
JFP 17 (1): 131–143, 2007. c© 2007 Cambridge University Press

doi:10.1017/S0956796806006186 Printed in the United Kingdom

131

Spreadsheet functional programming

DAVID WAKELING

The Business School, University of Gloucestershire,

The Park, Cheltenham, Gloucestershire GL50 2RH, UK

(e-mail: dwakeling@glos.ac.uk)

Abstract

The functional programming community has shown some interest in spreadsheets, but

surprisingly no one seems to have considered making a standard spreadsheet, such as Excel,

work with a standard functional programming language, such as Haskell. In this paper, we

show one way that this can be done. Our hope is that by doing so, we might get spreadsheet

programmers to give functional programming a try.

1 Introduction

The programming language community in general has had little time for spread-

sheet programming, having concluded, it seems, that spreadsheets are intrinsically

uninteresting (Casimir, 1992). The functional programming community in particular,

however, has shown more interest, having realised that spreadsheet calculation is a

form of functional computation. Indeed, two approaches have been tried. The first

approach is one in which the spreadsheet programming language is a functional

programming language (Wray & Fairbairn, 1989; de Hoon et al., 1995; Burnett

et al., 2001; Malmström, 2004). This approach requires the user to abandon their

investment in their favourite spreadsheet, and asks them to learn a new one. The

second approach is one in which the spreadsheet programming language incorporates

ideas from functional programming languages (Ahmad et al., 2003; Peyton Jones

et al., 2003; Abraham & Erwig, 2004; Antoniu et al., 2004). This approach permits

the user to retain their investment in their favourite spreadsheet, but asks them to

learn additional rules and techniques. In this paper, we consider a third approach

in which the spreadsheet programming language may be a functional programming

language. This approach permits the user to retain their investment in their favourite

spreadsheet, and asks them to learn additional rules and techniques only at their

own pace.

This paper is organised as follows. Section 2 introduces spreadsheets. Section 3

describes our design for spreadsheet functional programming. Section 4 outlines

how this design is implemented. Section 5 presents an example. Section 6 discusses

the strengths and weaknesses of our approach. Section 7 concludes.

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


132 D. Wakeling

Fig. 1. A spreadsheet.

2 Spreadsheets

A spreadsheet (Kay, 1984) is an interactive program for performing arithmetic on

columns and rows of data. It displays a workbook consisting of several worksheets1.

See Figure 1. Each worksheet is divided into cells , which are arranged in a grid that

may be indexed by a reference formed from a column letter and a row number.

A cell may contain a value that is either a number or a label , and a formula

that can be used to calculate the number. A formula is introduced with ‘=’ and

consists of constants, functions, and references to other cells. If the value of a cell

is changed, then so are those of any cells whose formulae reference it. In large, and

especially shared spreadsheets, it is often helpful to attach a comment to a cell to

explain its value or formula. Most spreadsheets come with a macro language that

allows them to be controlled by program code, as well as by keystrokes and mouse

clicks.

3 Design

Our design provides the Excel user with a way to define Haskell functions, to use

these functions in formulae, and to evaluate these formulae in spreadsheets.

3.1 Functions

The Excel macro language is a variant of Visual Basic known as Visual Basic for

Applications (VBA) (Bullen et al., 2003). Unfortunately, the Excel VBA editor cannot

sensibly be used to enter Haskell code. The problem is that it “knows” many of the

rules of VBA, and its colourful and noisy interventions when those rules are broken

by Haskell are too distracting. Looking for somewhere else to enter Haskell code,

one soon comes upon cell comments. Once the standard box has been enlarged and

the standard font changed to one of fixed-width, these are eminently suitable. See

Figure 2. Of course, not all comments will be code, and to indicate those that are,

1 Spreadsheets have a long history (Ceruzzi, 2000), but Microsoft’s Excel (Microsoft Corporation, 2006)
has come to dominate the market. Throughout this paper, therefore, we use Excel terminology.

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


Spreadsheet functional programming 133

Fig. 2. Entering functions.

