

) 1/2

≤ Apd−1‖B‖
(

mk+k−1
∑

j=mk

‖R jxk‖
2
L2(0,1)

) 1/2

= Apd−1‖B‖ ·
∥

∥

∥

mk+k−1
∑

j=mk

R jxk

∥

∥

∥

L2(0,1)

≤ Apd−1‖B‖ ·
∥

∥

∥

mk+k−1
∑

j=mk

R jxk

∥

∥

∥ ≤ ApKpd−1‖B‖.

In (2.31) we also used the L2(0, 1)-orthogonality of the (Haar) block vectors (R jxk)

for j = mk, . . . ,mk + k − 1, as well as unconditionality. Finally, by combining (2.30)

and (2.31) with Claim 2 we get the uniform estimates

c ′

2Kp‖A‖
· k1/s ≤ ‖Tkxk‖p ≤ ApKpd−1‖B‖ + ApB−1

p Kpε · k1/s, k ∈ N.

Since we have fixed 0 < ε < c ′

4‖A‖ ·
Bp

ApK2
p
, the preceding inequalities are incompatible

for all large enough k. This contradiction completes the proof of the implication

(ii) ⇒ (i), and hence of Theorem 2.9.

Proof of Lemma 2.10 Suppose to the contrary that lim infk→∞ ‖yk‖L2(0,1) = 0, and

pick a subsequence (ykr
) so that ‖ykr

‖L2(0,1) < 2−r for r ∈ N. Put

M(p, δ) =

{

x ∈ Lp(0, 1) :
∣

∣{t ∈ [0, 1] : |x(t)| ≥ δ‖x‖p}
∣

∣≥ δ
}

for δ > 0. Since ‖ykr
‖L2(0,1) ≤ 2−r‖ykr

‖p for each r, it follows from [KP, Theo-

rem 1.1d] that ykr
/∈ M(p, (2−r)2/3) for r ∈ N. Hence the argument in [KP, The-

orem 2] (see also [Wo, p. 327]) yields that (ykr
) contains a basic subsequence, still

denoted by (ykr
), so that (ykr

) is equivalent to the unit vector basis in ℓp. Denote

this by (ykr
) ≈ ℓp. Since (U ykr

) is weakly null by (i) and ‖U ykr
‖p ≥ a for r ∈ N

by (ii), we may assume that (U ykr
) is a basic sequence. By the Kadec–Pełczyński

dichotomy we may further assume that either (U ykr
) ≈ ℓ2 or (U ykr

) ≈ ℓp. Since

U ∈ S
(

Lp(0, 1)
)

, it is then easy to check that both alternatives are impossible (see

the argument following (2.22)).
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Remarks (i) One may add to Theorem 2.9 the equivalent condition that LARB is

strictly singular K
(

Lp(0, 1)
)

→ K
(

Lp(0, 1)
)

. This is seen by applying Fact 2.1(ii) to

the restriction LARB on K
(

Lp(0, 1)
)

, using that

(LARB|K(Lp (0,1)))
∗∗

= LARB : L(Lp(0, 1)) → L(Lp(0, 1))

in trace-duality (see Section 4) and the facts that U ∈ S(E) (respectively, U ∈ P(E))

whenever U ∗ ∈ P(E∗) (respectively, U ∗ ∈ S(E∗)).

(ii) The maximal condition from Theorem 2.9 remains valid for multiplications

LARB on L(X), where X is a complemented subspace of Lp(0, 1) (cf. the argument for

Example 4.5). This applies, e.g., to X = ℓp ⊕ ℓ2 and X = (
⊕

N
ℓ2)ℓp . Apart from the

case X = ℓp ⊕ ℓq in Section 4 we have not pursued the question to which classical

spaces X the ideas of Theorem 2.9 might be extended.

Recall that S
(

Lp(0, 1)
)

= P
(

Lp(0, 1)
)

for 1 < p < ∞ and p 6= 2, see [W,

Theorem]. The strictly singular result, combined with trace-duality, does not by itself

yield a strictly cosingular version of Theorem 2.9, because of a general lack of duality

between strict singularity and cosingularity. However, we conjecture that the answers

to the following problems are in the affirmative.

Problem Let 1 < p <∞, p 6= 2, and suppose that A,B ∈ S(Lp(0, 1)) = P(Lp(0, 1)).

(i) Is LARB strictly cosingular L(Lp(0, 1)) → L(Lp(0, 1))?

(ii) Is LARB strictly cosingular K
(

Lp(0, 1)) → K
(

Lp(0, 1))?

3 The Case of L
1- and L

∞-Spaces

In this section we study Problems 1.1 and 1.2 for multiplications LARB on L(X), where

X belongs to the class of L
1- or L

∞-spaces (our results will apply to classical non-

reflexive spaces such as L1(0, 1), C(0, 1) and ℓ∞ ≈ L∞(0, 1)). Many facts motivate

this study. Firstly, there are characterizations of the non-strictly (co)singular opera-

tors on X for many L
1- or L

∞-spaces X, which suggest that the strictly (co)singular

multipliers on L(X) could also be identified explicitly. For instance, U /∈ W (L1(0, 1))

if and only if there is M ⊂ L1(0, 1) so that M ≈ ℓ1, U defines an isomorphism

M → U M, and both M and U M are complemented in L1(0, 1) (see [P, Theorem II.1]

or [Wo, III.C.12]). Here the strictly (co)singular multipliers on L(ℓ1) are known from

Example 2.2. Secondly, the weakly compact multiplications on L(X) are known for

L
1- or L

∞-spaces.

Fact 3.1 ([R, Proposition 2], [ST1, 2.11]) Let X be a L
1- or L

∞-space, and A,B ∈
L(X) be non-zero operators. Then LARB is weakly compact on L(X) if and only if A,B ∈
W (X).

