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SUMMARY

The aim of this work was to use experimental infection data of human influenza to assess a

simple viral dynamics model in epithelial cells and better understand the underlying complex

factors governing the infection process. The developed study model expands on previous reports

of a target cell-limited model with delayed virus production. Data from 10 published

experimental infection studies of human influenza was used to validate the model. Our results

elucidate, mechanistically, the associations between epithelial cells, human immune responses,

and viral titres and were supported by the experimental infection data. We report that the

maximum total number of free virions following infection is 103-fold higher than the initial

introduced titre. Our results indicated that the infection rates of unprotected epithelial cells

probably play an important role in affecting viral dynamics. By simulating an advanced model

of viral dynamics and applying it to experimental infection data of human influenza, we obtained

important estimates of the infection rate. This work provides epidemiologically meaningful

results, meriting further efforts to understand the causes and consequences of influenza A

infection.
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INTRODUCTION

A variety of mathematical and computational models

have been proposed for elucidating the nonlinear

transmission dynamics of epidemics and for enhanc-

ing our understanding of the spread of diseases and

the immune responses that subsequently occur within

the infected host [1–3]. To date, important results

have been obtained from mathematical modelling of

viral dynamics for human immunodeficiency [4–6],

hepatitis B [7, 8], hepatitis C [9] and influenza viral

infections [10–12].

The kinetics of the human influenza virus life-

cycle is a complex process that involves many

important factors, including the rate at which epi-

thelial cells are produced and infected, and the rate

at which viruses are produced from such epithelium.

These said processes are influenced by intrinsic

cellular dynamics and extrinsic immunological fac-

tors. Thus, computer simulation would be a valuable

tool to assess the potential contribution and relative

importance of each factor, especially when unexpec-

ted scenarios are difficult to replicate experimentally

[10, 12].
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Modelling the dynamics of influenza virus infection

has progressed significantly. Baccam et al. [10] pro-

vided two models describing the kinetics of such

infection in humans: a target cell-limited model and a

target cell-limited model with delayed virus pro-

duction. These authors used data from experimentally

infected volunteers to estimate various parameters of

the viral life-cycle using mathematical models. Their

findings suggested that modelling with the target cell-

limited model with delayed virus production was

more realistic because infected cells began producing

influenza virus for nearly 5 h. In addition, Chang

& Young [12] developed a model based on simple

scaling laws as delineated by ordinary differential

equations that describes the time-courses of the

numbers of infectious viral particles, activated cyto-

toxic T-lymphocytes (CTLs), interferon (IFN) mol-

ecules, infected cells, uninfected cells, and the subset of

uninfected cells that are protected from viral infection

by IFN. They found that the rise time, duration,

and the severity of influenza A infection could be

expressed as a function of the initial viral load with

relevant parameters based on the developed scaling

laws.

A target cell-limited model with delayed virus pro-

duction can also be incorporated with an indoor

aerosol transmission model and a population dy-

namic susceptible-exposed-infective-recovery model

to quantify the influenza infection risk in the human

upper respiratory tract [13]. Chen et al. [13] revealed

that the influenza infection risk in a school setting

could be estimated appropriately by combining the

viral kinetics and different exposure parameters with

environmental factors.

Experimental viral infection of human influenza A

can be utilized to investigate local and systemic cyto-

kine responses during the infection period [14], even

after oral or intravenous neuraminidase inhibitor

administration [15–18]. Different experimental trials

have assessed dosing, formulation, and host responses

on daily viral titre, viral shedding, peak titre, days of

shedding, and clinical symptom scores. However,

consideration of the variations in the selected co-

efficient from influenza infection data remains a major

analytical challenge for validating viral dynamics

models.

In the present work, for the practical aim of esti-

mating system parameters from experimental infec-

tion data of human influenza, we sought to develop a

mathematical model by combining the target cell-

limited model with delayed virus production [10] with

a model that considers the effects of the immune

response, including IFN and CTL factors [12]. More

importantly, this modified model was used to perform

sensitive analysis and was validated with experimental

infection data of human influenza A. We believe that

such a framework could be incorporated explicitly

into influenza control modelling schemes.

