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Abstract

Current research on dietary antioxidants misses the so-called non-extractable polyphenols (NEPP), which are not significantly released

from the food matrix either by mastication, acid pH in the stomach or action of digestive enzymes, reaching the colon nearly intact.

NEPP, not detected by the usual analytical procedures, are made up of macromolecules and single phenolic compounds associated

with macromolecules. Therefore, NEPP are not included in food and dietary intake data nor in bioavailability, intervention or observational

studies. The present paper aims to provide an overview of dietary NEPP – nature, occurrence in diet, metabolic fate and possible health

effects. NEPP are a relevant fraction of dietary polyphenols exerting their main biological action in the colon, where they are extensively

fermented by the action of microbiota, giving place to absorbable metabolites. NEPP exhibit different potential health-related properties, in

particular in relation to gastrointestinal health, such as increases in antioxidant and antiproliferative capacities, reduction of intestinal

tumorigenesis and modification of gene expression, as observed in different animal models. Further research into NEPP may provide a

better understanding of the health effects of dietary antioxidants.
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Introduction

There is increasing scientific evidence of the existence of a

relationship between diets rich in natural antioxidants and

the prevention of several chronic diseases. Epidemiological

studies have shown inverse associations between total

dietary antioxidant intake and inflammation(1,2), ischaemic

stroke(3), alterations in endothelial function(4) and gastric

cancer(5). Moreover, adherence to a Mediterranean diet,

which implies a higher plasma concentration of dietary

antioxidants(6), is associated with a decrease in overall

mortality and particularly in mortality resulting from CVD

or cancer(7).

Dietary antioxidants are a diverse group of chemical

compounds, with varying solubility in biological fluids or

biomembranes, and mechanisms of actions; they include

carotenoids, vitamins C and E, and polyphenols(8). Of

these, polyphenols (which include a wide variety of chemi-

cal structures that share one or more phenol groups) are

the most commonly consumed dietary antioxidants, corre-

sponding to about 90 % of dietary antioxidant intake(9,10).

The interest in polyphenol research within the fields of

nutrition and food science has led to an increasing litera-

ture dealing with: (a) the bioavailability and distribution

in tissues of polyphenols(11); (b) possible mechanisms of

action of polyphenols(12); and (c) the health effects derived

from polyphenol intake(13). In particular, clinical trials and/

or epidemiological studies have shown that polyphenols

play a role in the prevention of CVD and of certain kinds

of cancer(14,15).

Current research into polyphenols focuses mainly on

only a fraction of dietary polyphenols, corresponding to

those that can be extracted from food with aqueous–organic

solvents. The polyphenols identified in such extracts –

named extractable polyphenols (EPP) – are then considered

to be the total polyphenol content, and are used as the basis

for calculations of dietary intake, bioavailability studies and

to design intervention or observation studies.

However, it is known that a significant fraction of food

polyphenols remains in the corresponding residues after

the extraction; the so-called non-extractable polyphenols

(NEPP)(6). Since foodstuffs are consumed as a whole,

i.e. including both EPP and NEPP, significant amounts of

NEPP are ingested daily, contributing to the reported

health effects of polyphenols. However, this fraction of

dietary polyphenols has long been neglected and studies

of it are still scarce. The present review aims to provide
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an overview of dietary NEPP: their nature, occurrence in

the diet, metabolic fate and possible health effects.

Non-extractable polyphenols

Several classifications for the different polyphenol classes,

focused exclusively on EPP, have been proposed based

on the different chemical skeletons that they present.

One of the most common classifications divides them

into flavonoids, phenolic acids, stilbenes, lignans and

other polyphenols (including tyrosols and alkylresorci-

nols). All of them possess at least one aromatic ring, with

one or more hydroxyl moieties. Several procedures have

been reported for extracting polyphenols from plant

foods; the most common is solid–liquid extraction with

different combinations of organic solvents (methanol, etha-

nol or acetone) with water. Since there is abundant litera-

ture on EPP (more than 30 000 references according to

the Thomson Reuters (formerly ISI) Web of Knowledge

website; http://wokinfo.com/), including aspects such as

their chemical characterisation, bioavailability, nutritional

qualities and effects on health, this class of polyphenols

is beyond the scope of the present review.

When performing such chemical extractions on food-

stuffs, a solid residue remains. In polyphenol research,

the residue is usually ignored and considered to be

devoid of polyphenols. However, the residue is actually a

rich source of another fraction of polyphenols with specific

biological activities: NEPP.

