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Abstract
We study the problem of identifying a small number k∼ nθ , 0< θ < 1, of infected individuals within a
large population of size n by testing groups of individuals simultaneously. All tests are conducted concur-
rently. The goal is to minimise the total number of tests required. In this paper, we make the (realistic)
assumption that tests are noisy, that is, that a group that contains an infected individual may return a
negative test result or one that does not contain an infected individual may return a positive test result
with a certain probability. The noise need not be symmetric. We develop an algorithm called SPARC that
correctly identifies the set of infected individuals up to o(k) errors with high probability with the asymptot-
ically minimum number of tests. Additionally, we develop an algorithm called SPEX that exactly identifies
the set of infected individuals w.h.p. with a number of tests that match the information-theoretic lower
bound for the constant column design, a powerful and well-studied test design.
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1. Introduction
1.1. Background andmotivation
Few mathematical disciplines offer as abundant a supply of easy-to-state but hard-to-crack prob-
lems as combinatorics does. Group testing is a prime example. The problem goes back to the
1940s [15]. Within a population of size n, we are to identify a subset of k infected individuals. To
this end, we test groups of individuals simultaneously. In an idealised scenario called ‘noiseless
group testing’, each test returns a positive result if and only if at least one member of the group is
infected. All tests are conducted in parallel. The problem is to devise a (possibly randomised) test
design that minimises the total number of tests required.

Noiseless group testing has inspired a long line of research, which has led to optimal or near-
optimal results for several parameter regimes [4, 9]. But the assumption of perfectly accurate tests
is unrealistic. Real tests are noisy [29]. More precisely, in medical terms, the sensitivity of a test is
defined as the probability that a test detects an actual infection, namely, that a group that contains
an infected individual displays a positive test result. Moreover, the specificity of a test refers to the
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probability that a healthy group returns a negative test result. If these accuracies are reasonably
high (say 99%), one might be tempted to think that noiseless testing provides a good enough
approximation. Yet remarkably, we will discover that this is far from correct. Even a seemingly tiny
amount of noise has a discernible impact not only on the number of tests required but also on the
choice of a good test design; we will revisit this point in Section 1.5. Hence, in group testing, like
in several other inference problems, the presence of noise adds substantial mathematical depth.
As a rough analogy, think of error-correcting linear codes. In the absence of noise, the decoding
problem just boils down to solving linear equations. By contrast, the noisy version, the closest
vector problem, is NP-hard [13].

In the present paper, we consider a very general noise model that allows for arbitrary sen-
sitivities and specificities. To be precise, we assume that if a test group contains an infected
individual, then the test displays a positive result with probability p11 and a negative result with
probability p10 = 1− p11. Similarly, if the group consists of healthy individuals only, then the test
result will display a negative outcome with probability p00 and a positive result with probability
p01 = 1− p00. Every test is subjected to noise independently.

Under the common assumption that the number k of infected individuals scales as a power
k∼ nθ of the population size n with an exponent 0< θ < 1, we contribute new approximate and
exact recovery algorithms SPARC and SPEX. These new algorithms come with randomised test
designs.Wewill identify a thresholdmSPARC =mSPARC(n, k, p) such that SPARC correctly identifies
the set of infected individuals up to o(k) errors with high probability over the choice of the test
design, provided that at least (1+ ε)mSPARC tests are deployed. SPARC is efficient, that is, has
polynomial running time in terms of n. By contrast, we will prove that with (1− ε)mSPARC tests it
is impossible to identify the set of infected individuals up to o(k) errors, regardless of the choice of
test design or the running time allotted. In other words, SPARC solves the approximate recovery
problem optimally.

In addition, we develop a polynomial time algorithm SPEX that correctly identifies the sta-
tus of all individuals w.h.p., provided that at least (1+ ε)mSPEX tests are available, for a certain
mSPEX(n, k, p). Exact recovery has been the focus of much of the previous literature on group test-
ing [4]. In particular, for noisy group testing, the best previous exact recovery algorithm is the DD
algorithm from [19]. DD comes with a simple randomised test design called the constant column
design. Complementing the positive result on SPEX, we show that on the constant column design,
exact recovery is information-theoretically impossible with (1− ε)mSPEX tests. As a consequence,
the numbermSPEX of tests required by SPEX is an asymptotic lower bound on the number of tests
required by any algorithm on the constant column design, including DD. Indeed, as we will see
in Section 1.5, for most choices of the specificity/sensitivity and of the infection density θ , SPEX
outperforms DD dramatically.

Throughout the paper, we write p= (p00, p01, p10, p11) for the noisy channel to which the test
results are subjected. We may assume without loss of generality that

p11 > p01, (1.1)

that is, that a test is more likely to display a positive result if the test group actually contains an
infected individual; otherwise, we could just invert the test results. A test design can be described
succinctly by a (possibly random) bipartite graph G= (V ∪ F, E), where V is a set of n individuals
and F is a set ofm tests. Write σ ∈ {0, 1}V for the (unknown) vector of Hamming weight k whose
1-entries mark the infected individuals. Further, let σ ′ ∈ {0, 1}F be the vector of actual test results,
that is, σ ′

a = 1 if and only if σ v = 1 for at least one individual v in test a. Finally, let σ ′′ ∈ {0, 1}F be
the vector of displayed test results, where noise has been applied to σ ′, that is,

P
[
σ ′′
a = σ ′′ |G, σ ′

a = σ ′]= pσ ′ σ ′′ independently for every a ∈ F. (1.2)
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The objective is to infer σ from σ ′′ givenG. As per common practice in the group testing literature,
we assume throughout that k= �nθ� and that k and the channel p are known to the algorithm [4].1

1.2. Approximate recovery
The first main result provides an algorithm that identifies the status of all but o(k) individuals
correctly with the optimal number of tests. For a number z ∈ [0, 1], let h(z)= −z ln (z)− (1−
z) ln (1− z). Further, for y, z ∈ [0, 1], let DKL

(
y‖z)= y ln (y/z)+ (1− y) ln ((1− y)/(1− z)) sig-

nify the Kullback–Leibler divergence. We use the convention that 0 ln 0= 0 ln 0
0 = 0. Given the

channel p define

φ = φ(p)= h(p00)− h(p10)
p00 − p10

, cSh = cSh(p)= 1
DKL

(
p10‖(1− tanh (φ/2))/2

) . (1.3)

The value 1/cSh =DKL
(
p10‖(1− tanh (φ/2))/2

)
equals the capacity of the p-channel [19, Lemma

F.1]. Let

mSPARC(n, k, p)= cShk ln (n/k).

Theorem 1.1. For any p, 0< θ < 1 and ε > 0, there exists n0 = n0(p, θ , ε) such that for every
n> n0, there exists a randomised test design Gsc with m≤ (1+ ε)mSPARC(n, k, p) tests and a
deterministic polynomial time inference algorithm SPARC such that

P
[‖SPARC(Gsc, σ ′′

Gsc
)− σ‖1 < εk

]
> 1− ε. (1.4)

In other words, once the number of tests exceeds mSPARC = cShk ln (n/k), SPARC applied to
the test design Gsc identifies the status of all but o(k) individuals correctly w.h.p. The test design
Gsc employs an idea from coding theory called ‘spatial coupling’ [37, 41]. As we will elaborate in
Section 2, spatial coupling blends a randomised and a topological construction. A closely related
design has been used in noiseless group testing [9].

The following theorem shows that Theorem 1.1 is optimal in the strong sense that it is
information-theoretically impossible to approximately recover the set of infected individuals with
fewer than (1− ε)mSPARC tests on any test design. In fact, approximate recovery w.h.p. is impos-
sible even if we allow adaptive group testing, where tests are conducted one by one and the choice
of the next group to be tested may depend on all previous results.

Theorem 1.2. For any p, 0< θ < 1 and ε > 0, there exist δ = δ(p, θ , ε)> 0 and n0 = n0(p, θ , ε)
such that for all n> n0, all adaptive test designs with m≤ (1− ε)mSPARC(n, k, p) tests in total and
any function A : {0, 1}m → {0, 1}n, we have

P
[‖A(σ ′′)− σ‖1 < δk

]
< 1− δ. (1.5)

Theorem 1.2 and its proof are a relatively simple adaptation of [19, Corollary 2.3], where
cShk ln (n/k) was established as a lower bound on the number of tests required for exact recovery.

1.3. Exact recovery
How many tests are required in order to infer the set of infected individuals precisely, not just up
to o(k) mistakes? Intuitively, apart from an information-theoretic condition such as (1.3), exact
recovery requires a kind of local stability condition. More precisely, imagine that we managed to
correctly diagnose all individuals y �= x that share a test with individual x. Then towards ascertain-
ing the status of x itself, only those tests are relevant that contain x but no other infected individual

1These assumptions could be relaxed at the expense of increasing the required number of tests (details omitted).
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y, for the outcome of these tests hinges on the status of x. Hence, to achieve exact recovery, we need
to make certain that it is possible to tell the status of x itself from these tests w.h.p.

The required number of tests to guarantee local stability on the test design Gsc from
Theorem 1.1 can be expressed in terms of a mildly involved optimisation problem. For c, d> 0
and θ ∈ (0, 1), let

Y(c, d, θ)= {
y ∈ [0, 1] : cd(1− θ)DKL

(
y‖exp (−d)

)
< θ

}
. (1.6)

This set is a nonempty interval because y 
→DKL
(
y‖exp (−d)

)
is convex and y= exp (−d) ∈

Y(c, d, θ). Let

cex,0(d, θ)=

⎧⎪⎨
⎪⎩
inf
{
c> 0 : infy∈Y(c,d,θ) cd(1− θ)

(
DKL

(
y‖exp (−d)

)
if p11 < 1,

+yDKL
(
p01‖p11

))≥ θ}
inf{c> 0 : 0 �∈ Y(c, d, θ)} otherwise.

(1.7)

If p11 = 1, let z(y)= 1 for all y ∈ Y(c, d, θ). Further, if p11 < 1, then the function z 
→DKL
(
z‖p11

)
is strictly decreasing on [p01, p11]; therefore, for any c> cex,0(d, θ) and y ∈ Y(c, d, θ), there exists a
unique z(y)= zc,d,θ (y) ∈ [p01, p11] such that

cd(1− θ)
(
DKL

(
y‖exp (−d)

)+ yDKL
(
z(y)‖p11

))= θ . (1.8)
In either case set

cex,1(d, θ)=

⎧⎪⎨
⎪⎩
inf
{
c> cex,0(d, θ) : infy∈Y(c,d,θ) cd(1− θ)

(
DKL

(
y‖exp (−d)

)
if p01 > 0,

+yDKL
(
z(y)‖p01

))≥ 1
}

cex,0(d, θ) otherwise.
(1.9)

Finally, define
cex,2(d)= 1

/ (
h(p00 exp (−d)+ p10(1− exp (−d)))− exp (−d)h(p00)

−(1− exp (−d))h(p10)
)
, (1.10)

cex(θ)= inf
d>0

max{cex,1(d, θ), cex,2(d)}, (1.11)

mSPEX(n, k, p)= cex(θ)k ln (n/k).

Theorem 1.3. For any p, 0< θ < 1 and ε > 0, there exists n0 = n0(p, θ , ε) such that for every n>
n0, there exists a randomised test designGsc with m≤ (1+ ε)mSPEX(n, k, p) tests and a deterministic
polynomial time inference algorithm SPEX such that

P
[
SPEX(Gsc, σ ′′

Gsc
)= σ

]
> 1− ε. (1.12)

Like SPARC fromTheorem 1.1, SPEX uses the spatially coupled test designGsc. Crucially, apart
from the numbers n and m of individuals and tests, the value of d at which the infimum (1.11) is
attained also enters into the construction of that test design. Specifically, the average size of a test
group equals dn/k. Remarkably, while the optimal value of d for approximate recovery turns out
to depend on the channel p only, a different value of d that also depends on k can be the right
choice to facilitate exact recovery. We will revisit this point in Section 1.5.

1.4. Lower bound on the constant column design
Unlike in the case of approximate recovery, we do not have a proof that the positive result on
exact recovery from Theorem 1.3 is optimal for any choice of test design. However, we can show
that exact recovery with (1− ε)cexk ln (n/k) tests is impossible on the constant column designGcc.
Under Gcc, each of the n individuals independently joins an equal number� of tests, drawn uni-
formly without replacement from the set of allm available tests. LetGcc =Gcc(n,m,�) signify the

https://doi.org/10.1017/S0963548324000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000336


214 A. Coja-Oghlan et al.

outcome. The following theorem shows that exact recovery on Gcc is information-theoretically
impossible with fewer thanmSPEX tests.

Theorem1.4. For any p, 0< θ < 1 and ε > 0, there exists n0 = n0(p, θ , ε) such that for every n> n0
and all m≤ (1− ε)mSPEX(n, k, p),�> 0 and any AGcc : {0, 1}m → {0, 1}n, we have

P
[
AGcc (σ

′′
G)= σ

]
< ε. (1.13)

An immediate implication of Theorem 1.4 is that the positive result fromTheorem 1.3 is at least
as good as the best prior results on exact noisy recovery from [19], which are based on running a
simple combinatorial algorithm called DD on Gcc. In fact, in Section 1.5, we will see that the new
bound from Theorem 1.3 improves over the bounds from [19] rather significantly for most θ , p.

The proof of Theorem 1.4 confirms the combinatorial meaning of the threshold cex(θ).
Specifically, for c=m/(k ln (n/k))< cex,2(d) from (1.10), amoment calculation reveals that w.h.p.,
Gcc contains ‘solutions’ σ of at least the same posterior likelihood as the true σ such that σ and σ

differ significantly, that is, ‖σ − σ‖1 =�(k). By contrast, the threshold cex,1(d, θ) marks the onset
of local stability. This means that for c< cex,1(d, θ), there will be numerous σ close to but not
identical to σ (i.e. 0< ‖σ − σ‖1 = o(k)) of the at least same posterior likelihood. In either case,
any inference algorithm, efficient or not, is at a loss identifying the actual σ .

In recent independent work, Chen and Scarlett [7] obtained Theorem 1.4 in the special
case of symmetric noise (i.e. p00 = p11). While syntactically their expression for the threshold
cex(θ) differs from (1.6)–(1.11), it can be checked that both formulas yield identical results (see
Appendix F). Apart from the information-theoretic lower bound (which is the part most relevant
to the present work), Chen and Scarlett also proved that it is information-theoretically possible
(by means of an exponential-time algorithm) to infer σ w.h.p. on the constant column design
with m≥ (1+ ε)cex(θ)k ln (n/k) tests if p00 = p11. Hence, the bound cex(θ) is tight in the case of
symmetric noise.

1.5. Examples
We illustrate the improvements that Theorems 1.1 and 1.3 contribute by way of concrete examples
of channels p. Specifically, for the binary symmetric channel and the Z-channel, it is possible
to obtain partial analytic results on the optimisation behind cex(θ) from (1.11) (see Appendices
D–E). As we will see, even a tiny amount of noise has a dramatic impact on both the number of
tests required and the parameters that make a good test design.

1.5.1. The binary symmetric channel
Although symmetry is an unrealistic assumption from the viewpoint of applications [29], the
expression (1.3) and the optimisations (1.9)–(1.11) get much simpler on the binary symmetric
channel, that is, in the case p00 = p11. For instance, the value of d that minimises cex,2(d) from
(1.10) turns out to be d = ln 2. The parameter d enters into the constructions of the randomised
test designs Gsc and Gcc in a crucial role. Specifically, the average size of a test group equals dn/k.
In effect, any test is actually negative with probability exp (−d + o(1)) (see Proposition 2.3 and
Lemma 5.1 below). Hence, if d = ln 2, then w.h.p. about half the tests contain an infected individ-
ual. In effect, since p11 = p00, after the application of noise about half the tests display a positive
result w.h.p.

In particular, in the noiseless case p11 = p00 = 1, a bit of calculus reveals that the value
d = ln 2 also minimises the other parameter cex,1(d, θ) from (1.9) that enters into cex(θ) from
(1.11). Therefore, in noiseless group testing, d = ln 2 unequivocally is the optimal choice, the
optimisation on d (1.11) effectively disappears, and we obtain

cex(θ)=max
{

θ

(1− θ) ln2 2
,

1
ln 2

}
, (1.14)

thereby reproducing the optimal result on noiseless group testing from [9].
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(a) (b)

Figure 1. Information rates on different channels in nats. The horizontal axis displays the infection density parameter
0< θ < 1. The colour indicates the optimal value of d for a given θ .

But remarkably, as we verify analytically in Appendix D at positive noise 1
2 < p11 = p00 < 1,

the value of d that minimises cex,1(d, θ) does not generally equal ln 2. Hence, if we aim for exact
recovery, then at positive noise, it is no longer optimal for all 0< θ < 1 to aim for about half the
tests being positive/negative. The reason is the occurrence of a phase transition in terms of θ where
the ‘local stability’ term cex,1(d, θ) takes over as the overall maximiser in (1.10). Consequently, the
objective of minimising cex,1(d, θ) and the optimal choice d = ln 2 for cex,2(d) clash. In effect, the
overall minimiser d for cex(d, θ) depends on both p and the infection density parameter θ in a
nontrivial way. Thus, the presence and level of noise have a discernible impact on the choice of a
good test design.2

Figure 1 displays the performance of the algorithms SPARC and SPEX from Theorems 1.1 and
1.3 on the binary symmetric channel. For the purpose of graphical representation, the figure does
not display the values of cex(θ), which diverge as θ → 1, but the value 1/cex(θ). This value has a
natural information-theoretic interpretation: it is the average amount of information that a test
reveals about the set of infected individuals, measured in ‘nats’. In other words, the plots display
the information rate of a single test (higher is better). The optimal values of d are colour-coded
into the curves. While in the noiseless case, d = ln 2 remains constant, in the noisy cases, d varies
substantially with both θ and p00 = p11.

For comparison, the figure also displays the rate in the noiseless case (dashed line on top) and
the best previous rates realised by the DD algorithm onGcc from [19] (dotted lines). As is evident
from Figure 1, even noise as small as 1% already reduces the rate markedly: the upper coloured
curve remains significantly below the noiseless black line. That said, Figure 1 also illustrates how
the rate achieved by SPEX improves over the best previous algorithm DD from [19]. Somewhat
remarkably, the 10%-line for cex(θ) intersects the 1%-line for DD for an interval of θ . Hence, for
these θ , the algorithm from Theorem 1.3 at 10% noise requires fewer tests than DD at 1%.

Figure 1 also illustrates how approximate and exact recovery compare. Both coloured curves
start out as black horizontal lines. These bits of the curves coincide with the rate of the SPARC
algorithm from Theorem 1.1. The rate achieved by SPARC, which does not depend on θ , is there-
fore just the extension of this horizontal line to the entire interval 0< θ < 1 at the height cSh from

2This observation confirms a hypothesis stated in (19, Appendix F). As mentioned in Section 1.4, independent work of
Chen and Scarlett [7] on the case of symmetric noise reaches the same conclusion.
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(1.3). Hence, particularly for large θ , approximate recovery achieves much better rates than exact
recovery.

1.5.2. The Z-channel
In the case p00 = 1 of perfect specificity, known as the Z-channel, it is possible to derive simple
expressions for the optimisation problems (1.6)–(1.11) (see Appendix E):

cex,1(d, θ)= − θ

d(1− θ) ln (1− exp (−d)p11)
, (1.15)

cex,2(d)=
(
h(p10 + (1− p10) exp (−d))− (1− exp (−d))h(p10)

)−1 . (1.16)

As in the symmetric case, there is a tension between the value of d that minimises (1.15) and the
objective of minimising (1.16). Recall that since the size of the test groups is proportional to d, the
optimiser d has a direct impact on the construction of the test design.

Figure 1b displays the rates achieved by SPEX (solid line) and, for comparison, the DD
algorithm from [19] (dotted grey) on the Z-channel with sensitivities p11 = 0.9 and p11 = 0.5.
Additionally, the dashed red line indicates the noiseless rate. Once again, the optimal value of
d is colour-coded into the solid SPEX line. Remarkably, the SPEX rate at p11 = 0.5 (high noise)
exceeds the DD rate at p11 = 0.9 for a wide range of θ . As in the symmetric case, the horizontal
cSh-lines indicate the performance of the SPARC approximate recovery algorithm.