MATERIALS AND METHODS

Study data

Ten published experimental infection studies of

human influenza A(H1N1) were used as the study data

(see Table 1). Briefly, participants were inoculated

intranasally (0.25 ml per nostril) with H1N1 on day 0

with a dose ranging from 104
.5 to 107 of tissue culture

Table 1. Summary of used experimental human influenza A(H1N1) infection data

Age
group

(yr)

Size of
study
subgroups

(N ) Virus

Inocul. dose

(TCID50)

Infected
N (% of
subgroup

size)

Shedding
virus N
(% of

infected)

Mean virus
shedding
duration

(day) Reference

18–25 9 A/California/10/78/H1N1 104
.5 8 (89) 8 (100) n.a. [33]

18–45 16 A/Kawasaki/86/H1N1 107 16 (100) 16 (100) 2.8 [34]

18–33 59 A/Texas/36/91/H1N1 105 49 (83) 49 (100) 2 [16]
19–40 19 A/Texas/36/91/H1N1 105 19 (100) 19 (100) n.a. [14]
18–40 14 A/Texas/36/91/H1N1 106 14 (100) 14 (100) n.a. [35]
19–33 8 A/Texas/36/91/H1N1 105 8 (100) 8 (100) 4.6 [17]

19–35 8 A/Texas/36/91/H1N1 105 8 (100) 8 (100) n.a. [18]
18–40 13 A/Texas/36/91/H1N1 106 13 (100) n.a. 4.5 [15]
19–40 14 A/Texas/36/91/H1N1 105 14 (100) 14 (100) 5.1 [29]

18–45 18 A/Texas/36/91/H1N1 106 17 (94) 17 (100) 3.2 [22]

TCID50, Median tissue culture infective dose ; N, sample size ; n.a., not available.
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infective dose (TCID50). The test age groups were

healthy young men and women. The number of in-

fected people ranged from eight to 59 with shedding

durations ranging from 2 to 5.1 days. Nasal washings

were collected before viral inoculation for the detec-

tion of virus infection and collected from days 0 to 8

for virus isolation.

The age groups, size of study subgroups, numbers

of infected people, numbers of shed virus and shed-

ding durations were all recorded. The main differ-

ences were found in inoculated dose, experimental

sample size, and the mean virus shedding duration.

For safety considerations, young and healthy men

and women were used. Sex distinctions were deemed

irrelevant. A high percentage of the subgroup became

infected, and, of those infected, nearly 100% shed

virus. Eight published studies used the same virus

strain.

We estimated the daily-based average viral titres

(log TCID50 mlx1) from the published study data

from day 0 (time of inoculation) to day 8. Statistical

analysis was performed using free virions from our

modified viral dynamics model and daily-based aver-

age viral titres from the experimental influenza infec-

tions. Didger 4 software (Golden Software Inc., USA)

was used for data collection from the published

studies.

Model

Viral dynamics models have several assumptions [1] :

(1) uninfected cells encounter free virus, becoming

infected cells ; (2) the rate of production of new

infected cells is proportional to the product of the

density of uninfected cells multiplied by the density of

free virions; (3) free virions are produced by infected

cells ; (4) uninfected cells, infected cells and free

virions die at certain rates ; and, (5) uninfected cells

are constantly replaced by the system.

By studying a model of influenza viral dynamics

that builds on past well-developed models [10, 12], we

explored the consequences of host–pathogen interac-

tions at three levels : (a) the epithelial cell level ; (b) the

human immune response level (including the role of

IFN and CTLs); and, (c) the virus level. The essential

features of this model are depicted in Figure 1.

Briefly, after influenza A virus infects epithelial

cells, progeny virions are usually not detected for

6–8 h [10]. This delay in the production of free virions

can be modelled by defining two separate populations
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Fig. 1. Schematic representation showing the pathway interactions of influenza virus infecting human lung epithelial cells

at : (a) the epithelial cell level ; (b) the human immune response level ; and (c) the virus level. The definition of symbols and
their detailed descriptions are given in the text and Table 2.
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of infected epithelial cells : one population (Y) is in-

fected but not yet producing virus and the second

population (J) is actively producing virus, a so-called

productive infection [10]. Therefore, at the epithelial

cell level (Fig. 1a), uninfected cells (X) can be infected

by free virions (V), becoming a cell population as

defined by Y. After 6–8 h, following viral entry and

replication, this epithelial population becomes cap-

able of actively producing virions as defined by J.

