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Abstract We show that, for any prime p, there exist absolutely simple abelian varieties over Q with
arbitrarily large p-torsion in their Tate-Shafarevich groups. To prove this, we construct explicit μp-covers
of Jacobians of curves of the form yp = x(x−1)(x−a) which violate the Hasse principle. In the appendix,
Tom Fisher explains how to interpret our proof in terms of a Cassels-Tate pairing.

1. Introduction

An algebraic variety Y over Q violates the Hasse principle if Y (Q)= ∅ despite the fact that
Y (Qp) �= ∅ for all completions Qp of Q, including the archimedean completion Q∞ = R.
The Hasse-Minkowski theorem shows that quadrics in Pn never violate the Hasse principle,
but violations do exist in higher degree. Some early examples include the hyperelliptic
curve 2y2 = x4 − 17 studied by Lind and Reichardt [24, 33] and Selmer’s plane cubic
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482 E. V. Flynn and A. Shnidman

3x3+4y3+5z3 = 0 [35]. Each of these is a genus one curve C, and is therefore a torsor for
its Jacobian, the elliptic curve E =Pic0(C). The fact that C violates the Hasse principle
means that it represents a nontrivial element [C] in the Tate-Shafarevich group X(E)

parameterizing locally trivial E -torsors. The order of [C] in X(E) is, in these cases, equal
to the minimum positive degree of an effective 0-cycle – hence 2 in the first example and
3 in the second.

There are by now many other examples of nontrivial elements of Tate-Shafarevich
groups of elliptic curves. However, it is an open question whether for every prime p
there exists an elliptic curve E/Q with a class of order p in X(E). Geometrically, such
E -torsors are realized as genus one curves C ⊂ Pp−1

Q contained in no hyperplane, which
violate the Hasse principle. The lack of a systematic construction of order p elements is
somewhat surprising, since heuristics of Delaunay predict that for a given prime p, the
probability that a random elliptic curve E satisfies X(E)[p] �= 0 should be positive [11].

More generally, for any abelian variety A/Q, the group X(A) parameterizes A-torsors
which violate the Hasse principle. Like the 1-dimensional case of elliptic curves, there are
few examples with X(A)[p] �= 0 for large primes p, beyond examples where A = ResFQB
is the Weil restriction of an abelian variety B over a number field F with X(B)[p] �= 0

(see, for example, [9, 18, 19]). However, the second author and Weiss [37] recently showed
that for every prime p, there exist absolutely simple abelian varieties A over Q with
X(A)[p] �=0. They prove such A exist among the quadratic twists of quotients of modular
Jacobians J0(N) with prime level N ≡ 1 (mod p), but the proof does not yield explicit
examples.

1.1. Results
Our first main result is an explicit construction of A-torsors X which violate the Hasse
principle. In our examples, both A and X have very simple equations. To state the
theorem, recall the p-th power character

(
q
�

)
p
, which satisfies

(
q
�

)
p
= 1 if and only if q is

a p-th power in Q×
� .

Theorem 1.1. Let p > 5 be a prime and let u,v be integers not divisible by 3. Let U be
the set of primes dividing 3puv(u−3v). Let t≥ 2, and let k = p1p2 · · ·pt, where each pi is
a prime not in U satisfying

(1)
(

pi

pj

)
p
= 1, for all i �= j in {1, . . . ,t},

(2)
(

pi

q

)
p
= 1, for all i ∈ {1, . . . ,t} and all q ∈ U ,

(3)
(

q
pi

)
p
= 1, for all i ∈ {1, . . . ,t} and all q ∈ U\{3},

(4)
(

3
pi

)
p
�= 1, for all i ∈ {1, . . . ,t}.

Let g = p−1 and consider the variety Ã⊂ A2g+1
Q defined by the equations

ypi = xi(xi−3uk)(xi−9vk), for i= 1, . . . ,g, and zp =

g∏
i=1

xi(xi−3uk).
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The symmetric group Sg acts on Ã, and the quotient Ã/Sg is birational to a unique g-
dimensional abelian variety A over Q. Let I ⊂ {1, . . . ,t} be a proper nonempty subset, and
let q =

∏
i∈I pi. Let X̃ ⊂ A2g+1

Q be defined by the equations (with i= 1, . . . ,g)

ypi = xi(xi−3uk)(xi−9vk) and qzp =

g∏
i=1

xi(xi−3uk).

Then X̃/Sg is birational to an A-torsor X that violates the Hasse principle, and the class
of X in X(A) has order p.

Remark 1.2. Both A and X are μp-covers of the Jacobian J of the genus p− 1

superelliptic curve C : yp = x(x− 3uk)(x− 9vk). Since J is birational to the symmetric
power Cg/Sg, the μp-covers can be seen from the equations above as well.

Using the Cebotarev density theorem, we show in Proposition 6.1 that there exist primes
p1, . . . ,pt satisfying the hypotheses of Theorem 1.1. Here is an example with p= 29.

Example 1.3. Let X̃ ⊂ A28
Q ×A28

Q ×A1
Q be the variety defined by the 28 equations

y29i = xi(xi−3 ·386029093 ·545622299)(xi+9 ·386029093 ·545622299)

for i= 1, . . . ,28, as well as the additional equation

386029093z29 =
28∏
i=1

xi(xi−3 ·386029093 ·545622299).

Then X̃/Sg is birational to a torsor X for a 28-dimensional abelian variety A over Q.
Moreover, X violates the Hasse principle and represents an order 29 element of X(A).

Remark 1.4. As a point of comparison, work of Radičević [32] gives a method to compute
equations for order p torsors in the Tate-Shafarevich group of an elliptic curve E over
Q. Even for p = 11, the equations for these torsors are not so easy for humans to write
down. As p grows, the computations quickly become intractable even for computers.

Since the hypotheses of Theorem 1.1 are always met, this gives a second proof of [37,
Thm. 1], and moreover gives explicit examples for any prime p. Moreover, the flexibility of
the index set I allows us to prove our second main result, that X(A)[p] can be arbitrarily
large.

Theorem 1.5. For every prime p and every integer k ≥ 1, there exists an absolutely
simple abelian variety A over Q with #X(A)[p]≥ pk.

The cases p= 2,3,5 not covered by Theorem 1.1 were proven by Bölling [3], Cassels [6]
and Fisher [12], respectively. Indeed, it was previously known that the p-part of the Tate-
Shafarevich group of absolutely simple abelian varieties over Q can be arbitrarily large
only for certain small primes p. Our examples are special since they arise as μp-covers of
a specific type of Jacobian, so we leave open the question of existence of order p elements
in X(A)[p] for ‘generic’ abelian varieties over Q (i.e., those such that the Mumford-Tate
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group is GSp2g and A[p] is irreducible as a Gal(Q̄/Q)-module). In both this paper and
[37], the abelian varieties are such that rkEnd(AQ̄) = dimA and A[p] is reducible.