Fig. 3. Entering formulae.

we have adopted the convention that if the first line is Haskell, then the remaining

lines are Haskell code.

3.2 Formulae

Similarly, the Excel formula bar cannot sensibly be used to enter Haskell expressions.

As before, the problem is that it, and the Office Assistant, “know” the rules of Excel

expressions, and their meddling and animated interventions when those rules are

broken by Haskell expressions are again too distracting. A way around this is

to quote expressions, so that they are treated as strings. See Figure 3. Thus, we

have adopted the convention that if the outermost macro is Haskell, then its first

argument is a quoted Haskell expression and its second argument is a number – the

role of this second argument will become clear later. Of course, numbers that have

a common syntax in Excel and Haskell do not need to be quoted.

3.3 Evaluation

One way to evaluate Haskell formulae would be to develop a Haskell interpreter in

VBA. This would require a lot of work, and would probably be rather inefficient.

Another way would be to use an existing Haskell interpreter. This would require

far less work, almost certainly be more efficient, and is what we have chosen to do.

Excel sends calculations to a Haskell interpreter (for example, Hugs (Jones, 1994)),

which carries them out and returns the results. See Figure 4.

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


134 D. Wakeling

Fig. 4. Evaluating formulae.

3.4 Programming

This arrangement allows the spreadsheet programmer to write:

• functions as Haskell comments that may use any of the features of the

language, including higher-order functions, polymorphic types and lazy eval-

uation;

• formulae as Haskell macros that may call these functions with numbers, cell

references or functions (only) as arguments, and numbers (only) as results –

cell calculation forces strict evaluation of these formulae.

So, for example, a financial modeller struck by the elegance of the combinator-

based approach to contracts in Peyton Jones et al. (2000) could enter their functions

directly, but could then only use them to calculate numerical results.

4 Implementation

Whenever a worksheet changes, our implementation executes some VBA code that

writes a calculations file, runs a Haskell interpreter, and reads a results file.

4.1 Writing a calculations file

A calculations file contains a Haskell program. See Figure 5. This calculations file

corresponds to the worksheet of Figures 2 and 3. A calculations file consists of a

prologue, a body and an epilogue. The prologue is the same for all worksheets. It

names the module and imports two standard ones. The body is made up of function

and value definitions from the worksheet. The function definitions come from any

Haskell comments, and the value definitions from any Haskell formulae and any

numeric constants. Cell references are not valid as variable names, and so they are

prefixed with an underscore. The epilogue defines a main function that evaluates

those definitions which come from any Haskell formulae and writes the results to

a file whose name was passed as an argument.

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


Spreadsheet functional programming 135

module Main (main) where

import IO

import System

-- Ackermann’s function

ack :: Double -> Double -> Double

ack 0 n = n + 1

ack m 0 = ack (m - 1) 1

ack m n = ack (m - 1) (ack m (n - 1))

_B3 :: Double

_B3 = 2

_B4 :: Double

_B4 = 4

_B5 :: Double

_B5 = ack _B3 _B4

main :: IO ()

main

= do { argv <- getArgs

; ifd <- openFile (argv !! 0) WriteMode

; hPutStrLn ifd (show ([

("B5", _B5)

] :: [ (String, Double) ]))

; hClose ifd

}

Fig. 5. A calculations file.

[("B5",11.0)]

Fig. 6. A results file.

4.2 Running a Haskell interpreter

A Haskell interpreter can be run by creating a separate process for it. Unfortunately,

the obvious VBA Shell process is asynchronous, and so one must wait for it to

complete by polling its status regularly.

4.3 Reading a results file

A results file contains of a list of pairs of cell references and results. See Figure 6.

Again, this results file corresponds to the worksheet of Figures 2 and 3. In principle,

all one need do after reading a results file is to change the values of the cells to

the results. In practice, one must cope with the way that the value and formula of

a cell are tied together in Excel: change the value, and the formula automatically

changes to that value; change the formula, and the value automatically changes to

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


136 D. Wakeling

its result. The roundabout way that we change the value without losing the formula

is therefore as follows. Suppose that before calculation, the formula is

= Haskell( e, x )

where e is a Haskell expression and x is any number. After calculation, we change

the formula to

= Haskell( e, y )

where y is the result of evaluating e. The macro Haskell simply returns its second

argument, thus changing the value from x to y, but the expression e is not lost.

