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Abstract

We investigate the topological and metric properties of attractors of an iterated function system (IFS)
whose functions may not be contractive. We focus, in particular, on invertible IFSs of finitely many
maps on a compact metric space. We rely on ideas of Kieninger [/terated Function Systems on Compact
Hausdorff Spaces (Shaker, Aachen, 2002)] and McGehee and Wiandt [ ‘Conley decomposition for closed
relations’, Differ. Equ. Appl. 12 (2006), 1-47] restricted to what is, in many ways, a simpler setting,
but focused on a special type of attractor, namely point-fibred invariant sets. This allows us to give short
proofs of some of the key ideas.
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1. Introduction

The subjects of this paper are the attractors of an iterated function system (IFS)
on a compact metric space. Iterated function systems are used for the construction
of deterministic fractals [2] and have found numerous applications, for example to
image compression and image processing [3]. The notion of an attactor of an IFS
has historically been linked with the contractive properties of the functions in the
IFS, beginning with the work of Hutchinson [10]. If the functions of the IFS are
contractions, then the existence of a special type of attractor, a strict attractor, is
assured. Moreover, it has recently been shown [1, 17] that, for affine and M&bius
IFSs (defined in Section 2), the existence of a strict attractor implies that the functions
in the IFS must be contractions. There do exist, however, examples of IFS attractors
for which the functions are not contractions, not even contractions with respect to any
metric that gives the same topology as the underlying space [6]. In this paper we
investigate the topological and metric properties of attractors of a general IFS on a
compact metric space for which the functions are not necessarily contractive. We rely
onideas in [12, 14], but restricted to what is, in many ways, a simpler setting. The goal
is to state and prove basic results about the attractors of a general IFS on a compact
metric space, as the groundwork for further research.
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There are numerous definitions of an attractor; see [9] and [15, 16], for example.
The notion of a strict attractor referred to in the paragraph above is the one that has
become standard in the fractal geometry literature. It is natural, however, in the setting
of this paper to introduce a more general notion of attractor. For this type of attractor
the term Conley attractor is used because it is essentially an extension to a finite set of
functions of a notion used so successfully by Conley for a single function [7]. Both the
strict attractor and the Conley attractor are defined in Section 2. The attractor block,
an essential tool for our investigation of Conley attractors, is the subject of Section 3,
the main result being Theorem 3.4 stating that every Conley attractor possesses an
attractor block.

Section 4 gives sufficient conditions that guarantee that a Conley attractor is a
strict attractor. These sufficient conditions involve both contractive properties of the
functions in the IFS and the existence of a natural addressing function for the points
of the attractor. The notion of fibring plays a role; the thesis of Kieninger [12] has an
extensive discussion of the subject of fibring.

In the case that the functions in the IFS F are invertible, there is a duality between
the action of the IFSs ¥ and ¥, where #* consists of the inverses of the maps in 7.
This leads to the notion of an attractor—repeller pair (A, A*), where A is a Conley
attractor of ¥ and A* is the ‘dual’ disjoint Conley attractor of ¥ *. The main theorem
is as follows, where the notion of basin is given in Definition 2.2.

TueoreM 1.1. Let F be an invertible IFS on a compact metric space X. If A is a Conley
attractor of ¥ with basin B, then A* := X\ B is a repeller of F with basin X \ A.

For the dynamics of a single function, this plays a significant role in Conley’s index
theory [7] and has been extended to the context of ‘closed relations’ by McGehee and
Wiandt [13, 14]. In general, an invertible IFS can have many Conley attractor—repeller
pairs. The second main result in Section 5 is Theorem 5.5, which relates the structure
of these Conley attractor—repeller pairs to the dynamics of the IFS F, more specifically
to the set of chain-recurrent points of ¥ .

The last section provides some examples of the properties described in the paper.

2. Attractors

Unless otherwise stated, throughout this section (X, d) is a complete metric space.
The closure of a set B is denoted B and the interior by B°.