NEPP are those dietary polyphenols that, after ingestion,

are not significantly released from the food matrix either by

mastication, an acidic pH in the stomach or the action of

digestive enzymes. They reach the colon nearly intact,

where they are subjected to extensive transformation by

colonic microflora (see ‘Non-extractable polyphenols

through the human gut’ section). NEPP include macromol-

ecules, such as high-molecular-weight proanthocyanidins,

and single phenolic compounds, such as phenolic acids,

associated with macromolecules, mainly polysaccharide

constituents of dietary fibre (DF) and protein. They are

generally not included in polyphenol analysis of foodstuffs,

although their NEPP content may be even higher than that

of the EPP fraction (see ‘Occurrence of non-extractable

polyphenols in foodstuffs and diets’ section). With regards

to their chemical nature, NEPP comprise mainly polyphe-

nols also found as EPP, such as proanthocyanidins, other

flavonoids, phenolic acids and hydrolysable tannins(16).

NEPP interact with the food matrix (mainly polysacchar-

ides and proteins) via different mechanisms: (a) hydrogen

bonding, as described for non-extractable proanthocyani-

dins (NEPA)(17) and that may also be applicable to hydro-

lysable tannins; (b) hydrophobic interactions, including

possible encapsulation into hydrophobic pockets with

NEPA(17); (c) covalent bonding (to form esters and ether

bonds), in the case of phenolic acids(18–20), and possibly

of NEPA and hydrolysable tannins. In addition, a fraction

of EPP may be associated with NEPP(21). Whatever the

case regarding that last point, it should be pointed out

that there are still many aspects related to the interactions,

as well as to the physico-chemical structures of NEPP, that

have yet to be elucidated.

Another important aspect of NEPP is that they are associ-

ated with DF and they can be considered to be constituents

of DF. Since the first research at the end of the 1980s,

which showed that this fraction of dietary polyphenols

were constituents of DF(22,23), in recent years some

papers have emphasised the significant contribution of

NEPP to the health-related properties attributed to DF poly-

saccharides(24–26). Therefore, NEPP do indeed contribute

to some of the health-related properties commonly attribu-

ted to DF and EPP.

Occurrence of non-extractable polyphenols in foodstuffs
and diets

Figure 1 shows the process followed for the analysis of the

NEPP content of food(27–29). A chemical extraction with

aqueous–organic solvents is carried out on the food,

which releases EPP in the supernatant fraction and also

produces a residue. The residue is then subjected to the

action of digestive enzymes, to obtain a new residue con-

taining NEPP. Chemical hydrolysis is then carried out, in

order to release NEPP from the food matrix, or to fragment

the polymers. The hydrolysates obtained after these treat-

ments may then be analysed using spectrophotometric or

chromatographic techniques. Although the NEPP content

of food has been studied much less than the EPP content,

the available data show the relevance of this fraction of

dietary polyphenols.

Occurrence of non-extractable polyphenols in individual
foodstuffs

The different classes of NEPP are widespread among the

different families of plant foods (cereals, fruit, vegetables,

Food

Aqueous–organic solvents

Supernatant fraction (EPP)

Digestive enzymes

Supernatant fraction

Chemical hydrolysis

Residue

Residue (NEPP)

Hydrolysates

Analysis
(Spectrophotometry, HPLC-DAD, HPLC-MS, etc.)

Fig. 1. Scheme of the analysis of food non-extractable polyphenols (NEPP).

EPP, extractable polyphenols; DAD, diode array detection.
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nuts, legumes), although some of them are particularly

characteristic of a particular food family. Table 1(27,29–53)

shows the reported content of NEPP belonging to different

classes (proanthocyanidins, hydrolysable tannins and

hydrolysable phenolics) in several plant foods.

NEPA are mostly found in fruit. Despite being obtained

via different procedures, the data included in Table 1 pro-

vide a rough estimation of the NEPA content of foodstuffs.

The case of the banana is particularly interesting, since

its NEPA content (recently confirmed by an improved

procedure(54)) would be about 100-fold the reported

extractable proanthocyanidin content for this food(55).

This reflects the contribution of this fraction of dietary

polyphenols, that is usually ignored, to the total content

of polyphenolic compounds in foodstuffs and therefore

to dietary intake of such compounds.