Our results in the case of L
1- or L

∞-spaces can be considered as applications of

Fact 3.1 and a result of Bourgain [B2] about the Dunford-Pettis property of certain

spaces of bounded operators. Recall that the Banach space X has the Dunford–Pettis

property (DPP) if for any Banach space Y and any weakly compact S ∈ W (X,Y )

one has ‖Sxn‖ → 0 as n → ∞ for all weak-null sequences (xn) ⊂ X. We refer to
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[LT1, Chapter II.5] or [B1, Chapter 1] for the definitions and the basic properties of

L
p-spaces. Any L

1- or L
∞-space has the DPP, see [LT1, II.4.30 and II.5.7].

We first characterize the strictly singular and cosingular multiplications on L(X),

where X is a L
1-space. The result below applies, e.g., to L1(0, 1), C(0, 1)∗ and (ℓ∞)∗.

Theorem 3.2 Let X be a L
1-space and A,B ∈ L(X) be non-zero operators. Then the

following conditions are equivalent.

(i) LARB is strictly singular on L(X),

(ii) LARB is strictly cosingular on L(X),

(iii) LARB is weakly compact on L(X),

(iv) A,B ∈ S(X) = P(X) = W (X),

(v) A ∈ S(X) and B∗ ∈ S(X∗),

(vi) A ∈ P(X) and B∗ ∈ P(X∗).

Proof The implications (i) ⇒ (v) and (ii) ⇒ (vi) follow from Fact 2.1(ii). Moreover,

the implications (v) ⇒ (iv) and (vi) ⇒ (iv) are easy consequences of duality and the

equalities W (X) = S(X) = P(X) for L
1-spaces X. To recall these equalities note

first that W (X) ⊂ S(X) ∩ P(X), since L
1-spaces have the DPP. Moreover, any L

1-

space X is weakly sequentially complete, see, e.g., [B1, 1.29]. It is then a known

consequence (see, e.g., [B1, 1.6]) of Rosenthal’s ℓ1-theorem that U /∈ S(X) ∪ P(X)

whenever U /∈ W (X).

Conversely, if B ∈ W (X), then B∗ ∈ W (X∗) ⊂ S(X∗) by the DPP of the L
∞-space

X∗. The implication (iv) ⇒ (vi) is checked in a similar manner. The conditions (iii)

and (iv) are equivalent by Fact 3.1. It remains to prove that (iv) ⇒ (i) and (iv) ⇒ (ii).

Assume that A,B ∈ W (X). Thus A∗∗,B∗∗ ∈ W (X∗∗), where the L
1-space X∗∗

has the DPP, so that LA∗∗RB∗∗ : L(X∗∗) → L(X∗∗) is weakly compact according to

Fact 3.1. It follows that LA∗∗RB∗∗ is also completely continuous, since L(X∗∗) itself

has the DPP (this fact is verified separately in Lemma 3.3(i) below). This means that

LA∗∗RB∗∗ maps weak-null sequences of L(X∗∗) to norm-null sequences. Suppose that

(T j ) ⊂ L(X) is a weak-null sequence, so that T∗∗
j

w
→ 0 in L(X∗∗) as j → ∞ (as

S 7→ S∗∗ is w − w continuous). The complete continuity of LA∗∗RB∗∗ implies that

‖AT jB‖ = ‖A∗∗T∗∗
j B∗∗‖ → 0 as j → ∞. Hence LARB is completely continuous on

L(X). Since LARB is also weakly compact on L(X) by Fact 3.1, it follows that LARB is

strictly singular L(X) → L(X). The DPP of X yields further that LARB(S) = ASB ∈
K(X) for S ∈ L(X), so that LARB is also weakly compact considered as an operator

L(X) → K(X). Since K(X) has the DPP by Lemma 3.3(ii) below, we get that LARB is

strictly cosingular L(X) → K(X) (as well as L(X) → L(X)) by [P1, Proposition I.4b].

The proof will thus be complete once we have established Lemma 3.3 below.

We next formulate the precise versions of the DPP-results, which are essential for

the arguments of Theorems 3.2 and 3.4. We are not aware of references for these con-

sequences of [B2], though we presume that they might be known to some specialists.

Hence we are obliged to include quite careful arguments.

Let K be a compact Hausdorff space and (Ω,Σ, µ) a measure space. Here

L1(µ,C(K)) will be the vector-valued function space consisting of (equivalence
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classes of) Bochner µ-integrable functions Ω → C(K), and C
(

K, L1(µ)
)

the space of

continuous functions K → L1(µ). Let E ˆ⊗
πF be the projective and E ˆ⊗

ǫF the injec-

tive tensor product of the Banach spaces E and F. We refer to, e.g., [DF] for the def-

initions and the general properties of these tensor products. Recall that (E ˆ⊗
πF)∗ =

L(E, F∗). The identifications L1(µ,C(K)) = L1(µ) ˆ⊗
πC(K) and C(K, L1(µ)) =

C(K) ˆ⊗
ǫL

1(µ) used below are explained in [DF, 3.3 and 4.2.(2)].

Lemma 3.3 Let E be a L
1- or L

∞-space. Then

(i) L(E∗∗)∗ and L(E∗∗) have the DPP.

(ii) K(E) has the DPP.

