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On a Class of Projectively Flat Metrics with
Constant Flag Curvature

Z. Shen and G. Civi Yildirim

Abstract. In this paper, we find equations that characterize locally projectively flat Finsler metrics in

the form F = (α + β)2/α, where α =

q

ai j yi y j is a Riemannian metric and β = bi yi is a 1-form.

Then we completely determine the local structure of those with constant flag curvature.

1 Introduction

It is an important problem in Finsler geometry to study and characterize projectively

flat Finsler metrics (with constant flag curvature) on an open domain in Rn. This
is Hilbert’s fourth problem in the regular case. For a Finsler metric F on a mani-
fold M, the flag curvature K = K(Π, y) is a function of a tangent plane Π ⊂ TxM

and a non-zero tangent vector y ∈ Π. When F =
√

gi j(x)yi y j is a Riemannian

metric, K = K(Π) is independent of y, and is called the sectional curvature. Thus
the flag curvature is an analogue of the sectional curvature in Riemannian geometry.
Projectively flat Finsler metrics are of scalar flag curvature (i.e., K is independent of
Π containing y for every non-zero tangent vector y), but the flag curvature is not

necessarily constant, in contrast to the Riemannian case.
The main purpose of this paper is to study and characterize certain projective flat

Finsler metrics (with constant flag curvature).
On every strongly convex domain U in Rn, Hilbert constructed a complete re-

versible projectively flat metric H = H(x, y) with negative constant flag curva-
ture K = −1. Then Funk constructed a positively projectively flat metric Θ =

Θ(x, y) with K = −1/4 on U such that its symmetrization is just the Hilbert metric,
H(x, y) =

1
2
(Θ(x, y) + Θ(x,−y)). When U = Bn is the unit ball in Rn, the Funk

metric is given by

Θ =

√

(1 − |x|2)|y|2 + 〈x, y〉2

1 − |x|2 +
〈x, y〉

1 − |x|2 ,

where y ∈ TxBn ≈ Rn. Here | · | and 〈 , 〉 denote the standard Euclidean norm and
inner product. The Funk metric Θ on Bn is a special Randers metric expressed in the
form

(1) Θ = ᾱ + β̄,
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where

ᾱ =

√

(1 − |x|2)|y|2 + 〈x, y〉2

1 − |x|2 , β̄ =
〈x, y〉

1 − |x|2 .

Later, L. Berwald [1] constructed a projectively flat metric with zero flag curvature
on the unit ball Bn, given by

B =
(
√

(1 − |x|2)|y|2 + 〈x, y〉2 + 〈x, y〉)2

(1 − |x|2)2
√

(1 − |x|2)|y|2 + 〈x, y〉2
,

where y ∈ TxBn ≡ Rn. Berwald’s metric can be expressed in the form

(2) B =
(λᾱ + λβ̄)2

λᾱ
,

where λ = 1/(1 − |x|2). Berwald’s metric B has been generalized by the first author
[13] to an arbitrary convex domain U ⊂ Rn using the Funk metric Θ on U. For

example, B̃ := Θ{1 + Θym xm} is projectively flat with K = 0.
We can extend the Finsler metrics in (1) or (2) in another way, keeping their ex-

pression forms. In [12], the first author showed that a Randers metric on a mani-
fold is locally projectively flat with constant flag curvature if and only if it is locally

Minkowskian or up to a scaling and reversing, it is locally isometric to Θa = ᾱ + β̄a,
where ᾱ is defined above and β̄a is given by

β̄a :=
〈x, y〉

1 − |x|2 +
〈a, y〉

1 + 〈a, x〉 ,

where a ∈ Rn is a constant vector with |a| < 1. The metric Θa is projectively flat with

K = −1/4.
In [11], we constructed the following metric Fa on Bn ⊂ Rn for any constant

vector a ∈ Rn with |a| < 1:

(3) Fa :=
(λaᾱ + λaβ̄a)2

λaᾱ
,

where

λa :=
(1 + 〈a, x〉)2

1 − |x|2 .

We have proved that the metric Fa in (3) is projectively flat with K = 0. See [11] for

a detailed proof. When a = 0, the metric in (3) is reduced to (2).
Recently, R. Bryant [2–4] studied and characterized locally projectively flat Finsler

metrics with constant flag curvature K = 1. It is clear that Bryant’s metrics cannot
be expressed in terms of a Riemannian metric and a 1-form as Randers metrics and

Berwald’s metrics. See [13] for other examples.
The above discussion leads us to study the following function F on the tangent

bundle TM of a manifold M,

(4) F =
(α + β)2

α
,
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where α =
√

ai j(x)yi y j is a Riemannian metric and β = bi(x)yi is a 1-form on M.
It is known that F is a Finsler metric if and only if b(x) := ‖βx‖α < 1 at any point

x ∈ M. A natural question arises: is there any other projectively flat metric in the
form (4) with constant flag curvature?

