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STABILITY AND CATEGORICITY OF LATTICES 

K E N N E T H W. SMITH 

Introduction. This paper is a contribution to applied stability theory. 
Our purpose is to investigate the complexity of lattices by determining 
the stability of their first order theories. 

Stability measures the complexity of a theory T by counting the 
number of different "kinds" of elements in models of T. The notion of 
co-stability was introduced by Morley [26] in 1965 and generalized by 
Shelah [31] in 1969. Shelah classified all first order theories according to 
their stability properties. 

Stability and Ki-categoricity are closely related (see [26] and [1]). In 
fact, the notions of stable, superstable and co-stable can be regarded as 
successive approximations of Ki-categorical. Ki-categoricity is a very 
strong property while stability, superstability and co-stability facilitate 
the classification of more "complex" theories. 

The aim of applied stability and categoricity theory is to determine 
algebraic characterizations of those structures in an interesting class 
whose theories are Xo-categorical, Xi-categorical, co-stable, superstable or 
stable. The class of Abelian groups is the only natural and interesting 
class we know of where a complete analysis of stability and categoricity 
has been given. (See [8].) 

It follows from [33] that if 31 is an infinite Boolean algebra, an infinite 
distributive lattice or in fact any partially ordered structure containing 
an infinite chain then 21 is unstable. For such structures then, there is no 
stability or Xi-categoricity. So it seems natural to consider the class of 
all lattices without infinite chains (in fact, without arbitrarily long finite 
chains). This class of lattices is a rich one and, as will be seen, has non-
trivial stability and categoricity properties. Special cases of the results 
of this paper apply to the class of dimension ^ 2 or "planar" lattices. Our 
main results yield: 

(1) A characterization of stability and superstability in the class of all 
dimension g 2 lattices; 

(2) Characterizations of Xo-categoricity, Xi-categoricity, co-stability, 
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STABILITY AND CATEGORICITY OF LATTICES 1381 

superstability and stability in the class of all height 4 and dimension ^ 2 
lattices. 

These results were announced in [34] and [35]. 

0. Preliminaries. We will assume the reader is familiar with the basic 
elements of first-order logic (as in [4]). 

Stability and Categoricity. Let 21 be an L-structure and let X C A. A 
set of formulae 2(fl), with at most v free, is a type of 21 over X if 

(i) if S0 is a finite subset of 2 then 

»* 1= G») A (cr: a Ç 2„), 

and 
(ii) if 0(A) is a formula of Lx with at most v free then either S t 0 

or S t ^ 0. 
Let 5?i(X) denote the set of all types of 21 over X. 

A theory T is astable if for every 21 t T and every subset X of A of 
power ^/c we have |5a(X)| ^ /c. If T is not /c-stable then we say T is 
K-unstable. T is sto&/e if T is /c-stable for some infinite /c. Otherwise T is 
unstable. We say a structure 21 is /c-stable when 77 (̂21) is /c-stable. Note 
that every finite structure is /c-stable for every infinite cardinal K. 

THEOREM 0.1. [26]) Let T be a complete theory in a countable language. 
T is co-stable if and only if T is K-stable for every infinite K. 

THEOREM 0.2. ([33]) For every complete countable theory T exactly one 
of the following occurs: 

(i) T is /c-stable for every K ^ 2W; 
(ii) T is K-stable if and only if K = K03; 

(iii) T is unstable. 

If T is /c-stable for all K ^ 2W we say T is super stable. We will sometimes 
refer to theories for which (ii) holds as "merely" stable. 

THEOREM 0.3. ([33]) T is unstable if and only if there is a formula 
ty(v,w) in 2n free variables and a model 21 t T with sequences ât Ç M , 
i G co, such that for all i 9e j 

i < j if and only if 21 t= ^[âu âj], 

A theory T is K-categorical if every two models of T of power K are 
isomorphic. We refer to a structure 21 as /c-categorical when Th($t) is 
/c-categorical. 

MORLEY'S THEOREM. (Theorem 7.1.14 of [4]) Let Tbea complete theory 
in a countable language. T is Hi-categorical if and only if T is K-categorical 
for every uncountable cardinal K. 
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Lattice Theory. It will usually be most convenient to view our lattices 
as relational structures. 

Definition 0.4. Let a, b Ç A where 31 = (A, S ) is a lattice. We say 
a and b are comparable if a ^ 6 or b g a. We write a || & when a and b 
are incomparable. X C A is an antichain if a || 6 for all a 5* b in X. X is 
a cteiw if a and 6 are comparable for all a,b £ X. [a, b] denotes (c Ç i : 
a û c ^ b}. Open and half open intervals are defined similarly. We say 
b covers a, and write a < b, if a < b and [a, 6] = {a, 6}. The dwa/ 3ld of 31 
is the lattice {A, ^l) where a ^ lb if and only if 6 g a. 

A planar embedding e(3t) of 31 is an injection a —> à from 31 to R2 such 
that 

(1) 7r2(e(a)) < 7r2(e(6)) whenever a < b (w2 is the second projection 
of R 2 onto R) , 

(2) The straight line segments ab connecting â and b whenever a < b 
in 31 do not intersect, except possibly at their endpoints. 

31 is planar if 31 has a planar embedding. Intuitively, 31 is planar if it 
can be drawn with no intersecting edges. 

Dushnik and Miller [7] define the dimension of a poset 31 = (A, i£) 
as the least cardinal K such that ^ is the intersection of K linear orders 
on A. If 31 is any partially ordered set of dimension 5^2, 33 C 31 and S3 
is finite then S3 is planar. (See for example [19], Proposition 5.2.) 

Let 31 and 33 be lattices. We say 31 omits S3 if there is no subposet 31' of 31 
(i.e., submodel as a relational structure) which is isomorphic to S3. Note 
that 3f need not be a sublattice of 31. Kelly and Rival in [19] define a 
denumerable set of finite lattices, <j£f, and prove: 

THEOREM 0.5. ([19], Theorem 1) A finite lattice 31 is planar if and only 
if 31 omits every lattice inJ£. 

(We will define some of the members of «if as they are needed.) They 
also show how this provides a characterization of the dimension ^ 2 
lattices. 

THEOREM 0.6. ([19], Theorem 6.1) A lattice 31 has dimension ^ 2 if and 
only if 31 omits every lattice in^£'. 

PROPOSITION 0.7. Suppose 31 is a partially ordered set containing chains 
of every finite cardinality. Then Th{%) is unstable. 

Proof. Apply the Compactness Theorem and Theorem 0.3. 

It follows that in stable posets there is a finite bound on the cardinal­
ities of chains. We are led to the following definition. 

Definition 0.8. Let 31 be a partially ordered set. The height of 31 is 

sup {K: 31 contains a chain of power K}. 
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So in this terminology, Proposition 0.7 yields that all stable posets 
are of finite height. In particular, all stable lattices have finite height. 
The bulk of this paper is devoted to a study of lattices of height ^ 4 . 

1. Lattices of height <4 and an unstable lattice of height 4. We 
first note the following well known fact about finite height lattices: 

PROPOSITION 1.1. Let %bea lattice of finite height. Then 21 has a minimum 
element, 0, and a maximum, 1. 

It follows that only the one element lattice has height 1, and only the 
two element lattice, {0, 1}, has height 2. The theories of height 1 and 
height 2 lattices are therefore complete, have only finite models and 
are co-stable. 

Height 3 lattices are also very simple. Let SI be a height 3 lattice and 
let a, b G A-{0, 1}. Suppose a ^ b. Then {0, a, b, 1} is a chain. Since 21 
contains no chains of cardinality > 3 , we have a — b. We have shown 
that A = {0, 1) is an antichain in 21. It follows that, up to isomorphism, 
there is exactly one height 3 lattice of each cardinality <2 . So the 
complete theory of any infinite height 3 lattice is categorical in all 
infinite powers. 

The class of height 4 lattices is much more interesting. In fact, there 
is a height 4 lattice whose complete theory is unstable. 

Example 1.2. Let % consist of an antichain x0, Xi, . . . , y0, yi, . . . of 
elements which cover 0, and elements zijt i ^ j < o>, where Zij is com­
parable only to the elements 0, xi} yjf and 1 ; ztj > y^; ztj > xi, and 0 < 
Zij < 1. If we let V represent an element covering 0, and *o' an element 
covered by 1, we can give an "aerial" representation of ^ -{0 , 1} as 
follows: 

yo y\ y* ys 

x° xi x2 x3 

THEOREM 1.3. Th{$l) is unstable. 

Proof. Let ty(v, w) be the formula: 

(3*)[0 < x A Oz)(x < z < 1 A w < z) 

A ~Qz)(x < z < 1 A v < z)]. 
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Then for i,j Ç w, 

i < j if and only if °U (z ^ [y<, y*]. 

By Theorem 0.3, 77* ( ^ ) is unstable. 

It can be shown that °tt has dimension 3 or 4, although we have been 
unable to determine which. 

In the next three sections we study two classes of superstable height 
4 lattices. 

2. A structure theorem. There is a class of height 4 lattices with par­
ticularly nice structure containing the height 4, dimension ^ 2 lattices. 

Definition 2.1. Following [19], let B be the lattice: 

and let Bd be the dual of B. Let Sf be the class of all lattices of height 4 
which omit both B and Bd. 

It follows from Theorem 0.6 ([19], Theorem 6.1) that the class Sf 
properly contains the class of all height 4, dimension ^ 2 lattices. 

Definition 2.2. Let SI be a finite height lattice, n £ co, x, y} s0, • • • , 
zn £ A. (zo, . . . , zn) is a connecting sequence if for i < j ^ w, z* 5̂  zt\ 
fori < w, 2: Ï < z i+i or zt < zi+i\ and for i ^ ?z, s * (? {0, 1}. x is connected 
to y in n steps if there is a connecting sequence (JS0, . . . , zn ) with zo = x 
andzn = 3>. x '^connected toy if x = ;y = 0 o r x = ;y = 1 or x is connected 
to y in n steps for some w Ç co. We write x Cy for x is connected to 3/. 
We refer to the immediate successors of 0 as level 2, immediate successors 
of level 2 elements which are not equal to 1 as level 3. 

LEMMA 2.3. C is an equivalence relation on A. 

If a £ A, then [a] denotes the C-class of a in A. 

Definition 2.4. Let 21 be a lattice in y and let x, y £ A-{0, 1}. We say 
x is a dead end off y if x is comparable to 0, 1 and y and to no other 
elements of 21. We say y has K dead ends if there are K many dead ends 
off y. 
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THEOREM 2.5. For any lattice 21 in Sf, each C-class of % has exactly one 
of the following forms: (Dashed lines represent ^ 0 dead ends.) 