1.5.3. General (asymmetric) noise
While in the symmetric case, the term cex,2(d) from (1.10) attains its minimum simply at d = ln 2,
with φ from (1.3), the minimum for general p is attained at

d = dSh = ln (p11 − p01)− ln
(
(1− tanh (φ/2))/2− p10

)
[19, Lemma F.1]. (1.17)

Once again, the design of Gsc (as well as Gcc) ensures that w.h.p., a exp (−d)-fraction
of tests is actually negative w.h.p. The choice (1.17) ensures that under the p-channel,
the mutual information between the channel input and the channel output is maximised
(19, Lemma F.1):

1
cSh

= 1
cex,2(dSh)

=DKL
(
p10‖(1− tanh (φ/2))/2

)
, (1.18)

As can be checked numerically, the second contributor cex,1(d, θ) to cex(θ) may take its minimum
at another d. However, we are not aware of simple explicit expressions for cex,2(θ) from (1.10) for
general noise.

1.6. Related work
Themonograph of Aldridge, Johnson, and Scarlett [4] provides an excellent overview of the group
testing literature. The group testing problem comes in various different flavours: non-adaptive
(where all tests are conducted concurrently) or adaptive (where tests are conducted in subsequent
stages such that the tests at later stages may depend on the outcomes of earlier stages), as well
as noiseless or noisy. An important result of Aldridge shows that noiseless non-adaptive group
testing does not perform better than plain individual testing if k=�(n), that is, if the number of
infected individuals is linear in the size of the population [3]. Therefore, research on non-adaptive
group testing focuses on the case k∼ nθ with 0< θ < 1. For non-adaptive noiseless group testing
with this scaling of k, two different test designs (Bernoulli and constant column) and various
elementary algorithms have been proposed [6]. Among these elementary designs and algorithms,
the best performance to date is achieved by the DD greedy algorithm on the constant column
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design [24]. However, the DD algorithm does not match the information-theoretic bound on the
constant column design for all θ [8].

Coja-Oghlan, Gebhard, Hahn-Klimroth, and Loick proposed a more sophisticated test design
for noiseless group testing based on spatial coupling [9], along with an efficient inference
algorithm called SPIV. Additionally, they improved the information-theoretic lower bound for
non-adaptive noiseless group testing. The number of tests required by the SPIV algorithmmatches
this new lower bound. In effect, the combination of SPIV with the spatially coupled test design
solves the noiseless non-adaptive group testing problem optimally both for exact and approximate
recovery.

The present article deals with the noisy non-adaptive variant of group testing. A noisy version
of the efficient DD algorithm was previously studied on both the Bernoulli and the constant col-
umn design [19, 35]. The best previous exact recovery results for general noise were obtained by
Johnson, Gebhard, Loick, and Rolvien [19] by means of DD on the constant column design (see
Theorem 2.1 below). Theorem 1.4 shows in combination with Theorem 1.3 that the new SPEX
algorithm performs at least as well as any algorithm on the constant column design, including
and particularly DD.

Apart from the articles [19, 35] that dealt with the same general noise model as we consider
here, several contributions focused on special noise models, particularly symmetric noise (p00 =
p11). In this scenario, Chen and Scarlett [7] recently determined the information-theoretically
optimal number of tests required for exact recovery on the Bernoulli and constant column designs.

For both designs, Chen and Scarlett considered the “low overlap” and the “high overlap” regime
separately. This corresponds to decodings that align weakly/strongly with the ground truth. For
the low overlap regime, they bounded the mutual information by using results of [33]. For the
high overlap regime, they worked out a local stability analysis for the symmetric case while taking
the degree fluctuations for the Bernoulli design into account. The local stability analysis of Chen
and Scarlett for the constant column design is equivalent to the special case of symmetric noise
of the corresponding analysis that we perform towards the proof of Theorem 1.3. Indeed, the
information-theoretic threshold identified by Chen and Scarlett matches the threshold cex(θ) from
(1.10) in the special case of symmetric noise; see Appendix F for details. In contrast to the present
work, Chen and Scarlett do not investigate the issue of efficient inference algorithms. Instead,
they pose the existence of an efficient inference algorithm that matches the information-theoretic
threshold as an open problem. Theorem 1.3 applied to symmetric noise answers their question
in the affirmative. While it might be interesting to investigate whether the present approach for
exact recovery extends to (a spatially coupled variant of) the Bernoulli design, we expect that this
would lead to weaker bounds than obtained in Theorem 1.3. In fact, there is no known case where
the Bernoulli design outperformed the constant column design. Furthermore, for noiseless group
testing, the constant column design outperforms the Bernoulli design [9, 1, 39], although it is not
proven yet that this holds in general for the noisy case [4, 7]. In addition, the question of a tight
lower bound for exact recovery for general noise and arbitrary test designs remains open.

A further contribution of Scarlett and Cevher [33] contains a result on approximate recov-
ery under the assumption of symmetric noise. In this case, Scarlett and Cevher obtain matching
information-theoretic upper and lower bounds, albeit without addressing the question of effi-
cient inference algorithms. Theorem 1.1 applied to the special case of symmetric noise provides a
polynomial time inference algorithm that matches their lower bound.

From a practical viewpoint, non-adaptive group testing (where all tests are conducted in par-
allel) is preferable because results are available more rapidly than in the adaptive setting, where
several rounds of testing are required. That said, adaptive schemes may require a smaller total
number of tests. The case of noiseless adaptive group testing has been studied since the seminal
work of Dorfman [15] from the 1940s. For the case k∼ nθ , a technique known as generalised
binary splitting gets by with the optimal number of tests [5, 22]. Aldridge [2] extended this
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approach to the case k=	(n), obtaining near-optimal rates. Recently, there has been signifi-
cant progress on upper and lower bounds for noisy and adaptive group testing, although general
optimal results remain elusive [32, 38].

Beyond group testing, in recent years, important progress has been made on several inference
problems by means of a combination of spatial coupling and message passing ideas. Perhaps the
most prominent case in point is the compressed sensing problem [14, 25]. Further applications
include the pooled data problem [17–20] and CDMA [37], a signal processing problem. The basic
idea of spatial coupling, which we are going to discuss in some detail in Section 2.3, goes back to
work on capacity-achieving linear codes [37, 41, 26–28]. The SPIV algorithm from [9] combines
a test design inspired by spatial coupling with a combinatorial inference algorithm. A novelty of
the present work is that we replace this elementary algorithm with a novel variant of the Belief
Propagation (BP) message passing algorithm [30, 31] that lends itself to a rigorous analysis.

The standard variant of BP has been studied for variants of group testing [17, 36, 43].
Additionally there have been empirical studies on BP for group testing [11, 40].

1.7. Organisation
After introducing a bit of notation and recalling some background in Section 1.8, we give an
outline of the proofs of the main results in Section 2. Subsequently, Section 3 deals with the details
of the proof of Theorem 1.1. Moreover, Section 4 deals with the proof of Theorem 1.3, while
in Section 5, we prove Theorem 1.4. The proof of Theorem 1.2, which is quite short and uses
arguments that are well established in the literature, follows in Appendix B. Appendix C contains
the proof of a routine expansion property of the test design Gsc. Finally, in Appendices D and E,
we investigate the optimisation problems (1.9)–(1.11) on the binary symmetric channel and the
Z-channel, and in Appendix F, we compare our result to the recent result of Chen and Scarlett [7].
A table of used notations can be found in Appendix A.

1.8. Preliminaries
As explained in Section 1.1, a test design is a bipartite graph G= (V ∪ F, E) whose vertex set
consists of a set V individuals and a set F of tests. The ground truth, that is, the set of infected
individuals, is encoded as a vector σ ∈ {0, 1}V of Hamming weight k. Since we will deal with ran-
domised test designs, we may assume that σ is a uniformly random vector of Hamming weight k
(by shuffling the set of individuals). Also recall that for a test a, we let σ ′

a ∈ {0, 1} denote the actual
result of test a (equal to one if and only if a contains an infected individual), while σ ′′

a ∈ {0, 1}
signifies the displayed test result obtained via (1.2). It is convenient to introduce the shorthands

V0 = {x ∈V : σ x = 0} , V1 = {x ∈V : σ x = 1} , F0 = {
a ∈ F : σ ′

a = 0
}
, F1 = {

a ∈ F : σ ′
a = 1

}
,

F− = {
a ∈ F : σ ′′

a = 0
}
, F+ = {

a ∈ F : σ ′′
a = 1

}
, F±

0 = F± ∩ F0, F±
1 = F± ∩ F1

for the set of infected/healthy individuals, the set of actually negative/positive tests, the set of
negatively/positively displayed tests, and the tests that are actually negative/positive and display
a positive/negative result, respectively. For each node u of G, we denote ∂u= ∂Gu be the set
of neighbours of u. For an individual x ∈V , we also let ∂±x= ∂±

G x= ∂Gx ∩ F± be the set of
positively/negatively displayed tests that contain x.

We need Chernoff bounds for the binomial and the hypergeometric distribution. Recall that
the hypergeometric distributionHyp(L,M,N) is defined by

P
[
Hyp(L,M,N)= k

]=(
M
k

)(
L−M
N − k

)(
L
N

)−1
(k ∈ {0, 1, . . . , min{M,N}}). (1.19)
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(Out of a total of L items of whichM are special, we drawN items without replacement and count
the number of special items in the draw.) The mean of the hypergeometric distribution equals
MN/L.

Lemma 1.5 ([23, Equation 2.4] ). Let X be a binomial random variable with parameters N, p.
Then

P
[
X≥ qN

]≤ exp
(−NDKL

(
q‖p)) for p< q< 1, (1.20)

P
[
X≤ qN

]≤ exp
(−NDKL

(
q‖p)) for 0< q< p. (1.21)

Lemma 1.6 ([21]). For a hypergeometric variable X∼Hyp(L,M,N), the bounds (1.20)–(1.21) hold
with p=M/L.

Throughout, we use asymptotic notation o( · ),ω( · ),O( · ),�( · ),	( · ) to refer to limit n→
∞. It is understood that the constants hidden in, for example, aO( · )-termmay depend on θ , p or
other parameters and that a O( · )-term may have a positive or a negative sign. To avoid case dis-
tinctions, we sometimes take the liberty of calculating with the values±∞. The usual conventions
∞ + ∞ = ∞ · ∞ = ∞ and 0 · ∞ = 0 apply. Furthermore, we set tanh (± ∞)= ±1. Also recall
that 0 ln 0= 0 ln 0

0 = 0. Additionally, ln 0= −∞ and 1
0 = ln 1

0 = ∞.
Finally, for two random variables X, Y defined on the same finite probability space (�, P [·] ),

we write

I(X, Y)=
∑
ω,ω′∈�

P
[
X =ω, Y =ω′] ln P

[
X =ω, Y =ω′]

P [X =ω] P [Y =ω′]

for themutual information of X, Y . We recall that I(X, Y)≥ 0.

2. Overview
We proceed to survey the functioning of the algorithms SPARC and SPEX. To get started, we
briefly discuss the best previously known algorithm for noisy group testing, the DD algorithm
from [19], which operates on the constant column design.We will discover that DD can be viewed
as a truncated version of the BP message passing algorithm. BP is a generic heuristic for inference
problems backed by physics intuition [30, 42]. Yet unfortunately, BP is notoriously difficult to
analyse. Evenworse, it seems unlikely that full BPwill significantly outperformDDon the constant
column design; evidence of this was provided in [10] in the noiseless case. The basic issue is the
lack of a good initialisation of the BP messages.

To remedy this issue, we resort to the spatially coupled test design Gsc, which combines a ran-
domised and a spatial construction. The basic idea resembles domino toppling. Starting from an
easy-to-diagnose ‘seed’, the algorithm works its way forward in a well-defined direction until all
individuals have been diagnosed. Spatial coupling has proved useful in related inference problems,
including noiseless group testing [9]. Therefore, a natural stab at group testing would be to run BP
on Gsc. Indeed, the BP intuition provides a key ingredient to the SPARC algorithm, namely, the
update equations (see [2.30] below), of which the correct choice of the weights (Eq. [2.29] below)
is the most important ingredient. But in light of the difficulty of analysing textbook BP, SPARC
relies on a modified version of BP that better lends itself to a rigorous analysis. Furthermore, the
SPEX algorithm for exact recovery combines SPARC with a cleanup step.

SPARC and SPEX can be viewed as generalised versions of the noiseless group testing algorithm
called SPIV from [9]. However, [9] did not exploit the connection with BP. Instead, in the noiseless
case, the correct weights were simply ‘guessed’ based on combinatorial intuition, an approach
that it seems difficult to generalise. Hence, the present, systematic derivation of the weights (2.29)
also casts new light on the noiseless case. In fact, we expect that the paradigm behind SPARC
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and SPEX, namely, to use BP heuristically to find the correct parameters for a simplified message
passing algorithm, potentially generalises to other inference problems as well.

2.1. The DD algorithm
The noisy DD algorithm is the best previously known efficient algorithm for exact recovery [19].
SPEX uses DD as a subroutine for diagnosing a small fraction of individuals. Later, we compare
the number of tests needed by SPEX with the one needed by DD. The DD algorithm from [19]
utilises the constant column design Gcc.Thus, each individual independently joins an equal num-
ber � of random tests. Given the displayed test results, DD first declares certain individuals as
uninfected by thresholding the number of negatively displayed tests. More precisely, DD declares
as uninfected any individual that appears in at least α� negatively displayed tests, with α a dili-
gently chosen threshold. Having identified the respective individuals as uninfected, DD looks out
for tests a that display a positive result and that only contain a single individual x that has not
been identified as uninfected yet. Since such tests a hint at x being infected, in its second step,
DD declares as infected any individual x that appears in at least β� positively displayed tests a
where all other individuals y ∈ ∂a \ x were declared uninfected by the first step. Once again, β is a
carefully chosen threshold. Finally, DD declares as uninfected all remaining individuals.

The DD algorithm exactly recovers the infected set w.h.p. provided the total numberm of tests
is sufficiently large such that the aforementioned thresholds α, β exist. The required number of
tests, which comes out in terms of a mildly delicate optimisation problem, was determined in [19].
Let

q−
0 = exp (−d)p00 + (1− exp (−d))p10, q+

0 = exp (−d)p01 + (1− exp (−d))p11. (2.1)

Theorem 2.1 ([19, Theorem 2.2]). Let ε > 0 and with α ∈ (p10, q−
0 ) and β ∈ (0, exp (−d)p11), let

cDD = min
α,β ,d

max
{
cDD,1(α, d), cDD,2(α, d), cDD,3(β , d), cDD,4(α, β , d)

}
, where

cDD,1(α, d)= θ

(1− θ)DKL
(
α‖p10

) , cDD,2(α, d)= 1
dDKL

(
α‖q−

0
) ,

cDD,3(β , d)= θ

d(1− θ)DKL
(
β‖p11 exp (−d)

) ,
cDD,4(α, β , d)= max

(1−α)∨β≤z≤1

(
d(1− θ)

(
DKL

(
z‖q+

0
)

+1

{
β >

z exp (−d)p01
q+
0

}
zDKL

(
β/z‖exp (−d)p01/q+

0
)))−1

.

If m≥ (1+ ε)cDDk ln (n/k), then there exists �> 0 and 0≤ α, β ≤ 1 such that the DD algorithm
outputs σ w.h.p.

The distinct feature of DD is its simplicity. However, the thresholding that DD applies does
seem to leave something on the table. For a start, whether DD identifies a certain individual x as
infected depends only on the results of tests that have a distance of at most three from x in the
graph Gcc. Moreover, it seems wasteful that DD takes only those positively displayed tests into
consideration where all but one individual were already identified as uninfected.

2.2. Belief propagation
BP is a message passing algorithm that is expected to overcome these deficiencies. In fact, heuristic
arguments suggest that BP might be the ultimate recovery algorithm for a wide class of inference
algorithms on random graphs [42]. That said, rigorous analyses of BP are few and far between.
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Following the general framework from [30], in order to apply BP to a group testing design
G= (V ∪ F, E), we equip each test a ∈ F with a weight function

ψa =ψG,σ ′′,a : {0, 1}∂a →R≥0, σ∂ai 
→
{
1{‖σ‖1 = 0}p00 + 1{‖σ‖1 > 0}p10 if a ∈ F−
1{‖σ‖1 = 0}p01 + 1{‖σ‖1 > 0}p11 if a ∈ F+.

(2.2)

Thus, ψa takes as argument a {0, 1}-vector σ = (σx)x∈∂a indexed by the individuals that take part
in test a. The weight ψa(σ ) equals the probability of observing the result that a displays if the
infection status were σx for every individual x ∈ ∂a. In other words, ψa encodes the posterior
under the p-channel. Given G, σ ′′, the weight functions give rise to the total weight of σ ∈ {0, 1}V
by letting

ψ(σ )=ψG,σ ′′(σ )= 1
{‖σ‖1 = k

}∏
a∈F

ψa(σ∂a). (2.3)

Thus, we just multiply up the contributions (2.2) of the various tests and add in the prior
assumption that precisely k individuals are infected. The total weight (2.3) induces a probability
distribution

μG,σ ′′(σ )=ψG,σ ′′(σ )/ZG,σ ′′ , where ZG,σ ′′ =
∑

σ∈{0,1}V
ψG,σ ′′(σ ). (2.4)

A simple application of Bayes’ rule shows that μG matches the posterior of the ground truth σ

given the test results.

Fact 2.2. For any test design G, we have μG,σ ′′(σ )= P
[
σ = σ | σ ′′]. �

BP is a heuristic to calculate the marginals of μG,σ ′′ or, in light of Fact 2.2, the posterior prob-
abilities P[σ xi = 1 | σ ′′]. To this end, BP associates messages with the edges of G. Specifically, for
any adjacent individual/test pair x, a, there is a message μx→a,t( · ) from x to a and another one
μa→x,t( · ) in the reverse direction. The messages are updated in rounds and therefore come with
a time parameter t ∈Z≥0. Moreover, being probability distributions on {0, 1}, the messages always
satisfy

μx→a,t(0)+μx→a,t(1)=μa→x,t(0)+μa→x,t(1)= 1. (2.5)

The intended semantics is that μx→a,t(1) estimates the probability that x is infected given all
known information except the result of test a. Analogously, μa→x,t(1) estimates the probability
that x is infected if we disregard all other tests b ∈ ∂x \ {a}.

This slightly convoluted interpretation of the messages facilitates simple heuristic formulas for
computing the messages iteratively. To elaborate, in the absence of a better a priori estimate, at
time t = 0, we simply initialise in accordance with the prior, that is,

μx→a,0(0)= 1− k/n μx→a,0(1)= k/n. (2.6)

Subsequently, we use the weight function (2.2) to update the messages: inductively for t ≥ 1 and
r ∈ {0, 1}, let

μa→x,t(r)∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p11 if r = 1, a ∈ F+,
p11 + (p01 − p11)

∏
y∈∂a\{x} μy→a,t−1(0) if r = 0, a ∈ F+,

p10 if r = 1, a ∈ F−,
p10 + (p00 − p10)

∏
y∈∂a\{x} μy→a,t−1(0) if r = 0, a ∈ F−,

(2.7)

μx→a,t(r)∝
(
k
n

)r (
1− k

n

)1−r ∏
b∈∂x\{a}

μb→x,t−1(r). (2.8)
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The ∝-symbol hides the necessary normalisation to ensure that the messages satisfy (2.5).
Furthermore, the (k/n)r and (1− k/n)1−r-prefactors in (2.8) encode the prior that precisely k
individuals are infected. The expressions (2.7)–(2.8) are motivated by the hunch that for most
tests a, the values (σ y)y∈∂a should be stochastically dependent primarily through their joint
membership in test a. An excellent exposition of BP can be found in [30].