Dermnition 2.1, If f,: X > X, n=1,2,..., N, are continuous functions, then ¥ =
X fis fos - - -, fwv) 1s called an iterated function system (IFS). If each of the maps
f €7 is a homeomorphism then ¥ is said to be invertible, and the notation ¥* :=
GG S YY) is used.

Subsequently in this paper we refer to some special cases of an IFS. For an
affine TIFS we have X =R" and the functions in the IFS are affine functions of the
form f(x) = Ax+a, where A is an n X n matrix and a € R". For a projective IFS
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we have X = RP", real projective space, and the functions in the IFS are projective
functions of the form f(x) =Ax, where A is an (n+ 1) X (n+ 1) matrix and x is
given by homogeneous coordinates. For a Mobius IFS we have X =C =C U {oo},
the extended complex plane, and the functions are Mobius functions of the form f(z) =
(az+ b)/(cz+d), where ad —bc =1 and a, b, c,d are complex numbers. Mobius
functions may equivalently be considered to act on the Riemann sphere or the complex
projective line.

By a slight abuse of terminology we use the same symbol ¥ for the IFS, the set of
functions in the IFS, and for the following mapping. Letting 2 denote the collection
of subsets of X, define 7 : 2% —2% by

FB) = | £B)

feF

for all Be2*. Let H=H(X) be the set of nonempty compact subsets of X. Since
F (H) € H we can also treat ¥ as a mapping ¥ : H — H. Let dy denote the Hausdorff
metric on H, which can be defined as follows. Using the notation

S, ={yeX:dx(x,y) <rforsome x €S}
with § ¢ X and r > 0, the Hausdorff metric dy (see for example [8, page 66]) is
dy(B,C)=inf{r>0:BcC,and C C B,}

for all B, C e H. Under various conditions the map ¥ : H — H is continuous with
respect to dy. This occurs, for example, when the metric space X is compact or when
each f € ¥ is Lipschitz, see [5]. It was also proved to be true when X is a complete
metric space; see [4].

For BcX and ke N:={1,2,...}, let 7X(B) denote the k-fold composition of 7,
the union of f; o f;, o---o f;,(B) over all finite words iyi5 . .. i of length k. Define
F9(B) = B. A strict attractor is defined as follows. This concept coincides with the
standard notion of an IFS attractor in much of the literature on IFS theory.

Dermvition 2.2. A nonempty set A € H(X) is said to be a strict attractor of the IFS F
if:

(1) F(A)=A; and

(i) there is an open set U C X such that A c U and lim;_., F%(S)=A for all
S € H(U), where the limit is with respect to the Hausdorff metric.

The largest open set U such that (ii) is true is called the basin of the strict attractor
A of the IFS F.

The following less restrictive (see statement (4) of Proposition 2.4) definition of an
attractor A is also used in this paper. Called a Conley attractor, it generalises a notion
of attractor due to Conley [7] that has proved useful in the study of the dynamics of a
single function. The definition states, in the case of nonempty attractors, that there is
an open set U containing A whose closure converges, in the Hausdorff sense, to A.
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DeriniTioN 2.3. A compact set A is said to be a Conley attractor of the IFS ¥ if there
is an open set U such that A ¢ U and

A= lim F).
The basin of A is the union of all open sets U that satisfy the above definition.

The empty set is always a Conley attractor of an IFS and X is a Conley attractor if 7
contains at least one surjective function. Example 6.1 provides an IFS with infinitely
many Conley attractors.

ProposiTION 2.4. Let F be an IFS on a compact metric space.

(1) IfAis a Conley attractor of ¥, then F(A) = A.

(2) IfAis a Conley attractor of ¥ with basin B and S is any compact set such that
A CS CB, then lim_, FXS)=A.

(3) IfA and A’ are Conley attractors of an IFS F, then AU A" and AN A’ are also
Conley attractors.

(4) If A is a strict attractor with basin B, then A is a Conley attractor with basin B.