The rate l (dx1) is the equilibrium between the

production rate of epithelial cells and their natural

death at rate xdX. The conversion of uninfected to

infected cells is defined by the rate xb(XxXR)V,

where b (dx1 virionx1) represents the infection rate of

an unprotected epithelial cell per virion and XR rep-

resents IFN-protected cells. The rate of change of

population Y contains the same infection rate term,

b(XxXR)V, and a decay term,xaY, due to viral cyto-

lytic effects with a (dx1) representing the reciprocal

of the infected epithelial cell’s lifespan. An additional

loss term, xpYZ, describes the action of CTLs with

p (dx1 CTLx1) representing the rate of CTL-induced

destruction of infected epithelial cells. The transition

rate q (dx1) represents the transition from Y to J.

Here, we assumed that a decay term –aJ represents

viral cytolytic effects, and an additional loss term

–pJZ represents the action of CTLs on the system.

The transition rate k (dx1 infected cellx1) represents

infected epithelial cells (J) that become capable of

producing free virions (V). At the human immune

response level (Fig. 1b), CTLs (Z) can be induced and

activated by Y and J. The rate of change of virus-

specific CTLs contains a production rate, c(Y+J)Z,

and a natural decay rate, xbZ, where c (dx1 infected

cellx1) is the production rate of induced CTLs per

infected epithelial cell, and b (dx1) is the reciprocal of

the CTL lifespan. Uninfected epithelial cells (X) that

become IFN-protected (XR) are described by the

production term ci(XxXR), where c (dx1 IFNx1)

represents the rate constant for the induction of the

IFN-induced anti-viral state. In addition, the term,

xaRXR, with aR (dx1) representing the rate of IFN-

protected epithelial cell decay, represents the natural

decay term.

IFN cytokines, represented by the total number of

IFN molecules, i, can protect cells (XR) from becom-

ing infected. The rate of change in the number of IFN

molecules contains both a natural decay term,xaMIi,

and a production term, CIV(i*xi), which describes

the virus-induced activation of IFN-producing

macrophages. The term aMI (d
x1) is the rate of loss of

IFN-producing macrophages. The term CI (dx1

virionx1) is the induction rate for IFN production.

The term i* is the effective production rate number for

IFN.

The present model used free virions in epithelial

cells (V) to represent the virus level (Fig. 1c). The term

kJ describes the production of virions from infected

cells at rate k, and the term –uV describes the natural

decay of the virion at a rate u.

The system of ordinary differential equations cor-

responding to the model in Figure 1 and based on

previous work are as follows [10, 12] :

dX

dt
=lxdXxb XxXRð ÞV, (1)

dY

dt
=b XxXRð ÞVxaYxqYxpYZ, (2)

dJ

dt
=qYxaJxpJZ, (3)

dV

dt
=kJxuV, (4)

dZ

dt
=c Y+Jð ÞZxbZ, (5)

dXR

dt
=ci XxXRð ÞxaRXR, (6)

di

dt
=CIV i*xi

� �
xaMIi: (7)

Model implementation

The definitions, symbols, input values, and expected

physiological ranges of parameters in this influenza

model are summarized in Table 2. The input param-

eters of biological characteristics were derived from

experimentally infected volunteers [19–21]. The

physiological ranges for individual differences could

also be estimated.

To identify the most significant sensitive par-

ameters in our model, we performed a sensitivity

analysis for four parameters involving production

rates l and k with infection rate b and transition rate

q, respectively. This quantitative analysis can show

robustness of the effects of free virion dynamics

when model assumptions are made and when key

parameters are varied. The sensitivity analysis was

performed by varying the key production and
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destruction rates of l, q, k, and b, ranging from 0 to

6.57r107 dx1, 2–6 dx1, 67–6700 dx1 infected cellx1,

and 3r10x14 to 6r10x10 dx1 virionx1, respectively.

Model validation was also performed based on the

selected study data. Here we used a coefficient of

determination (r2) and P values as the quantitative

criterion for the model validation. Model simulations

were performed using Berkeley Madonna 8.0.1 (as

developed by Robert Macey and George Oster of the

University of California at Berkeley).