How do we utilise the BP messages to infer the actual infection status of each individual? The
idea is to perform the update (2.7)–(2.8) for a ‘sufficiently large’ number of rounds, say, until an
approximate fixed point is reached. The (heuristic) BP estimate of the posterior marginals after t
rounds then reads

μx,t(r)∝
(
k
n

)r (
1− k

n

)1−r ∏
b∈∂x

μb→x,t−1(r) (r ∈ {0, 1}). (2.9)

Thus, by comparison to (2.8), we just take the incoming messages from all tests b ∈ ∂x into
account. In summary, we ‘hope’ that after sufficiently many updates, we have μx,t(r)≈ P[σ x =
r | σ ′′]. We could then, for instance, declare the k individuals with the greatest μx,t(1) infected
and everybody else uninfected.

For later reference, we point out that the BP updates (2.7)–(2.8) and (2.9) can be simplified
slightly by passing to log-likelihood ratios. Thus, define

ηx→a,t = ln
μG,σ ′′,x→a,t(1)
μG,σ ′′,x→a,t(0)

, ηG,σ ′′,a→x,t = ln
μG,σ ′′,a→x,t(1)
μG,σ ′′,a→x,t(0)

, (2.10)

with the initialisation ηG,σ ′′,x→a,0 = ln (k/(n− k))∼ (θ − 1) ln n from (2.6). Then (2.7)–(2.9)
transform into

ηa→x,t =
⎧⎨
⎩
ln p11 − ln

[
p11 + (p01 − p11)

∏
y∈∂a\{x} 1

2
(
1− tanh

( 1
2ηy→a,t−1

))]
if a ∈ F+,

ln p10 − ln
[
p10 + (p00 − p10)

∏
y∈∂a\{x} 1

2
(
1− tanh

( 1
2ηy→a,t−1

))]
if a ∈ F−,

(2.11)

ηx→a,t = (θ − 1) ln n+
∑

b∈∂x\{a}
ηb→x,t , , ηx,t = (θ − 1) ln n+

∑
b∈∂x

ηb→x,t . (2.12)

In this formulation, BP ultimately diagnoses the k individuals with the largest ηx,t as infected.
Under the assumptions of Theorem 2.1, the DD algorithm can be viewed as the special case

of BP with t = 2 applied to Gcc. Indeed, the analysis of DD evinces that on Gcc, the largest k BP
estimates (2.9) with t ≥ 2 correctly identify the infected individuals w.h.p.3

It is therefore an obvious question whether BP on the constant column design fits the bill of
Theorem 1.1. Clearly, BP remedies the obvious deficiencies of DD by taking into account infor-
mation from a larger radius around an individual (if we iterate beyond t = 2). Also in contrast
to DD’s hard thresholding, the update rules (2.7)–(2.8) take information into account in a more
subtle, soft manner. Nonetheless, we do not expect that BP applied to the constant column design
meets the information-theoretically optimal bound from Theorem 1.1. In fact, there is strong evi-
dence that BP does not suffice to meet the information-threshold for all θ even in the noiseless
case [10]. The fundamental obstacle appears to be the ‘cold’ initialisation (2.6), which (depending
on the parameters) can cause the BPmessages to approach a meaningless fixed point. Yet for sym-
metry reasons on the constant column design, no better starting point than the prior (2.6) springs
to mind; after all, Gcc is a nearly biregular random graph, and thus, all individuals look alike. To

3In the noiseless case, DD is actually a special case of a discrete message passing algorithm called Warning Propagation
[30].
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overcome this issue, we will employ a different type of test design that enables a warm start for BP.
This technique goes by the name of spatial coupling.

2.3. Spatial coupling
The thrust of spatial coupling is to blend a randomised construction, in our case, the constant
column design, with a spatial arrangement so as to provide a propitious starting point for BP.
Originally hailing from coding theory, spatial coupling has also been used in previous work on
noiseless group testing [9]. In fact, the construction that we use is essentially identical to that from
[9] (with suitably adapted parameters).

To set up the spatially coupled test design Gsc, we divide the set V =Vn = {x1, . . . , xn} of
individuals into

�= �√ln n� (2.13)

pairwise disjoint compartments V[1], . . . ,V[�]⊆V such that �n/�� ≤ |V[i]| ≤ �n/��. We think
of these compartments as being spatially arranged so that V[i+ 1] comes ‘to the right’ of V[i]
for 1≤ i< �. More precisely, we arrange the compartments in a ring topology such that V[�] is
followed again by V[1]. Hence, for notational convenience, let V[�+ j]=V[j] and V[1− j]=
V[�− j+ 1] for 1≤ j≤ �. Additionally, we introduce � compartments F[1], . . . , F[�] of tests
arranged in the same way: think of F[i] as sitting ‘above’ V[i]. We assume that the total numberm
of tests in F[1]∪ . . .∪ F[�] is divisible by � and satisfies m=	(k ln (n/k)). Hence, let each com-
partment F[i] contain precisely m/� tests. As in the case of the individuals, we let F[�+ j]= F[j]
for 0< j≤ �. Additionally, let

s= �ln ln n� and �=	( ln n) (2.14)

be integers such that � is divisible by s. Construct Gsc by letting each x ∈V[i] join precisely �/s
tests from F[i+ j− 1] for j= 1, . . . , s. These tests are chosen uniformly without replacement and
independently for different x and j. Additionally, Gsc contains a compartment F[0] of

m0 = 2cDD
ks
�
ln (n/k)= o(k ln (n/k)) (2.15)

tests. Every individual x from the first s compartments V[1], . . . ,V[s] joins an equal number �0
of tests from F[0]. These tests are drawn uniformly without replacement and independently. For
future reference, we let

c= cn = m
k ln (n/k)

, d = dn = k�
m

; (2.16)

the aforementioned assumptions onm,� ensure that c, d =	(1) and the total number of tests of
Gsc comes to

�∑
i=0

|F[i]| = (c+ o(1))k ln (n/k). (2.17)

In summary, Gsc consists of � equally sized compartments V[i], F[i] of tests plus one extra
serving F[0] of tests. Each individual V[i] joins random tests in the s consecutive compartments
F[i+ j− 1] with 1≤ j≤ s. Additionally, the individuals in the first s compartments V[1]∪ · · · ∪
V[s], which we refer to as the seed, also join the tests in F[0].

We will discover momentarily how Gsc facilitates inference via BP. But first let us make a note
of some basic properties of Gsc. Recall that σ ∈ {0, 1}V , which encodes the true infection status
of each individual, is chosen uniformly and independently of Gsc from all vectors of Hamming
weight k. LetV1 = {x ∈V : σ x = 1},V0 =V \V1, and letVr[i]=Vr ∩V[i] be the set of individuals
with infection status r ∈ {0, 1} in compartment i. Furthermore, recall that σ ′

a ∈ {0, 1} denotes the
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actual result of test a ∈ F = F[0]∪ · · · ∪ F[�] and that σ ′′
a signifies the displayed result of a as per

(1.2). For r ∈ {0, 1} and 0≤ i≤ �, let
Fr[i]= Fr ∩ F[i], F+

r [i]= Fr[i]∩ F+, F−
r [i]= Fr[i]∩ F−.

Thus, the subscript indicates the actual test result, while the superscript indicates the displayed
result. In Section 3.1, we will prove the following.

Proposition 2.3. The test design Gsc enjoys the following properties with probability 1− o(n−2).

G1 The number of infected individuals in the various compartments satisfies

k
�

−
√
k
�
ln n≤min

i∈[�]
|V1[i]| ≤max

i∈[�]
|V1[i]| ≤ k

�
+
√
k
�
ln n. (2.18)

G2 For all i ∈ [�], the numbers of tests that are actually/displayed positive/negative satisfy
m
�
exp (−d)p00 − √

m ln3 n≤ ∣∣F−
0 [i]

∣∣≤ m
�
exp (−d)p00 + √

m ln3 n, (2.19)
m
�
exp (−d)p01 − √

m ln3 n≤ ∣∣F+
0 [i]

∣∣≤ m
�
exp (−d)p01 + √

m ln3 n, comment
(2.20)

m
�
(1− exp (−d))p10 − √

m ln3 n≤ ∣∣F−
1 [i]

∣∣≤ m
�
(1− exp (−d))p10 + √

m ln3 n, (2.21)
m
�
(1− exp (−d))p11 − √

m ln3 n≤ ∣∣F+
1 [i]

∣∣≤ m
�
(1− exp (−d))p11 + √

m ln3 n. (2.22)

2.4. Approximate recovery
We are going to exploit the spatial structure of Gsc in a manner reminiscent of domino toppling.
To get started, we will run DD on the seedV[1]∪ · · · ∪V[s] and the tests F[0] only; this is our first
domino. The choice (2.15) of m0 ensures that DD diagnoses all individuals in V[1]∪ · · · ∪V[s]
correctly w.h.p. The seed could then be used as an informed starting point from which we could
iterate BP to infer the status of the individuals in V[s+ 1]∪ . . .∪V[�]. However, this algorithm
appears to be difficult to analyse. Instead, we will show under that the assumptions of Theorem 1.1
amodified, ‘paced’ version of BP that diagnoses one compartment (or ‘domino’) at a time and then
re-initialises the messages ultimately classifies all but o(k) individuals correctly. Let us flesh this
strategy out in detail.

2.4.1. The seed
Recall that each individual x ∈V[1]∪ · · · ∪V[s] independently joins�0 random tests from F[0].
In the initial step, SPARC runs DD on the test designG0 comprisingV[1]∪ · · · ∪V[s] and the tests
F[0] only. Throughout, SPARC maintains a vector τ ∈ {0, 1, ∗}V that represents the algorithm’s
current estimate of the ground truth σ , with ∗ indicating ‘undetermined as yet’.

Since Proposition 2.3 shows that the seed contains (1+ o(1))ks/� infected individuals w.h.p.,
the choice (2.15) ofm0 and Theorem 2.1 imply that DDwill succeed to diagnose the seed correctly
for a suitable�0.

Proposition 2.4 ([19, Theorem 2.2]). There exists �0 =	( ln n) such that the output of DD
satisfies τx = σ x for all x ∈V[1]∪ · · · ∪V[s] w.h.p.

2.4.2. A combinatorial condition
To simplify the analysis of the message passing step in Section 2.4.3, we observe that certain indi-
viduals can be identified as likely uninfected purely on combinatorial grounds. More precisely,
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Algorithm 1 SPARC, steps 1–2

Input: G , σ
Output: an estimate of σ

1 Let (τx )x∈V [1]∪···∪V [s] ∈ {0,1}V [1]∪···∪V [s] be the result of applying DD to V [1]∪·· ·∪V [s] and F [0];
2 Set τx =∗ for all individuals x ∈V \ (V [1]∪·· ·∪V [s]);

consider x ∈V[i] for s< i≤ �. If x is infected, then any test a ∈ ∂x is actually positive. Hence, we
expect that x appears in about p11� tests that display a positive result. In fact, the choice (2.14) of
s ensures that w.h.p. even within each separate compartment F[i+ j− 1], 1≤ j≤ s the individual
x appears in about p11�/s positively displayed tests. Thus, let

V+[i]=
⎧⎨
⎩x ∈V[i] :

s∑
j=1

∣∣|∂x ∩ F+[i+ j− 1]| −�p11/s
∣∣≤ ln4/7 n

⎫⎬
⎭ . (2.23)

The following proposition confirms that all but o(k/s) infected individuals x ∈V[i] belong to
V+[i]. Additionally, the proposition determines the approximate size of V+[i]. For notational
convenience, we define

V+
0 [i]=V+[i]∩V0, V+

1 [i]=V+[i]∩V1, V+ =
⋃
s<i≤�

V+[i].

Recall q+
0 from (2.1). The proof of the following proposition can be found in Section 3.2.

Proposition 2.5. W.h.p., we have

�∑
i=s+1

|V1[i] \V+[i]| ≤ k exp (−�( ln1/7 n)) and (2.24)

∣∣V+[i] \V1[i]
∣∣≤ n

�
exp

(−�DKL
(
p11‖q+

0
)+O( ln4/7 n)

)
for all s+ 1≤ i≤ �. (2.25)

2.4.3. Belief propagation redux
Themain phase of the SPARC algorithm employs a simplified version of the BP update rules (2.7)–
(2.8) to diagnose one compartmentV[i], s< i≤ �, after the other. The textbook way to employ BP
would be to diagnose the seed, initialise the BPmessages emanating from the seed accordingly, and
then run BP updates until themessages converge. However, towards the proof of Theorem 1.1, this
way of applying BP seems too complicated to analyse. Instead, SPARC relies on a ‘paced’ version
of BP. Rather than updating the messages to convergence from the seed, we perform one round of
message updates, then diagnose the next compartment, re-initialise the messages to coincide with
the newly diagnosed compartment, and proceed to the next undiagnosed compartment.

We work with the log-likelihood versions of the BP messages from (2.10) to (2.12). Suppose
we aim to process compartment V[i], s< i≤ �, having completed V[1], . . . ,V[i− 1] already.
Then for a test a ∈ F[i+ j− 1], j ∈ [s], and an adjacent variable x ∈V[i+ j− s]∪V[i+ j− 1],
we initialise
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ηx→a,0 =

⎧⎪⎨
⎪⎩

−∞ if τx = 0,
+∞ if τx = 1,
ln (k/(n− k)) if τx = ∗.

(2.26)

The third case above occurs if and only if x ∈V[i]∪ · · · ∪V[i+ j− 1], that is, if x belongs to an
as yet undiagnosed compartment. For the compartments that have been diagnosed already, we set
ηx→a,0 to ±∞, depending on whether x has been classified as infected or uninfected.

Let us now investigate the ensuing messages ηa→x,1 for x ∈V[i] and tests a ∈ ∂x ∩ F[i+ j− 1].
A glimpse at (2.11) reveals that for any test a that contains an individual y ∈V[i+ j− s]∪ · · · ∪
V[i− 1] with τy = 1, we have ηa→x,1 = 0. This is because (2.26) ensures that ηy→a,0 = ∞ and
tanh (∞)= 1. Hence, the test a contains no further information as to the status of x. Therefore,
we call a test a ∈ F[i+ j− 1] informative towards V[i] if τy = 0 for all y ∈ ∂a∩ (V[i+ j− s]∪
· · · ∪V[i− 1]).

LetW i,j(τ ) be the set of all informative a ∈ F[i+ j− 1]. Then any a ∈W i,j(τ ) receives ηy→a,0 =
−∞ from all individuals y that have been diagnosed already, that is, all y ∈V[h] with i+ j− s≤
h< i. Another glance at the update rule shows that the corresponding terms simply disappear
from the product on the r.h.s. of (2.11) because tanh (−∞)= −1. Consequently, only the factors
corresponding to undiagnosed individuals y ∈V[i]∪ · · · ∪V[i+ j− 1] remain. Hence, with r =
1{a ∈ F+}, the update rule (2.11) simplifies to

ηa→x,1 = ln p1r − ln
[
p1r + (p0r − p1r)

(
1− k/n

)|∂a∩(V[i]∪···∪V[i+j−1])|−1
]
. (2.27)

The only random element in the expression (2.27) is the number∣∣∂a∩ (V[i]∪ · · · ∪V[i+ j− 1])
∣∣ of members of test a from compartments V[i]∪ · · · ∪

V[i+ j− 1]. But by the construction of Gsc, this number has a binomial distribution with mean

E
∣∣∂a∩ (V[i]∪ · · · ∪V[i+ j− 1])

∣∣= j�n
ms

+ o(1)= djn
ks

+ o(1) [using (2.16)].

Since the fluctuations of
∣∣∂a∩ (V[i]∪ · · · ∪V[i+ j− 1])

∣∣ are of smaller order than the mean, we
conclude that w.h.p., (2.27) can be well approximated by a deterministic quantity:

ηa→x,1 =
{
w+
j + o(1), if a ∈ F+,

−w−
j + o(1), if a ∈ F− , where (2.28)

w+
j = ln

p11
p11 + (p01 − p11) exp (−dj/s)

≥ 0, w−
j = − ln

p10
p10 + (p00 − p10) exp (−dj/s)

≥ 0.

(2.29)

Note that in the case p10 = 0, the negative test weightW−
j evaluates to w−

j = ∞, indicating that
individual contained in negative test definitely are uninfected. Finally, the messages (2.28) lead to
the BP estimate of the posterior marginal of x via (2.12), that is, by summing on all informative
tests a ∈ ∂x. To be precise, letting

W±
x,j(τ )= ∂x ∩W i,j(τ )∩ F±

be the positively/negatively displayed informative tests adjacent to x and setting

W+
x (τ )=

s∑
j=1

w+
j

∣∣∣W+
x,j(τ )

∣∣∣ , W−
x (τ )=

s∑
j=1

w−
j

∣∣∣W−
x,j(τ )

∣∣∣ , (2.30)

we obtain

ηx,1 =W+
x (τ )−W−

x (τ )+ ‘lower order fluctuations′. (2.31)
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Algorithm 2 SPARC, steps 3–9.

3 for i = s+1, . . . ,� do
4 for x ∈V [i ] do
5 if x �∈V +[i ] or W +

x (τ)< (1−ζ)W + or W −
x (τ)> (1+ζ)W − then

6 τx = 0 // classify as uninfected
7 else
8 τx = 1 // classify as infected
9 return τ

One issue with the formula (2.28) is the analysis of the ‘lower order fluctuations’, which come
from the random variables |∂a∩ (V+[i]∪ · · · ∪V+[i+ s− 1])|. Of course, one could try to anal-
yse these deviations carefully by resorting to some kind of a normal approximation. But for our
purposes, this is unnecessary. It turns out that we may simply use the sum on the r.h.s. of (2.31) to
identify which individuals are infected. Specifically, instead of computing the actual BP approxi-
mation ηx,1 after one round of updating, we just compareW+

x (τ ) andW−
x (τ ) with the values that

we would expect these random variables to take if x were infected. These conditional expectations
work out to be

W+ = p11�
s∑

j=1
exp (d(j− s)/s)w+

j , W− =
{
p10�

∑s
j=1 exp (d(j− s)/s)w−

j if p10 > 0
0 otherwise.

(2.32)

Thus, SPARC will diagnose V[i] by comparingW±
x (τ ) withW±. Additionally, SPARC takes into

account that infected individuals likely belong to V+[i], as we learned from Proposition 2.5.
Let

ζ = ( ln ln ln n)−1 (2.33)

be a term that tends to zero slowly enough to absorb error terms. The following proposition,
which we prove in Section 3.3, summarises the analysis of phase 3. Recall from (2.16) that
c=m/(k ln (n/k)).

Proposition 2.6. Assume that for a fixed ε > 0, we have

c> cex,2(d)+ ε. (2.34)

Then w.h.p., the output τ of SPARC satisfies

∑
x∈V+

1 {τx �= σ x} ≤ k exp
(

−�
(

ln n
( ln ln n)5

))
.

The proof of Proposition 2.6, which can be found in Section 3.3, is the centrepiece of the
analysis of SPARC. The proof is based on a large deviations analysis that bounds the num-
ber of individuals x ∈V+[i] whose corresponding sums W±

x (τ ) deviate from their conditional
expectations given σ x. We have all the pieces in place to complete the proof of the first theorem.

Proof of Theorem 1.1 (upper bound on approximate recovery by SPARC). Setting d = dSh
from (1.17) and invoking (1.18), we see that the theorem is an immediate consequence of
Propositions 2.4, 2.5, and 2.6. �

https://doi.org/10.1017/S0963548324000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000336


228 A. Coja-Oghlan et al.

2.5. Exact recovery
As we saw in Section 1.3, the threshold cex,1(d, θ) encodes a local stability condition. This condi-
tion is intended to ensure that w.h.p., no other ‘solution’ σ �= σ with ‖σ − σ‖1 = o(k) of a similarly
large posterior likelihood exists. In fact, because Gsc enjoys fairly good expansion properties, the
test results provide sufficient clues for us to home in on σ once we get close, provided the number
of tests is as large as prescribed by Theorem 1.3. Thus, the idea behind exact recovery is to run
SPARC first and then apply local corrections to fully recover σ ; a similar strategy was employed in
the noiseless case in [9].