Proor. Concerning statement (1),
T () = Jim 74@)) = Jim 7@ = A,

Statement (2) follows from statement (1) and the fact that S, being compact, is
contained in the union of finitely many open sets U such that A = limy_,.. F*(U).

Concerning statement (3), in Definition 2.3, let U be the open set for A and U’ the
open set for A’. Then U U U’ and U N U’ are the required open sets for A U A” and
ANA'.

Concerning statement (4), let U be an open set containing A such that U c B. Then
U satisfies the conditions in the definition of a Conley attractor. Let B’ denote the
basin of A as given in Definition 2.3. To show that B’ = B, first note that (J{U : A C
U c U c B} = B. Therefore, BC B’. Moreover, if S is any compact subset of B’, then
there is an open set U suchthat AU S c U C U c B'. Since limy_,. F¥(U) = A, there
is a k such that 7%(S) c B. It follows that lim;_,., F%(S) = A. O

Remark 2.5. Conley’s concept of an attractor for one function is usually expressed as
an w-limit. Although it is slightly more complicated to do so, our definition of Conley
attractor of an IFS could be defined in a similar manner. Let

K(S):={Y:Y closed, F(Y)CY, and F"(S) C Y for some n > 0}.

The w-limit set of a set S under ¥ is the set

w(S) = ﬂ?((S).
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In our context, it can be proved that this is equivalent to

W)= F*),

K>1 k>K

which is referred to as the strict w-limit. Omitting the proof, we state that a set A ¢ X
is a Conley attractor of the IFS ¥ in the sense of Definition 2.3 if and only if:

(1) A = w(U) for some open subset U of X; and

(i)AcU.
Furthermore, the largest open set B C X such that w({x}) C A for all x € B is the basin
of A. It follows from the equivalence of the two definitions that the Hausdorff limit in

Definition 2.3 exists if and only if (s x FX(U) C U for some K.

In the following lemma we use the notation a?(X, Y) = max,cx minyey d(x, y) for
compact sets X and Y. The lemma states that the basin of a Conley attractor A consists
of those points whose images under iterates of 7 get arbitrarily close to A.

Lemma 2.6. If A is a Conley attractor of an IFS F, then the basin of A is
- {x Jim (70, 4) = o} = (x: w({x}) C A}, @.1)

Proor. Let B denote the basin for A and B’ the set in (2.1). It follows from the
definitions that B C B’.

Let U be an open set containing A such that lim;_., 7*(U) = A. To prove that
B’ C B, it suffices to show that, for any x € B’, there is an open neighbourhood N
of x such that, if U’ = U U N, then limy_,« 7-"‘(5/) = A, and hence x € B. To show
that such a neighbourhood N exists, let € > 0 be such that {x : min,c4 d(x,a) < e} C U.
Then there is a K such that if k > K, then lim;_, (f(? k(x), A) < €/2. By the continuity
of the functions in #, there is a § > 0 such that, if d(x, y) < 8, then d(g(x) g(y)) <€/2
for all g € FX. Therefore, FX(N) c U and limy_eo FX(U ) = limyseo FX(U) = 0

3. Attractor blocks

Dermvirion 3.1 If # is an IFS on a compact metric space X, then Q ¢ X is called an
attractor block with respect to ¥ if ¥(Q) c Q°.

The following proposition is easy to verify.

Proposiion 3.2. If Q is an attractor block with respect to the IFS ¥ on a compact
metric space X, then limy_,c FX(Q) = Nioe FX(Q) exists and is a Conley attractor
of F.

In light of Proposition 3.2 we formulate the following definition.

DermiTion 3.3. If Q is an attractor block and

A= 7@

k—o0
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is the corresponding Conley attractor, then Q is called an attractor block for A with
respect to .