Since we can control the dimension of our examples, we also conclude the following:

Corollary 1.6. Suppose g = p− 1 for some prime p ≥ 7. Then the Tate-Shafarevich
groups of absolutely simple abelian varieties A over Q of dimension g can be arbitrarily
large. More precisely, the groups X(A)[p] can be arbitrarily large.

Our construction generalizes in an obvious way to any global field. We work over Q
because it is the most interesting case and to keep the notation simple. The restriction
p �= 5 in our results is related to some quirky numerology (see Proposition A(iii) in the
Appendix) that could probably be removed by tweaking the construction slightly.

1.2. Previous work
Previous work on elliptic curves ([2, 3, 6, 12, 18, 19, 20, 22, 23, 26]) has found arbitrarily
large p-torsion part of the Tate-Shafarevich group for p � 7 and p = 13. In higher
dimension, Creutz [10] has shown that for any principally polarized abelian variety A
over a number field K, the p-torsion in the Tate-Shafarevich group can be arbitrarily large
over a field extension L of degree which is bounded in terms of p and the dimension of A,
generalizing work of Clark and Sharif [9]. In higher dimension over Q, the first author [14]
has recently shown that the 2-torsion subgroup of Tate-Shafarevich groups of absolutely
simple Jacobians of genus 2 curves over Q can be arbitrarily large, and then in [15] that
the 2-torsion of the Tate-Shafarevich groups of absolutely simple Jacobians of curves of
any genus over Q can be arbitrarily large. With Bruin, the authors recently showed in
[5] that X(A)[3] can be arbitrarily large among certain abelian surfaces A/Q. Many of
these works make use of Jacobians with an isogeny to another Jacobian, comparing the
bound obtained using isogeny-descent against that of a complete p-descent.

1.3. Approach
Our method makes use of Jacobians with two independent Q-rational p-torsion points, so
we also make (implicit) use of isogenies. However, instead of bounding the Mordell-Weil
rank, we construct locally soluble torsors and show directly that they have no rational
points. Since our method does not require knowledge of L-functions nor any information
related to the rank of A(Q), it is more widely applicable. Our technique is similar in spirit
to that of Cassels in [6] who used the Cassels-Tate pairing to show that the 3-part of the
Tate-Shafarevich group of elliptic curves can be arbitrarily large. However, our approach
is more direct. In the appendix by Tom Fisher, an alternative interpretation of our proof
is given in terms of an appropriate Cassels-Tate pairing.

We construct our torsors purely geometrically, as μp-covers. In fact, we avoid the use
of Galois cohomology in this paper, as a way of emphasizing the geometry. Experts will
see that the proof can be interpreted cohomologically using standard descent techniques
[8, 34], but the geometric point of view is the most direct way to understand the
construction and will perhaps be more accessible to those less familiar with Selmer groups
(though we do assume familiarity with the basics of abelian varieties).
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1.4. Outline of proof
In Section 2 and 3, we prove some preliminary material on μp-covers and μp-descent.
Most of this will be well known to experts, but we have customized the discussion to
our needs and made it fairly self-contained. In Section 4, we specialize the discussion to
μp-covers of Jacobians of superelliptic curves. In Section 5, we prove Theorem 1.1. We
must show that the torsors have local points everywhere and yet have no rational points.
For most primes �, it is easy to see that the torsors have Q�-points using the fact that
almost all of the primes in the set {p1, · · · ,pt}∪U are p-th powers modulo each other.
The subtle case is where �= pi, and in this case, we construct points explicitly using the
torsion points D0 = (0,0)−∞ and D1 = (3uk,0)−∞ on J. The more interesting argument
is the proof that the torsors have no global points. For this, we first show that the two
global torsion divisors D0 and D1 generate a certain quotient of J(Qpi

), for each pi. The
presence of the powers of 3 in the model of the curve, and the fact that 3 is not a p-th
power locally, then ‘glues together’ the localizations of the torsors in a certain way that
makes it impossible for them to have a global point unless the parameter q is divisible
by either all or none of the primes p1, . . . ,pt. The particular choice of the prime 3 here is
not special (we could replace it by 5 or 7, etc.), but the presence of this ‘gluing prime’
plays the crucial role in the argument.

In Section 6, we deduce Theorem 1.5 from Theorem 1.1. First, we use a Cebotarev
argument to show that given p, the set U, and any t ≥ 1, there exist primes p1, . . . ,pt
satisfying the conditions of Theorem 1.1. Second, the flexibility in the choice of q allows
us to generate a subgroup of Fp-rank at least t−1 in X(A)[p]. Finally, we use a theorem
of Masser to show that for 100% of integers u,v not divisible by 3, the corresponding
abelian variety is geometrically simple. In the appendix, Tom Fisher recasts our proof in
terms of a Cassels-Tate pairing.

2. μp-covers

2.1. Classifying μp-covers
Let X be a proper variety over a field F. Let μp be the F -group scheme of p-th roots of
unity. A μp-cover of Y (or more formally, a μp-torsor over Y in the fppf topology) is a
Y -scheme X together with a μp-action that is simply transitive on fibers over Y. The μp-
covers of Y form a category Mp(Y ) whose morphisms are μp-equivariant isomorphisms.
The following proposition gives a concrete way to think about μp-covers.

Proposition 2.1. There is an equivalence of categories between Mp(Y ) and the category
of pairs (L,η) where L is an invertible sheaf on Y and η : L⊗p 
OY is an isomorphism.
Here, the morphisms (L,η)→ (L′,η′) are isomorphisms g : L→L′ such that η′ ◦g⊗p = η.

Proof. This is well known (see [1] or [29, pg. 71]), so we just describe the functors in both
directions. If π : X → Y is a μp-cover, then there is a Z/pZ-grading on the OY -module

π∗OX =OY ⊕
p−1⊕
i=1

Li
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where each Li is the invertible subsheaf of π∗OX on which μp acts by ζ · s = ζis. The
algebra structure of π∗OX gives isomorphisms Li ⊗Lj 
 Li+j , where indices are to
be taken modulo p and where L0 = OY . Thus, we obtain an isomorphism L⊗p

1 
 OY .
Conversely, starting with a pair (L,η), we can define a sheaf of OY -algebras OY ⊕

⊕p−1
i=1 Li

using the given isomorphism η to define the multiplication Li⊗Lj 
 Li+j 
 Li+j−p on
the factors with i+ j ≥ p. The relative spectrum of this sheaf over Y is then naturally
endowed with a μp-action making it a μp-cover.

Remark 2.2. If Y = SpecF , this recovers Kummer theory.

2.2. μp-covers of abelian varieties
Let us now specialize to the case where Y is an abelian variety over a field F of
characteristic not p. We will think of a μp-cover π : X → Y in terms of the corresponding
pair (L,η). The isomorphism class of L is a well-defined element of Pic(Y ) = PicY (F ),
called the Steinitz class of π. The existence of η means that L is p-torsion, so that L ∈
Ŷ [p](F ), where Ŷ =Pic0Y ⊂ PicY is the dual abelian variety parameterizing algebraically
trivial line bundles on Y.