In this paper, we shall first prove the following.

Theorem 1.1 Let F = (α + β)2/α be a Finsler metric on a manifold M. Then F is

projectively flat if and only if

(i) bi| j = τ{(1 + 2b2)ai j − 3bib j},

(ii) the spray coefficients Gi
α of α are in the form: Gi

α = θyi − τα2bi ,

where b := ‖βx‖α, bi| j denote the covariant derivatives of β with respect to α, τ = τ (x)

is a scalar function and θ = ai(x)yi is a 1-form on M.

In [11], we have already noticed that if α and β satisfy conditions (i) and (ii), then

F = (α + β)2/α is locally projectively flat. Theorem 1.1 asserts that the converse
is true, too. Theorem 1.1 is a special case of Theorem 3.1 below. There are many
non-trivial Finsler metrics satisfying conditions (i) and (ii) of Theorem 1.1. See [11].

By Theorem 1.1, we can completely determine the local structure of a projectively

flat Finsler metric F in the form (4) which is of constant flag curvature.

Theorem 1.2 Let F = (α + β)2/α be a Finsler metric on a manifold M. Then F is

locally projectively flat with constant flag curvature if and only if one of the following

conditions holds.

(i) α is flat and β is parallel with respect to α. In this case, F is locally Minkowskian.

(ii) Up to a scaling on x and a scaling on F, F is locally isometric to Fa in (3).

In either case (i) or (ii), the flag curvature of F must be zero, K = 0.

Below is an outline of the proof of Theorem 1.2. By imposing the curvature con-
dition that the flag curvature be constant, we first show that the flag curvature must
be zero, K = 0. If τ = 0, then F is locally Minkowskian. In the case when τ 6= 0, we

show that

(5) dτ + 2τ 2β = 0, θxk yk − θ2
= 3τ 2(α2 − 2β2).

Then we show that τβ is closed. Thus there is a local scalar function ρ = ρ(x)
such that τβ =

1
2
dρ and τ = ce−ρ for some constant c. Immediately, we can see that

ᾱ := e−ρα is projectively flat, hence ᾱ is of constant curvature K̄ = µ by the Beltrami
theorem. The constant µ must be nonpositive. By choosing the projective form of ᾱ,
we can solve (5) for ρ. Then we determine α and β. The detailed argument is given
in the proof of Theorem 5.1 below.

2 (α, β)-Metrics

The Finsler metric in (4) is a special (α, β)-metric. By definition, an (α, β)-metric is
expressed in the form, F = αφ(s), s =

β
α , where α =

√

ai j(x)yi y j is a Riemannian
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metric and β = bi(x)yi is a 1-form. Then φ = φ(s) is a C∞ positive function on an
open interval (−bo, bo) satisfying

φ(s) − sφ ′(s) + (b2 − s2)φ ′′(s) > 0, |s| ≤ b < bo.

It is known that F is a Finsler metric if and only if ‖βx‖α < bo for any x ∈ M [7]. Let
Gi and Gi

α denote the spray coefficients of F and α, respectively, given by

Gi
=

g il

4
{[F2]xk yl yk − [F2]xk}, Gi

α =
ail

4
{[α2]xk yl yk − [α2]xl},

where (g i j ) := ( 1
2
[F2]yi y j ) and (ai j) := (ai j)

−1. We have the following.

Lemma 2.1 The geodesic coefficients Gi are related to Gi
α by

(6) Gi
= Gi

α + αQsi
0 + J{−2Qαs0 + r00}

yi

α
+ H{−2Qαs0 + r00}

{

bi − s
yi

α

}

,

where

Q :=
φ ′

φ − sφ ′
, J :=

φ ′(φ − sφ ′)

2φ((φ − sφ ′) + (b2 − s2)φ ′ ′)
,

H :=
φ ′ ′

2((φ − sφ ′) + (b2 − s2)φ ′ ′)
,

and s := β/α and b := ‖βx‖α.

The formula (6) is given in [7, 14]. A different version of (6) is given in [9, 10].

It is well known that a Finsler metric F = F(x, y) on an open subset U ⊂ Rn is
projectively flat if and only if

(7) Fxk yl yk − Fxl = 0.

This is due to G. Hamel [8]. Using (7), we prove the following.

Lemma 2.2 An (α, β)-metric F = αφ(s), where s = β/α, is projectively flat on an

open subset U ⊂ Rn if and only if

(8) (amlα
2 − ym yl)Gm

α + α3Qsl0 + Hα(−2αQs0 + r00)(blα − syl) = 0.