(1) the classes of 0 and 1: {0} and {1}; 
(2) lone elements L: {%) where x ? (0 ,1) ; 
(3) crowns Crn: 

I w ^ O ; 

n + 3 

(4) finite length fences — 

(up-up) Fuu0: r\ Fuun: n > 0 

(up-down) Fudn : 

(down-down) Fdd0 : FdéL 

w ^ O 

O n > 0 
/ 

(5) l-way infinite fences 

Pu: 

Pd: 
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(6) 2-way infinite fences I2: 

Proof. It is easy to check that none of these C-classes violate the 
axioms of $f. Given a class X from 31, §1 in «5 ,̂ we must show that X has 
one of the forms in 1 to 6. 

Suppose X 7* {0}, X 7e {1} and there is no level 2 element x £ X and 
elements yi i£ yi such that x < yi, y<z < 1. If w\ and Wi are level 3 
elements in X then there is a connecting sequence (zo, . . . , zn ) with 
z0 = W\ and sn = w2. If w > 0, then zi, Wi, ^2 violate the assumption 
above. So n = 0 and wi = W2. So either X has no level 3 elements and 
has the form L, or X has exactly one level 3 element and has the form 

Fddo 9 or FUUQ 

Otherwise we can assume that Xo £ X and there are elements y\ 7^ yi 
such that xo < yi, y 2 < 1. 

For each k € co let 

-X'fc = {y G ^4: y is connected to x0 in ^k steps}. 

We show by induction on k that the elements of each Xk are ordered in 
one of the forms in 2-4. 

k = 0: Xo = {xo}. So XQ has the form L. 
k = 1: Xi = {x0j U {3/ € ^4: x0 < y < 1}. So Xi has the form Fdd0. 
k + 1 where & ̂  1: If X* = Xfc_i, then Xk+i = X* and the result 

follows from the induction hypothesis. So assume Xk 9e Xk-i. Notice 
that Xk is not of the form L or FuuQ. There are 5 cases. 

case (a). Xk has the form Crn. 
case (b). Xk has the form Fuun, n > 0. 
case (c). Xk has form Fudn. 
case (d). Xk has form Fddo. 
case (e). X# has form Fddn, n > 0. 

We shall give the proof of case (b). The other cases are proved similarly. 
So Xjc looks- like 

X-(m-l) X—i Xi Xk-j 

I 

O 

I 

X-(m-2) 

I 

Xk-2 

\ 
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m ^ k,n = (k + m)/2 — 1. (Fuun must go & steps in at least one direction 
from x0 by the assumption that Xk ^ Xk-i. It follows from the form 
of Xk that k, m ^ 2.) Let s G X*+i — Xk. Either (i) m = k and there 
is a y < x_(W_i) such that z > y; or (ii) there is a y < xk-i such that 
2 > y\ or (iii) both (i) and (ii). More than one such y in (i), (ii), or (iii) 
implies that x_(m_D and z, or x_(A;_i) and z have no infimum, so either 
(i') m = k and there is a unique y < X-(m-i) such that z > y; or (ii') 
there is a unique 3/ < x*_i such that z > y\ or (iii') both (i') and (ii'). 

If there is no z such that (iii') then Xk+i has one of the forms Fuun 

(no new z at all), Fudn, Fddn+i. 
If there is a s such that (iii') then it is unique, for suppose there were 

elements zu z2, yu J\\ ^2, y2 such that yu y2 < ff-(m-i)î yi> y2 < **-i; 
y u y 1 < %\\ y it yî < %2- If yi ^ y 2 then we have 

# - ( m - 3 ) # - ( m - l ) 2] Z2 

x~(m-2) y 1 y 2 

and a copy of Bd in 21. Similarly y\ 7^ y2 provides a copy of Bd in 21. 
But if 3>i = y2 and ^ / = 3^', then z\ and z2 have no infimum. Now with 
a unique z satisfying (iii'), Xk+i has the form On_i. 

The induction is complete. Note that X = U (X*: & £ co). If for some 
k, Xk+i = X* then X — Xk and has one of the forms in (2) — (4). If for 
all k, Xk+i 2 Xk then no Xk is a crown and X has form Z1^, Pd or J2. 

Note that elements in A — {0, 1} which are in different C-classes are 
not comparable. So Theorem 2.5 presents a very concrete structure for 
lattices in S^. This structure will be instrumental in characterizing the 
w-stable models, the Xo-categorical models, and the Xi-categorical 
models in S^. 

3. Stability and the c lassy 7 . We now prove that all lattices i n ^ 7 are 
superstable. An alternate proof of this and a more general result are 
discussed in Section 7. The proof we give here is the most natural one, 
given the nice structure of the lattices in j ^ \ It uncovers the "approx­
imating formulae" for C-classes and exemplifies methods to be applied 
in more general settings. 

LEMMA 3.1. Let 2Ï be in y and let S3 > 21, b G B — A. Either there is an 
element ao Ç A — {0, 1} such that b is a dead end off a0} or b is not connected 
to any element of 21. 
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Proof. This follows from the structure theorem and the first order 
theory of 21. In fact, if b is a dead end off a0, it is easy to see that a0 has 
infinitely many dead ends. 

LEMMA 3.2. Let %be a lattice in y and suppose 33 > %,b ^ B — A and 
b is a dead end off an element a in A. Let 

Y(v) = Th(%A) \J {v 9± a:a £ A)\J {v is a dead end off d). 

Then T(v) is a complete type in %A. 

Proof. Let S > 51, c G C such that SA t= r [c]. Since b G B - A and 
33 > 21 §1 t= "â has ^k dead ends" for each k G «. It follows that in 
21, S3 and S there are infinitely many dead ends off a. Using the method 
of games of [9] and [12] it is easy to show that (33A, b) = (SA» C). 

LEMMA 3.3. Let %be a lattice in ¥ and suppose 33 > 2t, b £ B — A and 
b is not connected to any element of 2Ï. Let S&(v) be the type of b in 33 and let 

Y{v) = Th{%A) U Mv) 

U {(v is not connected to a in n steps): a G A, n G co}. 

Then T(v) is a complete type in 21A-

Proof. Let S > 21, c G C such that SA t= T (c). We show that (33A, b) = 
(SA, C) using the method of games. Let a0, . . . , ak-i G A. We will give 
player II 's winning strategy for the ((33, a0, . . . , a*-i, b) = (S, a0, . . . , 
afc_i, c))-game with m rounds. During the game player II will "protect" 
certain finite "neighbourhoods" of the elements ao, . . . , ak-i, b, c and 
the picks from S& and S made in the game. Assume B C\ C = A. 

Let m0 = m + k + 1. Given 60, • • • , ̂ - i G -5 and a non dead end 
x G ^ — {0, 1}, we say a set P is an approximation of x in (33, bo, ... , 
bp-i) if P consists of : 

(a) all dead ends off x in 33, if there are ^ra 0 of them; or 
(b) m0 dead ends off x including those among {bo, . . . , bp-i}, if there 

are >Wo. 

For each n ^ m let {x0, . . . , xkn\ be the set of all non dead ends connected 
to elements of {b0, . . . , bp-\] in <3W~W steps. We say a set X is an 
(m-n)-neighbourhood of {bo, ... , bp-\] {in 33) if for each i ^ kn there is 
an approximation Pt of x* such that 

X = {xo, . . . ,x*n} U U ( P , : i ^ * n ) . 

Remark 1. If X and Fare (m-n)-neighbourhoods of {&o, • • • , ^-1} then 
there is an isomorphism / : X —> Y such that / is the identity map on 
{bo, . . . , bp-i}, and x G X is an dead end in 33 if and only if f(x) is a 
dead end in 33. 
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We can similarly define (rn-n)-neighbourhoods of finite subsets of 21 
and S. 

We will use the formulaeyk(v) which say "v has ^k dead ends". 
Let B0 be an (w-0)-neighbourhood of {a0, . . . , a*_i, b} in 93 and let C0 

be an (w-0)-neighbourhood of {ao, . . . , a*-i, c) in (£. 

Claim. There is an isomorphism /0 : -80 —> Co such that/o(a<) = a* for 
i < k, fo(b) = c, and x Ç 5 0 is a dead end in 8 if and only if fo(x) is a 
dead end in £. 

Proof. The non dead ends of 53 and (S connected to elements of 21 are 
all in 21 by Lemma 3.1. Th(%A) contains ±7*^] for each a £ A and 
k ^ w0, so we can easily define /o f B0-[&J. 

Now let x0, . . . , xp be the non dead ends of [b] which are connected 
to b in <3W steps. Let <j>{v) be the formula: 

(3 Vo) . . . (3 vp)[({vo, . . . , vp} is the set of all non dead ends 
connected to v in <3W steps) 

A Atjgp (=fc v< ^ i>j: ± x* ^ xy) 

A A ^ P (±7*(»<): 53 t= ±7*[*<L * ^ Wo) 

A A ^ P ( ± » ^ w<: d= & g *,) A A ^ p ( ± vt g 0: ± x* g &)]. 

0(t/) is in 2&(u) and so S f= 0 [c]. Clearly we can extend f0 to JB0 so that 
fo(b) = c and so x is a dead end in 93 if and only if fo(x) is a dead end 
in £ for x (E $0. This proves the claim. 

We can now begin the game. Player II's strategy will be to satisfy 
the following: 

Induction hypothesis. Suppose after n < m rounds b0, . . . , bn-\, 
Co, . . . , cn-i have been chosen and there are (m-n)-neighbourhoods Bn of 
{a0, . . . , a*-!, &, 60, • . • , &n-i} in 93 and Cn of {a0, . . . , a*_i, c, c0> . . . , 
cn-i) in g and an isomorphism /n : Bn —> C„ such that 

(0/n(a<) = a>iffn(b) = c,fn(bt) = cu 

(ii) for x G 5 n , x is a dead end in 93 if and only if fn (x) is a dead end in S, 
(iii) for every x £ Bn connected to an element of {a0, . . . , ak-i, 

M o , . . . , &»-i} in <2.3m~(w+1) steps either 
(a) for every non dead end â of A : x < â, x = â, or x > ô if and only 

if f(x) < â, f(x) — â, or f(x) > â respectively, or 
(b) there are elements at 6 A, i G a>, such that ô< is not connected to 

âj in <2.3m _ ( w + 1 ) steps for i ^ 7, and for each i there is an isomorphism 
gi from an (w — (n + l))-neighbourhood 5 ' of x to an (w — (w + 1))-
neighbourhood 4̂ 7- of a * with gi(x) = a* and x dead end in 93 if and only 
if f(x) dead end in £. 
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(Note that the isomorphism fn ensures that (iii) holds for y 6 Cn as well.) 

The induction hypothesis is true with n = 0. 

Round n + 1. Suppose player I picks bn from 33. 
Case 1. bn is connected to an element of {a0, . . . , a*_i, fr, b0} . . . , bn-i} 

in <2.3m~ (n+1) steps. We can assume bn Ç 5 n and construct jBn+i C ^n> 
fn+i = In \ Bn+V Cn+i = / n + i ( 5 n ) , and let c„ = /w+i(&»)- The induction 
hypothesis for n + 1 follows easily. 