Hydrolysable phenolics are comprised of several classes

of phenolic compounds, although the most common are

phenolic acids (ferulic acid, caffeic acid, sinapic acid and

others). Although hydrolysable phenolics have usually

only been studied in cereal products, they have recently

been reported to be present in many other foodstuffs,

such as onion, black olive, apple, medlar, mandarin, acer-

ola, cashew apple, black currant pomace and red ginseng,

as shown in Table 1.

Finally, hydrolysable tannins are more specific to certain

foodstuffs. Ellagic acid and other derivatives from the

hydrolysis of ellagitannins have been reported, for

instance, to be present in several nuts (Table 1).

Another problem when it comes to evaluating the contri-

bution of NEPP to the total polyphenol content of food-

stuffs is that besides the fact that studies dealing with the

NEPP content of foodstuffs are rare, they usually focus

on only one class of NEPP (as is the case with most of

the references included in Table 1) and do not consider

the overall analysis of the different classes of NEPP. How-

ever, some methods have been proposed that include

both the analysis of hydrolysable phenolics and NEPA in

the evaluation of NEPP(29,56); some of the results are

shown in Fig. 2(57). The analysis of EPP, hydrolysable phe-

nolics and NEPA in several types of fruit and nuts showed

that the contribution of NEPP was between 60 and 90 % of

the total polyphenol content, and therefore represented

the major fraction of these dietary antioxidants.

Finally, since NEPP are constituents of DF, updated

methods for the analysis of DF include analysis of

NEPP(37). Such an approach has already been used in the

analysis of DF from several types of fruit, vegetables and

nuts(30,37,41).

Occurrence of non-extractable polyphenols in diets

Analysis of NEPP in individual foodstuffs should serve as

the basis for calculating NEPP content in whole diets in

different populations; and therefore, for estimating NEPP

intake from them. A few papers have dealt with the anal-

ysis and dietary intake of NEPP in the Spanish diet, as an

example of the Mediterranean diet(28,56) and in a rural

Mexican population(58).

As regards the Spanish diet(28,56) when determining total

polyphenol content in the different food consumed, it was

found that in all the plant-based food groups (cereals,

vegetables, legumes, fruit and nuts) the NEPP content

was higher than that of EPP. When the data were translated

into estimates of intake, total polyphenol intake in the

Spanish diet was estimated to be about 1800–3000 mg/

individual per d, depending on the analytical techniques

used, with NEPP contributing about 50 % of the total poly-

phenol intake. Fruits were the highest contributor to NEPP

intake (about 47 %), followed by cereals (31 %), vegetables

(13 %), legumes (6 %) and nuts (4 %).

As the authors of the studies emphasised, some of the

data are closer to estimates than to accurate determinations

of NEPP intake, due to the analytical limitations. Neverthe-

less, the results constitute evidence of an appreciable

presence of NEPP in plant foods and of their contribution

to total polyphenol intake.

Table 1. Non-extractable polyphenol content reported in the literature
for several plant foods

Non-extractable
polyphenol
class Food

Content
(mg/100 g fw) Reference

Proanthocyanidins Açaı́ fruit 1240 (SD 140)* (30)

Apple 37–43 (31)

Quince 48 (32)

Banana 980 (SD 45)* (27)

Apple pomace 18–23 (33)

Cranberry
pomace

1685 (34)

Cocoa powder 602 (SD 13) (35)

Carob pod 180 (36)

Hydrolysable
phenolics

Onion 410 (SD 20)* (37)

Black olive 14–40 (38)

Apple 78 (SD 6) (29)

Medlar 0·5–1·0 (39)

Mandarin 39–107 (40)

Acerola 390 (SD 10)* (41)

Cashew apple 1210 (SD 70)*† (41)

Black currant
pomace

41 (SD 1) (42)

Red ginseng 2·0 (SD 0·1) (43)

Refined maize
flour

209 (44)

Whole-grain
maize flour

174 (SD 2) (45)

Whole-grain
wheat flour

32 (46)

Wheat bran 26 (47)

Rice bran 243* (48)

Whole-grain
barley flour

60–135 (49)

Triticale bran 137 (SD 1) (50)

Millet 32–168 (51)

Hydrolysable
tannins

Brazil nut 210 (52)

Heartnut 115 (53)

fw, Fresh weight.
* Results expressed per 100 g dry weight.
† Spectrophotometric analysis, so may include gallic acid and/or ellagic acid

derived from hydrolysable tannins.
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Another study focused specifically on the contribution of

NEPP to polyphenol intake from fruit and vegetables in a

rural Mexican population(58). Despite the food items

included in the categories in Mexico being very different

from those consumed in Spain, it is remarkable that the

results again showed that NEPP are more abundant in

the solid plant-based food groups than EPP are and, there-

fore, they contribute significantly to the total polyphenol

intake.