From one μp-cover (L,η), we may construct many more, simply by scaling η : L⊗p →OY

by any r ∈ F ∗. Two μp-covers (L,rη) and (L,sη) are isomorphic if and only if r/s ∈ F ∗p.
More generally, given two μp-covers (L,η) and (L′,η′), the tensor product (L⊗L′,η⊗η′)
is another. Let H1(Y ,μp) denote the set of isomorphism classes of μp-covers of Y.

Proposition 2.3. The set H1(Y ,μp) is naturally an abelian group and sits in a short
exact sequence

0→ F ∗/F ∗p →H1(Y ,μp)→ Ŷ [p](F )→ 0.

Proof. This follows from Proposition 2.1 and the discussion above.

Remark 2.4. We use the notation H1(Y ,μp) since the étale cohomology group H1
et(Y ,μp)

is also in bijection with isomorphism classes of μp-covers. From this point of view, one
obtains Proposition 2.3 by applying the long exact sequence in cohomology to the short
sequence of sheaves 0→ μp →Gm →Gm → 0.

Lemma 2.5. The μp-cover π : X → Y corresponding to (L,η) is geometrically connected
if and only if L �
 OX .

Proof. If L 
 OX , then η is scalar multiplication by some r ∈ F×. In this case, X
is isomorphic to Y ×F F ( p

√
r) as an F -scheme, which is not geometrically connected.

Conversely, if X is not geometrically connected, then the μp-cover XF̄ → YF̄ induces an
isomorphism on connected components, forcing XF̄ to be isomorphic to the trivial μp-
torsor YF̄ ×F̄ μp. It follows that π is in ker(H1(Y ,μp)→H1(YF̄ ,μp))
F ∗/F ∗p, and hence
has trivial Steinitz class.

Suppose now that π : X → Y is a geometrically connected μp-cover corresponding to
(L,η), so that L �
OY . Since every connected finite étale cover of the abelian variety YF̄ is
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itself an abelian variety [29, §18], X becomes an abelian variety over the algebraic closure
F . It follows that X is a torsor for a certain abelian variety, which we will now identify.

Let ψ̂ : Ŷ → Ŷ /〈L〉 be the degree p isogeny obtained by modding out by L. Let ψ : AL →
Y be the dual isogeny, which is also of degree p. Then ψ can itself be given the structure
of μp-cover. Indeed, we have

ker(ψ)
 k̂er(ψ̂)
 Ẑ/pZ=Hom(Z/pZ,Gm)
 μp.

Note that there are p− 1 different isomorphisms ker(ψ) 
 μp, corresponding to the
different Z/pZ-gradings we can put on ψ∗OAL . Exactly one of them will have the property
that the corresponding μp-cover has Steinitz class L1 ⊂ψ∗OAL isomorphic to L. We choose
this μp-cover structure for ψ.

Lemma 2.6. Let π : X → Y be a μp-cover with nontrivial Steinitz class L ∈ Ŷ [p](F ).
Then π is a twist of the μp-cover ψ : AL → Y and X is a torsor for AL.

Proof. If ψ : AL → Y corresponds to (L,η), then π : X → Y corresponds to (L,sη) for
some scalar s ∈ F ∗. Over F̄ there is an isomorphism ρ : (AL)F̄ →XF̄ of μp-covers, which
satisfies

ρg(P ) = p
√
s
g
/ p
√
s+ρ(P )

for all g ∈Gal(F̄ /F ) and P ∈AL(F̄ ); here, p
√
s
g
/ p
√
s ∈ μp and + is the torsor action. The

torsor structure AL×X →X is given by (P,Q) �→ ρ(P +ρ−1(Q)). Using the formula for
ρg, we see that this torsor is indeed defined over F.

We have seen that for each nonzero L ∈ Ŷ [p](F ), there is, in fact, a distinguished
μp-cover with Steinitz class L – namely, the cover AL → Y . This means there must
be a distinguished isomorphism η : Lp 
 OY . We will describe this isomorphism η in
Lemma 3.6, in the context of rational points. For simplicity, we will specialize to the
case where Y is a Jacobian, and in particular principally polarized (so that Ŷ 
 Y ).
However, most of what we prove can be generalized to arbitrary abelian varieties in a
straightforward way.

2.3. μp-covers of Jacobians
Let C be a smooth projective geometrically integral curve over F, and let J =Pic0(C) be
its Jacobian. Let g be the genus of C, and hence also the dimension of the abelian variety
J. Let D ∈ J [p](F ) be a divisor class of order p. Let J → J/〈D〉 be the quotient and let
ψ : AD → Ĵ be the corresponding dual isogeny, where AD is the dual of J/〈D〉. Then ψ
is a μp-cover of Ĵ corresponding to a pair (L,η), as in the previous section.

Remark 2.7. As before, we may choose the μp-cover structure on ψ so that L ∈
Pic0(Ĵ)(F ) is mapped to D under the isomorphism ˆ̂

J 
 J .

From now on, we identify J and Ĵ via the principal polarization λ : J → Ĵ coming from
the theta divisor of the curve C. To make this explicit, we assume that C contains a
rational point ∞∈ C(F ). The theta divisor Θ ⊂ J is the subvariety of degree 0 divisor
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classes of the form E− (g− 1)∞, where E is an effective divisor of degree g− 1. The
isomorphism J → Ĵ sends P to t∗POJ(Θ)⊗OJ (Θ)−1, where tP : J → J is translation by
P. We can also describe λ(P ) as the line bundle on J associated to the divisor [Θ−P ]− [Θ].

After making the identification J 
 Ĵ , we may view ψ as a μp-cover of J and η as an
isomorphism L⊗p →OJ . By Proposition 2.3, we have the exact sequence

0→ F ∗/F ∗p →H1(J,μp)→ J [p](F )→ 0.

3. μp-descent

We continue with our assumptions on J =Pic0(C). We have seen that to each D ∈ J [p](F )
of order p, there is a corresponding μp-cover ψ : AD → J giving rise to the data (L,η).
These particular μp-covers are by construction abelian varieties, but general μp-covers
corresponding to pairs (L,rη), for r ∈ F×, may only be torsors for abelian varieties. We
characterize those which are abelian varieties, or equivalently, those which have rational
points.

3.1. Descent over general fields
Fix D ∈ J [p](F ) and (L,η), as above. Given P ∈ J(F ), we may consider the μp-cover
ψP = tP ◦ψ : AD → J , where tP : J → J is translation by P. The μp-cover ψP is endowed
with the same μp-action as ψ, but different structure map to J. Since the Steinitz class
is in Pic0(J), it is invariant under translation, and hence, ψP and ψ have isomorphic
Steinitz classes. If ψP = (L′,η′), then we can choose an isomorphism L′ 
 L, and under
this isomorphism, we have η′ = rP η for some rP ∈ F ∗. Any other choice of isomorphism
L′ 
 L differs by a scalar, so the element rP is well defined up to F ∗p.