Though this may sound easy and a simple greedy strategy does indeed do the trick in the
noiseless case [9], in the presence of noise, it takes a good bit of care to get the local search step
right. Hence, as per (1.11), suppose that c, d from (2.16) satisfy c>max{cex,2(d), cex,1(d, θ)} + ε.
Also suppose that we already ran SPARC to obtain τ ∈ {0, 1}V with ‖τ − σ‖1 = o(k) (as provided
by Proposition 2.6). How can we set about learning the status of an individual x with perfect
confidence?

Assume for the sake of argument that τy = σ y for all y that share a test a ∈ ∂x with x. If a
contains another infected individual y �= x, then unfortunately, nothing can be learned from a
about the status of x. In this case, we call the test a tainted. By contrast, if τy = 0 for all y ∈ ∂a \ {x},
that is, if a is untainted, then the displayed result σ ′′

a hinges on the infection status of x itself.
Hence, the larger the number of untainted positively displayed a ∈ ∂x, the likelier x is infected.
Consequently, to accomplish exact recovery, we are going to threshold the number of untainted
positively displayed a ∈ ∂x. But crucially, to obtain an optimal algorithm, we cannot just use a
scalar, one-size-fits-all threshold. Instead, we need to carefully choose a threshold function that
takes into account the total number of untainted tests a ∈ ∂x.

To elaborate, let

Yx = ∣∣{a ∈ ∂x \ F[0] : ∀y ∈ ∂a \ {x} : σ y = 0
}∣∣ (2.35)

be the total number of untainted tests a ∈ ∂x; to avoid case distinctions, we omit seed tests
a ∈ F[0]. Routine calculations reveal that Yx is well approximated by a binomial variable with
mean exp (−d)�. Therefore, the fluctuations of Yx can be estimated via the Chernoff bound.
Specifically, the numbers of infected/uninfected individuals with Yx = α� can be approximated
as

E |{x ∈V1 : Yx = α�}| = k exp
(−�DKL

(
α‖exp (−d)

)+ o(�)
)
, (2.36)

E |{x ∈V0 : Yx = α�}| = n exp
(−�DKL

(
α‖exp (−d)

)+ o(�)
)
. (2.37)

Consequently, since k= �nθ� = o(n) ‘atypical’ values of Yx occur more frequently in healthy
than in infected individuals. In fact, recalling (1.6), we learn from a brief calculation that for
α �∈ Y(c, d, θ) not a single x ∈V1 with Yx = α� exists w.h.p. Hence, if Yx/� �∈ Y(c, d, θ), we
deduce that x is uninfected.

For x such that Yx/� ∈ Y(c, d, θ), more care is required. In this case, we need to compare the
number

Zx = ∣∣{a ∈ ∂+x \ F[0] : ∀y ∈ ∂a \ {x} : σ y = 0
}∣∣ (2.38)

of positively displayed untainted tests to the total number Yx of untainted tests. Since the test
results are put through the p-channel independently, Zx is a binomial variable given Yx. The
conditional mean of Zx equals p11Yx if x is infected and p01Yx otherwise. Therefore, the Chernoff
bound shows that

P [Zx = αβ� | Yx = α�]= exp
(−α�DKL

(
β‖pσ x1

)+ o(�)
)
. (2.39)

In light of (2.39), we set up the definition (1.9) of cex,1(d, θ) so that z( · ) can be used as a thresh-
old function to tell infected from uninfected individuals. Indeed, given Yx, Zx, we should declare
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Figure 2. The threshold function z( · ) (red) on the interval Y(cex,1(d, θ ), d, θ ) and the resulting large deviations rate
cex,1(d, θ )d(1− θ )(DKL(α‖exp (−d))+ αDKL(z(α)‖p01)) (black) with θ = 1/2, p00 = 0.972, p11 = 0.9 at the optimal choice
of d.

x uninfected if either Yx/� �∈ Y(c, d, θ) or Zx/Yx < z(Zx/�) and infected otherwise; then the
choice of z( · ) and cex(θ) would ensure that all individuals get diagnosed correctly w.h.p. Figure 2
displays a characteristic specimen of the function z( · ) and the corresponding rate function
from (1.9).

Yet trying to distil an algorithm from these considerations, we run into two obvious obstacles.
First, the threshold z( · ) may be hard to compute precisely. Similarly, the limits of the interval
Y(c, d, θ) may be irrational (or worse). The following proposition, which we prove in Section 4.1,
remedies these issues.

Proposition 2.7. Let ε > 0 and assume that c> cex(d, θ)+ ε. Then there exist δ > 0 and an open
interval ∅ �= I = (l, r)⊆ [δ, 1− δ]with endpoints l, r ∈Q such that for any ε′ > 0, there exist δ′ > 0
and a step function Z :I → (p01, p11)∩Q such that the following conditions are satisfied.

Z1: cd(1− θ)DKL
(
y‖exp (−d)

)
> θ + δ for all y ∈ (0, 1) \ (l+ δ, r − δ).

Z2: cd(1− θ)
(
DKL

(
y‖exp (−d)

)+ yDKL
(
Z(y)‖p11

))
> θ + δ for all y ∈ I.

Z3: cd(1− θ)
(
DKL

(
y‖exp (−d)

)+ yDKL
(
Z(y)‖p01

))
> 1+ δ for all y ∈ I.

Z4: If y, y′ ∈ I satisfy |y− y′|< δ′, then |Z(y)− Z(y′)|< ε′.
The second obstacle is that in the above discussion, we assumed that τy = σ y for all y ∈ ∂a \ {x}.

But all that the analysis of SPARC provides is that w.h.p. τy �= σ y for at most o(k) individuals y.
To cope with this issue, we resort to the expansion properties of Gsc. Roughly speaking, we show
that w.h.p. for any small set S of individuals (such as {y : τy �= σ y}), the set of individuals x that
occur in ‘many’ tests that also contain a second individual from S is significantly smaller than S.
As a consequence, as we apply the thresholding procedure repeatedly, the number of misclassified
individuals decays geometrically. We thus arrive at the following algorithm.

Proposition 2.8. Suppose that c> cex(d, θ)+ ε for a fixed ε > 0. There exists ε′ > 0, a rational
interval I and a rational step function Z such that w.h.p. for all 1≤ i< ln n, we have

‖σ − τ (i+1)‖1 ≤ 1
3
‖σ − τ (i)‖1.

We prove Proposition 2.8 in Section 4.2.
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Algorithm 3 The SPEX algorithm.

Input: Gsc, σ
Output: an estimate of σ

1 Let τ(1) be the output of SPARC(Gsc,σ );
2 for i = 1, . . . ,�lnn� do
3 For all x ∈V [s+1]∪·· ·∪V [ ] calculate

4 Yx (τ(i ))=
a∈∂x\F [0]

1 ∀y ∈ ∂a \ {x} : τ(i )
y = 0 , Zx (τ(i ))=

a∈∂x\F [0]:σa=1

1 ∀y ∈ ∂a \ {x} : τ(i )
y = 0 ;

5 Let τ(i+1)
x = τ(i )

x if x ∈V [1]∪·· ·∪V [s],

1
{
Yx (τ(i ))/Δ ∈I and Zx (τ(i ))/Δ>Z (Yx (τ(i ))/Δ) otherwise

;

6 return τ( lnn )

Proof of Theorem 1.3 (upper bound on exact recovery by SPEX). Since Proposition 2.8 shows
that the number of misclassified individuals decreases geometrically as we iterate Steps 3–5 of
SPEX, we have τ (�ln n�) = σ w.h.p. Furthermore, thanks to Theorem 1.1 and Proposition 2.7, SPEX
is indeed a polynomial time algorithm. �
Remark 2.9. In the noiseless case p00 = p11 = 1, Theorem 1.3 reproduces the analysis of the SPIV
algorithm from [9]. One key difference between SPARC and SPEX on the one hand and SPIV
on the other is that the former are based on BP, while the latter relies on combinatorial intuition.
More precisely, the SPIV algorithm infers from positive tests bymeans of a weighted sum identical
toW+

x (τ ) from (2.30) with the special values p00 = p11 = 1 and d = ln 2. In the noiseless case, the
weights w+

j were ‘guessed’ based on combinatorial intuition. Furthermore, in noiseless case, we
can be certain that any individual contained in a negative test is healthy, and therefore, the SPIV
algorithm only takes negative tests into account in this simple, deterministic manner. By contrast,
in the noisy case, the negative tests give rise to a second weighted sum W−

x (τ ). An important
novelty is that rather than ‘guessing’ the weights w±

j , here we discovered how they can be derived
systematically from the BP formalism. Apart from shedding new light on the noiseless case as
well, we expect that this type of approach can be generalised to other inference problems as well.
A second novelty in the design of SPEX is the use of the threshold function Z( · ) that depends on
the number untainted tests. The need for such a threshold function is encoded in the optimisation
problem (1.9) that gives rise to a nontrivial choice of the coefficient d that governs the size of the
tests. This type of optimisation is unnecessary in the noiseless case, where simply d = ln 2 is the
optimal choice for all θ ∈ (0, 1).

2.6. The constant column lower bound
Having completed the discussion of the algorithms SPARC and SPEX for Theorems 1.1 and 1.3,
we turn to the proof of Theorem 1.4 on the information-theoretic lower bound for the constant
column design. The goal is to show that for m< (cex(θ)− ε)k ln (n/k), no algorithm, efficient or
otherwise, can exactly recover σ on Gcc.

To this end, we are going to estimate the probability of the actual ground truth σ under
the posterior given the test results. We recall from Fact 2.2 that the posterior coincides with
the Boltzmann distribution from (2.4). The following proposition, whose proof can be found in
Section 5.1, estimates the Boltzmann weight ψGcc,σ ′′(σ ) of the ground truth. Recall from (2.16)
that d = k�/m. Also recall the weight function from (2.3).
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Proposition 2.10. W.h.p., the weight of σ satisfies
1
m

lnψGcc,σ ′′(σ )= − exp (−d)h(p00)− (1− exp (−d))h(p11)+O(m−1/2 ln3 ). (2.40)

We are now going to argue that for c< cex(θ) the partition function ZGcc,σ ′′ dwarfs the
Boltzmann weight (2.40) w.h.p. The definition (1.11) of cex(θ) suggests that there are two pos-
sible ways how this may come about. The first occurs when c=m/(k ln (n/k)) is smaller than the
local stability bound cex,1(d, θ) from (1.9). In this case, we will essentially put the analysis of SPEX
into reverse gear. That is, we will show that there are plenty of individuals x whose status could be
flipped from infected to healthy or vice versa without reducing the posterior likelihood. In effect,
the partition function will be far greater than the Boltzmann weight of σ .

Proposition 2.11. Assume that there exists y ∈ Y(c, d, θ) such that there exists z ∈ (p01, p11) such
that

cd(1− θ)
(
DKL

(
y‖exp (−d)

)+ yDKL
(
z‖p11

))
< θ and (2.41)

cd(1− θ)
(
DKL

(
y‖exp (−d)

)+ yDKL
(
z‖p01

))
< 1. (2.42)

Then w.h.p., there exist n�(1) pairs (v,w) ∈V1 ×V0 such that for the configuration σ [v,w] obtained
from σ by inverting the v,w-entries, we have

μGcc,σ ′′(σ [v,w])=μGcc,σ ′′(σ ). (2.43)

We prove Proposition 2.11 in Section 5.2.
The second case is that c is smaller than the entropy bound cex,2(d) from (1.10). In this case,

we will show by way of a moment computation that ZGcc,σ ′′ exceeds the Boltzmann weight of σ

w.h.p. More precisely, in Section 5.3, we prove the following.

Proposition 2.12. Let ε > 0. If c< cex,2(d)− ε, then

P
[
ln ZGcc,σ ′′ ≥ k ln (n/k)

[
1− c/cex,2(d)+ o(1)

]]
> 1− ε+ o(1).

Proof of Theorem 1.4 (lower bound on exact recovery on Gcc). Proposition 2.11 readily implies
that μGcc,σ ′′(σ )= o(1) w.h.p. if c< cex,1(d, θ). Furthermore, in the case c< cex,2(d), the assertion
follows from Propositions 2.10 and 2.12. �

3. Analysis of the approximate recovery algorithm
In this section, we carry out the proofs of the various propositions leading up to the proof of
Theorem 1.1 (Propositions 2.3, 2.5, and 2.6).

Proposition 2.3 contains some basic properties about Gsc that we need further on. Further
Proposition 2.5 justifies to only consider V+ in the main step of SPARC. The most important part
of the analysis is contained in the proof of Proposition 2.6 that shows the correctness for the main
step of SPARC. Here we consider three different sets of possibly misclassified individuals (Lemmas
3.1, 3.2, and 3.3) that we analyse separately to show that the in total the number of misclassified
individuals is small.

Throughout, we work with the spatially coupled test design Gsc from Section 2.3. Hence, we
keep the notation and assumptions from (2.13) to (2.17). We also make a note of the fact that for
any x ∈V[i] and any a ∈ F[i+ j− 1], j= 1, . . . , s,

P [x ∈ ∂a]= 1− P [x �∈ ∂a]= 1−
(|F[i+ j− 1]| − 1

�/s

)(|F[i+ j− 1]|
�/s

)−1
= ��

ms
+O

((
��

ms

)2
)
;

(3.1)
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this is because the construction ofGsc ensures that x joins�/s random tests in each of F[i+ j− 1],
drawn uniformly without replacement.

3.1. Proof of Proposition 2.3 (properties ofGsc)
Property G1 is a routine consequence of the Chernoff bound and was previously established as
part of (9, Proposition 4.1). With respect to G2, we may condition on the event E that the bound
(2.18) from G1 is satisfied. Consider a test a ∈ F[i]. Recall that a comprises individuals from the
compartments V[i− s+ 1], . . . ,V[i]. Since the probability that a specific individual joins a spe-
cific test is given by (3.1) and since individuals choose the tests that they join independently, on E
for each i− s+ 1≤ h≤ i, we have

|V1[h]∩ ∂a| ∼ Bin

(
k
�

+O

(√
k
�
ln n

)
,
��

ms
+O

((
��

ms

)2
))

. (3.2)

Combining (2.16) and (3.2), we obtain

E[|V1[h]∩ ∂a| |E]= �k
ms

+O

(√
�

k
ln n

)
= d

s
+O

(
k−1/2 ln3/2 n

)
. (3.3)

Further, combining (3.2) and (3.3), we get

P
[
V1[h]∩ ∂a= ∅ |E]= exp

[(
k
�

+O

(√
k
�
ln n

))
ln

(
1− ��

ms
+O

((
��

ms

)2
))]

= exp
(

−d
s

+O
(
k−1/2 ln3/2 n

))
.

Multiplying these probabilities up on i− s+ 1≤ h≤ i, we arrive at the estimate

P
[
V1[h]∩ ∂a= ∅ |E]= exp

(−d +O
(
k−1/2 ln8/5 n

))
.

Hence,

E[ |F0[i]| |E]= m
�
exp (−d)+O

(√
m ln2 n

)
. (3.4)

To establish concentration, observe that the set ∂x of tests that a specific infected individual x ∈
V1[h] joins can change |F0[i]| by � at the most. Moreover, changing the neighbourhood ∂x of a
healthy individual cannot change the actual test results at all. Therefore, by Azuma–Hoeffding,

P
[||F0[i]| −E [|F0[i]| | E]| ≥ √

m ln2 n | E]≤ 2 exp

(
−m ln4 n

2k�2

)
= o(n−3). (3.5)

Thus, (3.4), (3.5), and G1 show that with probability 1− o(n−2) for all 1≤ i≤ �, we have
|F0[i]| = m

�
exp (−d)+O

(√
m ln2 n

)
, and thus |F1[i]| = m

�
(1− exp (−d))+O

(√
m ln2 n

)
.

(3.6)

Since the actual test results are subjected to the p-channel independently to obtain the displayed
test results, the distributions of |F±

0/1[i] given F0/1[i] read∣∣F−
0 [i]

∣∣= Bin(|F0[i]|, p00),
∣∣F+

0 [i]
∣∣= Bin(|F0[i]|, p01), (3.7)∣∣F−

1 [i]
∣∣= Bin(|F1[i]|, p10),

∣∣F+
1 [i]

∣∣= Bin(|F1[i]|, p11). (3.8)

Thus, G2 follows from (3.6), (3.7), and Lemma 1.5 (the Chernoff bound).
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3.2. Proof of Proposition 2.5 (plausible number of positive tests)
Any x ∈V1[i] has a total of �/s neighbours in each of F[i], . . . , F[i+ s− 1]. Moreover, all tests
a ∈ ∂x are actually positive. Since the displayed result is obtained via the p-channel independently
for every a, the number of displayed positive neighbours |∂x ∩ F+[i+ j− 1]| is a binomial variable
with distribution Bin(�/s, p11). Since�=	( ln n) and s=	( ln ln n), the first assertion (2.24) is
immediate from Lemma 1.5.

Moving on to the second assertion, we condition on the event E that the bounds (2.19)–(2.22)
hold for all i ∈ [�]. Then Proposition 2.3 shows that P [E]= 1− o(n−2). Given E, we know that

|F+[i]| = q+
0 m
�

+O
(√

m ln3 n
)
, |F−[i]| = (1− q+

0 )m
�

+O
(√

m ln3 n
)
. (3.9)

Now consider an individual x ∈V0[i]. Also consider any test a ∈ F[i+ j− 1] for j ∈ [s]. Then the
actual result σ ′

a of a is independent of the event {x ∈ a} because x is uninfected. Since the displayed
result σ ′′

a depends solely on σ ′
a, we conclude that σ ′′

a is independent of {x ∈ a} as well. Therefore,
(3.9) shows that on the event E, the number of displayed positive tests that x is a member has
conditional distribution

|∂x ∩ F+[i+ j− 1]| ∼Hyp

(
m
�
,
q+
0 m
�

+O
(√

m ln3 n
)
,
�

s

)
. (3.10)

Since the random variables (|∂x ∩ F+[i+ j− 1]|)1≤j≤s are mutually independent, (2.25) follows
from Lemma 1.6.

3.3. Proof of Proposition 2.6 (correctness of SPARC for V+)
We reduce the proof of Proposition 2.6 to three lemmas. The first two estimate the sums from
(2.30) when evaluated at the actual ground truth σ .

Lemma 3.1. Assume that (2.34) is satisfied. w.h.p., we have∑
s<i≤�

∑
x∈V+

1 [i]

1
{
W+

x (σ )< (1− ζ/2)W+ orW−
x (σ )> (1+ ζ/2)W−}≤ k exp

(
−�

(
ln n

( ln ln n)4

))
.

(3.11)

Lemma 3.2. Assume that (2.34) is satisfied. w.h.p., we have∑
s≤i<�

∑
x∈V+

0 [i]

1
{
W+

x (σ )≥ (1− 2ζ )W+ andW−
x (σ )≤ (1+ 2ζ )W−}≤ k1−�(1). (3.12)

We defer the proofs of Lemmas 3.1 and 3.2 to Sections 3.4 and 3.5. While the proof of Lemma 3.1
is fairly routine, the proof of Lemma 3.2 is the linchpin of the entire analysis of SPARC, as it
effectively vindicates the BP heuristics that we have been invoking so liberally in designing the
algorithm.

Additionally, to compare W±
x (σ ) with the algorithm’s estimate W±

x (τ ), we resort to the
following expansion property of Gsc.

Lemma 3.3. Let 0<α, β < 1 be such that α + β > 1. Then w.h.p. for any T ⊆V of size |T| ≤
exp (− lnα n)k, ∣∣∣∣∣∣

⎧⎨
⎩x ∈V :

∑
a∈∂x\F[0]

1 {T ∩ ∂a \ {x} �= ∅} ≥ lnβ n

⎫⎬
⎭
∣∣∣∣∣∣≤

|T|
8 ln ln n

.