5 An example

The application that we have in mind for this work is in the field of bioinformatics ,

in the area of biological simulation . Spreadsheet calculation is a good metaphor

for biological simulation, and has been employed successfully, for example, in the

Computational Cell Biology Laboratory at Virginia Polytechnic Institute (Vass et al.,

2002). Here, we show how a classic biological model can be simulated.

5.1 A classic model

Hodgkin and Huxley modelled the current flow through the surface membrane of

the nerve fibre of a squid as the sum of the capacitative, sodium , potassium and

leakage currents (Hodgkin & Huxley, 1990).

5.1.1 The capacitative current

The capacitative current, Icap, is given by

Icap = Cm × dVm

dt

where Cm is the membrane capacitance and Vm is the transmembrane potential.

5.1.2 The sodium current

The sodium current, INa, is given by

INa = gNa,max × m3 × h × (Vm − ENa)

where gNa,max is the maximum conductance of sodium, and m and h satisfy the

equations

dm

dt
= αm × (1 − m) − βm × m

dh

dt
= αh × (1 − h) − βh × h

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


Spreadsheet functional programming 137

The rate coefficients, αm, βm, αh and βh, were found by curve-fitting to be

αm =
0.1 × (Vm + 25.0)

exp(0.1 × (Vm + 25.0)) − 1.0

βm = 4 × exp(Vm/18.0)

αh = 0.07 × exp(Vm/20.0)

βh =
0.1

exp(0.1 × (Vm + 30.0)) + 1.0

5.1.3 The potassium current

The potassium current, IK, is given by

IK = gK,max × n4 × (Vm − EK)

where gK,max is the maximum conductance of potassium, and n satisfies the equation

dn

dt
= αn × (1 − n) − βn × n

The rate coefficients, αn and βn, were again found by curve-fitting to be

αn =
0.01 × (Vm + 10.0)

exp(0.1 × (Vm + 10.0)) − 1.0

βn = 0.125 × exp(Vm/80.0)

5.1.4 The leakage current

The leakage current, IL, is given by

IL = gL × (Vm − EL)

where EL is the reversal potential for the leakage current.

5.1.5 The total current

Combining the equations, the total current across a cell membrane, I , is given by

I = Icap + INa + IK + IL

That is,

I = Cm × dVm

dt
+ INa + IK + IL

This can be rearranged to

dVm

dt
=

I − INa − IK − IL

Cm

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


138 D. Wakeling

Fig. 7. Entering the initial values and formulae.

5.2 Simulation

Like many other simulations, this one involves a system of ordinary differential

equations , which in general take the form

dx

dt
= f(t, x)

These say how a dependent variable, x, representing some value of interest, changes

with an independent variable, t, usually representing time. A simulation involves

solving systems of such equations numerically. A common way to do this is to use

the fourth-order Runge-Kutta method summarised by the equations

k1 = sf(tn, xn)

k2 = sf

(
tn +

s

2
, xn +

k1

2

)

k3 = sf

(
tn +

s

2
, xn +

k2

2

)

k4 = sf(tn + s, xn + k3)

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
tn+1 = t + s

where the constant s is the time step size (Gear, 1971).

In our simulation spreadsheet, then, there will be columns for the independent

variable, t, and for the dependent variables, m, h, n, Vm, and a row for each time

step. See Figure 7. Entering the formulae for the rows is not as tedious as it might

appear because Excel provides a smart block copy-and-paste facility which adjusts

copied references appropriately. Any that should not be adjusted are written with ‘$’

characters. A function for solving ordinary differential equations numerically using

the Runge-Kutta method, rk, and those for calculating the dependent variables,

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


Spreadsheet functional programming 139

Fig. 8. Entering the calculation functions.