Lemma 3.1. The map P �→ rP induces an injective map ∂D : J(F )/ψ(AD(F )) →
F ∗/F ∗p.

Proof. Note that rP ∈ F ∗p if and only if ψP is isomorphic as a μp-cover to ψ. But any
isomorphism of μp-covers induces an isomorphism of AD-torsors, and hence must be given
by translation by Q for some Q∈AD(F ). Translation by Q gives an isomorphism between
these two μp-covers if and only if P = ψ(Q).

For completeness, we state the following result, connecting the map ∂D to a boundary
map in Galois cohomology:

Lemma 3.2. The map ∂D is the boundary map J(F )→H1(F,μp)
 F ∗/F ∗p in the long
exact sequence in group cohomology for the short exact sequence of Gal(F̄ /F )-modules

0→ μp →AD(F̄ )
ψ−→ J(F̄ )→ 0.

Proof. The boundary map J(F ) → H1(F,μp) sends P ∈ J(F ) to the cocycle
c : Gal(F̄ /F )→ μp 
AD[ψ] given by g �→Qg −Q, where Q ∈AD is such that ψ(Q) = P .
We must show that this cocycle agrees with the cocycle g �→ p

√
r
g
/ p
√
r, where r= rP . From

the proof of Lemma 2.6, we see that the AD-torsors (L,rη) and (L,η) are isomorphic
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(over F̄ ) via translation by Q. By the explicit formula given there, this exactly means
that Qg −Q is equal to the element p

√
r
g
/ p
√
r ∈ μp.

Lemma 3.3. The image of ∂D is the set of r ∈ F ∗/F ∗p such that the μp-cover (L,rη)
has a rational point.

Proof. Every torsor in the image clearly has a rational point since it is isomorphic to
AD as a variety. Conversely, if a μp-cover X → J of the form (L,rη) has a rational point,
then the underlying AD-torsor is isomorphic to the trivial AD-torsor up to translation by
a point P. Hence, ∂D(−P ) = r.

Remark 3.4. It follows that for a μp-cover π : X → J with Steinitz class L, X is
isomorphic to AD (as varieties) if and only if π corresponds to (L,rη), with r in the
image of ∂D.

The following lemma is immediate from the definitions and can be used to give an
explicit formula for the homomorphism ∂D.

Lemma 3.5. Let F (J) be the function field of J and view η−1 : OJ → Lp as a global
section of Lp. Fix an embedding of L as a subsheaf of F (J), so that η−1 is a nonzero
element f of F (J). Let Q be such that Q and Q+P are in a domain of definition for f.
Then ∂D(P ) = rP = f(P +Q)/f(Q), up to p-th powers.

Thinking of η−1 as a function on J allows us to distinguish the unique μp-cover (L,η)
corresponding to ψ : AD → J among all μp-covers with Steinitz class L, as promised.

Lemma 3.6. The μp-cover corresponding to (L,η), which is isomorphic to the μp-cover
AL =AD → J , is characterized among all μp-covers with Steinitz class L by the fact that
the value f(0J ) of the function f = η−1 ∈ F (J) at 0J is a p-th power in F ∗. (Here we
assume that L is chosen within its isomorphism class so that f(0J ) ∈ F×.)

Proof. The μp-cover AD → J is distinguished among μp-covers with Steinitz class L by
the fact that the fiber above 0 has a rational point. Indeed, if π : X → J is a μp-cover
of type (L,rη) with a rational point Q ∈ X(F ) above 0 ∈ J(F ), then π = ψP for some
P ∈ J(F ), and π−1(0) = ψ−1(−P ). It follows that P ∈ ψ(AD(F )), and hence, r is a p-th
power, or in other words, π is isomorphic to ψ as μp-covers.

However, the pullback of the μp-cover (L,η) on J to SpecF , via the inclusion {0J} ↪→ J ,
is Speck[z]/(zp−h) where h = f(0J ). This has an F -rational point if and only if h is a
p-th power.

Let SymgC = Cg/Sg be the g-th symmetric power of C. Points of SymgC correspond
to effective degree g divisors E on C. Recall that the map SymgC → J sending E �→
E−g∞ is birational [27, Thm. 5.1], and hence induces an isomorphism of function fields
F (SymgC)
 F (J).

Lemma 3.7. Suppose pD = div(f̃) for some f̃ ∈ F (C). Then L 
 OJ (D̃) for a divisor
D̃ on J such that pD̃ = div(f), where f ∈ F (J) 
 F (SymgC) is the rational function
f(
∑g

i=1(xi,yi)−g∞) =
∏g

i=1 f̃(xi,yi).
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Proof. Assume, for simplicity, that D=∞−Q for some Q∈C(F ). Under the polarization
J → Ĵ , the point D gets sent to the divisor [Θ−D]− [Θ]. Note that

Θ−D = {E+Q−g∞ : E effective of degree g−1}

is the locus of poles of the function f. Similarly, Θ is the zero locus. Taking into account
multiplicities, the divisor of f is p[Θ−D]− p[Θ], as claimed. The general case where
D =

∑
j(∞−Qj) is similar.

Finally, we will use a generalization of the map ∂ and Lemma 3.1. Let H =

{D1, . . . ,Dm} ⊂ J [p](F ) be a subset of Fp-linearly independent elements. For each i =

1, . . . ,m, let ψi : Ai → J be the μp-covers corresponding to Di. Let AH = Ĵ/〈H〉 and let
ψH : AH → J be the isogeny dual to J → J/〈H〉. Then we have a homomorphism

∂̃H : J(F )−→
m∏
i=1

F ∗/F ∗p

sending P to (∂D1(P ), . . . ,∂Dm(P )).

Lemma 3.8. The map ∂̃H induces an injection ∂H : J(F )/ψH(AH(F )) ↪→
⊕m

i=1F
∗/F ∗p.

Proof. We prove this in the case m= 2, which is the only case we will use. The general
case follows by an inductive argument. Suppose ∂̃D1(P ) = 0 and ∂̃D2(P ) = 0, so that
P = ψi(Qi) for some Qi ∈ Ai(F ) by Lemma 3.1. Let gi : AH → Ai be the natural maps,
of degree p; note that ψ1g1 = ψ2g2. The fiber diagram

AH −→ A2

↓ ↓
A1 −→ J

(3.1)

shows that there is a unique point Q in AH(F̄ ) such that gi(Q) = Qi for i = 1,2. The
uniqueness of Q implies that it is Gal(F̄ /F )-stable, and so we have P = ψH(Q) with
Q ∈AH(F ). This shows that ∂H is injective.