In a nutshell, Lemma 3.3 posits that for any ‘small’ set T of individuals, there are even fewer
individuals that share many tests with individuals from T. Lemma 3.3 is an generalisation of
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(9, Lemma 4.16). The proof, based on a routine union bound argument, is included in Appendix C
for completeness.

Proof of Proposition 2.6 (correctness of SPARC for V+). Proposition 2.4 shows that for all indi-
viduals x in the seed V[1], . . . ,V[s], we have τx = σ x w.h.p. Let M[i]= {

x ∈V+[i] : τx �= σ x
}
be

the set of misclassified individuals in V+[i]. We are going to show that w.h.p. for all 1≤ i≤ � and
for large enough n,

|M[i]| ≤ k exp
(

− ln n
( ln ln n)5

)
. (3.13)

We proceed by induction on i. As mentioned above, Proposition 2.4 ensures that M[1]∪ · · · ∪
M[s]= ∅ w.h.p. Now assume that (3.13) is correct for all i< h≤ �; we are going to show that
(3.13) holds for i= h as well. To this end, recalling ζ from (2.33) and W± from (2.32), we define
for p10 > 0

M1[h]=
{
x ∈V+

1 [h] :W
+
x (σ )< (1− ζ/2)W+ orW−

x (σ )> (1+ ζ/2)W−} ,
M2[h]=

{
x ∈V+

0 [h] :W
+
x (σ )> (1− 2ζ )W+ andW−

x (σ )< (1+ 2ζ )W−} ,
M3[h]=

{
x ∈V+[h] : |W+

x (σ )−W+
x (τ )| + |W−

x (σ )−W−
x (τ )|> ζ (W+ ∧W−)/8

}
and further for p10 = 0

M1[h]=
{
x ∈V+

1 [h] :W
+
x (σ )< (1− ζ/2)W+} ,

M2[h]=
{
x ∈V+

0 [h] :W
+
x (σ )> (1− 2ζ )W+ andW−

x (σ )= 0
}
,

M3[h]=
{
x ∈V+[h] : |W+

x (σ )−W+
x (τ )|> ζ (W+)/8

}
.

We claim thatM[h]⊆ M1[h]∪ M2[h]∪ M3[h]. To see this, assume that x ∈ M[h] \ (M1[h]∪
M2[h]). Then for SPARC to misclassify x, it must be the case that∣∣W+

x (τ )−W+
x (σ )

∣∣+ |W−
x (τ )−W−

x (σ )|>
ζ

8
(W+ ∧W−),

and thus x ∈ M3[h].
Thus, to complete the proof, we need to estimate |M1[h]|, |M2[h]|, |M3[h]|. Lemmas 3.1 and

3.2 readily show that

|M1[h]| + |M2[h]| ≤ k exp
(

−�
(

ln n
( ln ln n)4

))
. (3.14)

Furthermore, in order to bound |M3[h]|, we will employ Lemma 3.3. Specifically, consider x ∈
M3[h]. Since W+ ∧W− =�(�)=�( ln n) for p10 > 0 by (2.29) and (2.32), there exists j ∈ [s]
such that

| |W+
x,j(τ )| − |W+

x,j(σ )| |> ln1/2 n or | |W−
x,j(τ )| − |W−

x,j(σ )| |> ln1/2 n.

SinceW+ =�( ln n) for p10 = 0, there exists j ∈ [s] such that

| |W+
x,j(τ )| − |W+

x,j(σ )| |> ln1/2 n

Assume without loss of generality that the left inequality holds. Then there are at least ln1/2 n
tests a ∈ ∂x ∩ F+[h+ j− 1] such that ∂a∩ (M[1]∪ · · · ∪ M[h− 1]) �= ∅. Therefore, Lemma 3.3
shows that

|M3[h]| ≤ |M[h− s]∪ · · · ∪ M[h− 1]|
8 ln ln n

.

Hence, using induction to bound |M[h− s]|, . . . , |M[h− 1]| and recalling from (2.14) that s≤
1+ ln ln n, we obtain (3.13) for i= h. �
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3.4. Proof of Lemma 3.1 (large deviations for infected individuals)
The thrust of Lemma 3.1 is to verify that the definition (2.23) of the set V+[i] faithfully reflects the
typical statistics of positively/negatively displayed tests in the neighbourhood of an infected indi-
vidual x ∈V1[i] with s< i≤ �. Recall from the definition ofGsc that such an individual x joins tests
in F[i+ j− 1] for j ∈ [s]. Moreover, apart from x itself, a test a ∈ F[i+ j− 1]∩ ∂x recruits from
V[i+ j− s], . . . ,V[i+ j− 1]. In particular, a recruits participants from the s− j compartments
V[i+ j− s], . . . ,V[i− 1] preceding V[i]. Let

Ui,j =
{
a ∈ F[i+ j− 1] : (V1[1]∪ · · · ∪V1[i− 1])∩ ∂a= ∅}

=
⎧⎨
⎩a ∈ F[i+ j− 1] :

i−1⋃
h=i+j−s

V1[h]∩ ∂a= ∅
⎫⎬
⎭ (3.15)

be the set of tests in F[i+ j− 1] that do not contain an infected individual from V[i+ j−
s], . . . ,V[i− 1].

Claim 3.4. With probability 1− o(n−2) for all s≤ i< �, j ∈ [s], we have

|Ui,j| =
(
1+O(n−�(1))

) m
�

· exp (d(j− s)/s).

Proof. We condition on the event E that G1 from Proposition 2.3 holds. Then for any a ∈ F[i+
j− 1] and any i+ j− s≤ h< i, the number V1[h]∩ ∂a of infected individuals in a from V[h] is a
binomial variable as in (3.2). Since the random variables (V1[h]∩ ∂a)h are mutually independent,
we therefore obtain

P
[
(V1[i+ j− s]∪ · · ·V1[i− 1])∩ ∂a= ∅ |E]= exp (d(j− s)/s)+O(n−�(1)). (3.16)

Hence,

E
[|Ui,j| |E

]= m
�
exp

[
d(j− s)/s+O(n−�(1))

]
. (3.17)

Further, changing the set ∂x of tests that a single x ∈V1 joins can alter |Ui,j| by � at the most,
while changing the set of neighbours of any x ∈V0 does not change |Ui,j| at all. Therefore, Azuma–
Hoeffding shows that

P
[∣∣|Ui,j| −E[|Ui,j| |E]

∣∣>√
m ln2 n |E]≤ 2 exp

(
−m ln4 n

2k�2

)
= o(n−2). (3.18)

The assertion follows from (3.17) to (3.18). �
Let

q−
1,j = p01 exp (d(j− s)/s), q+

1,j = p11 exp (d(j− s)/s). (3.19)

Claim 3.5. For all s< i≤ �, x ∈V1[i], and j ∈ [s], we have

P

[
|W+

x,j|< (1− ζ/2)q+
1,j
�

s

]
+ P

[
|W−

x,j|> (1+ ζ/2)q−
1,j
�

s

]
≤ exp

(
−�

(
ln n

( ln ln n)4

))
.

Proof. Fix s≤ i< �, 1≤ j≤ s and x ∈V1[i]. In light of Proposition 2.3 and Claim 3.4, the event
E that G1 from Proposition 2.3 holds and that |Ui,j| = exp (d(j− s)/s)m

�
(1+O(n−�(1))) has

probability

P [E]= 1− o(n−2). (3.20)
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Let U i,j = |∂x ∩ Ui,j|. Given Ui,j, we have

U i,j ∼Hyp
(
m
�

+O(1), exp
(
d(j− s)

s

)
m
�
(1+O(n−�(1))), �

s

)
.

Therefore, Lemma 1.6 shows that the event

E′ =
{∣∣∣∣Ui,j − �

s
exp

(
d(j− s)

s

)∣∣∣∣≥ ln n
( ln ln n)2

}

has conditional probability

P
[
E′ |E]≤ exp

(
−�

(
ln n

( ln ln n)4

))
. (3.21)

Finally, given U i,j the number |W+
x,j| of positively displayed a ∈ ∂x ∩ Ui,j has distribution

Bin(U i,j, p11); similarly, |W−
x,j| has distribution Bin(U i,j, p01). Thus, since �=	( ln n) while

s=O( ln ln n) by (2.14), the assertion follows from (3.20), (3.21), and Lemma 1.5. �
Proof of Lemma 3.1 (large deviations for infected individuals). The lemma follows from Claim 3.5
and Markov’s inequality. �

3.5. Proof of Lemma 3.2 (large deviations for healthy individuals)
To prove Lemma 3.2, we need to estimate the probability that an uninfected individual x ∈V[i],
s< i≤ �, ‘disguises’ itself to look like an infected individual. In addition to the setsUi,j from (3.15)
towards the proof of Lemma 3.2, we also need to consider the sets

Pi,j = F1[i+ j− 1]∩ Ui,j, Ni,j = F0[i+ j− 1]∩ Ui,j,
P±

i,j = F±
1 [i+ j− 1]∩ Ui,j, N±

i,j = F±
0 [i+ j− 1]∩ Ui,j.

In words, Pi,j and Ni,j are the sets of actually positive/negative tests in Ui,j, that is, actually pos-
itive/negative tests a ∈ F[i+ j− 1] that do not contain an infected individual from V[i+ j− s]∪
· · · ∪V[i− 1]. Additionally, P±

i,j,N
±
i,j discriminate based on the displayed test results. We begin

by estimating the likely sizes of these sets.

Claim 3.6. Let s< i≤ � and j ∈ [s]. Then with probability 1− o(n−2), we have

|Pi,j| =
(
1+O(n−�(1))

) m
�

· exp (dj/s)− 1
exp (d)

, |Ni,j| =
(
1+O(n−�(1))

) m
�

· exp (−d), (3.22)
selectfont

|P+
i,j| =

(
1+O(n−�(1))

) m
�

· p11(exp(dj/s)− 1)
exp (d)

, |P−
i,j| =

(
1+O(n−�(1))

) m
�

· p10(exp(dj/s)− 1)
exp (d)

,

(3.23)

|N+
i,j| =

(
1+O(n−�(1))

) m
�

· p01 exp (−d), |N−
i,j| =

(
1+O(n−�(1))

) m
�

· p00 exp (−d). (3.24)

Proof. Since Ni,j = F0[i+ j− 1], the second equation in (3.22) just follows from Proposition 2.3,
G2. Furthermore, since Pi,j = Ui,j \ Ni,j, the first equation (3.22) is an immediate consequence of
Claim 3.4. Finally, to obtain (3.23)–(3.24), we simply notice that given |Pi,j|, |Ni,j|, we have
|P+

i,j| = Bin(|Pi,j|, p11), |P−
i,j| = Bin(|Pi,j|, p10), |N+

i,j| = Bin(|Ni,j|, p01), |N−
i,j| = Bin(|Ni,j|, p00).

Hence, (3.23)–(3.24) just follow from (3.22) and Lemma 1.5. �
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Let U be the event that G1–G2 from Proposition 2.3 hold and that the estimates (3.22)–(3.24)
hold. Then by Proposition 2.3 and Claim 3.6, we have

P [U]= 1− o(n−2). (3.25)
To facilitate the following computations, we let

q−
0,j = exp (−d)p00 + (exp(d(j− s)/s)− exp (−d))p10, q+

0,j = exp (−d)p01
+ (exp(d(j− s)/s)− exp (−d))p11. (3.26)

Additionally, we introduce the shorthand λ= ( ln ln n)/ ln3/7 n for the error term from the defini-
tion (2.23) of V+[i]. Our next step is to determine the distribution of the random variables |W±

x,j|
that contribute toW±

x (σ ) from (2.30).

Claim 3.7. Let s< i≤ � and j ∈ [s]. Given U for every x ∈V+
0 [i], we have

|W−
x,j| ∼Hyp

((
1+O(n−�(1))

) mq−
0
�

,
(
1+O(n−�(1))

) mq−
0,j

2�
, (1+O(λ))

�

s
p10

)
, (3.27)

|W+
x,j| ∼Hyp

((
1+O(n−�(1))

) mq+
0
�

,
(
1+O(n−�(1))

) mq+
0,j

2�
, (1+O(λ))

�s
p11

)
. (3.28)

Proof. The definition (2.23) of V+[i] prescribes that for any x ∈V+
0 [i], we have ∂x ∩ F+[i+ j−

1]= (p11 +O(λ))�/s. The absence or presence of x ∈V0[i] in any test a does not affect the dis-
played results of a because x is uninfected. Therefore, the conditional distributions of |W±

x,j| read

|W±
x,j| ∼Hyp

(
|F±[i+ j− 1]|, |N±

i,j| + |P±
i,j|, (1+O(λ))

�

s
p10
)
.

Since on U the bounds (2.19)–(2.22) and (3.22)–(3.24) hold, the assertion follows. �
We are now ready to derive an exact expression for the probability that for x ∈V0[i], the value

W+
x gets (almost) as large as the valueW+ that we would expected to see for an infected individual.

Recall the values q±
1,j from (3.19).

Claim 3.8. Let

M+ =min
1
s

s∑
j=1

DKL

(
zj‖

q+
0,j

q+
0

)
s.t.

s∑
j=1

(
zj −

q+
1,j

p11

)
w+
j = 0, z1, . . . , zs ∈ (0, 1).

(3.29)

Then for all s< i≤ � and all x ∈V[i], we have
P
[
W+

x ≥ (1− 2ζ )W+ | U, x ∈V+
0 [i]

]≤ exp (−(1+ o(1))p11�M+).
Proof. Since�=O( ln n) and s=O( ln ln n) by (2.14), we can write
P
[
W+

x (σ )≥ (1− 2ζ )W+ | U, x ∈V+
0 [i]

]
≤

∑
0≤v1,...,vs≤�/s

1

⎧⎨
⎩

n∑
j=1

vjw+
j ≥ (1− 2ζ )W+

⎫⎬
⎭ P

[
∀j ∈ [s] :W+

x,j(σ )= vj | U, x ∈V+
0 [i]

]

≤ exp (o(�)) max
0≤v1,...,vs≤�/s

1

⎧⎨
⎩

n∑
j=1

vjw+
j ≥ (1− 2ζ )W+

⎫⎬
⎭ P

[
∀j ∈ [s] :W+

x,j(σ )= vj | U, x ∈V+
0 [i]

]
.

(3.30)
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Further, given U and x ∈V+
0 [i], the random variables (W+

x,j)j∈[s] are mutually independent
because x joins tests in the compartments F[i+ j− 1], j ∈ [s], independently. Hence, Claim 3.7
shows that for any v1, . . . , vs,

P
[
∀j ∈ [s] :W+

x,j(σ )= vj | U, x ∈V+
0 [i]

]
=

s∏
j=1

P
[
W+

x,j(σ )= vj | U, x ∈V+
0 [i]

]
. (3.31)

Thus, consider the optimisation problem

M+
t =min

1
s

s∑
j=1

DKL

(
zj‖

q+
0,j

q+
0

)
s.t.

s∑
j=1

zjw+
j ≥ (1− t)W+, z1, . . . , zs ∈ [q+

0,j/q
+
0 , 1].

(3.32)
Then combining (3.30) and (3.31) with Claim 3.7 and Lemma 1.6 and using the substitution zj =
vj/(p11�), we obtain

P
[
W+

x ≥ (1− 2ζ )W+ | U, x ∈V+
0 [i]

]≤ exp (−�p11M+
2ζ + o(�)). (3.33)

We claim that (3.33) can be sharpened to
P
[
W+

x ≥ (1− 2ζ )W+ | U, x ∈V+
0 [i]

]≤ exp (−�p11M+
0 + o(�)). (3.34)

Indeed, consider any feasible solution z1, . . . , zs to M+
ζ such that

∑
j≥s zjw

+
j <W+. Obtain

z′1, . . . , z′s by increasing some of the values z1, . . . , zs such that
∑

j≤s z′jw
+
j =W+. Then because

the functions z 
→DKL(z‖q+
0,j/q

+
0 ) with j ∈ [s] are equicontinuous on the compact interval [0, 1],

we see that
1
s

s∑
j=1

DKL
(
zj‖q+

0,j/q
+
0

)
≥ 1

s

s∑
j=1

DKL
(
z′j‖q+

0,j/q
+
0

)
+ o(1)

uniformly for all z1, . . . , zs and z′1, . . . , z′s. Thus, (3.34) follows from (3.33).
Finally, we notice that the condition zj ≥ q+

0,j/q
+
0 in (3.32) is superfluous. Indeed, since

DKL(q+
0,j/q

+
0 ‖q+

0,j/q
+
0 )= 0, there is nothing to be gained from choosing zj < q+

0,j/q
+
0 . Furthermore,

since the Kullback–Leibler divergence is strictly convex and (1.1) ensures that q+
0,j/q

+
0 < q+

1,j/p11
for all j, the optimisation problem M+

0 attains a unique minimum, which is not situated at
the boundary of the intervals [q+

0,j/q
+
0 , 1]. That said, the unique minimiser satisfies the weight

constraint
∑

j≥s zjw
+
j with equality; otherwise, we could reduce some zj, thereby decreasing the

objective function value. In summary, we conclude that M+
0 = M+. Thus, the assertion follows

from (3.34). �
Claim 3.9. Let

M− =min
1
s

s∑
j=1

DKL

(
zj‖

q−
0,j

q−
0

)
s.t.

s∑
j=1

(
zj −

q−
1,j

p01

)
w−
j = 0, z1, . . . , zs ∈ (0, 1).

(3.35)

Then for all s< i≤ � and all x ∈V[i], we have
P
[
W−

x ≤ (1+ 2ζ )W− | U, x ∈V+
0 [i]

]≤ exp (−(1+ o(1))p10�M−).
Recall that by convention 0 · ∞ = 0. Thus for p10 = 0, the condition of (3.35) boils down to

zj = q−
1,j/p01, and the optimisation becomes trivial.

Proof. Analogous to the proof of Claim 3.8. �
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Clearly, as a next step, we need to solve the optimisation problems (3.29) and (3.35). We defer
this task to Section 3.6, where we prove the following.

Lemma 3.10. Let X have distribution Be(exp(−d)), and let Y be the (random) channel output given
input X. Then

p11M+ + p10M− = I(X, Y)
d

−DKL
(
p11‖q+

0
)
.

Proof of Lemma 3.2 (large deviations for healthy individuals). In light of Claims 3.8 and 3.9
and Lemma 3.10 to work out that all but o(k) positive individuals are identified correctly, using
Markov’s inequality, we need to verify that∣∣V+

0
∣∣ exp (−� (p11M+ + p10M−))<k (3.36)

Taking the logarithm of (3.36) and simplifying, we arrive at

ln (n)
(
1− cd(1− θ)

(
DKL

(
p11‖(1− exp (−d))p11 + exp (−d)p01

)+ p11M+ + p10M−))
< θ ln (n). (3.37)

Thus, we need to show that

cd
[
DKL

(
p11‖(1− exp (−d))p11 + exp (−d)p01

)+ p11M+ + p10M−]>1. (3.38)

This boils down to cI(X, Y)> 1, which in turn is identical to (2.34). �

3.6. Proof of Lemma 3.10
We tackle the optimisation problemsM± via the method of Lagrangemultipliers. Since the objec-
tive functions are strictly convex, these optimisation problems possess unique stationary points.
As the parameters from (3.19) satisfy q+

1,j/p11 = exp (d(j− s)/s), the optimisation problem (3.29)
gives rise to the following Lagrangian.

Claim 3.11. The Lagrangian

L+ =
s∑

j=1
DKL

(
zj‖

q+
0,j

q+
0

)
+ λw+

j
(
zj − exp (−d(s− j)/s)

)
has the unique stationary point zj = exp (−d(s− j)/s), λ= −1.