Proof (i) Suppose first that E is a L
1-space, so that E∗ is a L

∞-space by [LT1,

II.5.8.(ii)]. Then E∗∗ is isomorphic to a complemented subspace of L1(µ) for some

measure space (Ω,Σ, µ), and E∗ is isomorphic to a complemented subspace of C(K)

for some compact space K (see, e.g., [B1, 1.23]). It follows that E∗∗ ˆ⊗
πE∗ is isomor-

phic to a complemented subspace of L1(µ) ˆ⊗
πC(K), so that there are operators

j : E∗∗ ˆ⊗

π
E∗ → L1(µ)

ˆ⊗

π
C(K), p : L1(µ)

ˆ⊗

π
C(K) → E∗∗ ˆ⊗

π
E∗,

for which p ◦ j = I
E∗∗ ˆ⊗

πE∗ . Hence (E∗∗ ˆ⊗
πE∗)∗∗ is isomorphic to a complemented

subspace of (L1(µ) ˆ⊗
πC(K))∗∗, since p∗∗ ◦ j∗∗ = I

(E∗∗ ˆ⊗
πE∗)∗∗

. Bourgain showed

[B2, Corollary 7] (cf. [D, pp. 47–51]) that the bidual

(

L1(µ)
ˆ⊗

π
C(K)

) ∗∗
= L1

(

µ,C(K)
) ∗∗

has the DPP. Hence (E∗∗ ˆ⊗
πE∗)∗∗ = L(E∗∗)∗ has the DPP (recall here that

(E∗∗ ˆ⊗
πE∗)∗ = L(E∗∗)). Finally, the Dunford–Pettis property is inherited by the

predual L(E∗∗). A similar argument applies to the L
∞-space E, since E∗∗ ˆ⊗

πE∗ ≈

E∗ ˆ⊗
πE∗∗, where E∗ is a L

1- and E∗∗ is a L
∞-space by [LT1, II.5.8.(ii)].

(ii) Emmanuele [E, p. 475] pointed out (without including the details) that E ˆ⊗
ǫF

has the DPP whenever E is a L
∞-space and F is a L

1-space. This general fact im-

plies that K(E) = E∗ ˆ⊗
ǫE has the DPP whenever E is a L

1-space (recall that E has

the approximation property, see [LT1, II.5.7]). In a similar manner one gets that

K(E) = E∗ ˆ⊗
ǫE ≈ E ˆ⊗

ǫE
∗ has the DPP whenever E is a L

∞-space. We sketch

here for completeness how to deduce Emmanuele’s remark in [E, p. 475] from [B2,

Corollary 7] by modifying some ideas from [E, Theorem 2] and [Ci, Theorem 1]. Let

S : E ˆ⊗
ǫF → Z be any weakly compact operator, where Z is a Banach space, so that

S∗∗ ∈ W
(

(E ˆ⊗
ǫF)∗∗,Z

)

. Here E ˆ⊗
ǫF ⊂ E∗∗ ˆ⊗

ǫF ⊂ (E ˆ⊗
ǫF)∗∗ as closed subspaces

(cf. [E, Lemma 1] for the latter isometry), so that the restriction T = S∗∗|
E∗∗ ˆ⊗

ǫF

is weakly compact E∗∗ ˆ⊗
ǫF → Z. Since E∗∗ is isomorphic to a complemented sub-

space of C(K) for some compact set K, there are operators J1 : E∗∗ → C(K) and

P : C(K) → E∗∗ satisfying P ◦ J1 = IE∗∗ . Let P ⊗ IF : C(K) ˆ⊗
ǫF → E∗∗ ˆ⊗

ǫF be the
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corresponding tensored operator. Moreover, F∗∗ is isomorphic to a complemented

subspace of L1(µ) for some measure space (Ω,Σ, µ), so there are J2 : F∗∗ → L1(µ)

and Q : L1(µ) → F∗∗ satisfying Q ◦ J2 = IF∗∗ . By repeating the preceding argument

for U = T ◦ (P ⊗ IF) ∈ W
(

C(K) ˆ⊗
ǫF,Z

)

we get a weakly compact operator

V = (U ∗∗|
C(K) ˆ⊗

ǫF
∗∗) ◦ (IC(K) ⊗ Q) : C(K)

ˆ⊗

ǫ
L1(µ) → Z.

Above IC(K) ⊗ Q is a projection C(K) ˆ⊗
ǫL

1(µ) → C(K) ˆ⊗
ǫ J2(F∗∗), where

C(K) ˆ⊗
ǫL

1(µ) = C
(

K, L1(µ)
)

has the DPP by [B2, Corollary 7]. It follows that

‖Tvn‖ → 0 as n → ∞ whenever (vn) ⊂ E ˆ⊗
ǫF is weakly null, since T is (up to a

linear isomorphism) a restriction of V .

There are analogues of Theorem 3.2 for quite large subclasses of L
∞-spaces, but

it will be necessary to split the consideration into two parts (cf. Example 3.6 below).

Theorem 3.4 Let X be a L
∞-space, and A,B ∈ L(X) non-zero operators.

(a) Assume that

(3.1) S(X) = W (X).

Then the following conditions are equivalent.

(i) LARB is strictly singular on L(X),

(ii) LARB is weakly compact on L(X),

(iii) A,B ∈ S(X) = W (X),

(iv) A ∈ S(X) and B∗ ∈ S(X∗).

(b) Assume that

(3.2) P(X) = W (X).

Then the following conditions are equivalent.

(i) LARB is strictly cosingular on L(X),

(ii) LARB is weakly compact on L(X),

(iii) A,B ∈ P(X) = W (X),

(iv) A ∈ P(X) and B∗ ∈ P(X∗).

Proof The argument of Theorem 3.2 can be carried over almost verbatim to the

case of L
∞-spaces. Recall first that W (X∗) = S(X∗) = P(X∗), since X∗ is a weakly

sequentially complete L
1-space. In this event (3.1) or (3.2) allow us to check that

conditions (iii) and (iv) are equivalent in parts (a) and (b), respectively. The crucial

implications (iii) ⇒ (i) in parts (a) and (b) are proved as in Theorem 3.2, using the

DPP of L(X∗∗) and K(X) for L
∞-spaces X (see Lemma 3.3).