Case 2. Not case 1, but bn is connected to an element of {c0, . . . , cn_i} 
in <2.3W~(W+1) steps. 

Suppose bn is not a dead end. Then 6n £ Cn and is therefore in A. But 
fn~l(bn) 9^ bn since &w g .Bn. So we have/n

- 1(6n) connected to an element 
of {a0, . . . , ak.u b, bo, . . . , 6n_i} in <2.3W-(W+1) steps, fn(fn-

l{bn)) = bn, 
but/n

_ 1(6n) 9e bn. So by (iii) of the induction hypothesis, we can find an 
element cn Ç A C\ C which is not connected to an element of {a0, . . . , 
ak-i, c, Co, . . . , cn-i\ in < 2.3w_(n+1) steps such that there is an isomorphism 
/ ' from an (m — (n + l))-neighbourhood B' of {bn} in 33 to an 
(m — (n + l))-neighbourhood C of \cn) in S, with/ '(&n) = cn and x a 
dead end in S3 if and only if f ' (x) a dead end in S, for x € B'. We can 
now construct an (m — (n + l))-neighbourhood 5W' C Bn of {a0, . . . , 
a^_i, b, bo, . . . , bn-i) in S3 and let 

Bn + 1 = Bn
f \J B', Cn+1 = fn{Bn

f) \J C and / n + 1 = / ' U / n f Br / . 

The induction hypothesis, in particular condition (iii), now holds for 
n + 1. 

Similarly if bn is a dead end. 
Case 3. Not case 1 or 2, but bn is either 
(i) equal to a non dead end a Ç ^4, or 

(ii) a dead end off an element â £ A. 
We let cn = ail (i), and let cn be any dead end off â in S if (ii). Since 

à f i , (w — (w + 1) ̂ neighbourhoods B' of {6n} and C of {c„} are 
isomorphic and are disjoint from any (m — (n + 1) ^neighbourhoods 
of {do, . . . , ajt-i, b, bo, . . . , &„_i} and {a0, . . . , a*_i, c, c0, . . . , c»-i}. So 
we can easily construct Bn+U Cn+ifn+i to satisfy the induction hypothesis 
for n + 1. 

Case 4. Not case 1, 2 or 3. Then by Lemma 3.1, bn is not connected to 
any element of A. 

Let X o , . . . , OCp be the non dead ends of [bn] which are connected to bn 

in <3 m - ( n + 1 ) steps. Let <t>(v) be the formula: 

G^o) • • • Gvp)[({v0, . . . , vp} is the set of all non dead ends connected 
to win <3m-(n+1> steps) 

A A ù ' â - (àzVfè Vf. dz Xi ^ Xj-) 

A A « £ P (±7*(w<): t= =b7*[*<], fe ^ mo) 

A A*^P (=*= W = ^^ J= *n ^ *i) A A ^ P (=*= ^ ^ ^ : ± ^ t â &»)]• 
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Since bn 6 B — A and 33 > 2Ï, the formula 

(3 wo) . . • (3wjt)[A*i**(w<) 

A /\i<jgk (w< is not connected to Wj in ^ / steps)] 

is true in 21 for each fe, / Ç co. So let cn be an element of A such that cn is 
not connected to any element of {a0, . . . , ak-i, c, Co, . . . , cn_i} in 
<2.3m- (*+1) steps and SI t= 0[cn]. 6 > 21, so S t= 0[cn] and we can construct 
(m — (n + 1) ̂ neighbourhoods B' of {&n} and C of \cn) and an iso­
morphism f ' \ B' —* C. We are assured from the existence of [bn] in 
B — A that jBn+i, Cn+i,/n+i constructed from Br, C, Bn, Cn, fn will satisfy 
the induction hypothesis, specifically condition (iii), for n + 1. 

Suppose player I picks cn from Ê. Then player II chooses a bn G -B 
similarly. 

After w rounds, the isomorphism fm wins the game for player II. 

THEOREM 3.4. Let Ube a lattice inSf. Then 77* (31) is superstable. 

Proof. It will suffice to show for every 21 in Sf that if \A | ^ K then 

\S*(A)\ ^ K + ». 

By Lemma 3.2 there are at most K many types which include a formula 
"v is connected to a in n steps" for some a Ç A, n Ç co. By Lemma 3.3 
there are at most 2<° types which exclude all these formulae (at most 
one for each type 2&(fl) in the countable language with no constants). 

There are lattices in ¥ which do not have co-stable theories. The 
following example is, in fact, dimension 2. 

Example 3.5. For each even n Ç co and each s Ç w2, let (XSJ ^ ) be 
the C-class: 

I A 

» Z 1 

J/ ' 

where #< has s(i) dead ends for each i < n. Let 

21 = {0, 1} \J U(X S : » even, 5 € w2). 

For each s Ç w2 consider the set of formula 

2>o) = {(3»i). . . GOIA^s» 
(Vi is the unique non dead end connected to Vo in i steps) 

A A<^n tyi has s(i) dead ends)]: w f w). 
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Clearly each 28(uo) is consistent with 77i(2I) and s ^ s' implies 2s(i/0) 
U SS' (vo) is inconsistent. So |5«(0)| = 2<° and Th(W) is not co-stable. 

In the proof of Lemma 3.3 we used certain formulae to describe finite 
"neighbourhoods" of elements. We will see that these formulae actually 
determine C-classes up to (co, co) -equivalence and hence elementary 
equivalence. We will use this fact to determine which models in 5f have 
co-stable theories, and later, in Section 6, to characterize the models of ¥ 
with Ko-categorical theories and the models with Xi-categorical theories. 

Definition 3.6. Recall the formulae yk(v) = "v has ^k dead ends". 
Given a latticed in5^ and an element a in A — {0, 1}, we define formulae 
^n,mn,a and <t>n,m

n'a for each n, m 6 co. Let a0, . . . , aVn be the non dead 
ends connected to a in ^n steps. 

tn,mn'a 0 , VQ, . . . , VPn) = [Oo, • • • , VVn) 

is the set of non dead ends connected to v in ^ n steps) 

A A^Pn A ^ m (±yk(vt): 91 t= ± 7 * [a*]) 

A /\i£Pn (zkv ^ vt: ± a ^ at) A /\tsvn (±vt ^ v\ at ^ a)]. 

Note that ^nin?'a is uniquely defined modulo the names of the variables 
vt and the order of the conjuncts. We let 

LEMMA 3.7. Le£ %be a lattice inSf, a £ A — {0, 1}. Suppose 93 is in y 
and b £ B such that 

93 i= <j>n,m*'a[b] for all n, m £ co. 

Then 

([b];£,b)=œ„ < [a ] ,£ ,a> . 

Proof. We break the proof into three cases. 
Case 1. The set of non dead ends connected to a is finite. 
Case 2. [a] is a 1-way infinite fence. 
Case 3. [a] is a 2-way infinite fence. 
We give the proof in the most difficult case. 

Proof of case 3. First note that for each n' ^ n, ¥ ^ k 

(*) t= *„,**'«(*, 0o, . . . , »,) -> ik ' .* '* '^ , wo, . . . , vp). 

Let . . . , a_i, a0, ai, . . . enumerate the non dead ends of [a] so that 
az < az+i or az > az+\ for all s G Z and a = a0 or a is a dead end off a0. 
By renaming variables we can assume that vz is associated with az in 
each \l/n,m®'a with z>2 free. 93 t= (t>n,o®,a [b] for each n Ç co, so [6] is a 2-way 
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infinite fence. Choose bo so that b = b0 if b is non dead end, or so that b 
is a dead end off b0 if & us a dead end. Clearly for each n > 0, b0 is the 
unique element x of B such that 

93 [= Q ^ - D / 2 ) . . . (3»-i)(3»i) • • • Q^ n - i ) / 2 )^ / ' ° [&, * ] . 

For each w, there are 2 elements x £ B such that 

« t= Qf^-l) /») • • • (3»-l)(3»0 • • • ( a Z W D ^ n / ' ^ , &„,*]• 

It follows from (*) that there is at least one element b\ such that 

93 |= Q ^ n - i ) / 2 ) • • • (3»-i)(3 V2) . . . (3 V(Pn-D/2)^.*,l'a[6, &o, 6i] 

for all n and £. 
The pattern is now set. For each n and each z such that — (pn — l ) / 2 

^ z g (£n — l ) /2 , there is a unique element bz such that ypn,^"a 

[b, bo, bi, bz] is satisfiable in 33, because there is exactly one non dead end 
connected to b0 and b\ in the number of steps specified by \pnto^'a. Since 

93 t= ( 3 ^ - D / 2 ) • • . (3*-i)(3i>2) • • • Qv(Pn.1)/2)^n,k
n'a[b, bo, 6i] 

for all k, n 6 w, we can enumerate the non dead ends of [b] as . . . , &_i, 
bo, bi, . . . so that 

S3 f= ^n,*,a[&» 6(p»-D/2, . . . , &(pn-l)/2] 

for all n, k G to. It follows that &2 g &2/, if and only if a2 g a2/;7fc[62] if 
and only if 7*[a2]; b = 60 and a = a0, or 6 is a dead end off &0 and a is a 
dead end off a0. Using the method of games it is now easy to show that 

<[&], û,b) =œ,„ ([a], S, a). 

We will now use the ''approximating formulae", </>n,w
2l,a (v), to 

characterize the co-stable models in Jf in terms of "approximating 
C-classes". 

Definition 3.8. Let 31 be in £f and let a £ A — {0, 1} be a non dead 
end. Let #$a denote the number of dead ends off a in 2Ï. We say a is 
end offence (in SI) if there is at most one other non dead end in A — {0, 1} 
comparable to a. 

LEMMA 3.9. Let X0, Xi, . . . be finite subclasses of C-classes of%,%in$f. 
(i.e., x, y £ Xt —> there is a connecting sequence (zo, . . . , zn) in X{ with 
x = zo and y = zn.) Let 

F= {/„: (Xi,£)-+(X„£):i£j} 

be a family of embeddings such that for i ^ j ^ k,fu = idXi and fjk of{j 

= fik. Form the direct limit (X, g ) of (((Xi, ^ ) : i £ co ), F) with embeddings 
ft:Xi -> X. ThenX = ( I U { 0 , l ) , g ) w w ^ and X w a C-c/ass w X. 
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Proof, The proof is straightforward. 

Definition 3.10. Let (X, g ) with embeddings ft: Xt —>X, i g co be 
the direct limit of ( (CX\, ^ ): i G co ), F), where each X* is a finite sub­
class of SI, 31 in 5^. Suppose for each i G w, x Ç X { 

(1) / i(x) end of fence in X implies x end of fence in 21, 
(2) fi(x) dead end in X if and only if x dead end in 31, 
(3) for each k < i, #xft(x) = k implies #&x = k. 

Then we say (X> ^ ) is a MwiJ C-class of 21. 

Notice that limit C-classes are countable, and if X is a finite limit 
C-class of 21 then 21 contains a C-class isomorphic to X. 