RESULTS

Influenza viral dynamics

We found that uninfected cells (X) decreased in

number from the initial values of 109 cells by virtue of

free virion infection whereas IFN-protected cells (XR)

increased rapidly at days 2–3 and reached a peak

value of 8.2r108 cells at day 3.4, showing an 89%

protection by IFN at this time-point (Fig. 2a). On the

other hand, the peak values of non-productive in-

fected cells (Y) and productive infected cells (J)

occurred at days 2.5 and 7 with 9.55r106 cells and

3.54r107 cells, respectively (Fig. 2a).

At the immune response level, the first responder to

influenza A infection was IFN(i), with production

of this cytokine beginning <2 h after viral infec-

tion, reaching a peak between days 3 and 4 (Fig. 2b).

By contrast, CTL responders (Z) were much

slower, showing peak activity at day 10 (Fig. 2b).

At the virus level, a high viral titre appeared at day 2

and reached a peak value of 5.96r109 virions by day 7

(Fig. 2c).

Human experimental viral titre concentration

Table 3 gives the daily-based average viral titres in

the previous studies included in this report. Most

viral titres were recorded on days 0–8, except the

study by Barroso et al. [22] which sampled twice (in

morning and afternoon) on days 1–3, and only once

on days 4–7. In order to estimate the daily-based

average viral titres, we used approximate values from

this study [22]. The overall patterns started after day 1

and approached towards peak viral titres during

Table 2. Definition, symbols, input values, and expected physiological ranges of parameters in the modified

influenza virus dynamic model

Symbols Definition and unit Input value# Range value$

X0 Equilibrium number of normal epithelial cells in upper six branches 109 —

l Equilibrium production rate of epithelial cells (dx1) 6.25r107 —
d Reciprocal of epithelial cell lifespan (dx1) 0.0625 —
b Infection rate of an unprotected epithelial cell per virion (dx1 virionx1) 10x10 3r10x14x6r10x10

a Reciprocal of infected epithelial cell lifespan (dx1) 1 0.5–2
q Transition rate from infected cells to productive infected cells (dx1) 4· 2–6·
p Infected epithelial cell CTL-induced destruction rate (dx1 CTLx1) 10x10 4r10x12x5r10x10

V0 Initial virus particles (virions) 107 —
k Production rate of viruses by an infected epithelial

cell (dx1 infected cellx1)
340 67–6700

u Reciprocal of influenza A virus lifespan (dx1) 2 2–4
Z0 Initial number of influenza A-specific CTLs in upper six branches 7r106 0.72r106x7.2r106

c CTL-induced production rate of CTL per infected epithelial
cell (dx1 infected cellx1)

3.6r10x8$ —

b Reciprocal of CTL lifespan (dx1) 0.5 —
c Rate constant for induction of anti-viral state by IFN (dx1 IFNx1) 10x9 10x8x10x10

aR Rate of virus resistant epithelial cell decay (dx1) 1 —

CI Induction rate for IFN production (dx1 virionx1) 8r10x10 —
i* Effective IFN production rate number 1010 7.7r107x7.7r1010

aMI Rate of loss of IFN-producing macrophages (dx1) 0.5 0.3–0.5

CTL, Cytotoxic T-lymphocyte ; IFN, interferon.

# Adopted from Murphy et al. [19] (cited in Chang & Young [12]).
$ All of the estimated physiological ranges shown are based on the parameter estimates in Bocharov & Romanyukha [20],
except for the value of c which was directly obtained from Beauchemin et al. [21].

· Adopted from Baccam et al. [10].
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day 2 with a measure of 103
.51 TCID50 mlx1

and then slowly decreased to <101 TCID50 mlx1 by

day 6.

Parameter sensitivity analysis

To evaluate the variability of parameters that signifi-

cantly contribute to free virions, sensitivity analyses

were performed. The time-course of free virions was

used to show the model’s sensitivity to variations in

parameters l, q, k, and b, respectively (Fig. 3). When

the modified influenza viral dynamics model was

subjected to an input parameter of l ranging from 0 to

6.27r107 dx1, free virions decreased accordingly

after day 3 post-infection, whereas a similar effect on

q was noted when parameters ranged from 2 to 6 dx1

(Fig. 3a, b).