Corollary 3.5 Let X = C(K), where K is a compact metric space, or let X = ℓ∞ =

C(βN) ≈ L∞(0, 1). Then (3.1) and (3.2) are both satisfied, so that the conditions in

parts (a) and (b) of Theorem 3.4 are all equivalent.
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Proof Recall that if K is a compact Hausdorff space, then C(K) satisfies condition

(3.1) by [P, Theorem I.1]. If K is a compact metric space, then C(K) satisfies condi-

tion (3.2) by [P, I.2]. Moreover, ℓ∞ = C(βN) ≈ L∞(0, 1) satisfies (3.2) in view of

[LT2, 2.f.4].

There are L
∞-spaces having quite unexpected properties, see [B1, Chapter III]

or [BP]. We note the following examples, which point out the limitations of Theo-

rem 3.4.

Example 3.6 (i) Let X be the L
∞-space c0 ⊕ ℓ∞. Then W (X) = S(X)  P(X),

since the inclusion J : c0 → ℓ∞ is strictly cosingular (see [P, p. 36] or [LT2, 2.f.4]).

(ii) Let Y be the separable L
∞-space constructed by Bourgain and Delbaen (see

[B1, Chapter III]), so that Y has the Schur property. The separability of Y implies

that Y does not have the Grothendieck property (that is, there is a w∗-null sequence

(x∗n ) ⊂ Y ∗ without any weak-null subsequences). Hence U /∈ W (Y, c0), where U x =

(x∗n (x)) for x ∈ Y . It is easy to deduce that U ∈ S(Y, c0), since Y is ℓ1-saturated

(see, e.g., [B1, Proposition I.1.3]), but c0 is c0-saturated by, e.g., [LT2, 2.a.1 and 2.a.2].

Hence W (X)  S(X) for the L
∞-space X = Y ⊕ c0.

(iii) Both (3.1) and (3.2) fail to hold for the L
∞-space X = Y ⊕ c0 ⊕ ℓ∞.

4 Further Examples

This section contains examples that demonstrate the intrinsic dependence of Prob-

lem 1.1 on the space X, as well as the optimality of Fact 2.1(i). The main exam-

ple (Theorem 4.1) identifies the strictly singular and cosingular multiplications on

L(ℓp ⊕ ℓq) for 1 < p < q < ∞. We write S ∈ L(ℓp ⊕ ℓq) as operator matrices

S = (S jk), where S jk = P jSIk, and P j and Ik are the natural projections and inclu-

sions associated to ℓp ⊕ ℓq for j, k ∈ {1, 2}. Recall that

(4.1) S(ℓp ⊕ ℓq) = P(ℓp ⊕ ℓq) =

(

K(ℓp) K(ℓq, ℓp)

L(ℓp, ℓq) K(ℓq)

)

by total incomparability (see [LT2, 2.a.3]) and Pitt’s theorem. It follows from (4.1)

that U ∗ ∈ S(ℓp ′

⊕ ℓq ′

) if and only if U ∈ S(ℓp ⊕ ℓq), and that U ∗ ∈ P(ℓp ′

⊕ ℓq ′

)

if and only if U ∈ P(ℓp ⊕ ℓq). The following example should be contrasted with

Example 4.5 for X = ℓp ⊕ ℓq ⊕ ℓr , where 1 < p < q < r <∞.

Theorem 4.1 Let 1 < p < q < ∞. Then the following conditions are equivalent for

non-zero operators A,B ∈ L(ℓp ⊕ ℓq):

(i) LARB is strictly singular L(ℓp ⊕ ℓq) → L(ℓp ⊕ ℓq),

(ii) LARB is strictly cosingular L(ℓp ⊕ ℓq) → L(ℓp ⊕ ℓq),

(iii) A,B ∈

(

K(ℓp) K(ℓq, ℓp)

L(ℓp, ℓq) K(ℓq)

)

.

We will focus on the strictly cosingular case, which is the novel part. The basic

strategy resembles that of Theorem 2.9, but applied here to certain spaces of nuclear
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operators. For the reader’s convenience we will present the details, which are less

involved than in the case of X = Lp(0, 1) (no versions of Lemmas 2.6 and 2.7 will be

needed, and the concluding step is much simpler).

Let E and F be Banach spaces. The operator S : E → F is nuclear if there are

sequences (u∗
j ) ⊂ E∗ and (v j) ⊂ F, so that S =

∑∞
j=1 u∗

j ⊗v j and
∑∞

j=1 ‖u∗
j ‖·‖v j‖ <

∞. The nuclear norm of S is

‖S‖N = inf
{

∞
∑

j=1

‖u∗
j ‖ · ‖v j‖ : S =

∞
∑

j=1

u∗
j ⊗ v j

}

.

Then (N(E, F), ‖ · ‖N ) is a Banach space, where N(E, F) is the nuclear operators

E → F. The composition operator S 7→ ASB is bounded in the nuclear setting for

bounded operators A and B, since ‖ASB‖N ≤ ‖A‖ · ‖B‖ · ‖S‖N for S ∈ N(E, F) and

compatible A,B.

The proof will again be split into smaller steps. We begin by verifying some results

for composition operators between spaces of nuclear operators in the setting (and

the notation) of Lemma 2.4. Clearly the nuclear analogue of Lemma 2.3 holds, since

nuclear operators can be approximated in ‖ · ‖N by finite rank operators. The un-

conditional operator blocking principle (Fact 2.5) also has a nuclear version, since its

proof [LT2, 1.c.8 and Remark 1, p. 21] is based on averaging.