Proof. Since the objective function
∑s

j=1 DKL
(
zj‖q+

1,j/p11
)
is strictly convex, we just need to

verify that λ= −1 and zj = exp (−d(s− j)/s) is a stationary point. To this end, we calculate

∂L+

∂zj
= ln

z+j
1− z+j

− ln
q+
1,j

p11 − q+
1,j

+ λw+
j ,

∂L+

∂λ
=

s∑
j=1

(
zj − exp

(−d(s− j)/s
))

w+
j . (3.39)

Substituting in the definition (2.29) of the weights w+
j and the definition (3.19) of p11, q+

1,j and
simplifying, we obtain

∂L+

∂zj

∣∣∣∣zj=exp (−d(s−j)/s)
λ=−1

= ln
exp (−d(s− j)/s)

1− exp (−d(s− j)/s)
− ln

p11(exp
(
dj/s

)− 1)+ p01
p11(exp(d)− 1)+ p01

+ ln
(
1− p11(exp(dj/s)− 1)+ p01

p11(exp(d)− 1)+ p01

)
− ln

p11
p11 + (p01 − p11) exp (−dj/s)

= 0.

Finally, (3.39) shows that setting zj = exp (−d(s− j)/s) ensures that ∂L+/∂λ= 0 as well. �
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Analogous steps prove the corresponding statement for M−.
Claim 3.12. Assume p10 > 0. The Lagrangian

L− =
s∑

j=1
DKL

(
zj‖

q−
0,j

p01

)
+ λw−

j
(
zj − exp (−d(s− j)/s)

)
has the unique stationary point zj = exp (−d(s− j)/s), λ= −1.

Having identified theminimisers ofM±, we proceed to calculate the optimal objective function
values. Note that for M−, the minimisers zj for the cases p10 > 0 and p10 = 0 coincide.

Claim 3.13. Let
λ+ = ln (q+

0 )= ln (p01 exp (−d)+ p11(1− exp (−d))), λ− = ln (q−
0 )

= ln (p00 exp (−d)+ p10(1− exp (−d))).
Then
p11d exp (d)M+ =(λ+ + d)

(
p11

(
(d − 1) exp (d)+ 1

)− p01
)+ p01 ln (p01)

− p11
(
(d − 1) exp (d)+ 1

)
ln (p11)− d(d − 1) exp (d)p11 +O(1/s),

p10d exp (d)M− =(λ− + d)
(
p10

(
(d − 1) exp (d)+ 1

)− p00
)+ p00 ln (p00)

− p10
(
(d − 1) exp (d)+ 1

)
ln (p10)− d(d − 1) exp (d)p10 +O(1/s) if p10 > 0.

Proof. We perform the calculation forM+ in detail. Syntactically identical steps yield the expres-
sion forM−, the only required change being the obviousmodification of the indices of the channel
probabilities. Substituting the optimal solution zj = exp (−d(s− j)/s) and the definitions (3.19)
and (2.1), (3.19), and (3.26) of q+

1,j, q
+
0 , q

+
0,j into (3.29), we obtain

M+ =1
s

s∑
j=1

DKL

(
exp (−d(s− j)/s)‖p01 + (exp(dj/s)− 1)p11

p01 + (exp(d)− 1)p11

)
= I+ +O(1/s), where

(3.40)

I+ =
∫ 1

0
DKL

(
exp (d(x− 1))‖p11(exp(dx)− 1)+ p01

p11(exp(d)− 1)+ p01

)
dx;

the O(1/s)-bound in (3.40) holds because the derivative of the integrand x 
→
DKL

(
exp (d(x− 1))‖ p11(exp(dx)−1)+p01

p11(exp(d)−1)+p01

)
is bounded on [0, 1]. Replacing the Kullback–Leibler

divergence by its definition, we obtain I+ = I+
1 + I+

2 , where

I+
1 =

∫ 1

0
exp

(
d(x− 1)

)
ln

exp
(
d(x− 1)

)
(p11(exp

(
d
)− 1)+ p01)

p11(exp
(
dx
)− 1)+ p01

dx,

I+
2 =

∫ 1

0
(1− exp

(
d(x− 1)

)
) ln

⎡
⎢⎣ 1− exp

(
d(x− 1)

)
1− p11(exp(dx)−1)+p01

p11(exp(d)−1)+p01

⎤
⎥⎦ dx.

Splitting the logarithm in the first integrand, we further obtain I+
1 = I+

11 + I+
12, where

I+
11 =

∫ 1

0
exp

(
d(x− 1)

)
ln
[
exp

(
d(x− 1)

)
(p11(exp

(
d
)− 1)+ p01)

]
dx,

I+
12 = −

∫ 1

0
exp

(
d(x− 1)

)
ln
[
p11(exp

(
dx
)− 1)+ p01

]
dx.
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Setting �+ = ln (p11(exp
(
d
)− 1)+ p01)= λ+ + d and introducing u= exp

(
d(x− 1)

)
, we

calculate

I+
11 = 1

d

[∫ 1

exp(−d)
ln (u)du+

∫ 1

exp(−d)
�+du

]
= 1

d
[
(d + 1) exp (−d)− 1+ (1− exp

(−d
)
)�+] .
(3.41)

Concerning I+
12, we once again substitute u= exp

(
d(x− 1)

)
to obtain

I+
12 = −1

d

∫ 1

exp (−d)
ln
(
p11 exp (d)u+ p01 − p11

)
du

= −1
d

[(
p01
p11

exp
(−d

)− exp
(−d

)+ 1
)
�+ − exp

(−d
) p01
p11

ln (p01)+ exp
(−d

)− 1
]

(3.42)

Proceeding to I2, we obtain

I+
2 =

∫ 1

0
(1− exp

(
d(x− 1)

)
) ln

p11(exp
(
d
)− 1)+ p01

p11 exp (d)
dx

=
∫ 1

0
(1− exp

(
d(x− 1)

)
) ln

(
p11(exp(d)− 1)+ p01

)
dx

−
∫ 1

0
(1− exp

(
d(x− 1)

)
) ln (p11 exp (d))dx

= (�+ − ln (p11)− d)(d − 1+ exp
(−d

)
)

d
. (3.43)

Finally, recalling that I+ = I1 + I2 = I+
11 + I+

12 + I+
2 and combining (3.40)–(3.43) and sim-

plifying, we arrive at the desired expression for M+. �
Proof of Lemma 3.10. We have

I(X, Y)=H(Y)−H(Y|X)= h(p00 exp (−d)+ p10(1− exp (−d)))− exp (−d)h(p00)
− (1− exp (−d))h(p11).

Hence, Claim 3.13 yields

p11M+ + p10M− = − h(p00)
d exp (d)

− (1− exp (−d))h(p11)
d

+ h(p11)

+ (p11 − p01)λ+ + (p10 − p00)λ−

d exp (d)
+ d − 1

d
[
p11λ+ + p10λ−]

= − h(p00)
d exp (d)

− (1− exp (−d))h(p11)
d

−DKL
(
p11‖q+

0
)− λ+

d
exp (λ+)

− λ−

d
exp (λ−)

= I(X, Y)
d

−DKL
(
p11‖q+

0
)
,

as desired. �
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4. Analysis of the exact recovery algorithm
In this section, we establish Propositions 2.7 and 2.8, which are the building blocks of the proof
of Theorem 1.3. Remember that SPEX uses the result of SPARC and performs O( ln (n)) cleanup
steps to fix possible mistakes. Each of these cleanup steps updates the estimate via thresholding
for every individual. Proposition 2.7 ensures that this thresholding is algorithmically possible as
intended. Proposition 2.8 then guarantees that every single cleanup step decreases the number of
mistakes enough. We continue to work with the spatially coupled designGsc from Section 2.3 and
keep the notation and assumptions from (2.13)–(2.17).

4.1. Proof of Proposition 2.7
Assume that c> cex,1(d, θ)+ ε, and let c′ = cex,1(d, θ)+ ε/2. Since c> c′ + ε/2, the definitions
(1.11) of cex,1(d, θ) and (1.6) of Y(c′, d, θ) ensure that for small enough δ > 0, we can find an open
interval I ⊆ Y(c′, d, θ) with rational boundary points such that Z1 is satisfied.

Let Ī be the closure of I. Then by the definition of cex,1(d, θ), there exists a function z : Ī →
[p01, p11] such that for all y ∈ Ī we have

cd(1− θ)
[
DKL

(
y‖exp (−d)

)+ yDKL
(
z(y)‖p11

)]= θ . (4.1)

In fact, because the Kullback–Leibler divergence is strictly convex, the equation (4.1) defines z(y)
uniquely. The inverse function theorem implies that the function z(y) is continuous and therefore
uniformly continuous on Ī . Additionally, once again, because the Kullback–Leibler divergence
is convex and c> cex,1(d, θ), for all y ∈ Ī , we have

cd(1− θ)
[
DKL

(
y‖exp (−d)

)+ yDKL
(
z(y)‖p01

)]
> 1.

Therefore, there exists δ̂ = δ̂(c, d, θ)> 0 such that for all y ∈ Ī , we have

cd(1− θ)
[
DKL

(
y‖exp (−d)

)+ yDKL
(
z(y)‖p01

)]
> 1+ δ̂. (4.2)

Combining (4.1) and (4.2), we find a continuous ẑ : Ī → [p01, p11] such that for small enough
δ > 0 for all y ∈ [0, 1], we have

cd(1− θ)
[
DKL

(
y‖exp (−d)

)+ yDKL
(
ẑ(y)‖p11

)]
> θ + 2δ, and (4.3)

cd(1− θ)
[
DKL

(
y‖exp (−d)

)+ yDKL
(
ẑ(y)‖p01

)]
> 1+ 2δ. (4.4)

Additionally, by uniform continuity for any given 0< ε′ < δ/2 (which may depend arbitrarily on
δ and I), we can choose δ′ > 0 small enough so that

|ẑ(y)− ẑ(y′)|< ε′/2 for all y, y′ ∈ Ī with|y− y′|< δ′. (4.5)

Finally, let y0, . . . , yν with ν = ν(δ′, ε′)> 0 be a large enough number of equally spaced points
in Ī = [y0, yν]. Then for each i, we pick Z(yi) ∈ [p01, p11]∩Q such that |ẑ(yi)− Z(yi)| is small
enough. ExtendZ to a step function Ī →Q∩ [0, 1] by lettingZ(y)= Z(yi−1) for all y ∈ (yi−1, yi)
for 1≤ i≤ ν. Since y 
→ ẑ(y) is uniformly continuous, we can choose ν large enough so that (4.3)–
(4.5) imply

cd(1− θ)
[
DKL

(
y‖exp (−d)

)+ yDKL
(
Z(y)‖p11

)]
> θ + δ for all y ∈Ī,

cd(1− θ)
[
DKL

(
y‖exp (−d)

)+ yDKL
(
Z(y)‖p01

)]
> 1+ δ for all y ∈Ī,

|Z(y)− Z(y′)|< ε′ for all y, y′ ∈Ī such that |y− y′|< δ′,
as claimed.
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4.2. Proof of Proposition 2.8
As in the proof of Proposition 2.6 in Section 3.3, we will first investigate an idealised scenario
where we assume that the ground truth σ is known. Then we will use the expansion property
provided by Lemma 3.3 to connect this idealised scenario with the actual steps of the algorithm.

In order to study the idealised scenario, for x ∈V[i] and j ∈ [s], we introduce

Yx,j =
∣∣{a ∈ F[i+ j− 1]∩ ∂x :V1 ∩ ∂a⊆ {x}}∣∣ , Zx,j =

∣∣{a ∈ F+[i+ j− 1]∩ ∂x :V1 ∩ ∂a⊆ {x}}∣∣ ,
Yx =

s∑
j=1

Yx,j, Zx =
s∑

j=1
Zx,j.

Thus, Yx,j is the number of untainted tests in compartment F[i+ j− 1] that contain x, that is,
test that does not contain another infected individual. Moreover, Zx,j is the number of positively
displayed untainted tests. Finally, Yx, Zx are the sums of these quantities on j ∈ [s]. The following
lemma provides an estimate of the number of individuals x with a certain value of Yx.

Lemma 4.1. w.h.p., for all 0≤ Y ≤� and all i ∈ [�], we have∑
x∈V0[i]

1{Yx = Y} ≤ n exp
(−�DKL

(
Y/�‖exp (−d)

)+ o(�)
)
, (4.6)

∑
x∈V1[i]

1{Yx = Y} ≤ k exp
(−�DKL

(
Y/�‖exp (−d)

)+ o(�)
)
. (4.7)

Proof. Let 1≤ i≤ � and consider any x ∈V[i]. Further, obtainGsc − x fromGsc by deleting indi-
vidual x (and, of course, removing x from all tests). Additionally, obtain G′

sc from Gsc − x by
re-inserting x and assigning x to �/s random tests in the compartments F[i+ j− 1] for j ∈ [s] as
per the construction of the spatially coupled test design. Then the random test designs Gsc and
G′
sc are identically distributed.
Let E be the event that Gsc enjoys properties G1 and G2 from Proposition 2.3. Then

Proposition 2.3 shows that

P [E]= 1− o(n−2). (4.8)

Moreover, given E for every j ∈ [s], the number of tests in F[i+ j− 1] that contain no infected
individual aside from x satisfies∑

a∈F[i+j−1]
1{∂a∩V1 \ {x} = ∅} = (1+O(n−�(1)))m

�
exp (−d); (4.9)

this follows from the bounds on F0[i+ j− 1] provided by G2 and the fact that discarding x can
change the numbers of actually positive/negative tests by no more than�.

Now consider the process of re-inserting x to obtain G′
sc. Then (4.9) shows that given E, we

have

Yx,j ∼Hyp
(
m
�

+O(1), (1+O(n−�(1)))m
�
exp (−d),

�

s

)
(j ∈ [s]).

These hypergeometric variables are mutually independent given Gsc − x. Therefore, Lemma 1.6
implies that on E,

P [Yx = Y |Gsc − x]≤ exp
(−�DKL

(
Y/�‖exp (−d)

)+ o(�)
)
. (4.10)

This estimate holds independently of the infection status σ x. Thus, the assertion follows from
(4.8), (4.10), and Markov’s inequality. �
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As a next step, we argue that for c beyond the threshold cex,1(d, θ), the function Z from
Proposition 2.7 separates the infected from the uninfected individuals w.h.p.

Lemma 4.2. Assume that c> c∗(d, θ)+ ε. LetI = (l, r), δ > 0 be the interval and the number from
Proposition 2.7, choose ε′ > 0 sufficiently small, and let δ′,Z be such that Z1–Z4 are satisfied.

(i) For all x ∈V1, we have Yx/� ∈ (l+ ε′, r − ε′) and Zx/�>Z(Yx/�)+ 3ε′.
(ii) For all x ∈V0 with Yx/� ∈ I, we have Zx/�<Z(Yx/�)− 3ε′.

Proof. Let E be the event that the bounds (4.6)–(4.7) hold for all 0≤ Y ≤�. Then (4.7) and
Proposition 2.7, Z1 show that w.h.p. Yx/� ∈ (l+ ε′, r − ε′) for all x ∈V1, provided ε′ > 0 is small
enough. Moreover, for a fixed 0≤ Y ≤� such that Y/� ∈ I and i ∈ [�], let X1(Y) be the number
of variables x ∈V1[i] such that Yx = Y and Zx ≤�Z(Y/�)+ 3ε′�. Since x itself is infected, all
tests a ∈ ∂x are actually positive. Therefore, a is displayed positively with probability p11. As a
consequence, Lemma 1.5 shows that

P
[
Zx ≤�Z(Yx/�)+ 3ε′� | Yx = Y

]≤ exp
(−YDKL

(
Z(Y/�)+ 3ε′�/Y‖p11

)+ o(�)
)
.

(4.11)

Combining (4.7) and (4.11), recalling that k= �nθ� and choosing ε′ > 0 sufficiently small, we
obtain

E

⎡
⎣ ∑
x∈V1[i]

1
{
Yx = Y , Zx ≤�Z(Yx/�)+ 3ε′�

} |E
⎤
⎦

≤ k exp
(−�DKL

(
Y/�‖exp (−d)

)− YDKL
(
Z(Y/�)+ 3ε′�/Y‖p11

)+ o(�)
)

(4.12)

≤ n−�(1) [ due to Proposition 2.7, Z2]. (4.13)

Taking a union bound on the O( ln2 n) possible combinations (i, Y), we see that (i) follows from
(4.13). A similar argument based on Proposition 2.7, Z3 yields (ii). �
Proof of Proposition 2.8. For t = 1 . . . �ln n�, consider the set of misclassified individuals after
t − 1 iterations:

Mt =
{
x ∈V[s+ 1]∪ · · ·V[�] : τ (t)x �= σ x

}
.

Propositions 2.5 and 2.6 show that w.h.p., the size of the initial set satisfies

|M1| ≤ k exp
(−�( ln1/8 n)) . (4.14)

We are going to argue by induction that |Mt| decays geometrically. Apart from the bound
(4.14), this argument depends on only two conditions. First, that the random graph Gsc indeed
enjoys the expansion property from Lemma 3.3. Second, that (i)–(ii) from Lemma 4.2 hold. Let E
be the event that these two conditions are satisfied and that (4.14) holds. Propositions 2.5 and 2.6
and Lemmas 3.3 and 4.2 show that P [E]= 1− o(1).

To complete the proof, we are going to show by induction on t ≥ 2 that on E,

|Mt| ≤ |Mt−1|/3. (4.15)

Indeed, consider the set

M∗
t =

⎧⎨
⎩x ∈V[s+ 1]∪ · · ·V[�] :

∑
a∈∂x\F[0]

|∂a∩ Mt−1 \ {x}| ≥�/ ln ln n
⎫⎬
⎭ .

https://doi.org/10.1017/S0963548324000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000336


Combinatorics, Probability and Computing 245

Since by (4.14) and induction we know that |Mt−1| ≤ k exp
(−�( ln1/8 n)), the expansion prop-

erty from Lemma 3.3 implies that M∗
t ≤ Mt−1/3. Therefore, to complete the proof of (4.15), it

suffices to show that Mt ⊆ M∗
t .

To see this, suppose that x ∈ Mt .
Case 1: x ∈V1 but Yx(τ (t−1))/� �∈ I Lemma 4.2 (i) ensures that Yx/� ∈ (l+ ε′, r − ε′).
Therefore, the case Yx(τ (t−1))/� �∈ I can occur only if at least ε′� tests a ∈ ∂x contain
a misclassified individual x′ ∈ Mt−1. Hence, x ∈ M∗

t .
Case 2: x ∈V1 and Yx(τ (t−1))/� �∈ I but Zx(τ (i))/�≤ Z(Yx(τ (i))/�) by Lemma 4.2, (i) we
have Zx/�>Z(Yx/�)+ 2ε′. Thus, if Zx(τ (t−1))/�≤ Z(Yx(τ (t−1))/�), then by the con-
tinuity property Z4, we have |Yx(τ (t−1))− Yx|> ε′�. Consequently, as in Case 1 we have
x ∈ M∗

t .
Case 3: x ∈V0 as in the previous cases, due to Z4 and Lemma 4.2, (ii) the event x ∈ Mt can
occur only if |Yx − Yv(τ (t−1))|> ε′�. Thus, x ∈ M∗

t .

Hence, Mt ⊆ M∗
t , which completes the proof. �

5. Lower bound on the constant column design
5.1. Proof of Proposition 2.10
The following lemma is an adaptation of Proposition 2.3 (G2) to Gcc.

Lemma 5.1. The random graph Gcc enjoys the following properties with probability 1− o(n−2):

m exp (−d)p00 − √
m ln3 n≤ ∣∣F−

0
∣∣≤m exp (−d)p00 + √

m ln3 n, (5.1)
m exp (−d)p01 − √

m ln3 n≤ ∣∣F+
0
∣∣≤m exp (−d)p01 + √

m ln3 n, (5.2)
m(1− exp (−d))p10 − √

m ln3 n≤ ∣∣F−
1
∣∣≤m(1− exp (−d))p10 + √

m ln3 n, (5.3)
m(1− exp (−d))p11 − √

m ln3 n≤ ∣∣F+
1
∣∣≤m(1− exp (−d))p11 + √

m ln3 n. (5.4)

The proof of Lemma 5.1 is similar to that of Proposition 2.3 (see Section 3.1); the details are thus
omitted.