We also found that the infection rates of uninfected

cells (to become infected cells) increased when input

parameters of the infection rate b were increased from

6r10x10 to 3r10x14 dx1 virionx1. Similarly, free

virions in epithelial cells increased with an increasing
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Fig. 2. Model influenza A variables at the three levels : (a) at the epithelial cell level : parameters include X (uninfected cells),
XR (IFN-protected cells), Y (infected cells), and J (productive infected cells) ; (b) at the human response level : parameters

include Z (CTLs) and I (IFN molecules) ; (c) at the virus level : parameters include V (free virions) with an initial viral load of
107 virions. Input values of these parameters are presented in Table 2.
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value of k, the virus production rate from infected

epithelium (Fig. 3c–f ).

Pearson correlation analysis [23] was used to de-

termine the optimal parameter inputs, with the best

statistical significance, between the daily-based aver-

age viral titres and the prediction of free virions that

varied with physiological ranges of parameter input.

Our results indicated that input values of k=4000

and b=5r10x10 resulted in a significant correlation

between experimental human infection data shown

in Table 3 and model predictions (r=0.99, P<0.0001)

(Table 4, Fig. 4). This sensitivity analysis suggested

that the infection rate of an unprotected epithelial

cell (b) is likely to play an important role in shaping

the viral dynamics, whereas the viral production rate

from infected epithelial cells (k) is the second most

sensitive parameter in this model.

Model validation

To test this prediction, we performed the model’s

validation with derived optimal estimates of pro-

duction rate k and infection rate b values. Figure 4a

shows the time-course of predicted free virions

in epithelial cells with the optimal parameters of

k=4000 and b=5r10x10 against the experimental

data of daily-based average viral titres shown in

Table 3. Generally, the results were in agreement

with the experimental data trend, except on days 6–8

where a decreasing trend was noted. This may be

due in part to individual immune variations in re-

sponse to influenza virus. Moreover, with regard to

Table 3, there were 2–6 missing data points of

the daily-based average viral titres at days 6–8 post-

infection.

This study also compared the predictive capacities

for free virions among the target-cell limited model

with delayed virus production [10], the immune re-

sponse model [12] and our modified viral dynamics

model (Fig. 4b). Our results indicated that our model

fit experimental data of the dynamics of free virion

production (r2=0.99, P<0.0001) better than the

target-cell limited model with delayed virus pro-

duction (r2=0.85, P=0.0004) and the immune re-

sponse model (r2<0.1, P=0.955) (Fig. 4b). This

indicates our model as performing better than the

others during validation. On the other hand, this

study presents the results of viral dynamics modelling

by considering the optimal input at b=5r10x10

(Table 4, Fig. 5a). Figure 5b shows the rapid rise in

IFN at 1–2 days after introduction of the virus fol-

lowed by a broad maximum between days 2 and 3.

The IFN production begins within hours and peaks at

between 72 and 92 h. Figure 5c shows the rapid rise in

CTL immunity between days 3 and 6. Figure 5d shows

that the maximum total number of free virions during

infection is 103-fold higher than the initial number

introduced (V0=107).

Table 3. Daily-based average viral titers (log TCID50 mlx1) which was estimated by the results of viral titres in

experimental influenza virus infection

Days post-infection

Reference0 1 2 3 4 5 6 7 8

0.013 0.019 1.86 1.66 1.17 0.74 0.78 0 0 [33]#
0.5 2.69 2.49 1.26 0.83 0.77 0.49 0 0 [34]#

0 0.97 2.71 2.71 1.90 0.82 0.54 0.40 0.17 [16]#
0.0058 1.86 3.77 3.34 2.60 2.50 1.32 0.81 0.16 [14]#
0 2 3.8 3.2 2.7 2.6 1.4 0.6 0.3 [35]#

0 1.99 3.41 2.65 2.17 0.76 0.25 0.44 0 [17]#
0.005 2.39 4 2.13 1.89 0.74 0 0 0 [18]$
0 2.24 3.34 3.02 1.64 0.40 0 0 0 [15]$

x0.5 1.87 3.62 3.12 2.69 2.53 1.22 0.16 x0.12 [29]#
0 2.14 2.68 2.45 1.51 0.82 0.14 0.05 0 [22]#
0.08 2.14 3.51 2.88 2.25 2.04 0.94 0.48 0.15 Average·

x0.08 2.15 3.52 2.87 2.30 2.22 0.97 0.29 x0.29 S.E.