Fig. 9. Entering the calculation formulae, step 1.

calc_m, calc_h, calc_n and calc_vm, are then entered as comments. See Figure 8.

It then remains only to enter the formulae for calculating the dependent variables at

each time step. Unfortunately, because the smart block copy-and-paste facility does

not adjust references within quoted expressions, this must be done in two stages. In

the first stage, the formulae are entered without the Haskell macro, and copied with

the smart block copy-and-paste facility. See Figure 9. In the second stage, pressing a

function key runs a conventional macro that wraps these formulae with the Haskell

macro. It prompts for the top-left and then for the bottom-right cell reference where

it should begin and end its work. See Figure 10. The calculation formulae have then

been entered as required. See Figure 11.

Of course, the results of the simulation can be studied using any of the usual

Excel built-in or third-party tools for data analysis and visualisation. See Figure 12.

This simple chart may be compared with those in the original paper (Hodgkin &

Huxley, 1990).

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


140 D. Wakeling

Fig. 10. Entering the calculation formulae, stage 2.

Fig. 11. Entering the calculation formulae, after stages 1 and 2.

6 Strengths and weaknesses

Below we briefly discuss the strengths and weaknesses of our approach to spreadsheet

programming.

6.1 Strengths

The strengths that we claim for our approach to spreadsheet programming are as

follows:

(a) It uses an ordinary spreadsheet . The functionality of, experience with, and

support for a familiar product all carry over.

(b) It uses an ordinary functional language. The benefits of such languages also

carry over (Backus, 1978; Turner, 1982; Hughes, 1989).

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


Spreadsheet functional programming 141

Fig. 12. A simple chart.

(c) It can accommodate any pace of change. The old way of doing things can

coexist with the new one.

Existing approaches all seem to offer either: (a) (Abraham & Erwig, 2004; Ahmad

et al., 2003; Antoniu et al., 2004); (b) (Wray & Fairbairn, 1989; de Hoon et al.,

1995; Burnett et al., 2001; Malmström, 2004); or (a) and (c) (Peyton Jones et al.,

2003). However, we are convinced that only by offering (a), (b) and (c) might we get

spreadsheet programmers to give functional programming a try.

6.2 Weaknesses

The weaknesses that we admit for our approach to spreadsheet programming are as

follows.

(a) It is somewhat clumsy . The Haskell macro must be remembered, and then it

takes time to enter it, and space to display it.

(b) It is somewhat inefficient. Every calculation involves writing a file, running an

interpreter, and reading a file.

(c) It handles errors poorly . The implementation that we have described fails

silently if functions or formulae contain errors; the one that we actually use

does a bit better, displaying the interpreter error messages in a dialogue box.

Of these, (a) can take some getting used to, (b) can sometimes be irritating when

the spreadsheet is large or the computer is slow, and (c) can occasionally confuse

novice functional programmers.

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


142 D. Wakeling

Overall, our experience has been mixed. On the positive side, many everyday

programming errors are detected that would otherwise lead to incorrect results,

including dangling cell references, undefined functions, and functions with the wrong

type of arguments. Notice that these programming errors are different from the unit

errors detected elsewhere (Ahmad et al., 2003; Abraham & Erwig, 2004; Antoniu

et al., 2004), and that our work could usefully be combined with theirs. On the

negative side, getting spreadsheet programmers to take up functional programming

means tackling the training problem that is one of the reasons why no one uses

functional languages (Wadler, 1998). This is an important problem – something

that we were reminded of while carrying out a small experimental study with some

novice functional programmers (Wakeling, 2004) – but one that is beyond the scope

of this paper to solve.

7 Conclusions

In this paper, we have shown how a standard spreadsheet, Excel, and a standard

functional programming language, Haskell, can be made to work together. This, we

hope, might get spreadsheet programmers to give functional programming a try.

Although we have concentrated on Haskell, something similar would clearly work

with other programming languages for which an interpreter is available, such as

Scheme, SML and Prolog, and we encourage supporters of those languages to make

them work with Excel too.