Lemma 4.2 Suppose that E1, . . . , E4 are reflexive Banach spaces having unconditional

bases, and let A ∈ L(E3, E4) and B ∈ L(E1, E2) be fixed. Assume moreover that there is

a normalized block-diagonal sequence (Sk) ⊂ N(E2, E3), so that ‖ASkB‖N ≥ c > 0 for

k ∈ N. Then there is a subsequence (Sk j
) so that

(

LARB(Sk j
)
)

= (ASk j
B) is equivalent

(and as close as we wish in ‖ · ‖N ) to a block-diagonal sequence (T j) ⊂ N(E1, E4).

Proof Since (Sk) ⊂ N(E2, E3) is a normalized block-diagonal sequence, it is not dif-

ficult to modify the argument of Lemma 2.4 (replacing the operator norm by ‖ · ‖N ).

We leave the details to the reader.

The following technical lemma is needed for the main reduction step.

Lemma 4.3 Let E1 and E2 be reflexive Banach spaces having unconditional bases with

unconditional basis constants d1, d2 ≥ 1. Let (nk) ⊂ N be a strictly increasing sequence

(where n0 = 1). Assume that the sequence (Rk) ⊂ N(E1, E2) satisfies

(i) ‖Rk‖N = 1,

(ii) ‖P(2)
nk

RkP(1)
nk

− Rk‖N ≤ 1
8d1d2

2−k,

(iii) P(2)
nk−1

RkP(1)
nk−1

= 0,

for k ∈ N. Then there is a constant c1 = c1(d1, d2) > 0 so that

∥

∥

∥

∞
∑

k=1

akP(2)
nk,nk−1

RkP(1)
nk,nk−1

∥

∥

∥

N
≤ c1

∥

∥

∥

∞
∑

k=1

akRk

∥

∥

∥

N

for all scalar sequences (ak) such that
∑∞

k=1 akRk converges in N(E1, E2).
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Proof Note first that

(4.2)
∥

∥

∥

∞
∑

k=1

akP(2)
nk

RkP(1)
nk

∥

∥

∥

N
≤ 2

∥

∥

∥

∞
∑

k=1

akRk

∥

∥

∥

N

whenever
∑∞

k=1 akRk converges in N(E1, E2). Indeed,
∑∞

k=1 akP(2)
nk

RkP(1)
nk

converges in

N(E1, E2), and it follows from (iii) that

|a j | · ‖P(2)
n j

R jP
(1)
n j
‖N =

∥

∥

∥P(2)
n j

[

∞
∑

k=1

akP(2)
nk

RkP(1)
nk

]

P(1)
n j

− P(2)
n j−1

[

∞
∑

k=1

akP(2)
nk

RkP(1)
nk

]

P(1)
n j−1

∥

∥

∥

N

≤ 2d1d2

∥

∥

∥

∞
∑

k=1

akP(2)
nk

RkP(1)
nk

∥

∥

∥

N
, j ∈ N.

Hence ‖
∑∞

k=1 akP(2)
nk

RkP(1)
nk
‖N ≤ ‖

∑∞
k=1 akRk‖N + 2

7
‖

∑∞
k=1 akP(2)

nk
RkP(1)

nk
‖N by as-

sumption (ii), since ‖P(2)
n j

R jP
(1)
n j
‖N ≥ 7

8
. The nuclear version of Fact 2.5, applied

to the operator S =
∑∞

k=1 akP(2)
nk

RkP(1)
nk

∈ N(E1, E2), and (4.2) yield that

∥

∥

∥

∞
∑

k=1

akP(2)
nk,nk−1

RkP(1)
nk,nk−1

∥

∥

∥

N
≤ c

∥

∥

∥

∞
∑

k=1

akP(2)
nk

RkP(1)
nk

∥

∥

∥

N
≤ 2c

∥

∥

∥

∞
∑

k=1

akRk

∥

∥

∥

N
,

where c = c(d1, d2) > 0. Note that above we clearly have
∑∞

r=1 P(2)
nr ,nr−1

SP(1)
nr ,nr−1

=
∑∞

k=1 akP(2)
nk,nk−1

RkP(1)
nk,nk−1

by (iii).

The following result is a nuclear analogue of Proposition 2.8, and it contains the

main reduction step of the argument.

Proposition 4.4 Let E1, . . . , E4 be reflexive Banach spaces having unconditional bases.

Assume that A ∈ S(E3, E4) and B∗ ∈ S(E∗
2 , E

∗
1 ) are such that LARB is a non-strictly

singular operator N(E2, E3) → N(E1, E4).

Then there is a normalized block-diagonal sequence (Sk) ⊂ N(E2, E3) so that

• LARB is bounded below on [Sk : k ∈ N],
• (LARB(Sk)) = (ASkB) is equivalent (and as close as we wish in ‖ · ‖N) to a block-

diagonal sequence (Tk) ⊂ N(E1, E4).

Proof By assumption there is an infinite-dimensional subspace M ⊂ N(E2, E3) and

c > 0 so that

‖LARB(S)‖N = ‖ASB‖N ≥ c‖S‖N , S ∈ M.
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We first construct a sequence (Rk) ⊂ M and an increasing sequence (nk) ⊂ N so that

‖Rk‖N = 1,(4.3)

‖P(3)
nk

RkP(2)
nk

− Rk‖N ≤
1

16d2d3

· 2−k,(4.4)

P(3)
nk−1

RkP(2)
nk−1

= 0,(4.5)

‖LARB(Rk) − LARB(P(3)
nk,nk−1

RkP(2)
nk,nk−1

)‖N ≤ b · 2−k(4.6)

for k ∈ N. Here d2, d3 ≥ 1 are the unconditional basis constants in E2 and E3, and

b satisfies 0 < b < min{ c
2
, c1

8‖A‖·‖B‖d2d3

}, where c1 = c1(d2, d3) > 0 is the constant

given by Lemma 4.3.