Proof of Proposition 2.10. The definition (2.2) of the weight functions ensures that

lnψGcc,σ ′′(σ )= |F−
0 | ln p00 + |F+

0 | ln p01 + |F−
1 | ln p10 + |F+

1 | ln p11.
Substituting in the estimates from (5.1) to (5.4) completes the proof. �

5.2. Proof of Proposition 2.11 (indistinguishable configurations with high overlap)
Let Xr(Y) be the set of individuals x ∈Vr such that∑

a∈∂x
1 {∂a \ {x} ⊆V0} = Y .

Hence, x participates in precisely Y tests that do not contain another infected individual.

Lemma 5.2. Let y ∈ Y(c, d, θ) be such that y� is an integer. Then w.h.p., we have
|X0(y�)| = n exp

(−�DKL
(
y‖exp (−d)

)+ o(�)
)
, (5.5)

|X1(y�)| = k exp
(−�DKL

(
y‖exp (−d)

)+ o(�)
)
. (5.6)

Proof. Let Y = y�, and let E be the event that the bounds (5.1)–(5.4) hold. We begin by comput-
ingE|X1(Y)|. By exchangeability, wemay condition on the eventS = {σ x1 = · · · = σ xk = 1}, that
is, precisely the first k individuals are infected. Hence, by the linearity of expectation, it suffices to
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prove that
P [x1 ∈ X1(Y) | E,S]= exp

(−�DKL
(
y‖exp (−d)

)+ o(�)
)
. (5.7)

Let G′ =Gcc − x1 be the random design without x1, and let F′
0 be the set of actually negative

tests of G′. Givenm′
0 = |F′

0|, the number of tests a ∈ ∂x1 such that ∂a \ {x1} ⊆V0 has distribution
Hyp(m,m′

0,�) because x1 joins precisely � tests independently of all other individuals. Hence,
(1.19) yields

P
[
x1 ∈ X1(Y) | S,m′

0
]=(

m′
0

Y

)(
m−m′

0
�− Y

)(
m
�

)−1
. (5.8)

Expanding (5.8) via Stirling’s formula and using the bounds (5.1)–(5.2), we obtain (5.7), which
implies that

E
[|X1(y�)| | E]= k exp

(−�DKL
(
y‖exp (−d)

)+ o(�)
)
. (5.9)

Since the above argument does not depend on the infection status of x1, analogously we obtain
E
[|X0(y�)| | E]= (n− k) exp

(−�DKL
(
y‖exp (−d)

)+ o(�)
)
. (5.10)

To turn (5.9)–(5.10) into “with high probability” bounds, we resort to the second moment
method. Specifically, we are going to show that

E
[|X1(y�)|(|X1(y�)| − 1) | E]∼E

[|X1(y�)| | E]2 , (5.11)

E
[|X0(y�)|(|X0(y�)| − 1) | E]∼E

[|X0(y�)| | E]2 . (5.12)

Then the assertion is an immediate consequence of (5.9)–(5.12) and Lemma 5.1.
For similar reasons as above, it suffices to prove (5.11). More precisely, we merely need to show

that
P [x1, x2 ∈ X1(Y) | E,S]∼ P [x1 ∈ X1(Y) | E,S]2 . (5.13)

To compute the probability on the l.h.s., obtain G′′ =Gcc − x1 − x2 by removing x1, x2. Letm′′
0 be

the number of actually negative tests of G′′. We claim that on E,

P
[
x1, x2 ∈ X1(Y) | S,m′′

0
]= �−Y∑

I=0

(
m′′

0
I

)(
m′′

0
Y

)(
m′′

0 − Y
Y

)(
m−m′′

0
�− Y − I

)(
m−m′′

0
�− Y − I

)(
m
�

)−2
.

(5.14)

Indeed, we first choose 0≤ I ≤�− Y tests that are actually negative in G′′ that both x1, x2 will
join. Observe that these tests a do not satisfy ∂a \ {x1/2} ⊆V0. Then we choose Y distinct actually
negative tests for x1 and x2 to join. Finally, we choose the remaining �− Y − I tests for x1, x2
among the actually positive tests of G′′.

Since on E, the total numberm′′
0 is much bigger than�, it is easily verified that the sum (5.14)

is dominated by the term I = 0; thus, on E, we have

P
[
x1, x2 ∈ X1(Y) | S,m′′

0
]= (1+O(�2/m))

(
m′′

0
Y

)(
m′′

0 − Y
Y

)(
m−m′′

0
�− Y

)2(m
�

)−2
; (5.15)

the error term O(�2/m) hides the terms for I > 0. Furthermore, a careful expansion of the bino-
mial coefficients from (5.15) shows that uniformly for all m′

0,m
′′
0 =m exp (−d)+O

(√
m ln3 n

)
,

we have
P
[
x1, x2 ∈ X1(Y) | S,m′′

0 =m′′
0
]

P
[
x1 ∈ X1(Y) | S,m′

0 =m′
0
]2 ∼ 1,

whence we obtain (5.13). A similar argument applies to |X0(Y)|. �
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As a next step, consider the set Xr(Y , Z) of all x ∈ Xr(Y) such that∑
a∈∂x∩F+

1 {∂a \ {x} ⊆V0} = Z.

Corollary 5.3. Let y ∈ Y(c, d, θ) be such that y� is an integer, and let z ∈ (p01, p11) be such that z�
is an integer and such that (2.41)–(2.42) are satisfied. Then w.h.p., we have

|X0(y�, z�)| = n exp
(−� (DKL

(
y‖exp (−d)

)+ yDKL
(
z‖p01

))+ o(�)
)
, (5.16)

|X1(y�, z�)| = k exp
(−� (DKL

(
y‖exp (−d)

)+ yDKL
(
z‖p11

))+ o(�)
)
. (5.17)

Proof. Let Y = y� and Z = z�. We deal with |X0(y�, z�)| and |X1(y�, z�)| by two related but
slightly different arguments. The computation of |X1(y�, z�)| is pretty straightforward. Indeed,
Lemma 5.2 shows that w.h.p., the set X1(Y) has the size displayed in (5.6). Furthermore, since
(1.2) provides that tests are subjected to noise independently, Lemma 1.5 shows that

E [|X1(Y , Z)| | |X1(Y)|]= |X1(Y)| exp
(−� (DKL

(
y‖exp (−d)

)+ yDKL
(
z‖p11

))+ o(�)
)
.

(5.18)

Moreover, as we saw in the proof of Lemma 5.2, any x1, x2 ∈ X1(Y) have disjoint sets of untainted
tests. Hence, in perfect analogy to (5.18), we obtain

E [|X1(Y , Z)|(|X1(Y , Z)| − 1) | |X1(Y)|]= |X1(Y)|(|X1(Y)| − 1) exp
(−2�

(
DKL

(
y‖exp (−d)

)
+yDKL

(
z‖p11

))+ o(�)
)
. (5.19)

Thus, (5.17) follows from (5.18) to (5.19) and Chebyshev’s inequality.
Let us proceed to prove (5.16). As in the case of |X1(y�, z�)|, we obtain
E [|X0(Y , Z)| | |X0(Y)|]= |X0(Y)| exp

(−� (DKL
(
y‖exp (−d)

)+ yDKL
(
z‖p01

))+ o(�)
)
,

(5.20)

Hence, as in (5.10) from the proof of Lemma 5.10,

E [|X0(Y , Z)| | E]= n exp
(−� (DKL

(
y‖exp (−d)

)+ yDKL
(
z‖p01

))+ o(�)
)
. (5.21)

With respect to the second moment calculation, it is not necessarily true that xi, xj ∈ X0(Y , Z)
with k< i< j≤ n have disjoint sets of untainted tests. Thus, as in the expression (5.14), letm′′

0 be
the number of actually negative tests of G′′ =Gcc − xi − xj and introduce 0≤ I ≤� to count the
untainted tests that xi, xj have in common. Additionally, write 0≤ I1 ≤min{I, Z} for the number
of common untainted tests that display a negative result. Then

P
[
xi, xj ∈ X0(Y , Z) | S,m′′

0
]=∑

I,I1

(
m′′

0
I

)(
m′′

0 − I
Y − I

)(
m′′

0 − Y
Y − I

)(
m−m′′

0
�− Y

)2(m
�

)−2

·
(
I
I1

)
pI−I1
00 pI101

[(
Y − I
Z − I1

)
pY−Z−I+I1
00 pZ−I1

01

]2
. (5.22)

As in the proof of Lemma 5.2, it is easily checked that the summand I = I1 = 0 dominates (5.22)
and that therefore

E [|X0(Y , Z)|(|X0(Y , Z)| − 1) | E]∼E [|X0(Y , Z)| | E]2 . (5.23)

Thus, (5.16) follows from (5.21), (5.23), and Chebyshev’s inequality. �
Proof of Proposition 2.11. By continuity, we can find y, z that satisfy (2.41)–(2.42) such that y�,
z� are integers, provided that n is large enough. Now, if (2.41)–(2.42) are satisfied, then Corollary
5.3 shows that
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|X1(y�, z�)× X0(y�, z�)| = n�(1).

Hence, take any pair (v,w) ∈ X1(y�, z�)× X0(y�, z�). Then {a ∈ ∂v : ∂a \ {v} ⊆V0} and {a ∈
∂w : a ∈ F0} are disjoint because v ∈V1. Therefore, any such pair (v,w) satisfies (2.43). �

5.3. Proof of Proposition 2.12
We are going to lower bound the partition function ZGcc,σ ′′ by way of a moment computation.
To this end, we are going to couple the constant column design (Gcc, σ ′′) with the displayed test
results σ ′′ with another random pair (Gcc, σ ′′′) where the test results indicated by the vector σ ′′′
are purely random, that is, do not derive from an actual vector σ of infected individuals. One can
think of (Gcc, σ ′′′) as a ‘null model’. Conversely, in the language of random constraint satisfac-
tion problems [12], ultimately (Gcc, σ ′′) will turn out to be the ‘planted model’ associated with
(Gcc, σ ′′′).

Hence, let m+ be the number ‖σ ′′‖1 of positively displayed tests of (Gcc, σ ′′). Moreover, for
a given integer 0≤m+ ≤m, let σ ′′′ ∈ {0, 1}F be a uniformly random vector of Hamming weight
m+, drawn independently of Gcc, σ , σ ′′. In other words, in the null model (Gcc, σ ′′′), we simply
choose a set of uniformly random tests to display positively.

Let F̂+ = {a ∈ F : σ ′′′
a = 1} and F̂− = F \ F+. Moreover, just as in (2.2) define weight functions

ψGcc,σ ′′′,a : {0, 1}∂a →R≥0, σ∂ai 
→
{
1{‖σ‖1 = 0}p00 + 1{‖σ‖1 > 0}p10 if σ ′′′

a = 0,
1{‖σ‖1 = 0}p01 + 1{‖σ‖1 > 0}p11 if σ ′′′

a = 1.
(5.24)

In addition, exactly as in (2.3)–(2.4), let

ψGcc,σ ′′′(σ )= 1
{‖σ‖1 = k

}∏
a∈F

ψGcc,σ ′′′,a(σ∂a), ZGcc,σ ′′′ =
∑

σ∈{0,1}V
ψGcc,σ ′′′(σ ),μGcc,σ ′′′(σ )

=ψGcc,σ ′′′(σ )/ZGcc,σ ′′′ . (5.25)

We begin by computing the mean of the partition function (aka the ‘annealed average’).

Lemma 5.4. For any 0≤m+ ≤m, we have E
[
ZGcc,σ ′′′

]= (n
k
)( m

m+
)−1

P
[
m+ =m+].

Proof. Writing out the definitions of Gcc, σ ′′′, we obtain

E
[
ZGcc,σ ′′′

]=(
m
m+

)−1∑
G

∑
σ ′′∈{0,1}F : ‖σ ′′‖1=m+
σ∈{0,1} : ‖σ‖1=k

P [Gcc =G]ψGcc,σ ′′(σ )

=
(
m
m+

)−1 ∑
G,σ ′′,σ : ‖σ ′′‖1=m+,‖σ‖1=k

P [Gcc =G] P

[
σ ′′ = σ ′′ |Gcc =G, σ = σ

]
[by (5.24)-(5.25)](

n
k

)(
m
m+

)−1 ∑
G,σ ′′,σ : ‖σ ′′‖1=m+,‖σ‖1=k

P [Gcc =G] P [σ = σ ] P
[
σ ′′ = σ ′′ |Gcc =G, σ = σ

]
(
n
k

)(
m
m+

)−1 ∑
σ ′′ : ‖σ ′′‖1=m+

P
[
σ ′′ = σ ′′]=(

n
k

)(
m
m+

)−1
P
[
m+ =m+],

as claimed. �
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As a next step, we sort out the relationship of the null model and of the ‘real’ group testing
instance.

Lemma 5.5. Let 0≤m+ ≤mbe an integer. Then for any G and any σ ′′ ∈ {0, 1}F with ‖σ ′′‖1 =m+,
we have

P
[
Gcc =G, σ ′′ = σ ′′ |m+ =m+]= P

[
Gcc =G, σ ′′′ = σ ′′] ZG,σ ′′

E
[
ZGcc,σ ′′′

] . (5.26)

Proof. We have

P
[
Gcc =G, σ ′′ = σ ′′ |m+ =m+]= ∑

σ : ‖σ‖1=k

P [Gcc =G] P [σ ′′ = σ ′′ |Gcc =G, σ = σ ](n
k

)
P [m+ =m+]

=
∑

σ : ‖σ‖1=k

P [Gcc =G]ψG,σ ′′ (σ )(n
k

)
P [m+ =m+]

[by (2.2)-(2.3)]

= P [Gcc =G] ZG,σ ′′(n
k

)
P [m+ =m+]

[by (2.4)]

= P [Gcc =G] P [σ ′′′ = σ ′′] ZG,σ ′′(n
k

)( m
m+
)−1

P [m+ =m+]
[asσ ′′′ is uniformly random]

= P [Gcc =G, σ ′′′ = σ ′′] ZG,σ ′′

E
[
ZGcc ,σ ′′′

] [by Lemma 5.4],

as claimed. �
Combining Lemmas 5.4–5.5, we obtain the following lower bound on ZGcc,σ ′′ .

Corollary 5.6. Let 0≤m+ ≤m be an integer. For any δ > 0, we have

P

[
ZGcc,σ ′′ < δ

(
n
k

)(
m
m+

)−1
P
[
m+ =m+] |m+ =m+

]
< δ.

Proof. Lemmas 5.4 and 5.5 yield

P

[
ZGcc,σ ′′ < δ

(
n
k

)(
m
m+

)−1
P
[
m+ =m+] |m+ =m+

]

=
∑

G,σ ′′ : ‖σ ′′‖1=m+

1{ZG,σ ′′ < δ
(n
k
)( m

m+
)−1

P
[
m+ =m+]}ZG,σ ′′P

[
Gcc =G, σ ′′′ = σ ′′ |m+ =m+](n

k
)( m

m+
)−1

P
[
m+ =m+]

<
∑

G,σ ′′ : ‖σ ′′‖1=m+
δ · P [Gcc =G, σ ′′′ = σ ′′ |m+ =m+]≤ δ,

as desired. �
Proof of Proposition 2.12. Since Proposition 2.3 shows that P

[
m+ =mq+

0 +O
(√

m ln3 n
)]=

1− o(1), the proposition follows immediately from Corollary 5.6. �
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Appendix A. Table of notation

Table 1. Overview of notation

Symbol Definition or domain Meaning

n Number of individuals


m Number of total tests


G G= (V ∪ F, E) Test design represented as a bipartite graph


F |F| =m Vertices that represent the test


V |V| =m Vertices that represent the individuals


∂v ∂v= ∂Gv= {u : {u, v} ∈ E} Set of neighbours of v in test design G


k k∼ nθ Number of infected individuals


θ Infection rate


p p= (p00, p01, p10, p11) Noise channel


pij Probability to observe an actual i test as j


σ σ ∈ {0, 1}V Vector with hamming weight k that represent the true infection
states

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ ′ σ ′ ∈ {0, 1}F with σ ′
a = 1 iff V1 ∩ ∂a �= ∅ Actual test result



σ ′′
P
[
σ ′′
a = σ ′′ | G, σ ′

a = σ ′]= pσ ′σ ′′ Displayed test results


Gcc Constant column test design
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gsc Spatially coupled test design


c m= ck ln (n/k) Constant factor for the number of tests


d Density parameter ofGcc andGsc that varies the variable and test
degrees



� �= cd ln (n/k) Degree of variable vertices inGsc andGcc


� �= dn/k Expected degree test vertices inGsc andGcc


q−
0 q−

0 = exp (−d)p00 + (1− exp (−d))p10 Probability that a test is displayed negative


q+
0 q−

0 = exp (−d)p01 + (1− exp (−d))p11 Probability that a test is displayed positive
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ τ = (τy)y∈V Estimate of σ of SPARC
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Table 1.Continued

Symbol Definition or domain Meaning

τ (i) τ (i) = (τ (i)y )y∈V Estimate of σ of the ith round of SPEX


Vr {v ∈ V : σ v = r} Vertices with infection state r


V[i] InGcc the variable nodes of compartment i


V+[i] V+[i]=
{
x ∈ V[i] : ∑s

j=1
∣∣|∂x ∩ F+[i+ j− 1]| −�p11/s

∣∣≤ ln4/7 n
}

Individuals in V[i] with a typical number of
pos. tests for a pos. individual



V+
r [i] V+

r [i]= V+[i]∩ Vr Individuals in comp. i with status r that
“seem” positive

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V+ V+ =⋃
s<i≤� V+[i]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s �ln ln n� Sliding window


� �√ln n� Number of compartments


Fr Fr = {
a ∈ F : σ ′

a = r
}

Tests with actual test result r


F+ F+ = {
a ∈ F : σ ′

a = 1
}

Tests that are displayed positive


F− F− = {
a ∈ F : σ ′

a = 0
}

Tests that are displayed negative


F±
r F±

r = F± ∩ Fr Tests with actual result r that are displayed
positive resp. negative



F[j] InGsc tests of comp. j


Fr [j] F[j]∩ Fr InGsc tests of comp. j with actual result r


F±
r [j] Fr [j]∩ F± InGsc tests of comp. j with actual result r,

disp. as±

Appendix B. Proof of Theorem 1.2 (lower bound for approximate recovery)
The basic idea is to compute the mutual information of σ and σ ′′. What makes matters tricky is
that we are dealing with the adaptive scenario where tests may be conducted one by one. To deal
with this issue, we closely follow the arguments from [19]. Furthermore, the displayed test results
are obtained by putting the actual test results through the noisy channel.

As a first step, we bound the mutual information between σ and σ ′′ from above under the
assumption that the statistician applies an adaptive scheme where the next test to be conducted
depends deterministically on the previously displayed test results. Letm be the fixed total number
of tests that are conducted.

Lemma B.1. For a deterministic adaptive algorithm, we have I(σ , σ ′′)≤m/cSh.

Proof. Let σ ′ be the vector of actual test results. Then

I(σ , σ ′′)=
∑
s,s′′

P
[
σ ′′ = s′′ | σ = s

]
P [σ = s] ln

P
[
σ ′′ = s′′ | σ = s

]
P [σ ′′ = s′′]

=
∑
s,s′,s′′

P
[
σ ′′ = s′′ | σ ′ = s′

]
P
[
σ ′ = s′ | σ = s

]
P [σ = s]

ln
P
[
σ ′′ = s′′ | σ ′ = s′

]
P
[
σ ′ = s′ | σ = s

]
P [σ ′′ = s′′]

= I(σ ′′, σ ′)−H(σ ′ | σ )≤ I(σ ′′, σ ′).
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Furthermore,

I(σ ′, σ ′′)=
∑
s′′,s′

P
[
σ ′′ = s′′, σ ′ = s′

]
ln

P
[
σ ′′ = s′′, σ ′ = s′

]
P [σ ′′ = s′′] P [σ ′ = s′]

.

Since the tests are conducted adaptively, we obtain

P
[
σ ′′ = s′′ | σ ′ = s′

]= m∏
i=1

P
[
σ ′′
i = s′′i | ∀j< i : σ ′′

j = s′′j , σ ′
i = s′i

]
.