Proof Applying (7) to the (α, β)-metric F = αφ(s) we obtain

(9) [αxk yl yk − αxl ]φ + αφ ′[sxk yl yk − sxl ]

+ φ ′
[

(αxk yk)syl + (sxk yk)αyl

]

+ αφ ′ ′(sxk yk)syl = 0.
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We have

αxl =
1

α

∂Gm
α

∂yl
ym, αxk yk

=
2

α
Gm

α ym, αxk yl yk − αxl =
2

α3
{amlα

2 − ym yl}Gm
α ,

sxl =
1

α
bml y

m +
1

α2
{bmα − sym}

∂Gm
α

∂yl
, sxk yk

=
r00

α
+

2

α2
{bmα − sym}Gm

α ,

sxk yl yk − sxl = − r00

α3
yl +

2

α
sl0 −

4yl

α4
{bmα − sym}Gm

α

+
2

α2

{ yl

α
bm − blα − syl

α2
ym − sδml

}

Gm
α ,

syl =
blα − syl

α2
,

where ym := aim yi . Plugging these into (9) yields

(10) 2(φ − sφ ′){amlα
2 − ym yl}Gm

α + 2φ ′α3sl0

+ φ ′′{r00α + 2(bmα − sym)Gm
α }(blα − syl) = 0.

Contracting (10) with bl yields

2(bmα − sym)Gm
α = −2φ ′α2s0 + (b2 − s2)φ ′ ′αr00

φ − sφ ′ + (b2 − s2)φ ′ ′
.

Substituting it back into (10), we get (8).

3 F = α + εβ + kβ2/α

In this section, we consider an (α, β)-metric in the following form:

F = α + εβ + k
β2

α
,

where ε, k are constants with k 6= 0, α =
√

ai j yi y j is a Riemannian metric and
β = bi yi is a 1-form on M. Let bo = bo(ε, k) > 0 be the largest number such that

(11) 1 + εs + ks2 > 0, 1 + 2kb2 − 3ks2 > 0, |s| ≤ b < bo,

so that F is a Finsler metric if and only if β satisfies that b := ‖βx‖α < bo for any
x ∈ M.

From now on, we always assume that ε and k 6= 0 satisfy (11). By Lemma 2.1, the
spray coefficients Gi of F are given by (6) with

Q =
ε + 2ks

1 − ks2
, J =

(ε + 2ks)(1 − ks2)

2(1 + εs + ks2)(1 + 2kb2 − 3ks2)
, H =

k

1 + 2kb2 − 3ks2
.
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Equation (8) is reduced to

(12) (amiα
2 − ym yi)Gm

α +
ε + 2ks

1 − ks2
α3sl0

+
k

1 + 2kb2 − 3ks2
α
{

−2(ε + 2ks)

1 − ks2
αs0 + r00

}

(biα − syi) = 0.

By the above identity, we can prove the following.

Theorem 3.1 Let k 6= 0. Then F = α + εβ + kβ2/α is projectively flat if and only if

(i) bi| j = τ ((k−1 + 2b2)ai j − 3bib j),

(ii) Gi
α = θyi − τα2bi ,

where τ = τ (x) and θ = ai(x)yi . In this case,

(13) Gi
= {θ + τχα}yi,

where

(14) χ :=
(ε + 2ks)(1 − ks2)

2k(1 + εs + ks2)
− s, s =

β

α
.

Proof First, we rewrite (12) as a polynomial in yi and α that is linear in α. This
gives

[(1 + 2kb2)α2 − 3kβ2][α2 − kβ2](amiα
2 − ym yi)Gm

α

+ α4[(1 + 2kb2)α2 − 3kβ2][εα + 2kβ]si0

+ kα2[−2α2(εα + 2kβ)s0 + (α2 − kβ2)r00](biα
2 − βyi) = 0.

(15)

The coefficients of α must be zero (note: αeven is a polynomial in yi). We obtain

ε[(1 + 2kb2)α2 − 3kβ2]si0 = ε[2ks0(biα
2 − βyi)].

Suppose that ε 6= 0. Then

(16) [(1 + 2kb2)α2 − 3kβ2]si0 = 2ks0(biα
2 − βyi).

Contracting (16) with bi yields (α2 − kβ2)s0 = 0. By assumption, for any y 6= 0,
α2 − kβ2 6= 0. Thus s0 = 0. Then it follows from (16) that

(17) si0 = 0.

Thus β is closed.

Now equation (15) is reduced to

(18) [(1 + 2kb2)α2 − 3kβ2](amiα
2 − ym yi)Gm

α + kα2r00(biα
2 − βyi) = 0.
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Contracting (18) with bi , we get

[(1 + 2kb2)α2 − 3kβ2](bmα2 − ymβ)Gm
α = −kα2(b2α2 − β2)r00.

