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THE COMMON POINTS OF FAMILIES OF NORMAL 
FUNCTIONS 

ALEXANDER ABIAN 

In this paper we show that the common points of any nonempty "family" 
of normal functions form a normal function and from this we derive various 
significant consequences such as Theorem 2 below. 

As usual, by a normal function [1, p. 31] we mean an ordinal valued function 
F defined on the class of all ordinals such that for every ordinal u and v and 
any set S of ordinals 

(1) u < v implies F(u) < F(v) and F (sup S) = sup F[S], 

Thus, a normal function is strictly increasing and continuous. 
Although there is no class having a normal function as an element, we shall 

use the illicit convenience of speaking of a family (Ft)ieA of normal functions Ft 

indexed by a set A. The fact that A is a set will prevent the occurrence of any 
of the known paradoxes and will allow us to consider families of normal 
functions which are not restricted to finitely many normal functions. 

In what follows, by a nonempty family of normal functions we shall mean 
a family (Fi)ieA of normal functions where A is a nonempty set. 

An ordinal v is called a common point of a family (Ft) iÇ.A of normal functions 
if and only if there exists an ordinal x such that 

(2) v = Fi(x) for every i Ç A. 

Next, we prove: 

LEMMA 1. Let (Fi)iç.A be a nonempty family of normal functions and u an 
ordinal. Then there exists a common point v of (Fi)ieA such that v > u. 

Proof. Let us consider the family 

(3) {FJf FxFjFj9 FjFk, FxF*Fi9 FkFk, FtF., . . .} 

of all finite iterations (with repetitions) of TVs where i,j, k, . . . are elements 
of A. Now, let 

(4) v = sup{Fj(u + 1), F.FjFjiu + 1), F,Fh(u + 1), 

FtF.Fjiu + 1), FkFk(u + 1), FtFt(u + 1), . . .} . 
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The above supremum exists since A is a set. From (1) it follows that for every 
i 6 A we have: 

(5) F&) = suplF.Fjiu + 1), FiFiFjFjiu + 1), FtF,Fk(u + 1), 

FiFiF.Fjiu + 1), FtFkFk(u + 1), F^F^u + 1), . . .}. 

By [1, p. 69] we have Ft(x) è # and since (3) is the family of all finite 
iterations (with repetitions) of F/s, from (4) and (5) it follows that the 
supremum in (4) is equal to the supremum in (5). Therefore, 

(6) v = Ft(v) for every i Ç A. 

By (6) we see that v is a common point (in fact a common fixed point) of 
(Fi)i£A. However, since Ft{x) è x it follows that v è w + 1 > u, as desired. 

Lemma 1 can be rephrased as follows: 

COROLLARY 1. Every nonempty family of normal functions has arbitrary large 
common points. 

Let {Fi)iç.A be a nonempty family of normal functions. By virtue of 
Corollary 1 we may consider the function C defined on the class of all ordinals 
as follows: 

(7) C(v) = the smallest common point of {Fi)iC.A which is 

larger than C(u) for every u < v. 

Accordingly, C(0) is the smallest common point of (F z) î €^; next is C(l) , 
then C(2), . . . and the smallest common point of (Fi)ieA which is larger than 
C(0), C(l), C(2), . . . is C(«), and so on. 

In view of (7), it is natural to refer to C as the function which enumerates the 
common points of (Fi)ieA. 

Next we prove our main theorem. 

THEOREM 1. Let C be the function which enumerates the common points of a 
nonempty family (Fi)ieA of normal functions. Then C is a normal function. 

Proof. From (7) it follows that u < v implies C(u) < C(v). Thus, in view 
of (1), it remains to show that for every set P of ordinals C(sup P) = 
sup C[P]. However, since C enumerates the common points of (Fi) ^A we see 
that for every set P of ordinals there exists a set S of ordinals such that 

sup C[P] = sup Ft[S] for every i G A 

which by (1) implies sup C[P] = Fi(supS) for every i Ç A. Consequently, 
by (6) we see that sup C[P] is a common point of (Fi)ieA. Hence, by (7) we 
have sup C[P] - C(sup P) , as desired. 

Now, let us denote by I the identity normal function, i.e., I(x) = x for 
every ordinal x. 
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By adjoining / to any nonempty family of normal functions and by observ
ing that every ordinal is a fixed point of / , in view of Corollary 1 (in fact, in 
view of the proof of Lemma 1), we obtain: 

COROLLARY 2. Every nonempty family of normal functions has arbitrary large 
common fixed points. 