Suppose that we have chosen operators R1, . . . ,Rk−1 and 1 = n0 < n1 < · · · <
nk−1 satisfying (4.3)–(4.6). We proceed as in Proposition 2.8 and choose a normal-

ized Rk ∈ M so that P(3)
nk−1

RkP(2)
nk−1

= 0 and

‖LARB(Rk) − LARB(Q(3)
nk−1

RkQ(2)
nk−1

)‖N ≤ b · 2−k−1.

For this we need to note that Fact 2.1(i) remains valid for compositions N(E2, E3) →
N(E1, E4) (see [LS, 2.1, 2.2 and 2.3]). Conditions (4.4) and (4.6) are then ensured

by truncation in ‖ · ‖N . Indeed, the nuclear version of Lemma 2.3 gives nk > nk−1,

so that ‖P(3)
nk

RkP(2)
nk

− Rk‖N and ‖P(3)
nk

Q(3)
nk−1

RkQ(2)
nk−1

P(2)
nk

− Q(3)
nk−1

RkQ(2)
nk−1

‖N are small

enough.

Put Uk = P(3)
nk,nk−1

RkP(2)
nk,nk−1

for k ∈ N. Then ‖Uk‖N ≥ c
2‖A‖·‖B‖ for k ∈ N, since

‖LARB(Uk)‖N ≥ c
2

by (4.6) and Rk ∈ M. By arguing as in the proof of Lemma 4.3 we

get

(4.7)
c

2‖A‖ · ‖B‖
sup
k∈N

|ak| ≤ 2d2d3

∥

∥

∥

∞
∑

k=1

akUk

∥

∥

∥

N

whenever
∑∞

k=1 akUk converges in N(E2, E3). Since
∑∞

k=1 akRk ∈ M, we get from

Lemma 4.3 and (4.6) that

∥

∥

∥

∞
∑

k=1

akUk

∥

∥

∥

N
≤ c1

∥

∥

∥

∞
∑

k=1

akRk

∥

∥

∥

N
≤

c1

c

∥

∥

∥LARB

(

∞
∑

k=1

akRk

)∥

∥

∥

N

≤
c1

c

∥

∥

∥LARB

(

∞
∑

k=1

akUk

)∥

∥

∥

N
+

c1

c
· b · sup |ak|.

Lemma 4.3 can be applied here thanks to (4.3)–(4.6). Since b < c1

8‖A‖·‖B‖d2d3

, it

follows from (4.7) that

∥

∥

∥LARB

(

∞
∑

k=1

akUk

)∥

∥

∥

N
≥

c

2c1

∥

∥

∥

∞
∑

k=1

akUk

∥

∥

∥

N

whenever
∑∞

k=1 akUk converges in N(E2, E3). The proof of Proposition 4.4 is thus

complete by using Lemma 4.2 to pass to a suitable subsequence (Sk) of (Uk).
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Remark Proposition 4.4, as well as Lemmas 4.2 and 4.3, also hold for compositions

on K(E1, E2). It is not hard to modify the arguments.

If E and F are reflexive Banach spaces having Schauder bases, then there is an iso-

metric identification K(E, F)∗ = N(F, E) given by 〈S,T〉 = tr(TS) =
∑∞

j=1 y∗j (Tx j )

for S =
∑∞

j=1 y∗j ⊗ x j ∈ N(F, E) and T ∈ K(E, F) (see, e.g., [FS, Theorem 1]). Simi-

larly, N(F, E)∗ = L(E, F) and K(E, F) ⊂ K(E, F)∗∗ = L(E, F) is the natural inclusion.

Let A,B ∈ L(E, F). Then LARB maps K(F, E) → K(E, F) and (LARB)∗ : K(E, F)∗ →
K(F, E)∗ is identified with LBRA : N(F, E) → N(E, F) in this trace-duality, since

〈(LARB)∗(y∗ ⊗ x),T〉 = tr
(

ATB ◦ (y∗ ⊗ x)
)

= y∗(ATBx)

= tr
(

T ◦ (A∗y∗ ⊗ Bx)
)

= 〈LBRA(y∗ ⊗ x),T〉

for y∗ ∈ F∗, x ∈ E and T ∈ K(E, F). (There are alternative trace-duality identi-

fications K(E, F)∗ = N(E∗, F∗) and N(E∗, F∗)∗ = L(E, F), for which (LARB)∗ =

LA∗RB∗ . The one described above avoids dual exponents here.)

Proof of Theorem 4.1 The implications (i) ⇒ (iii) and (ii) ⇒ (iii) follow from

Fact 2.1 and the duality facts recorded after (4.1).

(iii) ⇒ (ii): Suppose that A,B ∈

(

K(ℓp) K(ℓq, ℓp)

L(ℓp, ℓq) K(ℓq)

)

. Decompose

A =

(

0 0

A21 0

)

+

(

A11 A12

0 A22

)

≡ A0 + K1, B = B0 + K2,

where K1,K2 ∈ K(ℓp ⊕ ℓq), so that LARB = LA0
RB0

+ LA0
RK2

+ LK1
RB0

+ LK1
RK2

.