LEMMA 3.11. Let (X, ^ ) be a countably infinite C-class of a lattice 33 in 
y and let 21 be inSf. (X, ^ ) is a limit C-class of 21 if and only if for some 
Xo Ç X, {$n,m°W: w, m G w} is consistent with Th(W). 

Proof. The proof is routine given the information expressed in the 
formulae <fË£Q(v). 

THEOREM 3.12. Let 2Ï be a lattice in$f '. Th{%) is œ-stable if and only if 
21 has only countably many non-isomorphic limit C-classes. 

Proof. Assume 21 has >co non-isomorphic limit C-classes. For each 
such class X, by Lemma 3.11, we can choose x € X such that 

2x0 ) = ( * n / , z W : n, m € co} 

is consistent with Th{%). For countable classes X and F, X =œtC0 F if 
and only if X c^ F so it follows from Lemma 3.7 that if X and F are 
non-isomorphic limit C-classes of 21, then 2x(v) ^ 2F(v) is inconsistent. 
Hence we have >co types in S%(<t>) and Th{W) is not co-stable. The other 
direction is similar. 

Example 3.13. In the c l a s s a , co-stability is a strictly weaker property 
than Xi-categoricity. Consider a lattice with 2 level 2 elements each 
with ^co dead ends. 

We leave to Section 6 the task of classifying the lattices in ^ with 
Ki-categorical theories. 

4. Superstability and the c l a s s a . We now turn to our second class 
of lattices containing the height 4, dimension ^ 2 lattices. 

Following [19], for each n £ co we let An be the following lattice, called 
a crown (see also Theorem 2.5(3)): 3T is the class of all height 4 lattices 
which omit An for every n G co. We will show that each lattice in 3T has 
a superstable theory. So a height 4 lattice which is not superstable must 
contain both a crown and a copy of either B or Bd. 
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The following obvious fact about lattices m^ is crucial to this section. 

LEMMA 4 . 1 . / / a\ and a2 are elements of a lattice % in$~ and a\ is connected 
to a2, then there is a unique connecting sequence between a\ and a2; i.e., there 
is a unique n and a unique connecting sequence (z0, . . . , zn ) such that 
Zo = a\ and zn — a2. 

Definition 4.2. Let 21 be a lattice in $~ and let X be a finite set of 
elements from A — {0, 1}. For each k Ç w, let 

Xk = {x G A : x is connected to an element of X in k steps, 
but not to any element of X in <k steps}. 

Fix n, m £ w. We will construct sets Xw,w-fc, k ^ n, by induction on &. 

Now for k < n and x £ Xn_fc let 

Px= {z £ Xn'm>k - UiXf. i <n - k): there exist i0 Û jo ^ n 
and a connecting sequence (w0, . . . , w;o ) such that w0 G X, 

w*0 = x and Wj0 = 2}. 

Define a tree ordering ^^ on P^ by 2 ^xz' if and only if there exist 
H ^ jo ^ n and a connecting sequence (wo, . . . , w 0̂ )

 s u c n that wo = #, 
w<0 = 2 and wjQ = 2'. This is a well defined partial ordering by Lemma 
4.1. Let @>x = (Px, ^x). We will discard "surplus" copies of 0>x. For 
each y £ Xn_(fc+i) there are cardinals Xo, . . . , Xp so that the elements of 
Xn-k comparable to y can be enumerated as xa

im. i ^ p, a < X*, where 
for i, j < />, SPXai — 0*%^ if and only if i = j ; and for i ^ p, xa* is in a 
connecting sequence of length ^2n + 2 between elements of X if and 
only if i = p. Note t'iat Xp is finite. Let 

Xy = \J{PXJ: i = p or a < min {Xz, m}). 

Finally let 

Xn,m,k+i = U ( Z i . i ^ n _ {k + l))KJ yj{Xy. y ç Xrt_(,+ 1)). 
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Any set constructed in the manner of Xn,m'n above will be called an 
(n + 1, m)-neighbourhood of X (in 21). These neighbourhoods are what 
is needed to carry out an analysis paralleling Lemmas 3.1, 3.2 and 3.3. 
We refer the reader to [36] for the remaining details. 

THEOREM 4.3. If % is a lattice in3T, then 77̂  (21) is super stable. 

5. A "merely" stable lattice of height 4. In Section 1 we saw that 
there are height 4 lattices with unstable theories. In this section we 
construct a height 4 lattice with a stable but not superstable theory. 
From Sections 3 and 4, we know that such a lattice must contain a 
crown and a copy of either B or Bd. 

The example we give owes a debt to Example 7.1.32 of [4]. 

Definition 5.1. (zo, . . . , zn ) is a direct connecting sequence if (ZQ, . . , zn ) 
is a connecting sequence and for 0 < i < n, zt is comparable to exactly 
2 elements other than 0 and 1. We say z0 is directly connected to zn in n 
steps. 

Example 5.2. We describe our example ^é as follows: 
(i) ^ # has a set j ^ : Î Ç wj of range elements which are level 2 

elements with exactly 1 dead end. 
(ii) ~ # has a set (fs: s G wco} of function elements which are level 2 

elements with exactly 2 dead ends. 
(iii) For each 5 Ç wco and each i G to there is a unique direct connecting 

sequence (fs, zu . • • , z2i+u 3V0 ) from / , to ys(i). 

In order to investigate the stability of Th(^f), we will need to know 
something about the other models of Th(^). 

Let 21 = ^é. A number of facts about SI follow from the first order 
properties of <Jé. 

Property 1. 21 has an infinite set of range elements; level 2 elements 
with exactly 1 dead end. 

Property 2. 21 has an infinite set of function elements; level 2 elements 
with exactly 2 dead ends. 

Property 3. The function elements of 21 ''behave like" the function 
elements of yfâ. For each n Ç co, 

21 t= (\/v)[(v is a function element) —> (3 ly)(y is a range element 
a n d / is directly connected to y in 2n + 2 steps)]. 

Moreover, for each n G œ, 

21 t= (\/x) (V^) [there is at most 1 connecting sequence 
(x, z\, . . . , zn, y ) such that Ai$f<B (s* has no dead ends)]. 
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We let f{n) denote the unique range element connected to the function 
element/ in 2n + 2 steps. 

Property 4. 21 must have enough function elements to satisfy the 
following formula (true in ^é) : 

(V#o) • • • (V^w-i) [ A i<n (Xi is a range element 

-> (3 /o) . . • (3 fk-i) ( A Kit (ft is a function element) 

A A;<*.*<» (/>W = xi) A /\i<j<k (ft ^fj))] 

for each n, k G co. 

Property 5. The elements of 21 which are not range or function elements, 
dead ends off range or function elements, or elements on the unique 
direct connecting sequences between function elements / and their range 
elements f(n), n G co, are either 

(i) members of infinite sequences (zt: i G co ) where z0 is comparable 
to a range or function element and for all i, zt G {0, 1}, zt is comparable 
to zi+i and zt has no dead ends, or 

(ii) members of 2-way infinite fences (zt: i G Z), zt G {0, 1}, where 
for all i G Z, z{ has no dead ends. 

The following lemma states that all height 4 lattices satisfying 
properties 1 to 5 above are elementarily equivalent. Since *Jt satisfies 
1 to 5, this shows that properties 1 to 5 are necessary and sufficient 
conditions for a height 4 lattice to be elementarily equivalent to *Jt. 

LEMMA 5.3. Let 2t and 53 satisfy 1 to 5 above. Then 21 = 33. 

Proof. In the (21 = 33)-game with m rounds, player II will play so that 
after n rounds, 0 < n ^ m, the following induction hypothesis is satisfied. 

Induction hypothesis. For each i < n, at G A and bt G B have been 
chosen in round i + 1 so that there exist An (Z A, Bn C B, Xn C 
{0, . . . , n — 1}, 4>n: An —•» Bn and for each ^ G -Xn function elements 
ft £ A, gi £ B such that 

(1) i £ Xn if and only if there is a function element/ in A and & < 3W 

such that a7; is a dead end off / , at = / , a* is in the direct connecting 
sequence from / to /(fe), a* = f(k), at is a dead end off f(k), or at is 
directly connected t o / or f(k) in <2-3m~ (*+1) steps; if and only if as 
above with B, bu g for A, au/; 

(2) For each i G Xw, /* and g7- fill the roles of / and g in (1) ; 
(3) For all i, j G Xn and *, k' < 3W, / , (*) = /,(&') if and only if 

gt(k) = gj(k'), a n d / i = fj if and only if gt = gf, 
(4) x G ^4n if and only if 
(i) for some i < n, i G Xn and there is an I < 3W such that x is a 

dead end off/*, x = / t , x is in the direct connecting sequence from / ( to 
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f$)i% = /<(/), or x is a dead end off ft (I) ; or x is in the direct connecting 
sequence from a{ to ft or from at to/*(/); or 

(ii) for some i < n, at is not a function or range element and x is 
directly connected to a t in <3TO-n steps. 
x G Bn if and only if as above with g*, bt for/*, at. 

(5) <*>„: (An, g ) ~ (J5n, g ) ; for each i G X„, «»(/,) = g<; and for 
each i < n, 4>n(a,i) = 6*. 

The details of player ITs strategy are similar in spirit to those of 
Lemma 3.3 so we omit them. 

COROLLARY 5.4. Th(^) is not super stable. 

Proof. For each infinite cardinal /c, let 

T = {t G WK: t is eventually 0}. 

\T\ = K& = K. Let 21 consist of K range elements {ya\ a G K) and a set of 
function elements {ft: t G T) connected so that ft(n) = 3>*(n) for each 
n G co. It follows easily from Lemma 5.3 that 21 = Jt. Now for each 
s G % let 

2s(fl) = {fl is a function element} 

U {»(») =ft(n):t(n) = s(n),t G T} 

U {»(») *ft(n): tin) j* s(»), * G r } . 

Each 25(z>) is consistent with (2l,/*)*€r, and if 5 7̂  5' then s(n) 9e s'(n) 
for some n, so for / G 2" such that 5 fn+i C /, 

(v(n) = / , (») ) G S,(») 

while 

(»(») ^ / « ( n ) ) G 2, ' (v). 

So there are at least KW complete types in S%({ft: t G T}). 

The proof of Lemma 5.3 is more important than the lemma itself in 
what remains. As we count types over models of Th(^) we can re­
peatedly use player IPs winning strategy to show that certain types are 
complete. In each case we shall state the appropriate lemma but omit 
the straightforward proof. 

Let S = ^ a n d let K = \C\. Let S(w) be a complete type in S<s(C) and 
we will examine the possibilities for 2 ( A ) . Note that for any function 
element/ G C and any ft G eu, 2 (v) cannot place v in the direct connecting 
sequence f rom/ to/(ft) , or as a dead end off/ or/(ft), because in each 
case Th(&c) says there are only finitely many such elements. 

Case 1. (v = Co) G 2 (v) for some c0 G C. Then 2(z>) is the type of c0. 
There are K of these types. 