This kind of evaluation of total polyphenol content in

diets, including NEPP, as well as estimations of the associ-

ated polyphenol intake, should be generalised to different

populations as a starting point to advance our knowledge

of the possible associations between NEPP intake and

health effects that have not previously been considered.

Non-extractable polyphenols through the human gut

To understand the possible health effects associated with

the intake of any bioactive compound, and therefore of

NEPP, it is necessary to have knowledge of the different

events that occur along the human gut, including:

(1) The solubilisation of the compounds in intestinal

fluids, via different mechanisms, resulting in the

compounds becoming bioaccessible. This may be

estimated by determining the presence of NEPP in

intestinal fluids, both in the small and in the large

intestine.

(2) Possible transformations by colonic microbiota of the

compounds that are bioaccessible in the colon. Such

transformations may be enhanced or inhibited by the

presence of other food components and/or other

interactions with the microbiota. The metabolites

derived from such transformations may be determined

either in vitro (supernatant fractions from in vitro

fermentation) or in vivo (caecal contents or faeces).

(3) Absorption, either of the original compounds or of the

derived metabolites. Absorption gives rise to metab-

olites that may be determined in different biological

fluids, such as urine and blood.

(4) Possible effects on target tissues. An accumulation of

bioactive metabolites in certain tissues may contribute

to the local effects of compounds of interest.

All these aspects have been studied in depth over recent

years for EPP(11), but studies on NEPP are scarce. Despite

that, the available work that focuses on NEPP suggests that

they are subjected to extensive transformation in the gut,

giving rise to several absorbable metabolites that have

been reported to have different health effects. From such

work(28,59–65) a general scheme of the metabolic fate of

NEPP can be proposed, as shown in Fig. 3, where compound

‘a’ represents a hydrolysable phenolic compound, i.e. a phe-

nolic acid associated with a polysaccharide chain, and com-

pound ‘b’ represents a polymeric NEPA. Briefly, most NEPP

will pass through the small intestine (Fig. 3(A)) without any

transformation. Once in the colon (Fig. 3(B)), and mainly

through the action of the microbiota, NEPP are released

and new compounds form. Some of these microbial metab-

olites may be absorbed though the portal vein, reaching the

liver (Fig. 3(C)), where several related processes occur,

giving rise to phase II metabolites. Once formed, these

metabolites may return to the digestive tube through the

bile (Fig. 3(D)), or pass into the bloodstream as a first step

towards reaching the target tissues and finally be excreted

in urine (Fig. 3(E)).

Bioaccessibility of non-extractable polyphenols

Bioaccessibility corresponds to the amount of a food

constituent that is solubilised in intestinal fluids as a conse-

quence of physico-chemical conditions, or the action of

either digestive enzymes or bacterial microbiota. Saura-

Calixto et al.(28) evaluated the bioaccessibility of total

polyphenols, including NEPP, in a complete diet by using

an in vitro gastrointestinal model followed by in vitro

colonic fermentation. They observed that, while about a

50 % of hydrolysable phenolics become bioaccessible in

the small intestine, in the case of NEPA most of them arrive

nearly intact to the colon. Similarly, other studies have

shown that NEPA are only partially depolymerised in the

small intestine(64,65). Once in the colon, those NEPP that

are not solubilised in the small intestine become accessible

either by: (a) fermentation by colonic microbiota of the

molecules to which they are associated (carbohydrates or

proteins); or (b) the action of some intestinal enzymes able

to break covalent bonds, such as esterases(59). It has been

estimated that 95 % of NEPA arriving to the colon are

released from the food matrix by these two mechanisms(28).
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Fig. 2. Contribution of the different classes of non-extractable polyphenols to

total polyphenol content in different foods(29,41,57). , Non-extractable

proanthocyanidins; , hydrolysable phenolics; , extractable polyphenols.
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Therefore, significant amounts of the different classes of

NEPP appear in the large intestine daily as bioaccessible

compounds, including both the compounds that have

been solubilised in the small intestine but have not been

absorbed, as well as those released in the large intestine.