Fact 2.1(i) and (4.1) imply that LA0
RK2

+ LK1
RB0

+ LK1
RK2

is strictly cosingular on

L(ℓp ⊕ ℓq). We must verify that

S 7→ LA0
RB0

(S) =

(

0 0

A21S21B21 0

)

, S =

(

S11 S12

S21 S22

)

∈ L(ℓp ⊕ ℓq),

is strictly cosingular on L(ℓp ⊕ ℓq). Hence, by using the natural projections on L(ℓp ⊕
ℓq) associated to the operator matrix S = (S jk) ∈ L(ℓp ⊕ ℓq), it will be enough

(after simplifying our notation) to verify that LARB is strictly cosingular L(ℓq, ℓp) =

K(ℓq, ℓp) → K(ℓp, ℓq) for A,B ∈ L(ℓp, ℓq). One has (LARB)∗ = LBRA : N(ℓq, ℓp) →
N(ℓp, ℓq) in the trace-duality described above. It will then suffice, by easy duality, to

verify the following

Claim 3 LBRA is strictly singular N(ℓq, ℓp) → N(ℓp, ℓq) for A,B ∈ L(ℓp, ℓq).

Proof of Claim 3 Suppose to the contrary that LBRA is not strictly singular

N(ℓq, ℓp) → N(ℓp, ℓq). Proposition 4.4 yields a normalized block-diagonal sequence

(Sk) ⊂ N(ℓq, ℓp), so that LBRA defines an isomorphism [Sk : k ∈ N] → [BSkA :

k ∈ N], and (BSkA) is equivalent to a block-diagonal sequence (Tk) ⊂ N(ℓp, ℓq). We

check that

(4.8)
∥

∥

∥

∞
∑

k=1

ckSk

∥

∥

∥

N
=

∞
∑

k=1

|ck|, (ck) ∈ ℓ1.
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Clearly ‖
∑∞

k=1 ckSk‖N ≤
∑∞

k=1 |ck| for (ck) ∈ ℓ1. By finite-dimensional trace-duality

there is a normalized block-diagonal sequence (Uk) ⊂ K(ℓp, ℓq) so that 〈S j ,Uk〉 =

δ j,k for j, k ∈ N. Since p < q it is not difficult to check that ‖
∑∞

k=1 bkUk‖ =

supk∈N
|bk| in K(ℓp, ℓq) for all (bk) ∈ c0. Hence

∥

∥

∥

∞
∑

k=1

ckSk

∥

∥

∥

N
≥ sup

{∣

∣

∣

〈

∞
∑

k=1

ckSk,

∞
∑

j=1

b jU j

〉∣

∣

∣ : sup
j∈N

|b j | ≤ 1
}

= sup
{

∞
∑

k=1

|bkck| : sup
j∈N

|b j | ≤ 1
}

=

∞
∑

k=1

|ck|.

On the other hand, [Sk : k ∈ N] ≈ [BSkA : k ∈ N] ⊂ N(ℓp, ℓq), where N(ℓp, ℓq) =

K(ℓq, ℓp)∗ is reflexive by [K, Corollary 2], since L(ℓq, ℓp) = K(ℓq, ℓp) for p < q. This

clearly contradicts (4.8), which proves the Claim.

(iii) ⇒ (i): We only sketch the idea, and leave the details to the reader. By a

similar reduction as above it will be enough to verify that LARB is strictly singular

K(ℓq, ℓp) → K(ℓp, ℓq) for A,B ∈ L(ℓp, ℓq). If LARB is not strictly singular K(ℓq, ℓp) →
K(ℓp, ℓq), then the version of Proposition 4.4 for spaces of compact operators yields

a normalized block-diagonal sequence (Sk) ⊂ K(ℓq, ℓp), so that LARB is an isomor-

phism [Sk : k ∈ N] → [ASkB : k ∈ N], where (ASkB) is equivalent to a semi-

normalized block-diagonal sequence (Tk) ⊂ K(ℓp, ℓq). One verifies that [Sk : k ∈
N] ≈ [Tk : k ∈ N] ≈ c0, which contradicts the reflexivity of L(ℓq, ℓp) = K(ℓq, ℓp) for

p < q, [K, Corollary 2].

The following example shows that, contrary to Theorem 4.1, the maximal condi-

tions for strict (co)singularity are not the correct ones for X = ℓp ⊕ ℓq ⊕ ℓr , where

1 < p < q < r < ∞, or for (certain) sums X = Lp(0, 1) ⊕ Lq(0, 1). Here the strict

(co)singularity of A and B does not always imply the strict (co)singularity of LARB.

Example 4.5 (i) Suppose that X = ℓp ⊕ ℓq ⊕ ℓr , where 1 < p < q < r < ∞. Let

j2 : ℓp → ℓq, j1 : ℓq → ℓr be the natural inclusions, and define J1, J2 ∈ S(X) ∩ P(X)

by

J1(x, y, z) = (0, 0, j1 y), J2(x, y, z) = (0, j2x, 0), for (x, y, z) ∈ ℓp ⊕ ℓq ⊕ ℓr.

Then L J1
R J2

is neither strictly singular nor cosingular on L(X).

(ii) Let X = Lp(0, 1)⊕Lq(0, 1), where p, q ∈ (1,∞) \ {2} and p 6= q. Then there

are A,B ∈ S(X) ∩ P(X), so that LARB is neither strictly singular nor cosingular on

L(X).

Proof (i) J1, J2 ∈ S(X) ∩ P(X), since j1 and j2 are strictly singular and cosingular

(recall that L(ℓu, ℓv) = S(ℓu, ℓv) = P(ℓu, ℓv) for 1 < u < v < ∞ by the total

incomparability of ℓu and ℓv, see [LT2, 2.a.3], and reflexivity). For 3 × 3-operator
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matrices S = (S jk) ∈ L(X) we have

L J1
R J2

(S) = J1(S jk) J2 =





0 0 0

j1S22 j2 0 0

0 0 0



 .

It suffices to verify that L j1
R j2

is neither strictly singular nor cosingular L(ℓq) →
L(ℓp, ℓr).