Acknowledgements

Our thanks to the referees for some useful comments and suggestions.

References

Abraham, R. & Erwig, M. (2004) Header and unit interfence for spreadsheets through

spatial analyses. Pages 165–172 of: IEEE Symposium on Visual Languages and Human-

centric Computing.

Ahmad, Y., Antoniu, T., Goldwater, S. & Krishnamurthi, S. (2003) A type sysetm for

statically detecting spreadsheet errors. Pages 174–183 of: IEEE International Conference on

Automated Software Engineering. IEEE Press.

Antoniu, T., Steckler, P. A., Krishnamurthi, S., Neuwirth, E. & Felleisen, M. (2004) Validating

the unit correctness of spreadsheet programs. Pages 439–448 of: Proceedings of the

International Conference on Software Engineering. ACM Press.

Backus, J. (1978) Can programming be liberated from the von Neumann style? A functional

style and its algebra of programs. Comm. ACM, 21(8), 613–641.

Bullen, S., Green, J., Bovey, R. & Rosenberg, R. (2003) Excel 2002 VBA programmer’s reference.

Wrox Press.

Burnett, M., Atwood, J., Djang, R. W., Gottfried, H., Reichwein, J. & Yang, S. (2001) Forms/3:

A first-order visual language to explore the boundaries of the spreadsheet paradigm.

J. Func. Program. 11(2), 155–206.

Casimir, R. J. (1992) Real programmers don’t use spreadsheets. ACM SIGPLAN Notices,

27(6), 10–16.

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186


Spreadsheet functional programming 143

Ceruzzi, P. E. (2000) A History of Modern Computing. MIT Press.

de Hoon, W. A. C. A. J., Rutten, L. M. W. J. & van Eekelen, M. C. J. D. (1995). Implementing

a functional spreadsheet in Clean. J. Func. Program. 3(5), 383–414.

Gear, C. (1971) Numerical Initial Value Problems in Ordinary Differential Equations. Longman

Higher Education.

Hodgkin, A. L. & Huxley, A. F. (1990) A quantitative description of membrane current and

its application to conduction and excitation in nerve. Bull. Math. Biol. 52(1/2), 25–71.

Hughes, J. (1989) Why functional programming matters. Comput. J. 32(2), 98–107.

Jones, M. P. (1994) The implementation of the Gofer functional programming system. Tech. rept.

YALEU/DCS/RR-1030. Yale University, Department of Computer Science.

Kay, A. (1984) Computer software. Scientific American, 3(251), 53–59.

Malmström, J. (2004) Haxcel: A spreadsheet interface to Haskell written in Java. M.Phil. thesis,

Department of Computer Science, Mälardalen University.

Microsoft Corporation (2006) Excel. http://www.microsoft.com/excel.

Peyton Jones, S. L., Eber, J.-M. & Seward, J. (2000) Composing contracts: An adventure in

financial engineering (functional pearl). Pages 280–292 of: Proceedings of the International

Conference on Functional Programming. ACM Press.

Peyton Jones, S. L., Blackwell, A. & Burnett, M. (2003) A user-centred approach to functions

in Excel. Pages 165–176 of: Proceedings of the International Conference on Functional

Programming. ACM Press.

Turner, D. A. (1982) Recursion equations as a programming language. In: Pages 1–28 of:

Darlington, J., Henderson, P. and Turner, D. A. (eds.), Functional Programming and its

Applications. Cambridge University Press.

Vass, M., Shaffer, C. A., Tyson, J. J., Ramakrishnan, N. & Watson, L. T. (2002) The JigCell

model builder: A tool for modeling intra-cellular regulatory networks.

Wadler, P. (1998) Why no one uses functional languages. SIGPLAN Notices, 33(8), 23–27.

Wakeling, D. (2004) Dealing with life in the cells: An experimental study.

Wray, S. C. & Fairbairn, J. (1989) Non-strict languages – programming and implementation.

The Comput. J. 32(2), 142–151.

https://doi.org/10.1017/S0956796806006186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006186