Since NEPP are widespread among the different groups

of plant foods, a diverse diet including food from all of

them would guarantee a continuous supply of beneficial

bioaccessible compounds through the digestive tract.

Obviously, a fraction of EPP not previously absorbed in

the small intestine also arrives as bioaccessible compounds

to the large intestine(28); future work should elucidate the

particular contributions of EPP and NEPP to the pool of

bioaccessible phenolic compounds present in the large

intestine.

Colonic transformation and bioavailability of
non-extractable polyphenols

In the colon, NEPP released from the food matrix

and polymeric NEPP undergo colonic fermentation,

which produces potentially absorbable metabolites. Work

focusing strictly on the fermentation of dietary NEPP is

still scarce and mostly qualitative(62–65), but it has already

provided clear evidence on their colonic fermentation.

For instance, supplementing rats with a NEPP concentrate

devoid of EPP resulted in the presence of polyphenol-

derived metabolites in the urine and faeces (ten and

three, respectively) at concentrations at least 10-fold

higher than in a non-supplemented group(65).

On the other hand, since many studies of the metabolic

fate of polyphenols are based on supplementation with

whole foods, many of which evidently contain NEPP,

some of the data regarding the metabolites derived from

polyphenols would actually correspond to NEPP meta-

bolites. Therefore, considering specific studies on NEPP

fermentation(62–66) and other studies on foods containing

both EPP and NEPP(67–69), these would be the main

microbial metabolites derived from the different fractions

of NEPP(62–69):

(1) Metabolites derived from NEPA. These include: (a) the

monomeric constituents of NEPA polymers, mainly

(epi)catechin; and (b) a wide variety of compounds

derived from the breakdown of the basic skeleton

of flavanols and further degradation, which gives

place first to valerolactones, then to several phe-

nolic acids corresponding to successive degradations
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Fig. 3. Overview of the metabolic fate of non-extractable polyphenols (NEPP). Sulf-, sulfur; Me-, methyl; Gluc-, glucose.
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(hydroxyphenylpropionic acids, hydroxyphenylacetic

acids, etc.) and then to small acids such as hippuric acid.

(2) Metabolites derived from hydrolysable phenolics.

Although free phenolic acids released from the food

matrix may be absorbed directly, they may also

undergo additional transformation resulting from

interaction with the colonic microbiota. For instance,

ferulic acid is transformed into dihydroferulic acid,

which is later metabolised to other phenolic acids

coincident with the degradation of proanthocyanidins.

(3) Metabolites derived from hydrolysable tannins. Ellagic

acid released from ellagitannins in the gastrointestinal

tract is transformed by the microbiota into a particular

class of compounds, the urolithins.

The presence of these compounds has been determined

in caecal contents and in faeces(64,65), but their determi-

nation is most common in urine and blood (in both

animal studies and clinical trials)(62,63,66). The results

show that these compounds are absorbed and therefore

become bioavailable and can have different biological

effects on the human body, as well as possible local effects

on the colon (see ‘Health-related properties of non-extrac-

table polyphenols’ section).

The metabolites described above do not differ from

those described as derived from EPP colonic fermenta-

tion(11,68), i.e. the colonic fermentation of both EPP and

NEPP gives place to the same compounds. However, the

specific characteristics of NEPP (high molecular weight

and/or association with other macromolecules present in

the food matrix) cause two specific features in the colonic

transformation of NEPP as compared with EPP:

(1) The absorption of NEPP is retarded in relation to that

of EPP, as shown by the delayed peak in plasma ferulic

acid levels after the intake of wheat bran (containing

NEPP) in comparison with that of pure ferulic

acid(60), or the delayed peak in plasma antioxidant

capacity after the intake of a NEPA-rich matrix in com-

parison with the data for EPA-rich matrixes(40). Such

data indicate that metabolites derived from NEPP cir-

culate for longer periods in the human body than

those derived from EPP. Indeed, some of the metab-

olites detected in the urine and faeces of rats fed

with NEPA-rich products and in the supernatant frac-

tions from in vitro fermentation of these matrixes

were also detected in plasma from fasting volunteers

after 24 h of a polyphenol-free diet, which demon-

strates the prolonged circulation times of NEPA metab-

olites(63). Therefore, NEPP may continually provide

the colonic microbiota with a significant amount of

fermentable substrates that need more time to be

released and fermented than EPP due to their specific

nature, and, therefore, result in a more prolonged

circulation of beneficial metabolites.