3.2. Descent over global fields
Suppose now that C is a curve over Q. The preceding discussion applies for F =Q, but
also for F =Q� for any prime �≤∞. Having fixed D ∈ J [p](Q), let

Sel(AD)⊂Q∗/Q∗p

be the subgroup of classes r with the property that for every prime �, the class of r in
Q∗

�/Q
∗p
� is in the image of ∂D : J(Q�)/ψ(AD(Q�))→Q∗

�/Q
∗p
� . In other words, an element

of Sel(AD) is a μp-cover X → J with Steinitz class D and such that X(Q�) �= ∅ for every
prime �.
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Recall that if A is an abelian variety over Q, then X(A) is the group of A-torsors which
are trivial over Q�, for all primes �≤∞.

Proposition 3.9. Let X(AD) be the Tate-Shafarevich group of AD. There is an exact
sequence

0→ J(Q)/ψ(AD(Q))→ Sel(AD)→X(AD)[ψ]→ 0

where X(AD)[ψ] is the kernel of the map X(AD)→X(J) induced by ψ.

Proof. The map Sel(AD) → X(AD)[ψ] sends the μp-cover X → J to the underlying
AD-torsor (c.f. Lemma 2.6). The cocycle c : Gal(F̄ /F ) → AD(F̄ ) with c(g) = p

√
s
g
/ p
√
s

determines this torsor and has image in μp 
 ker(ψ), so the cocycle indeed becomes
trivial in X(J). The exactness of the sequence in the middle follows from Lemma 3.3.
The exactness on the right can be proved using direct geometric arguments but is most
easily seen using Lemma 3.2. Since we will not actually use the exactness on the right,
we omit the proof.

The group Sel(AD) is isomorphic to the usual Selmer group

Selψ(AD)⊂H1(F,AD[ψ])
H1(F,μp)
 F ∗/F ∗p.

In particular, it is finite. This can also be seen from the following proposition.

Proposition 3.10. Suppose � �= p is a prime of good reduction for J. Then the image of
∂D : J(Q�)→Q∗

�/Q
∗p
� is the subgroup Z∗

�/Z
∗p
� .

Proof. This well-known fact follows from [7, Prop. 2.7(d)] if we grant Lemma 3.2, but
we will give a more geometric proof in the spirit of this paper. The classes in Z∗

�/Z
∗p
�

represent μp-covers X → J which are trivialized by an unramified field extension; hence,
the corresponding AD-torsor X is also trivialized by an unramified field extension. Since
AD has good reduction at �, the torsor X has a Néron model X over Z�, which is a torsor
for the Néron model A of AD [4, 6.5. Cor. 4]. Since any torsor for a smooth proper group
scheme over Z� has a Z�-point, it follows that such classes are in the image of ∂D by
Lemma 3.3. Conversely, any element r in the image of ∂D corresponds to a μp-cover (and
AD-torsor) X which is abstractly isomorphic to AD, and hence has good reduction over
Q�. By the Néron mapping property, X extends to a μp-cover and even an A-torsor over
Z�. It follows that r ∈ Z∗

� , since we can interpret this scalar as an automorphism of a line
bundle on an abelian scheme J over Z� (well-defined up to p-th powers).

We will also consider more general Selmer groups. Given a subset H = {D1, . . . ,Dm} ⊂
J [p](F ) of linearly independent elements, we can define an analogous Selmer group
Sel(AH)⊂

∏m
i=1F

∗/F ∗p which sits in an exact sequence

0→ J(Q)/ψH(AH(Q))→ Sel(AH)→X(AH)[ψH ]→ 0

and which is isomorphic to the usual Selmer group SelψH
(AH).
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4. Jacobians of curves of the form yp = x(x− e1)(x− e2)

4.1. A special family of curves
Let p > 5 be a prime and let e0,e1,e2 be distinct integers. Let C be the smooth projective
curve over Q with affine model

yp = (x− e0)(x− e1)(x− e2). (4.1)

There is no loss in generality in assuming e0 = 0, so we will do so. The affine model is
itself smooth, and its complement in C is a single rational point we call ∞. The genus of
C is g = p−1. For more details on such curves, see [30].

Let J be the Jacobian of C. Note that J(Q) has p-torsion of rank at least 2, generated
by the three divisor classes Di = [(ei,0)−∞], for i ∈ {0,1,2}. The equality of divisors
D0+D1+D2 = div(y) means that D0+D1+D2 = 0 in J. Let D =D0+D1 and define
the abelian varieties

Â= J/〈D0,D1〉 (4.2)

B̂ = J/〈D〉 (4.3)

and the corresponding quotient isogenies φ̂ : J → Â and ψ̂ : J → B̂. As before, we identify
J with its dual via the canonical principal polarization, so that we may write φ : A→ J

and ψ : B → J for the dual isogenies. We also define ADi
to be the dual of J/〈Di〉 for

i= 0,1,2 with isogenies ψi : ADi
→ J . We have B 
AD2

since D =−D2.
Let H = 〈D0,D1〉, and define the map

∂H :J(Q)/φ
(
A(Q)

)
−→Q∗/Q∗p×Q∗/Q∗p,⎡⎣ g∑

j=1

(xj,yj)−g ·∞

⎤⎦ �→
( g∏
j=1

xj,

g∏
j=1

(xj − e1)
) (4.4)

as in Lemmas 3.5 and 3.7 of Section 2.3. In the above definition, each xj,yj ∈ Q, the
divisor

∑g
j=1(xj,yj)− g ·∞ is Galois stable, and the left-hand side is its divisor class.

That such representatives exist follows from the fact that C(Q) �= ∅ [34, Prop. 2.7]. The
above description of ∂H applies whenever it makes sense – that is, when all xj and
xj − e1 are nonzero. Every class in J(Q)/φ

(
A(Q)

)
can be represented by such a divisor

[21, pg.166].
For i ∈ {1,2,3}, we have similar homomorphisms

∂Di :J(Q)/ψi

(
ADi

(Q)
)
−→Q∗/Q∗p,⎡⎣ g∑

j=1

(xj,yj)−g ·∞

⎤⎦ �→
g∏

j=1

(
xj − ei

)
,

(4.5)
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as well as the homomorphism

∂D :J(Q)/ψ
(
B(Q)

)
−→Q∗/Q∗p,⎡⎣ g∑

j=1

(xj,yj)−g ·∞

⎤⎦ �→
g∏

j=1

(
xj(xj − e1)

)
.

(4.6)

As before, the description of these maps is for representative divisors for which it makes
sense. However, note that by the equation for the curve, we have ∂D0 ·∂D1 ·∂D2 = 1. This
allows us to describe the maps ∂Di even on points where the formula above is not well
defined. For example,

Lemma 4.1. We have

∂H([(0,0)−∞]) = [e−1
1 e−1

2 ,− e1]

and

∂H([(e1,0)−∞]) = [e1,e
−1
1 (e1− e2)

−1].

In the next section, we will make critical use of the following commutative diagram

J(Q)/φ
(
A(Q)

) ∂H

−→ Q∗/Q∗p×Q∗/Q∗p

↓ ↓
J(Q)/ψ

(
B(Q)

) ∂D

−→ Q∗/Q∗p,

(4.7)

whose right vertical map is [r1,r2] �→ r1r2.