# Mean values.

$ Median values.
· Arithmetic average of 10 viral titers (log TCID50 mlx1) on a specific day.
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DISCUSSION

Mathematical models have long been recognized as

useful tools for exploring complicated relationships

that underlie infectious disease transmission [24]. The

accuracy of the predictions obtained from math-

ematical modelling depends on the accuracy of the

estimated parameters used in the model. To this end,

good parameter estimates are needed to understand

and model the potential spread of influenza while the

interpretation of data from experimental infection

studies provides validation of mathematical model

predictions for different influenza infection scenarios.

Moreover, the dynamics of viral shedding and

symptoms following influenza virus infection are key

factors when considering epidemic control measures

[10, 14].

Our study developed a modified viral dynamics

model that builds on pastmodels of a target cell-limited

model with delayed virus production introduced by
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Baccam et al. [10] and Chung & Young [12]. Here, we

adopted these two models and compared the results

by fitting the models to experimental human infection

data. Results showed that our present model seemed

to fit data better than each individual past model. Our

results indicate a mechanistic explanation for the as-

sociations between epithelial cells, human immune

responses, and virus dynamics. These mechanistic

insights were supported by the experimental human

infection results. Our study also revealed that the

maximum total number of free virions (V(t)) during

infection is 103-fold higher than that of the initial

number introduced (V0). This result is supported by

previous research, indicating that this is within the

range of 10–105 that has been observed in other ex-

perimental data [10, 17, 19, 20, 25–27]. Our model

thus had higher performance when accounting for the

human immune response level, which incorporated

Table 4. Optimal Pearson correlation analysis between experimental human infection data (Table 3) and modelling

results from the modified virus dynamic model

Parameter

Input value

(original value) Optimal r P value

Equilibrium production rate of epithelial cells, l (dx1) 6.25r107 (6.25r107) x0.43 0.2459
Transition rate from infected cells to productive infected cells, q (dx1) 2 (4) x0.46 0.2077
Production rate of viruses by an infected epithelial cell,

k (dx1 infected cellx1)

4000 (340) 0.996 <0.0001

Infection rate of an unprotected epithelial cell per virion,
b (dx1 virionx1)

5r10x10 (10x10) 0.999 <0.0001
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the three additional parameters of IFN-protected

cells (XR), CTLs (Z), and IFN molecules (i). Overall,

this inclusion improved experimental data fitting.

Therefore, the modified model we developed de-

scribed appropriately the available experimental data.

The complexity of the model is determined by the

purpose of the study and the amount of information

in the dataset. As a rule of thumb, it is not ad-

vantageous to use a more complex model when a

simpler model provides an adequate fit to the data.

Undoubtedly, many factors influence the relationship

between primary influenza infection and immune re-

sponse outcome. Thus, several limitations and diffi-

culties existed in this study. The concentration units

used for model validation were different between the

experimental free virions shedding data and that of

simulated free virions. Handel et al. [28] provided the

unit conversion for 1 TCID50 mlx1 of nasal wash as

corresponding to nearly 102–105 free virions at the site

of infection. In fact, we think that this is a relatively

large range for this conversion. Our goal, however,

was not to obtain precise conversion numbers, but

to examine the qualitative effects of variation in the

infection rate of unprotected epithelial cells and viral

production from infected epithelial cells, and how

these parameters affect viral dynamics. Besides, no

available data so far allowed for validating this con-

version.

Furthermore, there is difference in the time-scales in

human infection experiments. Many previous studies

have focused on the beginning of inoculation and

drug administration in that the trials were conducted

twice daily [15]. However, several studies were con-

ducted daily with a mean viral titre [29] based on
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inoculation on day 0. Hence, we defined the inocu-

lation as the first day (day 0) and estimated the fol-

lowing average viral titres on days 0–8.

