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Abstract

Let A" be a field of characteristic p. The permutation modules associated to partitions of n, usually
denoted as Mk, play a central role not only for symmetric groups but also for general linear groups, via
Schur algebras. The indecomposable direct summands of these MJ were parametrized by James; they
are now known as Young modules; and Klyachko and Grabmeier developed a 'Green correspondence'
for Young modules. The original parametrization used Schur algebras; and James remarked that he did
not know a proof using only the representation theory of symmetric groups. We will give such proof,
and we will at the same time also prove the correspondence result, by using only the Brauer construction,
which is valid for arbitrary finite groups.

2000 Mathematics subject classification: primary 20C30, 20C20.

1. p -permutation modules via the Brauer construction

1.1. Let G be a finite group; we consider finite-dimensional ATG-modules. We

follow the approach of Broue from [1]. A module M is said to be a lp-permutation

module' if for any p -subgroup P of G there is a /'-invariant basis of M. The indecom-

posable p -permutation modules are, up to isomorphism, precisely the indecomposable

summands of transitive permutation modules (or the trivial source modules).

In [1], a main result is the parametrization of indecomposable p-permutation mod-

ules by using the Brauer construction. This is defined as follows. Let P be a
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(non-trivial) p-subgroup of G, and let N := NG(P)/P- Then we have a functor

- ( P ) : mod-AT G -+ mod-KN

which takes a KG-module V to V(P), where

V(P):= V

Here V* are the fixed points under the action of R, and Trp
Q is the linear map from

VQ to Vp defined by 7>g(u) = £(. gtv, the sum taken over some transversal for the
cosets of Q in P.

Now suppose that V is a p-permutation module. Take a P-stable basis 98 of V,
then 98 is a union of P-orbits and V is spanned by orbit sums, and an orbit sum is of
the form Trg(b) where Q is the stabilizer of b, with b € 98. To get V(P) we require
(2 = P, and we identify V(P) with the A"-span of the fixed points of P in 98. We
will apply the following, which was suggested by Puig and published in [1].

CORRESPONDENCE THEOREM ([1]). Let P be a p-subgwup of G. The functor
—(P) induces a 1-1 correspondence between the isomorphism classes of

(i) indecomposable p-permutation K G-modules with vertex P, and
(ii) indecomposable projective K N -modules.

In particular, if M is any p -permutation module and we have a direct sum decompo-
sition M = ®Yj with all Yt indecomposable, then Yt has vertex P if and only if Yj(P)
is indecomposable projective as a module for N. Suppose Y is any indecomposable
p-permutation module with vertex P, then Y = Y, if and only if Yj(P) = Yt(P). We
remark that Y(P) (as a module for NG(P)) is isomorphic to the Green correspondent
in NG(P) of Y.

1.2. In our context, we have a p -permutation module M and we have to identify
the vertices of its indecomposable summands. It happens sometimes that M{P) is
zero for all non-trivial p -subgroups of G; then by the correspondence theorem, M is
projective. Moreover, not all p -groups are possible as vertices.

LEMMA 1. Suppose M is any p-permutation module. If Q is a p-subgroup of G
and P is a proper subgroup of Q such that M(P) = M(Q), then M does not have an
indecomposable summand with vertex P.

PROOF. Suppose M(P) = M(Q), and we may assume that this is non-zero. Since
P is a proper subgroup of Q there is some subgroup P < R < Q such that P is
normal in R. Then R/P acts trivially on M(P), on the other hand a non-zero projective
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module for NG(P)/P cannot have a summand on which a normal p-subgroup acts
trivially (the restriction to such subgroup must be projective and hence free). Hence
M(P) does not have a summand which is projective as a module for NC(P)/P- By
the Correspondence Theorem, M does not have a summand with vertex P. •

2. Young modules

2.1. From now we assume that G is the symmetric group yr of degree r. For
each partition k of r there is a transitive permutation module Mk, on the cosets of any
'Young subgroup' of type A., that is, a direct product of symmetric groups of degrees
A.i,'k2,... ,kk acting on disjoint subsets of {1, 2 , . . . , r], where A.i,... , kk are the
non-zero parts of A. We denote any such subgroup by yk (it will not be necessary to
specify it further). Moreover, we will call such Mx a 'Young permutation module'.
Actually, k is allowed to be an unordered partition.