(2) Since NEPP do not reach the colon alone, but in com-

bination with other fermentable dietary components,

such as proteins and polysaccharides, their fermenta-

tion rate may be affected. Indeed, some studies in

rats have shown that the presence of DF enhances

the fermentation of polyphenols(70,71). Moreover, in the

work by Saura-Calixto et al.(63), the in vitro fermen-

tability (as SCFA production compared with a control)

of a concentrate of polymeric NEPP was 23 %, while

that of a concentrate of NEPP associated with DF

was 50 %, probably due to an increase in bacterial

activity. Therefore, the colonic fermentation of NEPP

would be accompanied by a synergism with the

other components of the food matrix to which they

are associated, an aspect that is not present in the fer-

mentation of EPP, which are free in the food matrix.

A summary of some of the colonic metabolites derived

from NEPP, as well as the specific features of their fer-

mentation, is shown in Fig. 4. Nevertheless, more specific

work on the colonic metabolism of NEPP from different

origin and/or different nature, including quantitative data,

is needed. This would allow elucidation of the relative

contributions of EPP and NEPP to the dozens of polyphe-

nol-derived metabolites that circulate in the human body

after plant food intake, and that may be indeed be respon-

sible for many of the reported benefits of polyphenols(69).

Health-related properties of non-extractable polyphenols

Aspreviously described,NEPPundergo extensive transform-

ation in the colon. Therefore, the health effects associated

with them may not come mainly from the intact NEPP, but

from their metabolites. In recent years, a number of studies

have started to focus on the biological activities of poly-

phenol metabolites. Although they do not specifically con-

sider the contribution of NEPP to their release, a significant

proportion of the production of such compounds in the

human body, and therefore of their associated effects,

would be due to NEPP intake, as explained above.

Table 2(72–76) summarises some of the findings regarding

the biological effects of these metabolites; the results are

mostly obtained in cell cultures and animal models. The

effects include anti-inflammatory activity, a reduction of

oxidative stress, the inhibition of protein glycation,

antiproliferative effects and effects on flow-mediated vaso-

dilation(72–76). These are probably the mechanisms that

underlie the observed health effect of NEPP-rich products

in animal and human studies.

Moreover, since a significant fraction of NEPP is present

in foods associated with polysaccharides, when such a

complex reaches the colon, the polysaccharide fraction

also ferments, releasing beneficial components such as

butyric acid, associated with the prevention of colorectal

cancer(77,78), and acetate and propionate, with potential

health effects on lipid metabolism(78,79). These metabolites

also contribute to the health effects reported in animal or

human studies of NEPP-rich products.
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Gastrointestinal health

Since NEPP reach the colon nearly intact and that is

where they suffer most of their metabolic transformation,

it is evident that one of their major targets of action

is gastrointestinal health. Several studies have shown

promising results in this field after supplementation

of different animal models with several NEPP-rich pro-

ducts (Table 3)(80–91). Grape antioxidantDF, amatrix derived

from wine production with a high content of NEPA(92),

mostly associated with DF, has been the most commonly

tested matrix; however, some studies have also fed rats

with apple pulp, carob pod, artichoke, grape pomace or

grape seeds. Most studies included ten animals per group

(commonly Wistar rats) and carried out the supple-

mentation by including a 5–13 % of the tested product in

the diet. The duration of the study was commonly 4 weeks.

Overall, these animal studies show that NEPP may

have a beneficial effect on gastrointestinal health through

a combination of mechanisms(80–91):

(1) An increase in stool weight, reducing transit time

and therefore the time of contact of toxic compounds

with the colonic epithelium(80–83).

(2) An increase in the antioxidant capacity of caecal con-

tent and in the expression of endogenous antioxidant

Table 2. Summary of biological effects described for polyphenol metabolites

Metabolites Biological effect Reference

(2 )-Epicatechin conjugates Effects on flow-mediated vasodilation in human subjects (72)

3-Phenylpropionic acid, 3-hydroxyphenylacetic acid,
3-hydroxyphenylpropionic acid

COX-2 inhibition in HT-29 intestinal cells (73)

3,4-Dihydroxyphenylacetic acid, hydroferulic acid Anti-inflammatory activity in CDD-18 colon fibroblast cells (74)

Hydrocaffeic acid Reduction of oxidative stress in DSS-treated rats (74)

Urolithin A, urolithin B, dihydroferulic acid Protein glycation inhibition (75)

Urolithin A, urolithin B Antiproliferative effects through change in the expression levels of growth factor
receptors, oncogenes and tumour suppressors in Caco-2 intestinal cells

(76)

COX-2, cyclo-oxygenase-2; DSS, dextran sodium sulfate.
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systems, thus counteracting the tumour-promoting

reactive oxygen species (ROS) present in the

colon(84,85,89,90).