When humans are infected by influenza virus, in-

nate immune responses are particularly important as

the first line of defence against infection; however,

adaptive immune responses are also critical for the

ultimate control and clearance of influenza A virus

infection [30]. In order to consider the compartmen-

talization of influenza infection, Hancioglu et al. [11]

and Lee et al. [31] proposed more complex models

to simulate human immune response to influenza

A virus infection in different situations with different

objectives. The major difference between our study

and the above two studies rests in the number of

immune response parameters used for modelling.

In the present study, we constructed a simple model

of viral dynamics by using three parameters based in

part on models developed previously, whereas

Hancioglu et al. [11] and Lee et al. [31] used at least

twice as many immune response parameters than our

model.

In conclusion, by simulating an advanced model of

viral dynamics and applying it to experimental infec-

tion data of human influenza, we obtained important

estimates of the infection rate of an epithelial cell.

This work provides epidemiologically meaningful re-

sults and merits further efforts to understand the

causes and consequences of influenza pandemics by

placing experimental infection data in a predictive

framework of viral dynamics in order to develop

pertinent mitigation strategies. Our results suggest

that the infection rate of an unprotected epithelial cell

has an important role in viral dynamics. This modi-

fied model could be used for predicting the adaptive

immune response [31], antiviral use, or antiviral drug

resistance induced by drug selection pressure [32].

Furthermore, it is anticipated that this work could

provide an important analytical tool to estimate

key parameters in experimental and epidemiological

studies related to drug-resistant influenza virus in

immune response dynamics. Detailed understanding

of system dynamics and interaction between various

factors will require further development of the exist-

ing analytical models.

ACKNOWLEDGEMENTS

This study was financially supported by National

Science Council of Taiwan, Republic of China under

Grant NSC 97-2314-B-040-006-MY2.

DECLARATION OF INTEREST

None.

REFERENCES

1. Nowak MA, May RM. Virus Dynamics : Mathematical

Principles of Immunology and Virology. Oxford, UK:
Oxford University Press, 2000.

2. Perelson AS. Modelling viral and immune system

dynamics. Nature Reviews Immunology 2002; 2 : 28–
36.

3. Van Kerkhove MD, et al. Studies needed to address

public health challenges of the 2009 H1N1 influenza
pandemic : Insights from modeling. PLoS Medicine
2010; 7 : e1000275.

4. Perelson AS, et al. HIV-1 dynamics in vivo: virion
clearance rate, infected cell life-span, and viral gener-
ation time. Science 1996; 271 : 1582–1586.

5. Perelson AS, et al. Decay characteristics of HIV-1-

infected compartments during combination therapy.
Nature 1997; 387 : 188–191.

6. Nowak MA, Bangham CRM. Population dynamics of

immune responses to persistent viruses. Science 1996;
272 : 74–79.

7. Marchuk GI, et al. Mathematical model of antiviral

immune response. I. Data analysis, generalized picture
construction and parameters evaluation for hepatitis B.
Journal of Theoretical Biology 1991; 151 : 1–40.

8. Nowak MA, et al. Viral dynamics in hepatitis B virus
infection. Proceedings of the National Academy of
Sciences USA 1996; 93 : 4398–4402.

9. Neumann AU, et al. Hepatitis C viral dynamics in vivo

and the antiviral efficacy of interferon-alpha therapy.
Science 1998; 282 : 103–107.

10. Baccam P, et al. Kinetics of influenza A virus infection

in humans. Journal of Virology 2006; 80 : 7590–7599.
11. Hancioglu B, Swigon D, Clermont G. A dynamical

model of human immune response to influenza A virus

infection. Journal of Theoretical Biology 2007; 246 :
70–86.

12. Chang DB, Young CS. Simple scaling laws for influenza
A rise time, duration, and severity. Journal of Theoreti-

cal Biology 2007; 246 : 621–635.
13. Chen SC, et al. Viral kinetics and exhaled droplet size

affect indoor transmission dynamics of influenza.

Indoor Air 2009; 19 : 401–413.
14. Hayden FG, et al. Local and systemic cytokine

response during experimental human influenza A virus

infection. Journal of Theoretical Biology 1998; 101 :
643–649.

15. Hayden FG, et al. Use of the oral neuraminidase in-

hibitor oseltamivir in experimental human influenza.
Journal of the American Medical Association 1999; 282 :
1240–1246.