Clearly ‖
∑∞

j=1 c je
∗
j ⊗ e j‖ = sup j |c j | in L(ℓq) for (c j) ∈ ℓ∞, where (en) ⊂ ℓq and

(e∗n ) ⊂ ℓq ′

are the unit vector bases, and q ′ is the conjugate exponent of q. Moreover,

it is not difficult to check that

∥

∥

∥L j1
R j2

(

∞
∑

j=1

c je
∗
j ⊗ e j

)∥

∥

∥ =

∥

∥

∥

∞
∑

j=1

c j j∗2 e∗j ⊗ j1e j

∥

∥

∥ = sup
j∈N

|c j |, (c j) ∈ ℓ∞

in L(ℓp, ℓr). Thus L j1
R j2

is a linear isometry M → L j1
R j2

(M), where M = [e∗n ⊗ en :

n ∈ N] is isometric to ℓ∞ in L(ℓq). The injectivity of ℓ∞ implies that L j1
R j2

(M)

is complemented in L(ℓp, ℓr). Let N ⊂ L(ℓp, ℓr) be an infinite-dimensional closed

subspace, so that L(ℓp, ℓr) = L j1
R j2

(M) ⊕ N . Thus QN ◦ L j1
R j2

is surjective L(ℓq) →

L(ℓp, ℓr)/N , so that L j1
R j2

/∈ P
(

L(ℓq), L(ℓp, ℓr)
)

.

(ii) ℓr ⊕ ℓ2 is isomorphic to a complemented subspace of Lr(0, 1) for r ∈ (1,∞),

so that we may decompose Lp(0, 1) ⊕ Lq(0, 1) = M ⊕ N , where M ≈ ℓp ⊕ ℓq ⊕ ℓ2.

According to part (i) there are A0,B0 ∈ S(M)∩P(M) so that LA0
RB0

is neither strictly

singular nor cosingular L(M) → L(M). Let A(x, y) = (A0x, 0) and B(x, y) = (B0x, 0)

for (x, y) ∈ X = M ⊕ N . One checks as before that LARB is neither strictly singular

nor cosingular on L(X).

Remarks Strict singularity and cosingularity of LARB are, in general, unrelated. For

instance, let A ∈ L(ℓ1, ℓ2) be a linear surjection, and let B ∈ K(ℓ1) be non-zero. Then

Fact 2.1 yields that LARB is strictly singular L(ℓ1) → L(ℓ1, ℓ2), but not strictly cosingu-

lar. Moreover, let A : ℓ2 → C(0, 1) be a linear embedding, and let B ∈ K(ℓ2) be non-

zero. Then LARB is strictly cosingular L(ℓ2) → L
(

ℓ2,C(0, 1)
)

, but not strictly sin-

gular. Here the fact that A ∈ P
(

ℓ2,C(0, 1)
)

follows, e.g., from [P, Proposition I.4b].

These examples transfer to X = ℓ1 ⊕ ℓ2 and X = ℓ2 ⊕C(0, 1), respectively.

Finally, there has been substantial parallel work on properties of tensor products of

operators in the literature. We refer to [DF] for a systematic exposition, and to [DiF]

and [R] for results closer to the topic of the present paper. Several of our results yield

information about the strict (co)singularity of tensor products of operators between

ǫ-tensor products of concrete Banach spaces. As a sample we restate Theorem 2.9.

Theorem 4.6 Let A ∈ L(Lp ′

(0, 1)) and B ∈ L(Lp(0, 1)) be non-zero operators. Then

A ˆ⊗
ǫB is strictly singular on Lp ′

(0, 1) ˆ⊗
ǫL

p(0, 1) if and only if A ∈ S(Lp ′

(0, 1)) and

B ∈ S(Lp(0, 1)).

Proof One may identify K(Lp(0, 1)) = Lp ′

(0, 1) ˆ⊗
ǫL

p(0, 1) and the tensor operator
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A ˆ⊗
ǫB with LBRA∗ , since B(x∗⊗y)A∗

= Ax∗⊗By for x∗ ∈ Lp ′

(0, 1) and y ∈ Lp(0, 1).

The claim now follows from Theorem 2.9 and [W, Corollary 2].

References

[B1] J. Bourgain, New Classes of L
p-Spaces. Lecture Notes in Math. 889, Springer-Verlag, Berlin, 1981.

[B2] , On the Dunford–Pettis property. Proc. Amer. Math. Soc. 81(1981), 265–272.

[BP] J. Bourgain and G. Pisier, A construction of L∞-spaces and related Banach spaces. Bol. Soc. Brasil.
Mat. 14(1983), 109–123.

[Ci] R. Cilia, A remark on the Dunford–Pettis property in L1(µ,X). Proc. Amer. Math. Soc. 120(1994),
183–184.

[C] R. Curto, Spectral theory of elementary operators. In: Elementary Operators and Applications,
World Scientific, River Edge, NJ, 1991, pp. 3–52.

[DF] A. Defant and K. Floret, Tensor norms and operator ideals. North-Holland, 1993.

[D] J. Diestel, A survey of results related to the Dunford–Pettis property. Contemporary Math. 2 (1980),
15–60.

[DiF] J. Diestel and B. Faires, Remarks on classical Banach operator ideals. Proc. Amer. Math. Soc.
58(1976), 189–196.

[E] G. Emmanuele, Remarks on weak compactness of operators on certain injective tensor products.
Proc. Amer. Math. Soc. 116(1992), 473–476.

[FS] M. Feder and P. Saphar, Spaces of compact operators and their dual spaces. Israel J. Math.
21(1975), 38–49.

[F] L. A. Fialkow, Structural properties of elementary operators. In: Elementary Operators and
Applications, World Scientific, River Edge, NJ, 1991, pp. 55–113.
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