(3) A prebiotic effect proven by stimulation of Lacto-

bacillus, which would also imply a reduction in the

proportion of non-beneficial bacteria species(91). This

prebiotic effect was observed when rats were sup-

plemented with a NEPP-rich product but not when

their diet contained the same amount of cellulose,

indicating that this was a specific effect of NEPP and

not of DF. Previous in vitro studies had also reported

a prebiotic effect for grape pomace, another NEPP-rich

product(92).

(4) An increase in antiproliferative capacity in healthy rats,

shown by an induction of epithelial hypoplasia,

reduction of apoptosis and a decrease in the number

of crypts(86,89,90). These antiproliferative effects were

additionally found in cell cultures treated with a

NEPP concentrate from apple pomace(70).

(5) A reduction of intestinal tumorigenesis in APCMin/þ

mice, an animal model of colorectal cancer, including

significant reductions in the number (276 %) and size

(265 to 287 %) of polyps(88).

(6) Modifications in gene expression in healthy mice and

in APCMin/þ mice, in particular, down-regulation of

genes associated with tumour development and

proto-oncogenes (for example, genes belonging to

the RAS family, such as RASSF4, RAP2C and RAP2B),

and up-regulation of tumour-suppressor genes (for

instance, NLB1 or TGFb3, related to cell cycle and

cell proliferation, respectively)(87,88).

In none of these studies neither adverse nor toxic effects

were observed in the animals.

Overall, all these animal studies have shown a promising

role for NEPP in the prevention and/or treatment of color-

ectal cancer and other gastrointestinal disorders, which

should be validated in human subjects with proper clinical

trials. Interestingly, when grape antioxidant DF was pro-

vided to human subjects, an increase in weekly faecal out-

puts was observed in those subjects who initially exhibited

seven or fewer faecal outputs per week(93). Although grape

antioxidant DF is a DF-rich product and this bulking effect

is well known for DF, it should be emphasised that NEPP

are indeed constituents of DF(26), although they are usually

not considered, and they may make a specific contribution

to this bulking effect.

Also, a recent epidemiological study(15) showed an

inverse association between proanthocyanidin intake and

the risk of colorectal cancer; furthermore the reduction in

risk was greater, the higher the degree of polymerisation

of the proathocyanidins (. 10). This study only considered

the intake of EPA, but since NEPA are also present in

common foodstuffs and they consist of large polymeric

structures, these results highlight the need to corroborate

the possible role of NEPP – and in particular NEPA – in

the prevention of colorectal cancer.

CVD risk factors

The absorption of bioactive metabolites generated in the

colon (both from the fermentation of NEPP themselves

and from that of their associated polysaccharides) may

Table 3. Summary of animal studies on the effect of non-extractable polyphenols (NEPP) on gastrointestinal health

NEPP-rich product
Daily dose and duration
of the study

Animal model and
size of treatment
group Reported effects Reference

Apple pulp, carob pod,
grape pomace,
grape seeds

10 % of the diet,
1–8 weeks

Wistar rats, n 10–12 Increase in stool weight (þ50 to þ300 %) (80–83)

Artichoke, grape seeds 5–13 % of the diet,
3–5 weeks

Wistar rats, n 10 Increase in antioxidant capacity in caecal
content (þ400 to þ1000 %)

(84,85)

Grape antioxidant
dietary fibre

5 % of the diet,
4 weeks

Wistar rats, n 10 Reduction of lipid oxidation in distal colonic
mucosa (225 %)

(86)

Grape antioxidant
dietary fibre

0·1 g/kg bw, 2 weeks C57BL/6J mice, n 8 Overexpression of enzymes pertaining to the
xenobiotic detoxifying system and endogenous
antioxidant cell defences (þ100 to þ200 %)

(87)