4.2. Models
There are simple birational models for the μp-covers of J with a given Steinitz class. For
concreteness, assume that the Steinitz class is D =D0+D1. The distinguished μp-cover
with this Steinitz class is the cover B → J . A birational model for J is given by the
equations

ypi = xi(xi− e1)(xi− e2)

for i= 1, . . . ,g, modulo the action of Sg. By Lemmas 3.5, 3.6 and 3.7, a birational model
for B is given by the same g equations above along with the additional equation

zp =

g∏
i=1

xi(xi− e1),

all modulo the action of Sg. Similarly, if r ∈ Q×, then the μp-cover corresponding to
(L,rη) is given by the same equations, with the last one twisted by r :

ypi = xi(xi− e1)(xi− e2)
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for i= 1, . . . ,g and

rzp =

g∏
i=1

xi(xi− e1),

again modulo the action of Sg.

5. Arbitrarily large p-torsion part of the Tate-Shafarevich group

We wish to produce examples of arbitrarily large p-torsion subgroups in the Tate-
Shafarevich group X(B)[p], by finding elements of Sel(B) which can be shown to violate
the Hasse principle by using Sel(A). We will choose fairly generic curves of the form
yp = x(x− e1)(x− e2), but then we will twist them in a carefully chosen way to produce
our examples.

Let

C = Cu,v : y
p = x(x−3u)(x−9v),

where p > 5 is prime and where u,v ∈ Z are not divisible by 3. Let J be the Jacobian of
C and let A be the isogenous abelian variety, as in the previous section.

Lemma 5.1. Suppose q is a prime such that q ≡ 1 (mod p). Then J(Qq)/φ
(
A(Qq)

)
has

order p2.

Proof. The congruence condition on q implies Q∗
q contains a primitive p-th root of

unity ζ. Over any field containing ζ, the automorphism (x,y) �→ (x,ζy) of C induces
a ring embedding ι : Z[ζ] ↪→End(J). The degree of ι(α) is equal to Nm(α)2 =#(Z[ζ]/α)2.
Indeed, the degree function restricted to Z[ζ] is a power of the norm [29, §19], and we
have deg([n]) = n2g = n2[Q(ζ) : Q], so it is the square of the norm in this case. The kernel
of φ̂ : J → Â is then equal to the kernel of the endomorphism 1− ι(ζ). It follows that φ̂
agrees with 1− ι(ζ) up to post-composition with an automorphism (since they have the
same degree and one factors through the other); hence, the abelian varieties A and Â

are isomorphic to J (over any field containing ζ, and in particular over Qq). However, we
have [36, Cor. 3.2]

#J(Qq)/φ
(
A(Qq)

)
#A(Qq)[φ]

= cq(J)/cq(A),

where the right-hand side is the ratio of Tamagawa numbers over Qq. Since
J 
 A over Qq, this ratio is 1. We also have #A(Qq)[φ] = p2, which shows that
#J(Qq)/φ

(
A(Qq)

)
= p2.

For each integer k, we will consider the curve

Ck = Cu,v,k : y
p = x(x−3uk)(x−9vk).

Another model for Ck is k−3yp = x(x−3u)(x−9v), which shows that Ck is a μp-twist of
the original curve C =Cu,v. Let Jk, Ak and Bk be the corresponding abelian varieties for
the curve Ck. These are μp-twists of J,A and B, respectively.
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For two primes q and �, set
(
q
�

)
p
= 1 if and only if q is a p-th power in Q×

� . Recall the
exact sequence

0→ Jk(Q)/ψ(Bk(Q))
∂D

−→ Sel(Bk)→X(Bk)[ψ]→ 0

from Proposition 3.9.

Proposition 5.2. Let U be the set of primes that divide 3puv(u− 3v). Suppose k is a
product of distinct primes k = p1p2 · . . . · pt, where t ≥ 2 and each prime pi is not in U,
and satisfies

(1)
(

pi

pj

)
p
= 1, for all i �= j in {1, . . . ,t},

(2)
(

pi

q

)
p
= 1, for all i ∈ {1, . . . ,t} and all q ∈ U ,

(3)
(

q
pi

)
p
= 1, for all i ∈ {1, . . . ,t} and all q ∈ U\{3},

(4)
(

3
pi

)
p
�= 1, for all i ∈ {1, . . . ,t}.

Then, for all i, we have pi ∈ Sel(Bk) but pi /∈ ∂D(Jk(Q)). More generally, if q =
∏

i∈I p
ai
i ,

where I is any nonempty proper subset of {1, . . . ,t} and 1 ≤ ai ≤ p− 1, then q ∈ Sel(Bk)
but q /∈ ∂D(Jk(Q)).

Note that condition (4) implies that pi ≡ 1 (mod p) for all i.

Proof. By Lemma 4.1, we have

∂H([(0,0)−∞]) = [3−3u−1v−1k−2,−3uk]

and

∂H([(3uk,0)−∞]) = [3uk,3−2u−1(u−3v)−1k−2].

For i = 1, . . . ,t, the images of these two elements in Q∗
pi
/(Q∗

pi
)p × Q∗

pi
/(Q∗

pi
)p are

[3−3p−2
i ,3pi] and [3pi,3

−2p−2
i ], respectively, by our assumptions on the pi. These two

elements are linearly independent, and hence generate all of ∂H
(
Jk(Qpi

)/φ(Ak(Qpi
))
)
,

by Lemma 5.1.
Let [r1,r2] be in ∂H

(
Jk(Q)/φ(Ak(Q))

)
. We shall consider elements of Q∗/Q∗p as pth-

power-free integers. Note that by Proposition 3.10, the integers r1 and r2 can only be
divisible by primes in the set {p1, . . . ,pt}∪U .

If there is no i such that ordpi
(r1)≡ ordpi

(1/r2) (mod p), then ordpi
(r1r2) �≡ 0 (mod p)

for every pi, and so r1r2 cannot be of the form
∏

i∈I p
ai
i , for a nonempty proper subset

of indices I, and any tuple of exponents ai with 1≤ ai ≤ p−1.
Suppose there exists i such that ordpi

(r1) ≡ ordpi
(1/r2) (mod p). Since [3−3p−2

i ,3pi]

and [3pi,3
−2p−2

i ] generate all of ∂H
(
Jk(Qpi

)/φ(Ak(Qpi
))
)
, considering only the pi-adic

valuation, we have

[r1,r2]≡ [p−2a
i ,pai ] · [pbi,p−2b

i ]≡ [pb−2a
i ,pa−2b

i ]
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for integers a and b. So

r1r2 ≡ pb−2a+a−2b
i = p−b−a

i

and we must have b≡−a (mod pi). In other words, the image of [r1,r2] in Q∗
pi
/(Q∗

pi
)p×

Q∗
pi
/(Q∗

pi
)p must be a power of the quotient of these generators. Thus, in Q∗

pi
/(Q∗

pi
)p×

Q∗
pi
/(Q∗

pi
)p, we have

[r1,r2] = [3−4p−3
i ,33p3i ]

m = [3−4mp−3m
i ,33mp3mi ],

for some 0≤m< p. Thus, in Q∗
pi
/(Q∗

pi
)p, we have

r31r
4
2 = 3−12m+12mp−9m+12m

i = p3mi .