The basin of a Conley attractor is not, in general, an attractor block. For, if B is
the basin for a Conley attractor then, using the continuity of #, we have ¥ (B) = B.
Therefore, unless B is open, T(E) is not contained in the interior of B, and so it cannot
be an attractor block. Nevertheless, the following theorem tells us that every Conley
attractor has a corresponding attractor block for it.

TueoreM 3.4. If F is an IFS on a compact metric space, A is a Conley attractor of ¥,
and N is a neighbourhood of A, then there is an attractor block for A contained in N.

Proor. The proof makes use of the function F~'(X) = {x € X : f(x) € X for all f € F}.
Note that 7! takes open sets to open sets, X C (F ! o F)(X) and (F o F H(X)c X
for all X.

Let U’ denote an open set containing A such that A = limy_,., FX(U"), and let U =
U’ N N. Let V be an open set such that A ¢ V and V c U. Since A = limy_,eo F¥(V)
by statement (2) of Proposition 2.4, there is an integer m such that F*(V) c V for all
k>m. Define Vi, k=0,1,...,m, recursively, going backwards from V,, to Vy, as
follows. Let V,, =V and fork=m—-1,...,2,1,0,let V, =V N T‘I(Vk+1). IfO=YV,,
then O has the following properties:

(1) Ois open;
(2) Aco:
3) FXO)cVforallk>0.

Property (2) follows from the fact that A ¢ #~'(A). Property (3) follows from the
facts that 7%(0) c V; ¢ V for 0 < k < m, and F%(0) c F¥(V) c V for all k > m.

Since, by statement (2) of Proposition 2.4, A = lim_,c F k(a), there is an integer
K such that FX(0)=FK(O)c O. Let Oy, k=0,1,...,K, be defined recursively,
going backwards from Ok to Oy, as follows. Let Ok be an open set such that
77’((5) COgcCcO,andfork=K-1,...,2,1,0, let O; be an open set such that:

(1) F%0)c Oy cU;and
) F(O0) C O

To verify that a set Oy with these properties exists, assume that O, k > 1, has been
chosen with properties (1) and (2) and note that 7*~1(0) c F~'(F*(0)) c F~1(Oy)
and 7%~ 1(0) c V c U. Now choose Oy_; to be an open set such that F*~1(0) c O_;
and Oy_, c U N F~1(0;) c U. The last inclusion implies F(Or_1) C O.

We claim that

>
L

0= ) O

~
1l
(=)
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is an attractor block for A. Since A = F¥(A) c FX(O) c Oy, for each k, we have A C Q.
Clearly, Q is an open set such that Q ¢ U ¢ N. Hence A = lim;_,., F*(Q), and lastly,

K-1 K K-1
70 =|]FOc| Jor=Jorvoxcouocouosco
k=0 k=1 k=1
This concludes the proof. O

4. Sufficient conditions for a Conley attractor to be a strict attractor

In this section, A is a Conley attractor of an IFS # on a compact metric space and
B is the basin of A. Under certain conditions A is guaranteed to be a strict attractor. In
particular, contractive properties of the functions in  or of the fibres of ¥ may force
this.

Dermvition 4.1. An IFS ¥ on a metric space (X, d) is said to be contractive if there is
a metric d inducing the same topology on X as the metric d with respect to which
the functions in ¥ are strict contractions, that is, there exists A€ [0, 1) such that
dx(f(x), f() < Adx(x,y) fo all x, y € X and for all f € F.

A classical result of Hutchinson [10], a result marking the origin of the concept of
an iterated function system, states that if # is contractive on a complete metric space
X, then ¥ has a unique strict attractor with basin X. The corollary below follows from
Hutchinson’s result.

CoroLLARY 4.2. Let A be a Conley attractor of an IFS & on a metric space and let B be
the basin of A. If F is contractive on B, then A is a strict attractor of & with basin B.