Grape antioxidant
dietary fibre

0·1 g/kg bw, 2 weeks C57BL/6J mice, n 8 Down-regulation in colon mucosa of genes
associated with tumour development and
proto-oncogenes (2100 to 2200 %),
up-regulation of tumour-suppressor genes
(þ100 %)

(87)

Grape antioxidant
dietary fibre

1 % of the diet,
16 weeks

APCMinþ/2 mice, n 12 Reduction in the number (276 %) and size
(265 to 287 %) of polyps

(88)

Grape antioxidant
dietary fibre

5–7 % of the diet,
4 weeks

Wistar rats, n 10 Induction of epithelial hypoplasia in colonic
mucose (230 % DNA content), reduction
of apoptosis (230 to 240 %), decrease of
number of crypts (210 to 215 %)

(86,89,90)

Grape pomace, grape
antioxidant dietary fibre

5 % of the diet,
4 weeks

Wistar rats, n 10 Stimulation of Lactobacillus growth
(1-log increase)

(91)

bw, Body weight.
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give rise to systemic effects that manifest in other organs

and tissues. In particular, the possible role that these

colonic metabolites may play in the prevention of CVD

has been expressed as the ‘gut–heart axis’ hypothesis(94).

Several studies in animal models and/or human sub-

jects(82,87,93,95) have shown that a NEPP-rich matrix may

mitigate certain risk factors for CVD, such as hyperlipidae-

mia or hypertension. As regards to the effects in lipidaemia,

this could occur through different mechanisms, such as

a reduction in lipid biosynthesis (proven by a down-

regulation of the expression of genes involved in this

process) and an increase in faecal excretion of

cholesterol(82,83,87). Moreover, NEPP could also be related

to the prevention of CVD by a reduction of lipid oxi-

dation(93), which has shown to be associated with CVD(96).

Also, it should be considered that the association of

NEPP with DF may give rise to specific synergies. In this

way, the daily supplementation to hypercholesterolaemic

subjects with 7·5 g of a grape-derived NEPP-rich product

for 16 weeks resulted in significant reduction in plasma

cholesterol and blood pressure, which were greater than

those described separately for DF and EPP in several

meta-analyses. This may be due to the combined effects

of a single matrix containing DF and associated NEPP(92).

Finally, a field which has so far not been explored and in

which NEPP may have a preventive effect is that of the

metabolic syndrome and, in particular, in the maintenance

of homeostatic glucose levels through action on insulin

sensitivity. The existence of metabolic crosstalk between

the colon and periphery organs affecting insulin sensitivity

has been suggested(97). More recently, the supplemen-

tation of mice with grape antioxidant DF produced a

decrease in blood glucose, compared with controls, and

up-regulation of the gene encoding the enzyme glucose-

6-phosphatase, which plays a key role in the homeostatic

regulation of blood glucose(87).

Concluding remarks

NEPP constitute an important fraction of dietary polyphe-

nols, which has commonly been ignored in polyphenol

research.

The different classes of NEPP are widespread among

all the families of plant foods, and their content in many

foodstuffs is higher than that of EPP. Therefore, they

significantly contribute to polyphenol intake, which is

commonly considered to be derived only from EPP.

Studies of the metabolic fate of NEPP, although

scarce, have shown that NEPP are extensively fermented

in the colon, releasing several bioactive and absorbable

metabolites.

The main site of action of NEPP is the colon, with several

studies of different animal models showing different mech-

anisms by which NEPP may play a preventive role with

regard to colorectal cancer. Also, NEPP (through their bio-

active metabolites) may also play a role in the prevention

of other chronic diseases, in particular in mitigating certain

risk factors for CVD.

The health properties of DF and phenolic compounds

are commonly attributed to polysaccharides and EPP,

respectively; in both cases this disregards the relevant

contribution of NEPP to such properties.

Further research into NEPP should be encouraged, includ-

ing analysis of food content, estimates of dietary intakes in

different populations, studies of their metabolic fate and

sites of action, and evaluation of their health effects through

clinical trials. This would help us to gain a complete over-

view of the biological and nutritional relevance of this

understudied fraction of dietary antioxidants.
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cessibility of total polyphenols in a whole diet. Food Chem
101, 492–501.

29. Arranz S, Saura-Calixto F, Shaha S, et al. (2009) High contents
of nonextractable polyphenols in fruits suggest that poly-
phenol contents of plant foods have been underestimated.
J Agric Food Chem 57, 7298–7303.
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