Following [3, 5], we will take for the underlying G-set the row equivalence classes
of X-tableaux. Recall that a A-tableau is an array of shape k where the entries are
filled with the numbers from 1 to r, allowing no repeats. The group G acts naturally
(on the right) on the set of all A-tableaux. Fix a A-tableaux t, then its row stabilizer
R(t) is the subgroup of G keeping the rows fixed as a set, and similarly one defines
C(t), the column stabilizer. Suppose t\ and t2 are ^.-tableaux, then row equivalence ~
is defined as

tt ~ t2 <!=> h = hn (some it e R(t)).

Write {t} for the equivalence class of t under row equivalence, and call [t] a A-tabloid.
The group G acts on the set of A-tabloids, where the action is induced by the natural
action; this is clearly transitive, and Mk is the corresponding permutation module,
we take as basis the set 38 of all A-tabloids {t}. Write < for the dominance order of
partitions (see [3, 5]).

The main results in [4], whose statements involve only modules of symmetric
groups, are as follows.

THEOREM 1. There is a set of indecomposable K^-modules KM one for each
partition \x ofr, such that the following hold for all partitions kofr:

(i) Mk is a direct sum of Kyr-modules, each of which is isomorphic to some KM

with ix > k, and precisely one summand is isomorphic to Yl.
(ii) / / Yk = Y», then k = /x.

2.2. The definition of the Young modules involves properties of Specht modules.
Let t be any A-tableau, and let V e KG be the alternating sum of the column stabilizer
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C(t), and define

e, = {t)f

an element in Mk. The Specht module Sk is defined to be the ̂ G-submodule of Mk

generated by e,. It was proved by James that

(*) (MX)V = Ke,, and if £ t * then {Mf)V = 0.

This is proved using symmetric groups only (see [5,7.1.5]). On M\ we have a bilinear
form with respect to which the above basis is orthonormal. This is non-degenerate
and also ^-invariant. James' Submodule Theorem follows now from the first part
of(*):

If A is a submodule ofMk, then either Sk C A or A C (S*)x.

Write Mk as a direct sum of indecomposable Jf ̂ -modules. Then by the Submodule
Theorem, there is a unique indecomposable summand which contains S \ and we
denote this by Yk, and call it the Young module associated to k. In fact, we can
even say that if Y is an indecomposable summand of Mk such that Y n Sk ^ 0, then
Y = Y\

The second part of (*) implies part of James' Theorem; namely Yk is a direct
summand of Mfi, then (MP)V 2 (Sk)f ^ 0 and hence p > X. Furthermore,
a similar argument shows that Yk = Y11 only if A. = ft. These are the arguments
from [4]. Our aim is to prove part (i) of Theorem 1, by using the correspondence of
p -permutation modules given in Broue's theorem. This naturally proves Grabmeier's
result at the same time.

23. In [2], Grabmeier shows that each Young module Yk has a 'Young vertex'.
This is a minimal Young subgroup yp, unique up to conjugation, such that Y is a
direct summand of Mp; and p is a partition with parts only p -powers > 1. Then
he proves that there is a 1-1 correspondence between the indecomposable summands
of the Young permutation modules with Young vertex yp and the indecomposable
projective modules of NdS^p)/^ (see [2, 7.8]). The correspondent (for Yk non-
projective) is basically the Green correspondent with respect to the Nc(yp), on which
the group 5ffi acts trivially and which can therefore be viewed as a module for the
factor group. Actually, Grabmeier does not explicitly state that the G-module of the
correspondence is what we call the Young module; but it would follow if one would
work out the multiplicities in Klyachko's formula (see [2, 7.14]). We remark that
Grabmeier's proof of the formula uses symmetric groups only (whereas Klyachko's
approach is via the Schur algebra). The correspondence is as follows.
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THEOREM 2. The Young module Yk is projective if and only ifk is p-restricted.

Suppose k is not restricted, and write k = Ylm=o ^•im)Pm wifn k(m) p-restricted,
let rm be the degree ofk(m). Let p be the partition of r which has rm parts equal to
pm. Then

(i) yp is a Young vertex of Yk, and
(ii) The Green correspondent of Yk in NG(yp) is Ym ® Yul) <g> • • • <g> Ykis), as a

module for the quotient NG(yp)/(yp).