Proor. If § is any compact subset of B containing A, then S is a complete metric space.
Hutchinson’s result implies that there is a unique strict attractor A’ in B and that B C B’,
where B’ is the attractor of A’. It only remains to show that A’ = A and B’ = B. Let U
be an open set containing A and A’ and such that U c B. Then by the definitions of
the Conley and strict attractor A" = limg_,co 7 k(U) = A. Moreover,if AcUcUCcCBPB,
then by the definition of strict attractor we have limg_,o, 7 k(U)=A’ = A. Therefore,
B’ CB. O

Tueorem 4.3. If F is an affine IFS or a Mobius IFS with a nontrivial Conley attractor
A, then A is a strict attractor, and it is unique.

Proor. The theorem for the affine case follows from Theorem 3.4, [1, Theorem 1.1],
and Corollary 4.2. According to Theorem 3.4, the Conley attractor A has an attractor
block Q. According to [1, Theorem 1.1], if there is a compact set Q such that
F(Q) c Q° then ¥ is contractive on R”. By Corollary 4.2, the Conley attractor A
is a strict attractor. By Hutchinson’s theorem, there is a unique strict attractor in R”.
The proof in the Mdbius case is the same except that [17, Theorem 1.1] is used in
place of [1, Theorem 1.1]. O
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The analogous result to Theorem 4.3 fails for a projective IFS on the projective
plane RP?. See Example 6.2 in Section 6.

The next theorem generalises Corollary 4.2 by replacing the contractivity condition
by a weaker condition called the point-fibred condition. Let Q denote the set of all

infinite sequences {o},>, of symbols belonging to the alphabet {1, ..., N}. A typical
element of € can be denoted as o = 0-j0,075 . . .. With
0 when o = w,
do(o,w)=1__, . . .
27%  when k is the least index for which o # wy,

(Q, dg) is a compact metric space called a code space. The topology on Q induced
by the metric dg, is the same as the product topology that is obtained by treating Q as
the infinite product space {1, ..., N}*. For an IFS ¥ and o € Q, we use the shorthand
notation

Jot = Jor 0 foy 000 for.
The limit, where K is a compact set,
7 (e, K) 1= lim foe(K),
if it exists, is referred to as a fibre of the IFS ¥ .
DeriniTioN 4.4. An IFS F is point-fibred on a set B if
7 (@) = lim fo(K) @.1)
exists for all o~ € Q and, for each o, is independent of K C B.

Point-fibred IFSs are important because they possess natural addressing maps, or
‘coordinates’, related to the functions of the IFS. The addresses are infinite strings in
the alphabet {1, 2, . .., N}, where N is the number of functions in the IFS. The precise
definition is as follows.

DeriniTion 4.5. Let F be an IFS on a metric space X consisting of N continuous
functions. If m:Q — X is a continuous mapping such that the following diagram
commutes foralln e{l,2,..., N}

f;l

where s, is the inverse shift defined by s,,(07) = no, then x is called a coding map for F .
The map « is also referred to as an addressing function.

TueoreM 4.6. If F is a point-fibred iterated function system on a compact metric space
X, then:

(1) F :HX) - H(X) has a unique fixed point A € H(X), that is F(A) = A;
(2) A is the unique strict attractor of ¥ in X;
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(3) the basin of A is X;
(4) the map ng : Q — X given by ng(0) := limy—,e0 fo(K) is a coding map;
(5) the range of the coding map ng is A, that is n(Q) = A.

Proor. The theorem follows from [12, Proposition 4.4.2, page 107, Proposition 3.4.4,
page 77]. O

If F is an affine IFS, then the converse of statement (4) in Theorem 4.6 is true. A
coding map of an affine IFS must be of the form (4.1). The following result appears
in [1, Theorem 7.2], where the affine hull of a set is the smallest affine subspace
containing the set.

Tueorem 4.7. If an affine IFS ¥ on R" has a coding map n and the affine hull of
A :=n(Q) equals R", then F is point-fibred on R". Moreover A is the strict attractor
of .