For every nonempty family (Fi)^A of normal functions, the above Corollary 
ensures the existence of a function B defined on the class of all ordinals as 
follows: 

(8) B(v) = the smallest common fixed point of (Ft)ieA which 

is larger than B(u) for every u < v. 

Again, in view of (8), it is natural to refer to B as the function which enu
merates the common fixed points of (Fi)ieA. 

Next, based on Theorem 1 we have: 

COROLLARY 3. Let B be the function which enumerates the common fixed 
points of a nonempty family (Fi)i(zA of normal functions. Then B is a normal 
function. 

Proof. Enlarge the family (Fi)ieA by adjoining I to it. Clearly, B is the 
function which enumerates the common points of the enlarged family. But 
then, from Theorem 1 it follows that B is a normal function. 

As in [2, p. 101] a cardinal c is called e-inaccessible (inaccessible with respect 
to cardinal exponentiation) if and only if a < c implies 2a < c. Clearly, 
0, and Xo are the first two e-inaccessible cardinals. It is easy to show that the 
smallest e-inaccessible cardinal larger than a cardinal k ^ Ko is 

sup{&o, ki, k2, . . .} where ko = k 

and for every natural number n we let kn+i = 2kn. Thus, there exist arbitrary 
large e-inaccessible cardinals which ensure the existence of the function E 
defined on the class of all ordinals as follows: 

(9) E(v) = the smallest e-inaccessible cardinal which is larger 

than E(u) for every u < v. 

Clearly, E is a normal function. Moreover, in view of (9), it is natural to 
refer to E as the function which enumerates all the e-inaccessible cardinals. 

By adjoining E and / to any nonempty family of normal functions, just as 
in the case of Corollary 2, we obtain: 

COROLLARY 4. Every nonempty family of normal functions has arbitrary large 
common e-inaccessible fixed points. 

As in the previous case, for every nonempty family (Fi)ifA of normal 
functions, Corollary 4 ensures the existence of a function defined (in an 
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obvious way) on the class of all ordinals which enumerates the common 
e-inaccessible points of (Ft)ieA. Also, Corollary 4 ensures the existence of a 
function defined (in an obvious way) on the class of all ordinals which enumer
ates the common e-inaccessible fixed points of (Ft)ieA. Again, by enlarging 
{Fi)i<zA by £ or by £ and / , based on Theorem 1 and just as in the case of 
Corollary 3, we have: 

COROLLARY 5. Let (Fi)ieA be a nonempty family of normal functions. Then 
the function which enumerates the common e-inaccessible points of (Fi)i£A as well 
as the function which enumerates the common e-inaccessible fixed points of 
(Ft)i<zA is a normal function. 

Since there are arbitrary many ordinal numbers, from Corollary 5 it follows 
that any nonempty family of normal functions has arbitrary many common 
e-inaccessible fixed points. In particular, every normal function has arbitrary 
many e-inaccessible fixed points. 

Let us recall that a cardinal c is called regular if and only if c is not a sum of 
fewer than c cardinals each less than c. As shown in [3, p. 311], a cardinal is 
strongly inaccessible if and only if it is regular and e-inaccessible. 

Next we prove our main consequence of Theorem 1. 

THEOREM 2. If every normal function has at least one regular cardinal in its 
range then every nonempty family of normal functions has at least one common 
strongly inaccessible fixed point. 

Proof. By Corollary 5 the function G which enumerates the common 
e-inaccessible fixed points of a nonempty family (F,)ieA of normal functions 
is a normal function. Now assume the hypothesis of the theorem. But then G 
has a regular cardinal 5 in its range. However, every cardinal in the range of G 
is a common e-inaccessible fixed point of (Fi)i(zA. Thus, s is a common strongly 
inaccessible fixed point of ( i 7 * ) ^ . 

Finally, let us consider the following three schémas: 
(i) Every normal function has at least one regular cardinal in its range. 

(ii) Every normal function has at least one strongly inaccessible cardinal in its 
range. 

(iii) Every nonempty family of normal functions has at least one common 
strongly inaccessible fixed point. 

Schema (ii) is Levy's axiom schema of strong infinity [4, p. 227]. In 
[5, p. 653] as well as in [6] it is shown that (i) and (ii) are equivalent. Theorem 2 
above shows that (i) and (iii) are equivalent. Clearly, (ii) is a special case of 
(iii). Thus, we have: 

PROPOSITION. Schémas (i), (ii), (iii) are pairwise equivalent. 

We conclude by observing that in Theorem 2 as well as in (i), (ii), (iii) the 
words "at least one' obviously imply "arbitrary many" or "arbitrary large". 
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