Since 3 is not a p-th power modulo pi, this implies that 3 divides r31 and 1/r42 to the
same power. Since, for any j, the elements [3−3p−2

j ,3pj ] and [3pj,3
−2p−2

j ] generate all of
∂H((Jk(Qpj

)/φ(Ak(Qpj
)))), and since we have already shown that 3 divides r31 and 1/r42

to the same power, we deduce that the image of [r1,r2] in Q∗
pj
/(Q∗

pj
)p×Q∗

pj
/(Q∗

pj
)p must

be a power of the quotient of these generators, and so pj must divide r1 and 1/r2 to the
same power. This applies for all j ; hence, no pj will appear in r1r2. So again we have that
r1r2 cannot be of the form

∏
i∈I p

ai
i with 0<#I < t.

Since ∂H
(
Jk(Q)/φ(Ak(Q))

)
maps surjectively onto ∂D

(
Jk(Q)/ψ(Bk(Q))

)
, it follows

that each element of the form
∏

i∈I p
ai
i with 0 < #I < t and 0 < ai < p is not in

∂D
(
Jk(Q)/ψ(Bk(Q))

)
.

However, we show that each pi is in ∂D(Jk(Q�)/ψ(Bk(Q�))) for every prime �, as follows.
First, note that for every prime � ∈ U ∪ {p1, . . . ,pt} except pi itself, pi is a pth power
in Q∗

� , and so pi is in ∂D
(
Jk(Q�)/ψ(Bk(Q�))

)
by virtue of being ∂D of the identity.

If � /∈ U ∪{p1, . . . ,pt}, we have pi ∈ ∂D(Jk(Q�)/ψ(Bk(Q�))), by Proposition 3.10. For the
remaining case �= pi, note that ∂D([(0,0)−∞]) = [−3−2v−1k−1] and ∂D([(3uk,0)−∞]) =
[3−1(u−3v)−1k−1], and so the first divided by the square of the second gives pi, since all
other factors are pth powers in Qpi

. Hence, pi is in the image everywhere locally.

As a corollary, we deduce the first theorem from the introduction.

Proof of Theorem 1.1. The Theorem follows from Lemma 3.3 and Proposition 5.2,
together with the discussion of models in Section 4.2.

As a second corollary, we have the following:

Corollary 5.3. Let Cu,v,k be as in Proposition 5.2. Then #X(Bu,v,k)[p]≥ pt−1.

Proof. Let Bk =Bu,v,k. We have the exact sequence

0−→ Jk(Q)/ψ(Bk(Q))−→ Sel(Bk)−→X(Bk)[ψ]−→ 0. (5.1)

Moreover, we have seen that any element of the form
∏

i∈I p
ai
i , for some proper subset

I ⊂ {1, . . . ,t} is contained in Sel(Bk) but does not lie in the subgroup Jk(Q)/ψ(Bk(Q).
Thus, these elements must map nontrivially to X(Bk/Q)[ψ]. In fact, we see that the
intersection of Jk(Q)/ψ(Bk(Q)) with the subgroup of Sel(Bk) generated by the elements
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p1, . . . ,pt is at most one dimensional as an Fp-vector space. Indeed, any two linearly
independent elements in this subgroup can be scaled so that they are divisible exactly
once by p1, and hence, their ratio is nonzero and not divisible by p1, which would be
a contradiction. It follows that the image of the subgroup 〈p1, . . . ,pt〉 in X(Bk)[ψ] has
dimension at least t−1. Since deg(ψ) = p, we have X(Bk)[ψ]⊂X(Bk)[p], which finishes
the proof.

6. Proof of Theorem 1.5

To deduce Theorem 1.5 from the results of the previous section, we need two extra
ingredients.

Proposition 6.1. For any u,v as above, and for any t ≥ 0, there are primes p1, . . . ,pt
satisfying the conditions of Proposition 5.2.

Proof. Let K = Q(ζ) = Q(μp). We prove this by induction on t. If t = 0, then there is
nothing to prove.

Now let t > 0 and suppose we have found primes p1, · · · ,pt−1 satisfying the conditions.
Let k= p1 · · ·pt−1. Let N be the product of the primes dividing puv(u−3v)k, and let ζpN
be a primitive pN -th root of unity. Let L be the compositum inside Q̄ of Q(ζpN ) with all
of the fields Q( p

√
q), with q a prime dividing N. Then L is an abelian extension of K and

a Galois extension of Q. Finally, let E =Q( p
√
3) and let F =EL be the compositum of E

and L, which is again a Galois extension of Q.
Note that the fields E and L are linearly disjoint over Q. Indeed, E/Q is totally ramified

at 3, whereas L is unramified at 3. Thus, we have an exact sequence

0→ (Z/pZ)→Gal(F/Q)→Gal(L/Q)→ 0.

By the Cebotarev density theorem, there exists a prime pt (in fact, infinitely many such
primes) whose Frobenius conjugacy class in Gal(F/Q) is not trivial but restricts to the
trivial class in Gal(L/Q). Let us check that pt satisfies all the desired properties.

By construction, pt splits completely in any subfield of L. In particular, pt splits
completely in Q(ζpN ) and hence is a p-th power in Q∗

q for any prime q dividing 3pN . For
q � 3p, this is because pt ≡ 1 (mod q), and hence, pt is a p-th power in Q∗

q by Hensel’s
lemma. For q = p, this is because p2 | pN , and hence pt ≡ 1 (mod p2), and hence is a
p-th power, again by Hensel’s lemma. For q = 3, this is because every unit in Z3 is a p-th
power. Similarly, pt splits completely in Q( p

√
q) for all q |N , so all such primes q are p-th

powers modulo pt.
Finally, we check that 3 is not a p-th power in Q∗

pt
. It is enough to show that the prime

pt does not have a degree 1 prime above it in E. If it did, then because ζ ∈Q∗
pt

, once the
polynomial xp−3 has one root in Q∗

pt
, it necessarily has all of its roots in Q∗

pt
. Therefore,

pt would split completely in E. Since pt splits completely in L, this would mean that pt
splits completely in F =EL. But by construction, the Frobenius at pt is nontrivial, so pt
does not split completely.

It remains to show that, for each prime p, there exist examples for which Ju,v,k is
absolutely simple, and hence Bu,v,k as well.
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Lemma 6.2. For each p > 5, there exist u,v ∈ Z as in Proposition 5.2 such that Bu,v,k

is absolutely simple for all k.