16. Hayden FG, et al. Safety and efficacy of the neur-

aminidase inhibitor GG167 in experimental human in-
fluenza. Journal of the American Medical Association
1996; 275 : 295–299.

Viral dynamics modelling for human influenza infections 1567

https://doi.org/10.1017/S0950268811002226 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268811002226


17. Fritz RS, et al.Nasal cytokine and chemokine responses
in experimental influenza A virus infection: results

of a placebo-controlled trial of intravenous zanamivir
treatment. Journal of Infectious Diseases 1999; 180 :
586–593.

18. Calfee DP, et al. Safety and efficacy of intravenous
zanamivir in preventing experimental human influenza
A virus infection. Antimicrobial Agents and Chemo-
therapy 1999; 43 : 1616–1620.

19. Murphy BR, et al. Evaluation of influenza A/Hong
Kong/123/77(H1N1) ts-1A2 and cold-adapted recombi-
nant viruses in seronegative adult volunteers. Infection

and Immunity 1980; 29 : 348–355.
20. Bocharov GA, Romanyukha AA. Mathematical model

of antiviral immune reponse III. Influenza A virus

infection. Journal of Theoretical Biology 1994; 167 :
323–360.

21. Beauchemin C, Samuel J, Tuszynski J. A simple cellular

automaton model for influenza A viral infection.
Journal of Theoretical Biology 2005; 232 : 223–
234.

22. Barroso L, et al. Efficacy and tolerability of the oral

neuraminidase inhibitor peramivir in experimental
human influenza: randomized, controlled trails for
prophylaxis and treatment. Antiviral Therapy 2005; 10 :

901–910.
23. Helton JC, Davis FJ. Illustration of sampling-based

methods for uncertainty and sensitivity analysis. Risk

Analysis 2002; 22 : 591–622.
24. Keeling MJ, Rohani P. Modeling Infectious Diseases in

Humans and Animals. NJ, USA: Princeton University

Press, 2008.
25. Mogensen SC, Virelizier JL. The interferon-macro-

phage alliance. In : Gresser I, ed. Interferon 8. London:
Academic Press, 1987, pp. 58–84.

26. Roberts Jr. NJ, et al. Virus-induced interferon pro-
duction by human macrophages. Journal of Immuno-

logy 1979; 123 : 365–369.
27. Murphy BR, Webster RG. Influenza viruses. In : Fields

BN, Knipe DM, Melnick JL, Chanock RM, Roizman

B, Shope RE, eds. Fields Virology. New York: Raven
Press, 1985, pp. 1179–1239.

28. Handel A, Longini Jr. IM, Antia R. Neuraminidase
inhibitor resistance in influenza: assessing the danger of

its generation and spread. PLoS Computational Biology
2007; 3 : e240.

29. Kaiser L, Briones MS, Hayden FG. Performance of

virus isolation and directigen flu A to detect influenza A
virus in experimental human infection. Journal of
Clinical Virology 1999; 14 : 191–197.

30. McGill J, Heusel JW, Legge KL. Innate immune con-
trol and regulation of influenza virus infections. Journal
of Leukocyte Biology 2009; 86 : 803–812.

31. Lee HY, et al. Simulation and prediction of the adaptive
immune response to influenza A virus infection. Journal
of Virology 2009; 83 : 7151–7165.

32. McCaw JM, et al. Impact of emerging antiral drug re-

sistance on influenza containment and spread: influence
of subclinical infection and strategic use of a stockpile
containing one or two drugs. PLoS One 2008; 3 : e2362.

33. Treanor JJ, et al. Intranasally administered interferon
as prophylaxis against experimentally induced influenza
A virus infection in humans. Journal of Infectious

Diseases 1987; 156 : 379–383.
34. Hayden FG, et al. Oral LY217896 for prevention of

experimental influenza A virus infection and illness in

humans. Antimicrobial Agents and Chemotherapy 1994;
38 : 1178–1181.

35. Murphy AW, et al. Respiratory nitric oxide levels in ex-
perimental human influenza. Chest 1998; 114 : 452–456.

1568 S. C. Chen and others

https://doi.org/10.1017/S0950268811002226 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268811002226