Case 2. X(v) says ' W C and z; is a range element". 
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LEMMA 5.5. Let S = <Jé. Let 

T(v) = Th(dc) U {v^c: c£ C) 

W {(there is exactly one dead end off v)}. 

Then T(y) is a complete type in S$(C). 

It follows that we get only 1 complete type in case 2. 

Case 3. 2(i>) says "v $. C and v is a function element". 

LEMMA 5.6. Let S = *Jt and let C0 he the range elements of E. Suppose 
F C co, s0 € YC0j and R is an equivalence relation on (co — F). Let 

T(v) t= Th(dc) V {V9*c:c £ C} 

U {(/ftere are exactly 2 dead e/zds q/f v)} 

U {K*) = *>(*): K F ) U {»(*) ^ e: & (2 F, c G C} 

U { ± (»(*) = v(»)): *, » G co - F, ± (<*,»> G i?)}. 

Then T(v) is a complete type in S$(C). 

It follows that we get ^2<0-KW-2W = KU complete types from case 3. 

Case 4. 2(u) says "v Q C and y is a dead end off a range element". 
It follows that the range element is also not in S. 

LEMMA 5.7. Le/ S = ^# . Le/ 

r(w) = Th(&c) U {v^c-.ce C} 

U {(3 y)(v is the unique dead end off y)}. 

Then T(v) is a complete type in S&(C). 

It follows that case 4 yields 1 complete type. 

Case 5. 2(v) says ilv g C and v is a dead end off a function element". 
It follows that the function element is also not in S. 

LEMMA 5.8. Let S = ^ and let Co be the set of range elements of S. 
Suppose Y C co, so G rCo, and R is an equivalence relation on (co — F). Le/ 

r(f>) = Th(&c) V {V9*c:ce C) 

W {(v is a dead end off an element with 2 dead ends)} 

V[Qf)(0<f<v Af(k) = so(k)):ke Y] 

U {(3/)(0 < / < v A /(É) ^ ) : H F , ^ C ) 

U { Q / ) ( 0 < / < i > A ± ( / ( f t ) = / ( n ) ) ) : 

&, » € co - F, d= (<&, n) 6 i?)}. 

Lften r(y) is a complete type in S&(C). 
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So there are ^K<° types from case 5. 

Case 6. 2(A) says "v $ C and v is on a direct connecting sequence from 
a function element to a range element". 

It follows that the function element is not in (5, but we have 2 subcases. 

Case 6a. For some range element y0 Ç C, 2(A) says "v $_ C and v is in 
a direct connecting sequence from a function element to y^}. 

LEMMA 5.9. Let S = ^ a?zd Ze/ C0 &e /fee se/ of range elements of S. 
Suppose Y C co, so G FC0, &o G F, Z0 < 2k0 + 2, and R is an equivalence 
relation on (co — Y). Let 

T(v) = rfc((£c) U M c : c G C ) 

^ { (3 / ) [ ( / w a function element) 

A (z> is directly connected to f in U steps) 

A (v is directly connected to s0(&o) in 2k0 + 2 — /0 steps)]} 

^ { ( 3 / ) [ ( / is a function element) 

A (w is directly connected to f in U steps) 

A (/(*) = 50(*))]: fe € F! 

^ î ( 3 / ) [ ( / ^ a function element) 

A (fl is directly connected to f in l0 steps) 

A (/(*) ^ c) 

A ± (/(*) = / ( n ) ) ] : c Ç C0,£,w (£ co - F, ± (<fe,n) G i?)}. 

jHfeew r(z;) is a complete type in S&(C). 

So case 6a yields rg 2<° • K" • co• 2" = KW complete types. 

Case 6b. X(v) says "v Q C and z; is in a direct connecting sequence 
from a function element to a range element, but v is not directly connected 
to any element of C\ 

Lemma 5.9 adapts easily to this case. In T(v) replace (v is directly 
connected to So(k0) . . .) by (v is directly connected to a range element. . .) 
and add the set of formulae {(v is not directly connected t o c ) : c Ç Co}. 

So case 6b yields rg KW complete types. 

Case 7. 2(p) says v d C and v is directly connected to a range element, 
but not to any function element". 

There are 2 subcases. 

Case 7a. There is a range element yo (z C such that 2(s/) says "v (? C, 
ft is directly connected to yo, but v is not directly connected to any function 
element". 

LEMMA 5.10. Let S = ^ and let Co be the set of range elements of S. Let 
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yo G Co, J o f w and let 

T(v) = Th(&c) \ J {v * c: c € C} 

U {(u w directly connected to y0 in k0 steps)} 

U {(v is not directly connected to a function element in I steps) : 

l G co}. 

Then Y{v) is a complete type in 5<s(C). 

So case 7a yields rg/c-co = K complete types. 

Case 7b. 2(u) says "u g C, z; is not directly connected to a function 
element, z; is connected to a range element but not to one in (£". 

This time we can show that for each È 0 f w , 

T(v) = Th(&c) \J {v^c-.ct C) 

U {(v is directly connected to a range element in k0 steps)} 

U {(v is not directly connected to a function element in 
/ steps): / 6 co} 

W {(*/ is not directly connected to £ in / steps): c £ C, l Ç co} 

is a complete type in S&(C). 
So case 7b yields co complete types. 

Case 8. X(v) says "v (£ C and v is directly connected to a function 
element, but not to any range element". 

This breaks into 2 subcases as in case 7. In each subcase the types are 
determined by the number of steps v is from the function element (as in 
case 7), and the description of the function (as in case 6). There will be 
^K-CO = K complete types where the function element is in (5, and 
^KW-CO = KU where the function element is not in Ê. 

Case 9. 2 (v) says ' lv is not connected to any function or range element' '. 
This type is completed by adding one of the formulae (v is level 2) or 

(v is level 3). 
So case 9 yields only 2 complete types. 
This exhausts the possibilities for 2(z/) in S&(C). Altogether we have 

counted 

S K + 1 + K" + 1 + K" + («" + K") + (K + C0)+ (K + *") + 2 = K* 

complete types in 5g(C). So we have proven 

THEOREM 5.11. Th(^) is stable but not super stable. 

Although we have been unable to determine the exact dimension of ^t', 
it can be shown (as with Example 1.3) that dim(^#) Ç {3, 4}. 
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6. Categoricity and the c lassy 7 . We now return to the lattices i n y . 
We will apply our "approximating formulae" for the C-classes of models 
in y to give concrete algebraic characterizations of the No-categorical 
and the Xi-categorical models in $f. 

THEOREM 6.1. Let %be a lattice inSf. Then Th{%) is ^-categorical if 
and only if there are bounds N, M £ co such that 

(i) 21 has no connecting sequences of length >N, and 
(ii) for all non dead ends a Ç A, if a has ^ M dead ends then a has ^co 

dead ends. 

Proof. Necessity follows from the Ryll-Nardzewski Theorem (see [4]). 
To prove sufficiency, make use of the approximating formulae <t>N,\®'h 

from Definition 3.6. 

The lattices in ¥ with Ki-categorical theories come in 3 forms. 

Definition 6.2. We shall say 21 is type 1 if there is a finite bound on the 
cardinalities of the C-classes of 21 and there is a C-class X of 21 such that 
for all C-classes F, if Y ^ X then there are only finitely many C-classes 
in 21 isomorphic to Y. 

21 is type 2 if there is a non dead end a Ç A such that a has infinitely 
many dead ends, and only finitely many elements of 21 are not dead ends 
off a. 

Foreachs en(co X {2, 3}) such that (s(i))i j* (s(i + l ) ) i f o r i < n - 1, 
let 5 represent a connecting sequence (xt: i Ç n) together with (s(i))o 
dead ends (other than x*_i or xt+i when i=l = 0ori+l = n— 1), 
off xu where xt is level (s(i))i. For example, ( ( 0 , 2 ) , (3 ,3) , (1 ,2) , 
(2 ,3) , (1 ,2) , ( 1 , 3 ) ) represents 

#1 X3 XÔ 

XQ X2 X4 

By 5-1 we mean the sequence (s(n - 1), . . . , s(0) ). If t Ç w(co X {2, 3}) 
and (t(i))i 5* (t(i + l ) ) i for i < m — 1, then the poset represented by 
the concatenation 5 ^ / is well defined provided (s(n — l ) ) i 9e (J(0))i. 
In this way we can represent C-classes in lattices in S^ which have only 
finitely many dead ends off each element as (possibly infinite) con­
catenations of such sequences. We say 21 is type 3 if 21 is infinite and there 
is an even n G co - {0} and an s 6 n(œX {2, 3}), (s(i))i ^ (s(i + l ) ) i 
for i < n — 1, such that 21 has 
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(a) ^ 0 C-classes isomorphic to the 2-way infinite fence 

(b) <œ C-classes isomorphic to each crown of the form 

5 5 . . . S, 

(c) <co 1-way infinite fences and each of them of the form 
/"""\ /"••»«. ^ - N /—V 

Y S S S 

for some r G *(coX {2, 3}) such that (r(fe - l ) ) i 9* s(0))i, or of the form 

. . . s s s r 

for some r Ç *(coX {2, 3}) such that (r(0))i ^ (s(n - l ) ) i , 
(d) <w 2-way infinite fences not isomorphic to 

/ « - S • - > . /"""S /«->s 

. . . 5 5 5 . . . 

and each of these of the form 

. . . 5 S S t S S S . . . 

for some / 6 *(co X {2,3}) such that (*(0))i * (s(n - l ) ) i and 
(t(k - l ) ) i y£ 0(0))i , or of the form 

for some/ € *(a> X {2, 3}) such that (*(0))i ^ (s(0))iand (*(* - l ) ) i5* 
(s(0))i, or of the form 

for some / G *(coX {2, 3}) where (*(0))i ^ (s(w - l ) ) i and (t{k - l))l 

* (s(n - l))x, 
(e) <œ other elements. 
Note that 2Ï can be infinite without any copies of...^s^s^s^ . . . 

but has power K«, a > 0 if and only if 21 has K« copies of . . . ^ s ^ 5 ^ 
5 . . . . 

LEMMA 6.3. Let %be a lattice in y with a finite bound on the cardinalities 
of its C-classes. Then Th{W) is Hi-categorical if and only if 21 is type 1. 

Proof. The necessity is clear. 
For sufficiency, let 21 be type 1 and suppose 21 has infinite models. So 

there is a C-class X such that 21 has è <o C-classes isomorphic to X. 
Since there is a finite bound on the cardinalities of C-classes in 21, it 

follows that there are N, M Ç o) such that 

«1= (Vf ) (**.*«•»(!>) -»*. ,»"'»(!0) 

for any element b of a lattice 99 in 5^ and every n, m (E co. It is now 
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straightforward to show that models of 27* (21) of the same cardinality 
have the same number of each C-class. 

LEMMA 6.4. Let %be a lattice in y such that there is no finite bound on 
the numbers of dead ends off individual elements of 2t. Then 77* (21) is 
^-categorical if and only if 21 is type 2. 