A partition k = (k\, k2,... , kk) is p-restricted if A., — ki+i < p for I < i < k — I
and also kk < p — 1. We will refer to such expansion of k with k(m) restricted (which
exists and is unique) as 'the p-adic expansion'.

3. Identifying MX(P)

3.1. Let P be any non-trivial p-subgroup of yr, and let k be a partition of r. Then
a basis element {t) of Mk is fixed by P if and only if the rows of t are unions of
P-orbits. If P < Q and Q has the same orbits as P, then Mk(P) = Mk(Q). So
Lemma 1 shows that the possible vertices of summands of Mk are Sylow p -subgroups
of Young subgroups yp where p is a partitions whose parts are powers of p.

Let p be a partition of r which has r, parts equal to p', where X!l=i riP' = r> l e t

yp be a corresponding Young subgroup, and moreover let P be a Sylow p -subgroup
of 5?p. The Frattini argument shows that the normalizer in G of 5?p is contained in
NG{P)S^P\ and since the normalizer of 5^p is precisely the group of permutations
which permutes the P- (and J^,)-orbits amongst themselves, we have:

LEMMA 2. We have Nc(P)yp = NG(yp), and hence NG(yp)/yp = NG(P)/
This is isomorphic to the Young subgroup yrss x S?ri x • • • x 5frr

Returning to the permutation modules, we see directly that yp acts trivially on
Mk(P). So the structure as a module for NG{P)/P is the same as the structure
as a module for NG{P)/N^c{P), which by the lemma is isomorphic to the Young
subgroup Sfp, where f$ = (r0, r , , . . . , rs) is an unordered partition. Note that this also
shows that the 'Grabmeier correspondence' is the same as the correspondence by the
Brauer construction.

3.2. We will now view Mk(P) as a module for the Young subgroup S*p, which acts
on the P-orbits and where 5?rm permutes the orbits of length pm and fixes all other
orbits. For each partition a(m) of J7rm we have the Young permutation module Ma(m),
and the outer tensor product Ma(0) <g) Ma{X) ® • • • ® MaU) is then a module for yp.
The y^-module Mk(P) is isomorphic to a direct sum of such tensor procucts. More
precisely
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PROPOSITION \. As a module for 5?$, Mk(P) is isomorphic to the direct sum

0 (Ma<0) <g> Ma(1) ® • • • ® MaU)),
a

where the sum is taken over all a := (a(0), a ( l ) , . . . , a(s)) such that

m = l

anda(m) is an unordered partition of rm.

PROOF. We fix a labelling of the P-orbits of length pm as &u ... , &rm, for each
m. Take a A.-tableau r such that [t] is fixed by P , so that the rows of / are unions of
P-orbits. Define a(m) by setting a(m), := the number of P-orbits of length pm in
the i-th row of t. So we have Xf = £ m ot{m)ipm and X = £ m a(m)pm; and a(m) is
an unordered partition of rm.

Now let tm be an a(m)-tableau whose i-th row consists of all j such that the j -th
P-orbit of length p m belongs to the i-th row of t. Then set

This belongs to Ma(0) <8> Mo(1) (8) • • • <g> Ma<s). The linear map defined by ty gives
a vector space isomorphism between Mk(P) and the direct sum of all such tensor
products. It remains to show that it is also a homomorphism of N -modules.

Let g e NG(P) and let f € 5?$ be the corresponding permutations of the P-orbits.
Then we have g = Fig,, where g, e «5 r̂-, so that g, permutes the orbits of length p'
and fixes every other orbit. Write {gt} = {?}, the j -th P-orbit 0 ; of length pm occurs
in the i-th row of t if and only if g&j occurs in the i-th row of t, that is if and only
if gm(j) occurs in the i-th row of rjf({t}). But these gm(j) form also the i-th row of
£>({'})• This shows that VKsW) = g*({t)). •

3.3. Now let X be a partition of r and suppose it has p-adic expansion

k(l)p + ••• + Hs)ps.

Let rm be the degree of X(w) for 0 < m < s, and let p be the partition of r which has
rm parts equal to pm. Take P to be a Sylow subgroup of yp. Then by Section 3.2 we
know that MX(P) has a summand M* which we define as

M~k := Mm ® MX(1) <g> • • • <g> Mm

We wish to identify the image of Yx in Mk(P) as a specific summand of Mx; and we
will do this by considering the image of Sk in Mk(P).
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LEMMA 3. There is some k-tableau such that [t] is fixed by P, and such that the
image of the Specht module generator e, in Mk(P) is identified with the element
eh ® eh % • • • <g> e,t, in M\ where eu generates the Specht module SkU).