Hence,

I(σ ′, σ ′′)=
m∑
i=1

∑
s′′1 ,...,s′′i ,s′i

P

[
∀j< i : σ ′′

j = s′′j , σ ′
i = s′i

]

· P
[
σ ′′
i = s′′i | ∀j< i : σ ′′

j = s′′j , σ ′
i = s′i

]
ln

P

[
σ ′′
i = s′′i | ∀j< i : σ ′′

j = s′′j , σ ′
i = s′i

]
P

[
σ ′′
i = s′′i | ∀j< i : σ ′′

j = s′′j
] .

In the last term, σ ′
i is a Bernoulli random variable (whose distribution is determined by σ ′′

j for
j< i), and σ ′′

i is the output of that variable upon transmission through our channel. Furthermore,
the expression in the second line above is the mutual information of these quantities. Hence, the
definition of the channel capacity implies that I(σ ′, σ ′′)≤m/cSh. �
Proof of Theorem 1.2 (lower bound for approximate recovery). As a first step, we argue that it
suffices to investigate deterministic adaptive group testing algorithms (under the assumption that
the ground truth σ is random). Indeed, a randomised adaptive algorithm A( · ) can be modelled
as having access to a (single) sample ω from a random source that is independent of σ . Now, if we
assume that for an arbitrarily small δ > 0, we have

E
∥∥A(σ ′′,ω)− σ

∥∥
1 < δk,

where the expectation is on both ω and σ , then there exists some outcome ω such that
E
∥∥A(σ ′′,ω)− σ

∥∥
1 < δk,

where the expectation is on σ only.
Thus, assume that A( · ) is deterministic. We have I(σ , σ ′′)=H(σ )−H(σ | σ ′′). Furthermore,

H(σ )∼ k ln (n/k). Hence, Lemma B.1 yields
H(σ | σ ′′)=H(σ )− I(σ , σ ′′)≥H(σ )−m/cSh,

which implies the assertion. �
Remark B.2. Alternatively, as pointed out to us by Jonathan Scarlett, Theorem 1.2 could be derived
from Fano’s inequality via a straightforward adaptation of the proof of (33, Theorem 5).

Appendix C. Proof of Lemma 3.3
This proof is a straightforward adaption of (9, proof of Lemma 4.16). Fix T ⊆V of size t = |T| ≤
exp (− lnα n)k as well as a set R⊆V of size r = �t/λ� with λ= 8 ln ln n. Let γ = �lnβ n�. Further,
letU ⊆ F[1]∪ · · · ∪ F[�] be a set of size γ r ≤ u≤�t. Additionally, let E(R, T,U) be the event that
every test a ∈U contains two individuals from R∪ T. Then

P

⎡
⎣R⊆

⎧⎨
⎩x ∈V :

∑
a∈∂x\F[0]

1 {T ∩ ∂a \ {x} �= ∅} ≥ γ
⎫⎬
⎭
⎤
⎦≤ P [E(R, T,U)] . (C.1)

Hence, it suffices to bound P [E(R, T,U)].
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For a test a ∈U, there are no more than
(r+t

2
)
ways to choose distinct individuals xa, x′

a ∈
R∪ T. Moreover, (3.1) shows that the probability of the event {xa, x′

a ∈ ∂a} is bounded by
(1+ o(1))(��/(ms))2; in fact, this probability might be zero if we choose an individual that can-
not join a due to the spatially coupled construction ofGsc. Hence, due to negative association [16,
Lemma 2]

P [E(R, T,U)]≤
[(

r + t
2

)(
(1+ o(1))��

ms

)2
]u

.

Consequently, by the union bound the event E(r, t, u) that there exist sets R, T,U of sizes |R| =
r, |T| = t, |U| = u such that E(R, T,U) occurs has probability

P [E(r, t, u)]≤
(
n
r

)(
n
t

)(
m
u

) [(
r + t
2

)(
(1+ o(1))��

ms

)2
]u

.

Hence, the bounds γ t/λ≤ γ r ≤ u≤�t yield

P [E(r, t, u)]≤
(
n
t

)2(m
u

) [(
2t
2

)(
(1+ o(1))��

ms

)2
]u

≤
(en
t

)2t (2e�2�2t2

ms2u

)u

≤
[(en

t

)λ/γ 2eλ�2�2t
γms2

]u
≤
[(en

t

)λ/γ · t ln
4 n
m

]u
[due to (2.13), (2.14)].

Further, since γ =�( lnβ n) andm=�(k ln n) while t ≤ exp (− lnα n)k and α + β > 1, we obtain

P [E(r, t, u)]≤ exp (−u ln�(1) n).

Thus, summing on 1≤ t ≤ exp (− lnα n)k, γ r ≤ u≤�t and recalling r = �t/λ�, we obtain∑
t,u

P [E(r, t, u)]≤
∑
u≥1

u exp (−u ln�(1) n)= o(1). (C.2)

Finally, the assertion follows from (C.1) and (C.2).

Appendix D. Parameter optimisation for the binary symmetric channel
Let D(θ , p)= {d> 0 : max{cex,1(d, θ), cex,2(d)} = cex(θ)} be the set of those d where the minimum
in the optimisation problem (1.10) is attained. The goal in this section is to show that for the
binary symmetric channel, this minimum is not always attained at the information-theoretic value
dSh = ln 2 that minimises the term cex,2(d) from (1.10).

PropositionD.1. For any binary symmetric channel p given by 0< p01 = p10 < 1/2, there is θ̂(p01)
such that for all θ > θ̂(p01), we have dSh = ln (2) �∈ D(θ , p).

In order to show that dSh is suboptimal, we will use the following analytic bound on cex,1(d, θ)
for binary symmetric channels.

Lemma D.2. For a binary symmetric channel p given by p01 < 1/2, we have

θ

−(1− θ)d ln (1− (1− a) exp (−d))
< cex,1(d, θ)≤ 1

−(1− θ)d ln (1− (1− a) exp (−d))
, where

(D.1)

a= exp
(−DKL

(
1/2‖p01

))= 2
√
p01(1− p01). (D.2)
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The proof of Lemma D.2 uses the following fact, which can be verified by elementary calculus.

Fact D.3. For all d> 0, 0< p< 1, and 0≤ z ≤ 1, we have

argmin0≤y≤1
{
DKL

(
y‖exp (−d)

)+ yDKL
(
z‖p)}= a exp (−d)

1− (1− a) exp (−d)
,

where a= exp
(−DKL

(
z‖p)) , and

min
0≤y≤1

{
DKL

(
y‖exp (−d)

)+ yDKL
(
z‖p)}= − ln (1− (1− a) exp (−d)).

�
Proof of Lemma D.2 (bounding cex,1(d,θ)). Fact D.3 shows that

min
0≤y≤1

{
DKL

(
y‖exp (−d)

)+ yDKL
(
1/2‖p01

)}= − ln (1− (1− a) exp (−d)).

with a as in (D.2). Hence, it is sufficient to show that

θ < min
0≤y≤1

{
cex,1(d, θ) · d(1− θ)

(
DKL

(
y‖exp (−d)

)+ yDKL
(
1/2‖p01

))}≤ 1. (D.3)

Let us first prove the upper bound. Choose ĉ(d, θ) such that

min
0≤y≤1

{
ĉ(d, θ)d(1− θ)

(
DKL

(
y‖exp (−d)

)+ yDKL
(
1/2‖p01

))}= 1;

we need to show that cex,1(d, θ)≤ ĉ(d, θ). By the channel symmetry and because p01 < 1/2< p11,
we have

DKL
(
1/2‖p01

)=DKL
(
1/2‖p11

)≤DKL
(
p01‖p11

)
.

Therefore, the definition of ĉ(d, θ) ensures that for all y ∈ [0, 1], we have

ĉ(d, θ) · d(1− θ)
(
DKL

(
y‖exp (−d)

)+ yDKL
(
p01‖p11

))≥ ĉ(d, θ) · d(1− θ)
(
DKL

(
y‖exp (−d)

)
+yDKL

(
1/2‖p01

))≥ 1> θ ,

and thus ĉ(d, θ)≥ cex,0(d, θ). Once again by channel symmetry and the definitions of ĉ(d, θ)
and z(y) (see [1.8]), we see that DKL

(
z(y)‖p11

)≤DKL
(
1/2‖p11

)=DKL
(
1/2‖p01

)
and hence

DKL
(
z(y)‖p01

)≥DKL
(
1/2‖p01

)
for all y. Consequently, the definition of ĉ(d, θ) ensures we see

that for all y ∈ [0, 1],

ĉ(d, θ) · d(1− θ)
(
DKL

(
y‖exp (−d)

)+ yDKL
(
z(y)‖p01

))≥ ĉ(d, θ) · d(1− θ)
(
DKL

(
y‖exp (−d)

)
+yDKL

(
1/2‖p01

))≥ 1.

Hence, ĉ(d, θ)≥ cex,1(d, θ), which is the right inequality in (D.3).
Moving on to the lower bound, choose č(d, θ) such that

min
0≤y≤1

{
č(d, θ)d(1− θ)

(
DKL

(
y‖exp (−d)

)+ yDKL
(
1/2‖p11

))}= θ ; (D.4)

we need to show that cex,1(d, θ)> č(d, θ). The y= ŷ where the minimum (D.4) is attained sat-
isfies ŷ ∈ Y(c, d, θ) because DKL

(
1/2‖p11

)
> 0 (due to p11 > 1/2). Moreover, z(ŷ)= 1/2 by the

definition of z( · ). But sinceDKL
(
1/2‖p01

)=DKL
(
1/2‖p11

)
by symmetry of the channel, we have

č(d, θ) · d(1− θ)
(
DKL

(
ŷ‖exp (−d)

)+ ŷDKL
(
z(ŷ)‖p01

))= θ < 1.

Hence, we obtain č(d, θ)< cex,1(d, θ), which is the left inequality in (D.3). �
To complete the proof of Proposition D.1, we need a second elementary fact.

Fact D.4. The function f (x, p)= ln (x) ln (1− px) is concave in its first argument for x, p ∈ (0, 1),
and for any given p ∈ (0, 1), any x maximising f (x, p) is strictly less than 1

2 . �
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Proof of Proposition D.1 (d = ln [2] can be suboptimal). We reparameterise the bounds on
cex,1(d, θ) from Lemma D.2 in terms of exp (−d), obtaining

θ

−(1− θ)f (exp(−d), 1− a)
< cex,1(d, θ)≤ 1

−(1− θ)f (exp(−d), 1− a)
, where

f (x, p)= ln (x) ln (1− px), a= exp
(−DKL

(
1/2‖p01

))
.

As 0< a< 1 Fact D.4 shows that any x maximising f (x, 1− a) is strictly less than 1/2.
Hence, for d̂> ln (2) minimising f (exp(−d), 1− a), we have f (exp(−d), 1− a)< f (1/2, 1− a)=
f (exp(−dSh), 1− a). In particular, the value

θ̂(p01)= inf

{
0< θ < 1 :

cex,2(d̂)
θ

<
1

−d̂(1− θ) ln (1− (1− a) exp (−d̂))

<
θ

−dSh(1− θ) ln (1− (1− a) exp (−dSh))

}

is well defined. Hence, for all θ > θ̂(p01), we have

max
{
cex,1(d̂, θ), cex,2(d̂)

}
= cex,1(d̂, θ)< cex,1(dSh, θ)=max

{
cex,1(dSh, θ), cex,2(dSh)

}
,

and thus dSh �∈ D(θ , p). �

Appendix E. Parameter optimisation for the Z-channel
Much as in Appendix D, the goal here is to show that also for the Z-channel, the value dSh from
(1.17) at which cex,2(d) from (1.10) attains its minimum is not generally the optimal choice tomin-
imise max{cex,1(d, θ), cex,2(d)} and thus obtain the optimal bound cex(θ). To this end, we derive
the explicit formula (1.15) for cex,1(d, θ); the derivation of the second formula (1.16) is elementary.

Proposition E.1. For a Z-channel p given by p01 = 0 and 0< p11 < 1, we have cex,1(d, θ)=
θ

−(1−θ)d ln (1−exp (−d)p11) .

Proof. We observe that for a Z-channel, we have cex,1(d, θ)= cex,0(d, θ). Indeed, fix any c>
cex,0(d, θ). Then by the definitions (1.7) of cex,0(d, θ) and of z(y), we have z(y)> p01. Since the
Z-channel satisfies p01 = 0, the value DKL

(
z(y)‖p01

)
diverges for all c> cex,0(d, θ), rendering the

condition in the definition of cex,1(d, θ) void for all y> 0. Moreover, since c> cex,0(d, θ), we also
have 0 �∈ Y(c, d, θ) and thus c≥ cex,1(d, θ). Since cex,1(d, θ)≥ cex,0(d, θ) by definition, this implies
that cex,1(d, θ)= cex,0(d, θ) on the Z-channel.

Hence, it remains to verify that cex,1(d, θ)= cex,0(d, θ) has the claimed value. This is a
direct consequence of Fact D.3 (with z = p01 and p= p11) in combination with the fact that
DKL

(
p01‖p11

)=DKL
(
0‖p11

)= − ln (p10) and thus 1− exp (−DKL
(
p01‖p11

)
)= 1− p10 = p11.�

The following proposition shows that indeed d = dSh is not generally the optimal choice. Recall
that D(θ , p) is the set of d where the minimum in the optimisation problem defining cex(θ) is
attained for a given channel p.

Proposition E.2. For a Z-channel p given by p01 = 0 and any 0< p11 < 1, there is a θ̂(p11)< 1
such that for all θ > θ̂(p11), we have dSh �∈ D(θ , p).

Towards the proof of Proposition E.2, we state the following fact whose proof comes down to
basic calculus.

Fact E.3. For a Z-channel p where p01 = 0 and 0< p10 < 1, we have exp (−dSh(p))> 1
2 . �
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Proof of Proposition E.2 (dSh is suboptimal for the z-channel). First we show that d = dSh does
not minimise cex,1(d, θ) for all 0< p11 < 1. We reparameterise the expression for cex,1(d, θ) from
Proposition E.1 in terms of exp (−d), obtaining

cex,1(d, θ)= θ

(1− θ)f (exp(−d), p11)
, where f (x, p11)= ln (x) ln (1− p11x).

Hence, for any given p11, the value of cex,1(d, θ) is minimised when f (exp(−d), p11) is minimised.
Using elementary calculus, we check that f is concave in its first argument on the interval (0, 1) and
that for all 0< p11 < 1, the value of xmaximising f (x, p11) is strictly smaller than 1

2 (see Fact D.4).
Now for any Z-channel with 0< p10 < 1, we have exp (−dSh)> 1

2 (using Fact E.3). Hence, for the
Z-channel, dSh does not minimise cex,1(d, θ).

Now let d1 be a dminimising cex,1(d, θ); in particular, d1 �= dSh. Since θ
1−θ is increasing in θ and

unbounded as θ → 1, the same holds for cex,1(d1, θ) and cex,1(dSh, θ). Hence, we may consider

θ̂(p11)= inf
{
0< θ < 1 : cex,1(d1, θ)> cex,2(d1), cex,1(dSh, θ)> cex,2(dSh)

}
,

check that it is strictly less than 1, and that by definition of θ̂(p11), it holds for all θ > θ̂(p11) that
max

{
cex,1(d1, θ), cex,2(d1)

}= cex,1(d1, θ)< cex,1(dSh, θ)=max
{
cex,1(dSh, θ), cex,2(dSh)

}
.

Consequently, dSh �∈ D(θ , p). �

Appendix F. Comparison with the results of Chen and Scarlett on the symmetric
channel
Chen and Scarlett [7] recently derive the preci,se information-theoretic threshold of the constant
column design Gcc for the symmetric channel (i.e. p11 = p00). The aim of this section is to verify
that their threshold coincides withm∼ cex(θ)k ln (n/k), with cex(θ) from (1.11) on the symmetric
channel. The threshold quoted in (7, Theorems 3 and 4) reads m∼mind>0 cCS(d, θ)k ln (n/k),
where cCS(d, θ) is the solution to the following optimisation problem:

cCS(d, θ)=max{cex,2(d, θ), cls(d, θ)}, where (F.1)

cls(d, θ)=
[
(1− θ)d min

y∈(0,1),z∈(0,1)
max

{
1
θ

(
DKL

(
y‖e−d + yDKL

(
z‖e−d))),

min
y′∈[|y(2z−1)|,1]

(
DKL

(
y′‖e−d)+ y′DKL

(
z′(z, y, y′)‖p01

))}]−1
(F.2)

z′(z, y, y′)= 1
2

+ y(2z − 1)
2y′ .

Lemma F.1. For symmetric noise (p00 = p11) and any d> 0, we have cCS(d, θ)=
max{cex,1(d, θ), cex,2(d)}.
Proof. The definition (F.2) of cls(d) can be equivalently rephrased as follows:

cls(d, θ)= inf
{
c> 0 : ∀y, z ∈ [0, 1] ∀y′ ∈ [∣∣y(2z − 1)

∣∣ , 1] :(
f1(c, d, θ , y, z)≥ θ ∨ f2(c, d, θ , y, z, y′, z′(z, y, y′))≥ 1

) }
, where

f1(c, d, θ , y, z)=cd(1− θ)
(
DKL

(
y‖exp (−d)

)+ yDKL
(
z‖p11

))
,

f2(c, d, θ , y, z, y′, z′)=cd(1− θ)
(
DKL

(
y′‖exp (−d)

)+ y′DKL
(
z′(z, y, y′)‖p01

))
.

Consequently, c< cls(d, θ) iff
∃y, z, y′ s.t. f1(c, d, θ , y, z)< θ and f2(c, d, θ , y, z, y′, z′(z, y, y′))< 1.
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Recall that c< cex,1(d, θ) iff
∃y, z s.t f1(c, d, θ , y, z)< θ and f2(c, d, θ , y, z, y, z)< 1.

Since z′(z, y, y)= z, we conclude that if c< cex,1(d, θ), then c< cls(d, θ). Hence, cex,1(d, θ)≤
cls(d, θ).

To prove the converse inequality, we are going to show that any c< cls(d, θ) also satisfies c<
cex,1(d, θ). Hence, assume for contradiction that c< cls(d, θ) and c≥ cex,1(d, θ). Then the following
four inequalities hold:

cd(1− θ)
(
DKL

(
y‖e−d)+ yDKL

(
z‖p11

))
< θ , cd(1− θ)

(
DKL

(
y‖e−d)+ yDKL

(
z‖p01

))≥ 1,
(F.3)

cd(1− θ)
(
DKL

(
y′‖e−d)+ y′DKL

(
z′(z, y, y′)‖p01

))
< 1,

cd(1− θ)
(
DKL

(
y′‖e−d)+ y′DKL

(
z′‖p11

))≥ θ . (F.4)

The two inequalities on the left are a direct consequence of c< cls(d, θ). Note that if one of the
right two inequalities is violated, then c< cex,1(d, θ). Combining the inequalities of (F.3) leads us
to

cd(1− θ)
(
DKL

(
y‖e−d)+ yDKL

(
z‖p01

))−cd(1− θ)
(
DKL

(
y‖e−d)+ yDKL

(
z‖p11

))
= cd(1− θ)y

(
DKL

(
z‖p01

)−DKL
(
z‖1− p01

))=cd(1− θ)y(1− 2z) ln
(

p01
1− p01

)
> 1− θ .

(F.5)

The remaining inequalities given by (F.4) imply

cd(1− θ)
(
DKL

(
y′‖e−d)+ y′DKL

(
z′(z, y, y′)‖p01

))− cd(1− θ)
(
DKL

(
y′‖e−d)+ y′DKL

(
z′‖p11

))
= cd(1− θ)y′ (DKL

(
z′(z, y, y′)‖p01

)−DKL
(
z′(z, y, y′)‖1− p01

))
= cd(1− θ)y′ y

y′ (1− 2z) ln
(

p01
1− p01

)
< 1− θ ,

which contradicts (F.5). �
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