Proof. Suppose 77* (21) is Xi-categorical. Clearly there is at most one 
element with infinitely many dead ends. 

Suppose there are no elements in §1 with infinitely many dead ends off 
them. Then 21 has elements with arbitrarily large finite numbers of dead 
ends. It follows that the set of sentences 

r = 77* (31) \J {c 9* cf) \J {(c and c' have ^n dead ends): n £ o>} 

is consistent. But if (33, cs&, c%) t= r , then 93 = 21 and has 2 elements 
c% and c% with infinitely many dead ends. As above, this contradicts 
Ki-categoricity of Th{%). 

So there is exactly one element, say a0, in 21 with infinitely many dead 
ends. Suppose there are infinitely many elements of 21 which are not 
dead ends off ao. Then the set of sentences 

T = 77 (̂21, ao) U {(ca is not a dead end off a0) : a < coi} 

is consistent. We can construct models of r of power Ki with different 
numbers of dead ends off a0, contradicting Xi-categoricity of Th{%). 

So 21 has one element, a0, with infinitely many dead ends and there are 
only finitely many elements of 21 which are not dead ends off a0. 

Now let 21 be type 2 and let a0 be the element in 21 with infinitely many 
dead ends. Let {a0, . . . , an-i} include all elements of 21 which are not 
dead ends off a0. 

Th{%) f= Qvo) • • • Q v i ) [ A i , K « ( ± vt ^ Vj\ ézat^ af) 

A ( V ^ ) ( ( A K M x ^ Vi) —> (x is a dead end offz/o))]. 

So any models of Th{%) of the same power are isomorphic. 

We need a combinatorial lemma about sequences to deal with the 
lattices in ^ with no finite bound on lengths of connecting sequences. 

Definition 6.5. Let A be a set, s £ M , so € noA. We say that an element 
n G w has an so-neighbourhood (with respect to s) if there exists mn such 
that 

mn + n0 ^ n < mn + 2n0 

and either 

(s(mn), . . . , s(mn + 3w0 — 1) ) = So ^ s0^ s0 
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or 

(s(mn), . . . , s(mn + Sno - 1) ) = so-1 ̂  so"1 ^ s0
-1. 

LEMMA 6.6. Let s £ M , s0 (i <WA. Suppose there is an N such that every 
n ^ N has an So-neighbourhood (with respect to s). Then s is eventually 
periodic. Moreover, if so is chosen to have minimal length, then there is a 
t £ <WA such that either 

s = £ s0 s0 So . . . or s = t So So-1 So . . . . 

Proof. Pick So of minimal length w0 such that there exists an N as in the 
lemma. If no = 1, then raw + no ^ w < mn + 2w0 implies that n = mn + 1. 
So for n ^ N, s(n) = s(mn + 1) = s0(0) and s is constant after TV. So 
we will assume that no > 1. We will also assume there is an mN such that 

™<N + n0 ^ N < mN + 2no and 

(s(mN), . . . , S(WAT + 3w0 — 1) ) = so ^ so ^ so, 

the other case being dual. 
Let Nk = mN + kno for each k £ w. We will show by induction on & 

that 

(s(Nk), . . . , s(7V* + 3w0 - 1) ) = so ̂  so ̂  s0. 

For k = 0, this follows from the definitions of w^ and iV0. 
Now consider fe + 1 and suppose 

(s(Nk+i), . . . , s ^ + i + 3w0 - 1) ) 9* so ̂  so ̂  sc. 

Using the induction hypothesis we will derive a contradiction. Note that 

Nk+2 ^ N2 = mN + 2n0 > N. 

Case A. There is an m such that m + n0 S Nk+2 < m + 2wo and 

(s(m)t . . . , s(m + 3w0 — 1) ) = s0 ^ s0 ^ s0. 

Then Nk < m < Nk+i, so let m = Nk + m' where 0 < m' < no. For 
0 ^ i < wo — w', 

so(^) = s(w + no + i) = s(Nk + m' + n0 + i) = s0(m
f + i), 

and for «o — w' ^ i < Wo — 1, 

s0(i) = s(m + n0 + i) = s(Nk + n0 + m' + i) 

= sfTV* + 2n0 + i - (n0 - m')) = s0(i - (n0 - m')). 
So 

(s0(0), . . . , s0(n0 — m' — 1), so(w0 — m'), . . . , s0(«o — 1) ) 

= {so(m') , . . . , s0(n0 - 1), s0(0), . . . , So(m' - 1) ). 
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Let si = So\m>. Letting t = So ^ s0 ^ s0 ^ • . . , we see that 
/ " ^ y^^ /—N / - S /«-N 

' — Si So So So . . . = Si / . 

By induction on k, we have that for each k £ w, 

f̂*.m' = *i ^ si ^ . . . ^ si (k times). 

And if tf = So"1 ^ So-1 So-1 ^ . . . , then 

*'1W = ^i"1 ^ 5 i _ 1 ^ • • • ̂  ^ i _ 1 (& times). 

( L o o k a t t\icm{H,m')') 

Now consider any n ^ N. Pick raw such that mn + n0 ^ n < mn + 2no 
and either 

(a) (s(ran), . . . , s(mn + 3n0 - 1) ) = s0 ^ s0 ^ s0, or 

(b) (s(wn), . . . , s(mn + Sno - 1) ) = so -1 ^ s0
_1 ^ So"1. 

Suppose (a) and n < mn + 2m'. Then 

mn + ra' < mn + wo ^ » < mn + 2m' 

and 

(s{mn), . . . , S (w n + 3 w ' — 1) ) = ^fsrn' = Si ^ Si ~ Si, 

and so w has an si neighbourhood. Suppose (a) and n ^ mn + 2m'. Then 
» — 2ra' ^ mn. If we let k be greatest such that 

(mn + 3w0 - 1) - (fe + l )w ' ^ », 

then 

K + 3»0 - 1) - ((& + 3)ro' - 1) 

> (wn + 3»0 - 1) - (k + 3)w' ^ » - 2m' ^ ran. 
So 

<s(mn + 3»o - 1), . . . , s((wn + 3»0 - 1) - ((* + 3)ro' - 1)) ) 
= ^ f(Jk+3)m' 

= Si -1 Si -1 ^ . . . ^ Si -1 (& + 3 times). 

Le t t ingw/ = (ran + 3»0 — 1) — ((& + 3)ra' — 1), we have 

(s(m/) , . . . , s(mn' + 3w' - 1) ) = si ^ si ^ si 

and 

mn' + w' = (wn + 3»o - 1) - (fe + 2)m' + 1 g » 

(by choice of &) and 

w < wn' + 2m' 
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(again by choice of k), so n has an s\ neighbourhood. If (b), then a 
similar argument shows that n has an s\ neighbourhood. 

But such an 5i contradicts the minimal choice of wo, so case A cannot 
occur. 

Case B. There is no m as in case A. 
Since Nk+2 ^ N, we can pick m\ such that Wi + no ^ Nk+2 < nil + 

2n0 and 

(s(m), . . . , s(m + 3n0 — 1) ) = 50
_1 ^ 50

- 1 ^ s0
-1. 

Now choose ra2 such that m2 + n0 ^ iW+3 < w2 + 2w0 and either 

(a) (s(m2), . . . , s(ra2 + 3w0 — 1) ) = so ^ so ^ so, or 

(b) (s(m2), . . . , s(m2 + 3n0 — 1) ) = so-1 ̂  50
_1 ^ so""1. 

An argument similar to the one above leads to the same contradiction. So 
case B cannot occur. 

We conclude that 

(s(Nk+i), . . . , s(Nk+i + 3nc - 1) ) = so ^ s0 """ s0 

after all, and the induction is complete. It follows easily that 
K /—V /"-S /~\ / - V 

S = S | iVo ^0 ^0 ^0 . . . . 

COROLLARY 6.7. (to the proof of Lemma 6.6). Let s £ M , s0 G <M, 
so 0/ minimal length no such that there is an N as in the lemma. Suppose 
s =* So So so s' (respectively So-1 ^ So-1 so -1 ̂  s') and every 
n è 2no has an so-neighbourhood (with respect to s). Then s = so ^ s0 ^ 
so ^ . . . (respectively so -1 ̂  So-1 ^ s0~

l ^ . . .). 

LEMMA 6.8. Let $t be a lattice in ¥* and suppose there is no finite bound 
on the lengths of connecting sequences in 21. Then Th(%) is ^-categorical 
if and only if 21 is type 3. 

Proof. Suppose there is no finite bound on the lengths of connecting 
sequences in 21 and 77* (21) is Ki-categorical. Note that by Lemma 6.4 
there is a finite bound M such that no element in 21 has > M dead ends. 

Claim 1. There is a model 33 = 21 and an s 6 «"({0, . . . , M} X {2,3}), 
with length(s) even and (s(i))i 9e (s(i + l ) ) i for i < length(s) — 1, 
such that S3 has a C-class isomorphic t o . . . ^ s ^ s ^ s ^ . . . . 

Proof of Claim 1. Let 

T0(v) = Th($lA) \J {(w is not connected to a in n steps): 

a £ A, n £ a)} 

U {Qv-n) . . . (3 wo) • • . Gvn)[(v = wo) A A w (»< * ^ ) 

A A-nSiin (Vi <Z {0,1}) 

A A-n^i^n (vt < vi+i V vt > vi+i)]: w f w ) . 
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There is no finite bound on the lengths of connecting sequences in 31, so 
by the compactness theorem there is a model 93 > 31 and an element 
b G B such that 93 [= T0 [b]. It follows that b is a non dead end on a 2-way 
infinite fence. We will show that [b] = . . . s ^ s s . . . for some s. 

Define a set of formulae 

I^fe: k G co) = 77K»A) 

VJ { (A* is not connected to ^ in w steps) : 

i,j, n G co, i ^ j} 

U{^ i A f * ' 6 (v<) : *'•*€ co}. 

Since b £ B — A and 8 > 31, for each », m, & G co, 

3Ï t= (V»o) • . • ( V ^ - i ) ( 3 ^ ) ( ^ / ' 6 (v) 

A / \ t a (*>* is not connected to v in ^m steps)). 

It follows that 31 realizes every finite subset of Ti, so by compactness 
there is a model 931 with elements bk, k G co, such that 

» i t= I \ [bk: k G co]. 

Now for each n and k, 

« i t ^ , ^ - 6 [bk]. 

Since AT is a bound on the numbers of dead ends off elements of 31 and 
therefore of 8i, 

93i tz (/vJ8,6 [6*] for all », m, * G co. 

By Lemma 3.7, for each & G co, 

« M , ^> =-,« <[&], ^> 
and since these are countable 

<[6*], g ) ~ <[&],£>. 

Let {c2: 2 G Z} list the non dead ends of [b0] so that cz < cz+i for even 
z and cz > cz+i for odd z. Let 

6, = {0,1} U <[60], ^ ) -

Suppose there exist i, j G Z and a formula $o(z>*, Vj) such that 
6i 1= 4>o[Ci, Cj] and for all z, z' G Z, ii {z, z'} (£_ {i,j} then 

Si t= ~ <t>o [cz, cz.\. 