PROOF. Take any t such that [t] in Mk{P) corresponds to an element of Mk under
the map f. We want to find the image of e, in Mk{P). Let D = C(t) n NG(P)yp,
and let V{D) be the alternating sum of the elements of D. Then we can write

where the sum is taken over a set of coset representatives; and we take n\ = 1. (Here
s{n) denotes the sign of the permutation n.) Then a tabloid occurring in [t )if' is fixed
by P if and only if it occurs in {t}V(D), that is, the image of e, in Mk(P) is [t}V (D).
This corresponds under \js to ^({f})^(£>), which is equal to ({f0} ® • • • ® {ts})y(D).

The image of D in yp is contained in the product C, where C :— C(t0) x C(tx) x
• • • x C(ts). If we find t such that both are equal then we are done.

We take a tableau t which has X(m), orbits of size pm in row i, for each m and for
each i (with 1 < / < k if k has k non-zero parts). To ensure that every permutation in
C is in the image of D we must find / with the following properties. Whenever entries
x and y are in the same column of t then they must belong to P -orbits of the same
length. Moreover, for any other point z in the row of x which lies in the same P -orbit
as x, the entry in the same column as z and in the same row as y must be in the same
P -orbit as y. This ensures that there is a permutation in D which interchanges these
two orbits, and its image in C is a 2-cycle in the relevant factor.

One constructs such t as follows. Order the entries in the last row arbitrarily. Then
consider the row above the last row. It has at least as many orbits of size pm as the
last row (since k{m) is a partition). Above the points in the last row in an orbit of size
pm, arrange therefore the points in some orbit of size pm. Do so for each m. Then
arrange the remaining entries in the last but one row arbitrarily. Repeat this procedure,
working upwards. •

3.4. We need a generalization of James' Submodule Theorem. Let S^e := S^rts x
y^ x • • • x yr% be a direct product of symmetric groups, acting on disjoint sets, and
let a(m) be a partition of rm, for 0 < m < s. Let

M* := Mam (g) Ma(1) ® • • • ® Ma(s)

the (outer) tensor product of permutation modules; this is a module for the Young
subgroup yp. This has basis consisting of all [t0} ® • • • ® [ts], where [tm] runs through
the natural basis of Ma{m). Then this module Ma contains the tensor product of the
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Specht modules S" := Sa(0) ® • • • ® Sa{s), that is, the module generated by

e-, := e^ ® eh ® •••(8)e,j.

Then K" := i""(0> ® • • • <g> F"(i) is an indecomposable summand of M" which contains
Sa. (Recall that the outer tensor product of indecomposable modules is always
indecomposable.)

LEMMA 4. Write Ma as a direct sum of indecomposable ^-modules. Then there
is a unique indecomposable summand which contains Sa and this is isomorphic to Ya.

PROOF. This follows by precisely the same arguments as James' proof. Take the
bilinear form (—, —) on M" such that the natural basis is orthonormal, this bilinear
form is invariant under the action of the Young subgroup J^p. Then if tm is a a(m)-
tableau, for 0 < m < s, we set

Then e-, = ({/<,} ® M ® • • • ® [tk))V', and (M*)"*" = Keh by the original result of
James (see Section 2.2). The claim follows now as in Section 2.2. •

4. The proof of the theorems

4.1. So far we have determined a direct sum decomposition of Mk(P). Moreover,
if A. is not p-restricted then we have identified a direct summand of Mk{P) which is
the candidate for Yk(P) as given in Theorem 2. We also know that if a Young module
y is a direct summand of Mk then \x > k, and moreover Young modules labelled by
different partitions are not isomorphic (see Section 2.2). Note also that the number
of p -restricted partitions of r is the same as the number of indecomposable projective
K«5"r-modules, up to isomorphism (since the simple modules can be labelled by
p -restricted partitions).

In order to complete the proofs we need to show

(i) Every indecomposable summand of MM is a Young module,
(ii) A Young module Yk is projective if and only if A. is p -restricted,

(iii) Suppose A. is not p-restricted, with p-adic expansion A. = £ k{m)pm. Then
with the notation as in Theorem 2(ii), a vertex of Yk is a Sylow p-subgroup of ^p,
and Yk(P) = Ym) ® YM» <8> • • • ® YkU).