Proof. The Jacobian of the curve yp = x(x−1)(x− t) over Q(t) is absolutely simple since
there is a value of t ∈ C – namely, t= 1

2 +
√
3
2 i – which makes the curve isomorphic over

C to yp = x3−1, and the Jacobian of the latter is known to be absolutely simple [16, 17].
By a result of Masser [25], for an abelian variety over Q(t), the geometric endomorphism
ring for 100% of specializations of t ∈ Q (ordered by height) is the same as the generic
geometric endomorphism ring. Since the generic abelian variety is geometrically simple,
this endomorphism ring is a division ring, and hence, 100% of specializations are simple as
well. But for t= a/b∈Q, a positive proportion has 3 exactly dividing a and 3 not dividing
b. So, there are many curves yp = x(x−1)(x−3v/u) with u,v ∈Z, not divisible by 3, with
absolutely simple Jacobian. This is a twist of the curve Cu,v,1 : yp = x(x−3u)(x−32v), so
there are curves of this form with absolutely simple Jacobian, giving that Bu,v,1 is also
absolutely simple. Since each Bu,v,k is a twist of Bu,v,1, it follows that Bu,v,k is absolutely
simple for all k.

Proof of Theorem 1.5. This follows from Corollary 5.3, Proposition 6.1 and Lemma
6.2.

Appendix: The Cassels-Tate pairing for p-coverings of Jacobians

by Tom Fisher
The purpose of this appendix is to interpret the proof of Proposition 5.2 in terms of a

certain Cassels-Tate pairing. Let J/Q be a Jacobian, and identify J = Ĵ in the usual way.
Let p > 5 be a prime. Suppose that J(Q) contains subgroups Z/pZ and (Z/pZ)2 that

we take to be the kernels of isogenies ψ̂ : J → B̂ and φ̂ : J → Â. We further suppose that
ker ψ̂ ⊂ ker φ̂, so that φ̂ factors via ψ̂ to give a commutative diagram

J
̂φ ��

̂ψ ���
��

��
��

� Â

B̂

ν̂

����������

.

There is then a commutative diagram

A(Q)
ν �� B(Q)

δν ��

ψ

��

Q∗/(Q∗)p

ι

��
A(Q)

φ ��

ν

��

J(Q)
δφ �� Q∗/(Q∗)p×Q∗/(Q∗)p

π

��
B(Q)

ψ �� J(Q)
δψ �� Q∗/(Q∗)p
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where ι(s) = (s,s−1) and π(r1,r2) = r1r2. We now give the Weil pairing definition of
the Cassels-Tate pairing (see [28, Chapter 1, Proposition 6.9], [31, Section 12.2] or [13])
simplified by the fact that π has an obvious section given by r �→ (r,1). The Cassels-Tate
pairing

〈 , 〉CT : S(ψ)(B/Q)×S(ν̂)(B̂/Q)→Q/Z

is defined as follows. We start with

r ∈ S(ψ)(B/Q)⊂Q∗/(Q∗)p and s ∈ S(ν̂)(B̂/Q)⊂H1(Q,Z/pZ).

For each prime �, we pick P� ∈ J(Q�) with δψ,�(P�) ≡ r mod (Q∗
� )

p. Then δφ,�(P�) =
(rξ�,ξ

−1
� ) for some ξ� ∈Q∗

�/(Q
∗
� )

p. We define

〈r,s〉CT =
∑
�

(ξ�, res� s)�,

where

( , )� :H
1(Q�,μp)×H1(Q�,Z/pZ)→Q/Z (6.1)

is the local pairing given by cup product and the local invariant map. Since the sum of the
local invariants of an element in H2(Q,μp) is 0, we have 〈r,s〉CT = 0 for all r ∈ δψ(J(Q)).

Proposition A. With the notation and assumptions of Proposition 5.2 (noting that δφ,
δψ and S(ψ)(B/Q) are there called ∂H , ∂D and Sel(Bk)), we have

(i) pi ∈ S(ψ)(B/Q)⊂Q∗/(Q∗)p for all 1 � i � t.
(ii) Let χi ∈H1(Q,Z/pZ) = Hom(Gal(Q/Q),Z/pZ) be the unique continuous character

that factors via Gal(Q(ζpi
)/Q) and satisfies χi(Frob3) = 1 (this is possible by

assumption (4)). Then

χi−χj ∈ S(ν̂)(B̂/Q)⊂H1(Q,Z/pZ)

for all 1 � i,j, � t.
(iii) For a1, . . . ,at,b1, . . . ,bt ∈ {0,1, . . . ,p−1} with

∑
bj ≡ 0 (mod p), we have〈

t∏
i=1

pai
i ,

t∑
j=1

bjχj

〉
CT

=
−5

p

t∑
i=1

aibi.

In particular, since p > 5, if q =
∏t

i=1 p
ai
i , and the ai ∈ {0,1, . . . ,p− 1} are not all

equal, then q �∈ δψ(J(Q)).

Proof. (i) See the final paragraph of the proof of Proposition 5.2.
(ii) The restriction res�(χi) is unramified for all � �= pi, and trivial for all � ∈ U \ {3}
by assumption (3). So we only need to check the local conditions at p1, . . . ,pt and 3.
By Lemmas 4.1 and 5.1, we know that imδφ,pi

has order p2, and the natural map
imδφ,pi

→ imδψ,pi
is an isomorphism. Chasing around (the local analogue of) the above

diagram shows that imδν,pi
is trivial. It follows by Tate local duality that imδν̂,pi

is
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all of H1(Qpi
,Z/pZ). In other words, in the definition of S(ν̂)(B̂/Q), there are no local

conditions at p1, . . . ,pt. It is the local condition at 3 that forces us to take differences.
(iii) We take r = pi in the above description of the pairing. The only primes � that can
contribute to the pairing are those in {p1, . . . ,pt}∪U . For all such primes � �= pi we have
that r is trivial in Q×

� /(Q
×
� )

p by assumptions (1) and (2). Taking P� = 0 and ξ� = 1, we
see that these primes make no contribution to the pairing. It remains to compute the
contribution at �= pi. By Lemma 4.1, we have

δφ,�(P�) = ((3−3p−2
i )a(3pi)

b,(3pi)
a(3−2p−2

i )b)

for some a,b ∈ Z/pZ. We know that (r1,r2) �→ r1r2 maps this to r = pi ∈Q∗
pi
/(Q∗

pi
)p, and

that Q∗
pi
/(Q∗

pi
)p is generated by 3 and pi. Therefore, −2a−b≡ 0 (mod p) and −a−b≡ 1

(mod p). We solve these to give a= 1 and b=−2. Therefore,

δφ,�(P�) = (3−5p−4
i ,35p5i ).

and ξ� = 3−5p−5
i . Therefore,

〈pi,
∑

bjχj〉CT =
∑

bj((3pi)
−5, respi

χj)pi
=

−5bi
p

.

Notice that, since pi ≡ 1 (mod p), evaluating the local pairing (6.1) reduces to a
computation of Hilbert symbols. The formula in the statement of the proposition follows
by linearity in the first argument.
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