The following generalisation of Corollary 4.2 follows from Theorem 4.6 in exactly
the same way as Corollary 4.2 followed from Hutchinson’s theorem. It is a
generalisation because it easy to show that if ¥ is contractive on a complete metric
space X, then ¥ is point-fibred on X. Research on when the property of being point-
fibred implies that the IFS is contractive is ongoing; see [11].

CoRrOLLARY 4.8. Let ¥ be an IF'S on a compact metric space with a Conley attractor A
and basin B. If ¥ is point-fibred on B, then A is a strict attractor of F with basin B.

5. Attractor-repeller pairs
In this section it is assumed that the iterated function system is invertible.

DeriniTioN 5.1. A set R € X is said to be a repeller of the invertible IFS # if R is a
Conley attractor of F* = {f~!: f € F}. The basin of a repeller of F is the basin for
the corresponding Conley attractor of 7 *.

THEOREM 5.2. Let F be an invertible IF'S on a compact metric space X. If A is a Conley
attractor of ¥ with basin B, then A* := X\ B is a repeller of ¥ with basin X \ A.

Proor. By Theorem 3.4, there is an attractor block Q for A with respect to ¥ . It is easy
to verify that the complement O := X'\ Q is an attractor block with respect to . Let
A* = limy ., F*¥(0") be the corresponding topological Conley attractor as guaranteed
by Proposition 3.2.

It is now sufficient to show that the basin B of A is X \ A*, and to do this Lemma 2.6
is used. If x € Q, then limy_,« cf(T k(x), A) = 0 because limy_,c f"(@) = A. Therefore,
x € B. Now let x € Q* \ A*. If F¥(x) c Q for some k, then again

Jim d(F*(x), A) =0

and the proof is complete. So, by way of contradiction, assume that F*(x) is not a
subset of Q for any k. Then there is a set X = {x;} such that x; € F*(x) and x; € Q.
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In this case x € F*5(X) c F*(Q*) for all k. Since limy_,e, F**(Q¥) = A*, this implies
that x € A*, a contradiction.

It only remains to show that BN A* =(. Let x=xy € A*. Because ¥ "(A") = A",
by statement (1) of Proposition 2.4, there is an x; € A* and an f; € ¥ such that
fl‘l(xl) = Xy, that is, x; = fj(x). For the same reason there is an x, € A* and an f, € ¥
such that £ '(x2) = x1, that is, x, = (f» o fi)(x). Continuing in this way, it is clear that
F*(x) N A* # 0 for all k > 0, which implies by Lemma 2.6 that x does not lie in B. O

Derinition 5.3. If  is an invertible IFS on a compact metric space X and A is a Conley
attractor of ¥ with basin B, then the set

A" :=X\B
is called the dual repeller of A.

Examples of attractor—repeller pairs are shown in Section 6. The notion of a chain
for an IFS is based on the notion of a chain for a single function [7].

DermNiTION 5.4. Let € > 0 and let ¥ be an IFS on X. An &-chain for ¥ is a sequence of
points {xi}?:o, n >0, in X such that for each i € {0, 1,2,...,n— 1} there is an f € F
such that d(x;41, f(x;)) < &. A point x € X is chain-recurrent for F if, for every € > 0,
there is an e-chain {x;}! ) for ¥ such that xo = x, = x. The set of all chain-recurrent

points for ¥ is denoted by R := R(F).

We refer to the following as the Conley—McGehee—Wiandt (CMW) theorem due to
previous versions in a non IFS context.

THEOREM 5.5 (CMW). Let F be an invertible IFS on a compact metric space X. If
U denotes the set of Conley attractors of F and R denotes the set of chain-recurrent
points of F, then
R = ﬂ (A UAY.
AeU

Proor. First assume that x € (4cq/(A U A¥). Then there is a Conley attractor A such
that x¢ AU A*. By Theorem 5.2, the point x lies in the basin of A. According to
Theorem 3.4, there is a closed attractor block Q for A with respect to F such that
x ¢ Q. Since x lies in the basin of A, there is an integer K such that F%(x) c Q° for all
k> K. Since ¥ (Q) c Q°,

d:=min{d(y,y") : ye F(Q),y €90} > 0.