4.2. We will prove these by induction on r.
(1) Assume first that r < p , then the group algebra Kyr is semi-simple. Each

Yk is therefore indecomposable projective, and each partition is p-restricted. The
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total number of Young modules is the same as the number of indecomposable projec-
tives, hence every indecomposable projective is a Young module. Every module is
projective, hence MM is a direct sum of Young modules.

(2) We consider r = p briefly (although this could be left out). The only non-
trivial vertex is a group P generated by a p-cycle. We have M(p) = Yip) — K and
M(p)(P) — K\ and Mk(P) = 0 otherwise. Hence Y(p) is the only non-projective
Young module in this case; it has vertex P and its correspondent is Y(i) as a module
for S?\, which proves (iii). Moreover (p) is the only non-restricted partition and we
have (ii). There are now as many projective Young modules as there are restricted
partitions, so every projective is a Young module and hence (i) holds in this case.

(3) Now let r > p and assume that (i) to (iii) hold for all degrees less than r.
Consider first a partition A which is not p-restricted. Let A.(m) and p be as in (iii). Let
P be a Sylow p-subgroup of yp. By Section 3.2 we know that Mk(P) has a direct
summand Mk := Mk(0) <g> MMl) ® • • • MMs) as a module for yp = NG(yp)/yp, where
P = (r0,... , rs). Moreover, by Section 3.3 there is some generator e, of the Specht
module Sk c Yk such that the image of e, is non-zero in Sl := SM°®SX(1)<8>- • -<8>SkU),
and Sk is contained in Yk, which is a direct summand of Mk.

By the inductive hypothesis, Yk(m) is projective as yrm -module and hence Yk is
projective as a module for yp. By the Correspondence Theorem, Mk has a summand
with vertex P corresponding to Yk. We claim that this summand is Yk. By Section 3.3
we know that Sk(P) D Yk is non-zero and hence Yk(P) D Yk is non-zero. Since Yk

is projective (hence injective) it has a simple socle, which is also the socle of S \ and
we conclude that Yk(P) D Sk is non-zero. Now Yk(P) is a summand of Mk(P), and
by the uniqueness result of Section 3.4 we deduce that Yk is a summand of Yk(P).
So Yk has a summand with vertex P; but Yk is indecomposable, and therefore Yk has
vertex P and Yk{P) — Yk, and (iii) is proved.

We claim that we have already found all non-projective indecomposable summands
of Mk. Namely, take a non-trivial p -subgroup P which could occur as a vertex of a
non-projective summand, then P is a Sylow p -subgroup of S?p where p is a partition
where all parts are /?-powers. Say p has rm parts equal to pm. By Section 3.2, we have
Mk(P) is the direct sum of modules (Ma<0) <g> Ma(1) <g> • • • ® Ma(s )), where a(m) is an
unordered partition of rm and X — £ m a(m)pm. Let y (m) be the partition associated
to a{m), then of course MaU) = MyU). Since P # l w e know that yrm has order less
than \yr\. By the inductive hypothesis, Ma(m) is a direct sum of Young modules, and
a summand is projective if and only if the labelling partition is restricted. Now, these
have already been identified as correspondents of Young modules for 5fr.

Assume now X is restricted, the Yk must be projective. The total number of these
is the same as the number of indecomposable projectives and hence every projective
is a Young module. We deduce again that (i) holds. This completes the proof of
Theorem 1 and Theorem 2. •
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4.3. The Correspondence Theorem shows that there are more p -permutation
modules in general than just the Young modules. First, a vertex P of a non-projective
Young module must be a Sylow subgroup of the full permutation group, S?p say, with
the same orbits. Second, the correspondents in NC(P)/P of Young modules with
such vertex are precise those indecomposable projectives on which 5?p D NG(P)/P
act trivially.

For example, consider r = p, and P a Sylow subgroup of 5fp. Then we have only
one Young module with vertex P but there are p — 1 p -permutation modules in total
with vertex P, they correspond to the simple modules of NG(P)/P. In this case it is
not hard to identify the correspondents in G, they are the Specht modules Sk, where
k = (p — a, 1") and a is even, 0 < 1 < p — 1, and the duals of these.
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