Let 

T2(z;2: z G Z) = Th(&1Cl) W {(v, ^ *v): s, z' G Z, z ^ 2'} 

VJ {(v, 3* c ,0: 2,2' G Z} 

U {(vz < vz+l V vz > vz+1): z G Z) 

\J {~<l)o(vz,vz>): z,z' G Z\. 
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Any finite subset of T2 is realized by a subset of {cz: z £ Z — {i,j}} in 
Si, so by compactness there is a model 62 > Si with elements ç/ , s G Z, 
such that 

S2Cl |= T2 [c/: z £ Z\. 

Note that [c0
f] cfi [co], for otherwise there would be an automorphism / 

on S2 such triat/([co]) = [cVL a n d it would follow that 

contradicting T2. 
Now form 332 from 331 by exchanging Si for S2. It is easy to check that 

332 > S3i. But Co' G B2 — Bu so the set of formulae 

Tz(vk: k 6 co) = r * ( » i B l ) 

U {(vi is not connected to Vj in w steps) : 
i,j, n Ç w, i ^ j} 

W{0n,M*VV (*,,): n f * G co} 

is consistent just as Ti was consistent. So there is a model 933 > 332 with 
elements dk, k £ co, such that 

9 3 3 1 r 3 [d*: £ e co]. 
Again it follows that (dk] c^ [c0

f] for each k. So we have 933 = 31, 933 has 
infinitely many C-classes isomorphic to [b] and infinitely many iso­
morphic to [CQ'] but [b] c^. [CQ]. AS in the proof of Lemma 6.3, it follows 
that Th{%) is not Ki-categorical, a contradiction. Therefore, 

(1) for every formula <j>{vu Vj), if Si t 0 [cu Cj] then there are z, z' G Z 
such that \z,z'\ (£ {i,j\ and Si 1= <t> [c2, cz>\. 

Suppose for every z £ Z — {0}, there is an n £ co such that 

Si t= - 4VM*'& [c.]. 

Let 

Hvo) = {0n,^'6(^o): n G co}. 

We will show that Si locally omits \p. By (1) (with i = j; = 0 ) , if <l>(vo) 
is any formula consistent with 77*(Si) then either 

(a) Si t= <t> [c] for some ci {cz: z £ Z} or 
(b) (Si 1= 0 [c2] for some 25^0 . 
Assume (a). Then c is either 0, 1 or a dead end. It follows that 

Ci 1= ~ *o .^ ' 6 [c]. 

Now assume (b). We have supposed that for each z ^ O , there is an 
n 6 « such that 

& 1= ~ * » . ^ ' s [cj. 
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So in either case <t> A ~ <t>n,M®'b(v) IS consistent with 77*(Si) for some 
n G co. Hence 77* (Si) locally omits ^(flo) and by the Omitting Types 
Theorem there is a countable model S3 = Si which omits ^(^0). Now 
form 93 4 from S81 by adding coi new C-classes, each isomorphic to [b]. Since 
581 has infinitely many C-classes isomorphic to [6], it is easy to see that 
$84 = 33i. Form 335 from 334 by replacing every C-class isomorphic to [b] 
by a copy of S3 — {0, 1}. Using games, we can easily show that 936 = 8̂4. 
Also 93 4 and 535 are of the same uncountable cardinality, since S3 is count­
able. Both 334 and 33 5 are models of 77* (3t), but $85 has no C-classes iso­
morphic to [b] and hence $84 ?* $8Q. By Morley's Theorem [26], this con­
tradicts the Ki-categoricity of Th(%). 

So there is a z0 6 Z — {0} such that 

Si t= (An.M58'6 [Cz0] for every w 6 co. 

Suppose for every z 6 Z — {0, z0} there is an w such that 
Si t "*, ,**•>[<;.] . 
Let 

$(»<>, *%) = <K*>o) ^ lKfl*0) U { (Vo 3* flfo)}. 

A similar argument applying the Omitting Types Theorem to <£ again 
leads to a contradiction. 

So there is a %\ € Z — {0, s0} such that 

Si 1= *,,**'*[*.,] for a l l » e co. 

We can assume now, by relabelling, that Zo < 0 < zi. By Lemma 2.7 
there are automorphisms / and g of [co] such that f(cZQ) = c0 and 
g(co) = ^ Let fcz denote the number of dead ends off cz. Of course 
#cz = #f(cz) = #g(Cz) for all z £ Z. Clearly either 

0)/(c«0+i) = Ci or 
(ii)/(c«0+i) = c_i. 

If (i), then/(c20+2) = cz for all z 6 Z, and if (ii) then/(c2o+2) = c_2 for 
all z Ç Z. Similarly either 

0') g(ct) = cZl+z for all z G Z or 

(ii') g(£«) = c2l_2 for all z Ç Z. 

But if (ii) and (ii') then 

g~l'f{cZ{i+z) = g-l(c-z) = cZl+z for all z <E Z. 

So either by (i) or (i'), or by (ii) and (ii'), we can assume there is a 
z' > 0 and an automorphism h of [c0] such that h(cz) = c2'+2 for all 
z 6 Z. It follows that for all n € co and all i, 0 ^ i < z', 

#*,,,+ , = #*» (c«) = #ci and 
# C _ n 2 ' + i = #ft~n (Cj) = #C*. 
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So for each n, 

(#Cnz>, . . . , #C n 2 ' + ( 2 ' _ i ) ) = (#C0, . • • , fCz'-i ) . 

Letting 

5 = <<#Co,2>, <#cu3), . . . , < # < V - i , 3 > ) 

we have [b] = . . . ^ s ^ s ^ s " ^ . . . proving claim 1. 
Now let 5 be of minimal length no such that there is a 93 as in claim 1 

and let 93 s 21, b £ B such that [b] = . . . ^ s^ s^ s ^ We can 
assume 93 is countable (by taking a countable elementary substructure 
containing [&]). We will say that an element x € B has an s-neighbourhood 
if 93 t= 0S [x], where 

0*(») = (3*>o) • • • (3z>3n0-l)[Vno<;i<2n0 0 ^ »i V V ^ V<) 
A ( » € {0,1}) 

A A<>^<3n0-l (V< < V<+1 V Vt > Vi+1) A A « K 8 n 0 (»1 ^ »j) 

A Ai<n (vif vnQ+i, v2nQ+i are level (s(i))i and have exactly 
(s(i))o dead ends)]. 

There should be no confusion with the ^-neighbourhoods of Definition 6.5. 

Claim 2. All but finitely many elements of 93 have ^-neighbourhoods. 

Proof of Claim 2. This is similar to the proof of Lemma 6.4. 

By Claim 2, for some k £ w, 

Th(U) t= (3 too, • • • , f*-i)(A«* ~ *.(»«))• 

We now show that almost all elements of 21 have C-classes of one of the 
forms (a) -(d) in the definition of type 3. 

Remark 3. Note that if n0 is minimal such that Th(%) has a model 93 
with a C-class [ ^ ^ . . . ^ s ^ s ^ s ^ . . . , then for any infinite fence 
X in a model of 77* (21), w0 is the minimal » such that for some 5 of length 
n almost all elements of X have ^-neighbourhoods. For if there was a 
minimal n\ < no and an si of length n\ for X, then by Lemma 6.6, 

A C^ / _ 1 5i 5i 5i . . . Or t~l S i " 1 5 i _ 1 Si~l 

for some / G ^({0 , . . . , M] X {2, 3}). It follows by compactness that 
Th (21) has a model 93' with a C-class isomorphic to . . . "^ si ^ si ^ si ^ 
. . . , a contradiction. 

Since there are only finitely many elements in 21 without s-neighbour-
hoods, it follows from Lemma 6.6 and the above remark that there are 
finitely many 1-way infinite fences and each is of one of the forms in (c). 
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All 2-way infinite fences are of one of the forms in (a) or (d). Now 
suppose every element in X has an ^-neighbourhood and 

A ~ . . . s s s t or . . . s 1 s l s l t 

where t G w({0, . . . , M} X {2, 3}). Consider the sequences s ^ s ^ 
5 ^ / and s~l ^ s~l ^ s - 1 ^ /. By Corollary 6.7, 

/*-N ^ V ^ -S ^"N /""V /—S . 

5 5 5 / = s 5 5 . . . and 

So in fact X ^ ^ ^ s ^ s ^ s ^ . . . . It follows that all but finitely 
many 2-way infinite fences are of the form . . . ^ s ^ s ^ s . . . . 

Now consider the finite C-classes of 21. 

Claim 4. There is no finite C-class X such that SI contains infinitely 
many C-classes isomorphic to X. 

Proof of Claim 4. Suppose SI contains infinitely many copies of the 
finite class X. But we can easily construct a model 31' > 91 containing 
infinitely many copies of . . . ^ s ^ s ^ s ^ . . . , as well as X. This 
contradicts Ki-categoricity of 27* (SI). Claim 4 is proved. 

Claim 5. For almost all finite C-classes X in SI, 5 is of minimal length 
such that every element in X has an ^-neighbourhood. 

Proof of Claim 5. Suppose Xui G eu, are finite C-classes in SI such that 
for each i, s is not of minimal length such that every element of Xt has 
an ^-neighbourhood. By Claim 4, we can assume that Xi c^. Xj for i ?£ j . 
Since almost all elements of SI have ^-neighbourhoods, we can assume 
that for each i there is an Si of minimal length <fto, such that every 
element of Xt has an 5rneighbourhood. Since <w°{0, . . . , M} is finite, we 
can assume that for each i G w, Si is of minimal length <Wo, such that 
every element of X\ has an si-neighbourhood. Again from the bound M 
on the numbers of dead ends off elements in Xu we can assume that for 
i < j , X i has fewer non dead ends than Xy Now consider the set of 
formulae, 

T(vz:z a ) = ( ( M {0,1} A * , > , ) ) : * G Z\ 

V { faz < vz+1): z G Z,z even} 
^ {(vz > i>z+i). z G Z,z odd} 
U {(Pz ^vz>)\z,z' e Z,z 9±z'\. 

Every finite subset of T is realized in SI, so by compactness, there is a 
model SI' = SI with elements aZJ z £ Z, such that ST t T [az: z G Z]. By 
Remark 3, this is a contradiction, so Claim 5 is proved. 

Now let X be a finite C-class in which every element has an s-neigh-
bourhood, s of minimal length for X. Clearly X is a crown. Let 
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x0, . . . , xk-i list the non dead ends of X such that xt < xi+i for even i, 
Xi > xi+i for odd i and xk-i > x0. Let 

/+(») = #xw(mod *) for each n <E co. 

By Lemma 6.6, there is a £' such that 

t+ = t s s s . . . or t+ = / 5 1 s * 5 x . . . . 