We must show that x¢ R. By way of contradiction, assume that x is chain-
recurrent and that {x;}!" is an e-chain with xo = x, = x and € <d. We may assume, by
repeating the chain if necessary, that n > K. Since F*(x) c Q° for all k > K and by the
continuity of the functions in 7, if € is sufficiently small, say € = €, then xx € Q. Now
d(xg+1, f(xk)) < € < d for some f € F. Therefore, f(xg) € Q° implies that xg,; € Q.
Repeating this argument shows that x; € Q for all i > K. From the first paragraph in
the proof x ¢ Q and by the above x = x,, € O, a contradiction.
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Conversely, assume that x ¢ R. Then there is an € > 0 such that no e-chain starts
and ends at x. Let U denote the set of all points y such that there is an e-chain
from x to y. Notice that: (1) x¢ U; (2) U is an open set; and (3) FU)cU.
Therefore, A :=limy_,o FXU) is a Conley attractor with x¢ A. Since F(x) c U
and A := limy_,eo F¥(U), the point x lies in the basin of ¥, and therefore x ¢ A* by
Theorem 5.2. Sox¢ A U A*. O

6. Examples
ExawmpLE 6.1. This is an example of an IFS with infinitely many Conley attractors. Let
n be an integer and consider the IFS on R consisting of the single function
F) X2 =2nx+ (n* +n) ifn<x<n+1,n>0,
X)=
> 4+2n+ Dx—@> +n) ifn<x<n+1,n<0.

For all integers m, n > 0, the interval [—m, n] is a Conley attractor with basin (—m — 1,
n+1).

ExawmpLE 6.2. This example shows that the analogous result to Theorem 4.3 fails for
a projective IFS on the projective plane RP?. Consider the IFS consisting of a single
projective function f represented by the matrix

2 00
0 1 0f.
0 0 1

The line in RP? corresponding to the y, z-plane in R? is a Conley attractor, but it is not
a strict attractor.

ExampLE 6.3 (Contractive IFS). Figure 1 shows the attractor—repeller pair of a Mobius
IFS whose space is the Riemann sphere. Since this IFS is contractive it has a unique
nontrivial strict attractor—repeller pair. The basin of the attractor is the complement of
the repeller, and the basin of the repeller is the complement of the attractor. For further
details on such Mobius examples, see [17].

ExampLE 6.4 (Noncontractive IFS). A noncontractive IFS may have no nontrivial
Conley attractor. For example, the IFS on the unit circle centred at the origin of
the complex plane consisting of the single function f(z) =iz clearly has no Conley
attractor.

Example 6.1 is a noncontractive IFS with infinitely many Conley attractors.

The following projective IFS, whose space is the projective plane, is noncontractive
but has a unique nontrivial strict attractor A shown in Figure 2. The projective plane is
depicted as a disc with antipodal points identified. This IFS consists of two functions
given in matrix form by

41 -19 19 ~10 -1 19
fi=|-19 41 19| and p=[-10 21 1
19 19 41 10 10 10
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Figure 1. The attractor (red) and repeller (black) of a Mobius IFS consisting of two Mobius
transformations. (See the online version for colours.)

Ficure 2. A projective attractor-repeller pair and a zoom. (See the online version for colours.)

The attractor A is the union of the infinitely many red, yellow and orange lines. (See
the online version for colours.) In the right panel, a zoom is shown which displays
the fractal structure of the set of lines that comprise the attractor. The colours help
to distinguish lines in the attractor. The corresponding dual repeller A* is the spiral
Cantor set shown in green. The basin of A is RP?\ A*. For further details on such
examples, see [6].

As indicated by the proof of Theorem 4.3, an example of a noncontractive affine
IFS on R" or a Mabius IFS on C with a strict attractor cannot exist.
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