Assume /+ = / ' " " ^ s ^ s ^ s ^ . . . , the other case being dual. Let 

length (O = m and r(n) = #xm+n(mod k), 

so that r = s ^ s ^ s ^ . . . . 

Claim 6. rio\k. 

Proof of Claim 6. This is similar to the arguments used in the proof of 
Lemma 6.6. 

^ ^ — ^ ^ — 7 

Since UQ \ k it is easy to see that X ^^ s s . . . ^ s (k/no times). 
So if X is a finite C-class for which 5 is of minimal length such that 

x — ^ — ^ ^—7 

every element of X has an ^-neighbourhood, then X ^ s ^ s ^ . . . ^ s 
(k times) for some k. By Claim 4 and Claim 5, this completes the proof 
that 21 is type 3. 

Now let 21 be type 3 and let s be of minimal length n0, such that 21 
satisfies (a) -(e) with s. First we prove 

Claim 7. If 93 = 21 and X is an infinite C-class of 93, then 5 is of minimal 
length such that almost every element of X has an ^-neighbourhood. 

Proof of Claim 7. Suppose not. For some k 6 co, 

Th($) t (3 too. . . »*-i)(A«* ~ *.(»<))» 

so exactly & elements of 93 have no ^-neighbourhood and there is an si of 
minimal length n\ < no such that all but finitely many elements of X 
have an si neighbourhood. It follows from Lemma 6.6 that 

X ~ t~Y s\ S\ s\ . . . or t~l si~l s\~l Si~l 

for some t £ ^({0 , . . . , M\ X {2, 3}). Now for some V G co, 

rft(») t= (3 too. . . »*'-i)(Ai<*' ~ *.»i (»<)). 

where swi = 5 5 . . . s (n\ times). It follows that for 

si = (si(m), . . . , 5i(»i - 1), 5i(0), . . . , si(m - 1) ) or 

h = (si(m - 1), . . . , 5i(0), 5i(»i - 1), . . . , 5i(m) ) 

for some w, 0 ^ m ^ wi, $iwo = snu So 5 is not of minimal length for 21, 
a contradiction. Claim 7 is proved. 
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For any finite C-class X, 21 has only finitely many C-classes isomorphic 
to X. As in the proof of Lemma 6.3, it is easy to show that all models of 
Th{%) have the same finite number of C-classes isomorphic to X. 

For any infinite C-class X of a lattice 93 = 21 it follows from Claim 7 
and Lemma 6.6 that X has form (a), (c) or (d). Suppose an element 
b £ X has no ^-neighbourhood. Since 21 has only finitely many C-classes 
of form (c) or (d), there is an N 6 w such that 

Th($) 1= (VtO[~*,(f)->(VfO 

((«/ connected to v in n steps) —» <t>s(v'))} 

for every n è N. By Claim 7 and Corollary 6.7, if 

e^2 iandet=^; ô
2 ; i o , M w 

then ([c], ^ > ~ ([&], g ). It follows easily that all models of Th{%) 
have the same finite number of C-classes isomorphic to X. 

Note that we have shown that any model of 77̂  (21) is type 3 (with s). 
It follows that any model of Th{%) of power a>i has exactly coi C-classes 
isomorphic to...^s'~*s^s^.... 

This completes the proof that all models of Th{%) of power coi are 
isomorphic. 

THEOREM 6.9. Let % be a lattice in Sf'. Th{%) is Ki-categorical if and 
only if 21 is type 1, type 2, or type 3. 

Proof. Suppose Th{%) is Ki-categorical. If there is no finite bound on 
the lengths of connecting sequences in 21, then 21 is type 3 by Lemma 6.8. 
If there is no finite bound on the numbers of dead ends off elements of 21, 
then 21 is type 2 by Lemma 6.4. Otherwise there is a bound on the 
cardinalities of the C-classes of 21, and 2Ï is type 1 by Lemma 6.3. 

The other direction is immediate from Lemmas 6.3, 6.4 and 6.8. 

COROLLARY 6.10. Let %be a lattice inSf. 77* (21) is totally categorical if 
and only if 21 is type 1 or type 2. 

7. Lattices of finite height. In this section we state a generalization 
of the superstability result for the class *f. 

The proof of Theorem 3.4 (*'every lattice in £f has a superstable 
theory") made use of the structure theorem for lattices in j ^ \ The key 
ideas of that proof can be applied to a much larger class of lattices, 
without the benefit of such nice structure. As a result, we can prove 
superstability for a class of lattices which will include all dimension ^ 2 
finite height lattices. 

The first step in the proof of Theorem 3.4 was the observation that 
elements added to a lattice 2Ï of Zf in an elementary extension could only 
be added as dead ends or as members of C-classes disjoint from 21 (Lemma 
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3.1). For the class of all finite height lattices which omit both Bu and BJ 
(regarding B as £3), there is a similar restriction on the elements added 
in elementary extensions. 

A second important fact a b o u t i was the existence of the "approx­
imating formulae", <t>n,m®'a (v), a n d their role in the construction of 
partial isomorphisms (in the proof of Lemma 3.3). Omitting Bu and BJ 
in finite height lattices turns out to be sufficient to construct "approx­
imating formulae". In the general case, however, we cannot give formulae 
to determine the structure of C-classes as completely as in j ^ 7 . We do get 
enough structural information in our formulae to classify C-classes up to 
elementary equivalence, but must use different techniques to prove 
completeness of types. 

The theorems of this section follow from a more general result in [24] 
(by regarding finite height lattices as directed graphs), so we omit the 
details of our original proofs here. However, as in the height 4 case, the 
original proofs provide detailed analyses of the structures of the lattices 
involved. We feel that this structural information may have application 
to other model theoretic aspects of these lattices (such as categoricity) 
and refer the interested reader to [36] for details. 

Definition 7.1. For each a ^ co, let Ba be the lattice 

and let Ba
d be the dual of Ba. Note that Bz c^ B (as defined in Section 2). 

LEMMA 7.2. Let The a theory of lattices. Every model of T omits B^ if and 
only if for some k £ co, every model of T omits Bk. Dually for BJ and Bk

d. 

Proof. If for each k 6 co, there is a model of T which does not omit Bk, 
then by a straightforward compactness argument there is a model of T 
which does not omit Bœ. The other direction is obvious. 

On the other hand, it is easy to see that for each k Ç co, the class of 
lattices which omit Bk and Bk

d is elementary. Hence, to apply the key 
facts mentioned above to arbitrary models of complete theories, we will 
require that, for some k G co, those models omit Bk and Bk

d. 
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THEOREM 7.3. Let %be a lattice of finite height which for some k £ œ 
omits both Bk and Bk

d. Then 77* (SI) is super stable. 

There are finite height lattices which omit both Ba and BJ that are 
unstable. 

Example 7.4. Recall the unstable lattice °U of Example 1.2. For each 
i £ co, let Xi be a C-class isomorphic to 

X0 X\ X2 Xi 

and let 

93 = {0,1} \J U(X{: i e co), 

where X t C\ Xj = <j> if i ^ j . 

T = Th(Sd) U A^VJ {~ (3 2)(*, < K l A ^ < 2 ) : j < K co}. 

Every finite subset of T is satisfiable in an expansion of 93, so there is a 
model S = 93 containing an isomorphic copy of °tt such that 

g t= (3 z) (Xi < z < 1 A Jj < z) if and only if i ^ 7. 

As in the case of °tt, it follows that Th(G£) = Th($$) is unstable. 

8. Conclusion. Mekler and the author [24] have generalized the super-
stability results of this thesis to a class of (directed) graphs containing 
all planar graphs. This is a substantial strengthening of a result in [30] 
which showed that these graphs have stable theories. 

A study of the stability of lattices turns out to be a logical starting 
point for a study of stability of a variety of semigroups called bands. The 
varieties of left zero bands, right zero bands and semilattices are the 
atoms of the lattice of equational classes, or varieties, of bands. (See 
[17], page 124.) The model theory of left and right zero bands is very 
simple and in regard to stability it turns out that studying lattices and 
semilattices amounts to the same thing. 

Besides being the atoms in the lattice of equational classes of bands, 
left and right zero bands and semilattices are important to the study of 
bands for another reason. It is known that every rectangular band is 
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isomorphic to a direct product of a left zero and a right zero band. 
Furthermore, every band is a semilattice of rectangular bands. So one 
might hope that the results of this paper could be applied to help classify 
stability in the class of all bands. However, P. Olin and the author in 
[28] determine rather strong necessary and sufficient conditions for the 
preservation of stability by this construction. 

Alan Mekler noted that the analysis of Section 3 (in particular the 
proof of Lemma 3.3) can also be applied to show that the theory of y 
has a primitive recursive decision procedure. We have not checked the 
details but suspect that this and a similar result for ^ can be extracted 
from our proofs. (One might compare our neighbourhoods to the spheres 
of Hanf in [15].) 

John T. Baldwin has pointed out to us that a class of pseudoplanes can 
be regarded as height four lattices. Lachlan in [22] has shown that if 
there are no No-categorical pseudoplanes then: (1) If T is stable and 
No-categorical then T is co-stable; and (2) If T is co-stable and No-cate­
gorical then T has finite Morley rank. ((1) and (2) are two unproven 
conjectures relating stability and No-categoricity. We refer the reader 
to [4], Chapter 7 for the definition of Morley rank and to [22] for the 
definition of pseudoplane.) So it is of interest whether or not the height 
four lattices which are pseudoplanes are No-categorical. 

It can be shown that the No-categorical theories in 5f (see Theorem 
6.1) have finite Morley rank, in fact ^ 2 . This supports (1) and (2). 
None of the height 4 lattices which are pseudoplanes fall into the c l a s s a , 
so they are not covered by Theorem 6.1. There are pseudoplanes in the 
class ^~, but none of these are No-categorical. Whether or not there exist 
No-categorical height 4 lattices outside of j ^ U 3T which are pseudo­
planes is an interesting question which we leave open. 

Many other questions about the stability of lattices remain open. 
We have shown that a dimension ^ 2 lattice is superstable if and only 

if it is stable if and only if it has finite height. 

Problem 1. Characterize co-stability and Ni-categoricity in the class of 
all finite height dimension ^ 2 lattices. 

In the case of No-categoricity the infinite height lattices are not ruled 
out. 

Problem 2. Characterize No-categoricity in the class of all dimension 
^ 2 lattices. 

We have demonstrated that there is no simple relationship between 
stability and dimension in the class of lattices of finite dimension ^ 4 . 
But almost nothing is known about the stability of lattices of dimension 
3 or ^co. 
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Problem 3. Characterize /c-stability, Ko and Xi-categoricity in the class 
of dimension 3 lattices. In particular, is there a lattice of height 4 and 
dimension 3 with an unstable theory? 

Question 4. Do there exist finite height lattices of infinite dimension? 
How stable are they? 

Properties other than dimension may yield interesting stability results 
as well, but a complete classification of lattices by their stability prop­
erties, even of height 4 lattices, is unlikely. 
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