Note that the polynomial (1 +2kb2)α2 −3kβ2 is not divisible by α2 and b2α2 −β2.

Thus (bmα2 − ymβ)Gm
α is divisible by α2(b2α2 − β2). Therefore, there is a scalar

function τ = τ (x) such that

(19) r00 =
τ

k

[

(1 + 2kb2)α2 − 3kβ2
]

.

By (17) and (19), the formula (6) for Gi can be simplified to

(20) Gi
= Gi

α + τχαyi + τα2bi ,

where χ is given in (14). We know that F is projectively flat if and only if Gi = Pyi .
By (20), this is equivalent to Gi

α = θyi − τα2bi , where θ = ai yi is a 1-form. In this
case, Gi are given by (13). This proves Theorem 3.1 in the case when ε 6= 0.

Now let us study the case when ε = 0. In this case,

(21) F = α +
β2

α
.

First it is easy to verify that under the conditions (i) and (ii) in Theorem 3.1, F in
(21) is projectively flat. Conversely, assume that F is locally projectively flat. Then it

must be a Douglas metric. By Matsumoto’s result on Douglas metrics [10], one can
see that α and β must satisfy the condition (i). Since F is locally projectively flat, by a
simple argument as above, one can see that the condition (ii) is satisfied.

We should point out that the Riemannian metric α in Theorem 3.1 is not locally
projectively flat in general.

4 Flag Curvature

In this section, we shall study the following metric with constant flag curvature
K = λ,

F = α + εβ + k
β2

α
,

where ε and k are constants with k 6= 0. We assume that F is locally projectively flat,
so that in a local coordinate system the spray coefficients of F are in the form (13).
It is known that if the spray coefficients of F are in the form Gi = Pyi , then F is of
scalar curvature with flag curvature

K =
P2 − Pxk yk

F2
.
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Then

K =
[θ + τχα]2 − [θ + τχα]xk yk

F2

=
(θ + τχα)2 − θxk yk − τxk ykχα − τχ ′(s)sxk ykα − τχαxk yk

F2
.

Observe that

sxk yk
=

r00

α
+

2

α2
{bmα − sym}Gm

α

=
τ

k
{(1 + 2kb2) − 3ks2}α +

2

α2
{bmα − sym}{θym − τα2bm}

= τ{(1/k + 2b2) − 3s2}α − 2τ (b2 − s2)α

= τ (1/k − s2)α.

αxk yk
=

2

α
Gm

α ym =
2

α
{θym − τα2bm}ym = 2(θ − τβ)α.

We obtain

(22) K =
θ2 − θxk yk + τ 2χ2α2 − χτ0α − τ 2(1/k − s2)χ ′α2 + 2sτ 2χα2

F2
.

Lemma 4.1 Suppose that F = α + εβ + kβ2/α with k 6= 0 is projectively flat with

constant flag curvature K = λ = constant; then λ = 0.

Proof First by (22), the equation K = λ multiplied by k2α4F4 yields:

Aα3 + Bα2 − 4ελk5β7α − λk6β8
= 0,

where A and B are homogeneous polynomials in y of degrees 5 and 6, respectively.
Rewriting the above equation as {Aα2 − 4ελk5β7}α + {Bα2 −λk6β8} = 0. We must
have

(23) Aα2 − 4ελk5β7
= 0, Bα2 − λk6β8

= 0.

Since β2 is not divisible by α, we conclude from the second identity in (23) that
λ = 0.

Now we consider the trivial case when τ = 0. In this case, bi| j = 0, and Gi =

Gi
α = θyi . By Lemma 4.1, F has zero flag curvature, thus α has zero sectional cur-

vature. Thus α is locally isometric to the Euclidean metric. We have proved the
following.

Proposition 4.2 Let F = α + εβ + kβ2/α, where k 6= 0. Suppose that F is a locally

projectively flat metric with zero flag curvature. If τ = 0, then α is flat metric and β is

parallel. In this case, F is locally Minkowskian.
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The case when τ 6= 0 is more complicated. First we have the following.

Proposition 4.3 Suppose that F = α + εβ + kβ2/α with k 6= 0 is projectively flat

with zero flag curvature and τ 6= 0. Then

(i) ε2
= 4k,

(ii) τxi + 2τ 2bi = 0,
(iii) θxi yi − θ2 = 3τ 2(k−1α2 − 2β2).

Proof Under the assumption that K = 0, we obtain

(24) Φα + Ψ = 0,

where

Φ : = −{2kεPα2 − 4k2εβ2P + 8k2εβQ}α2 + 14k3εβ4P − 8k3εβ3Q,

Ψ : = 3τ 2(ε2 − 4k)α6 − {4Qk2 + 2kε2βP + 6kτ 2(ε2 − 4k)β2}α4

+ {3τ 2k2(ε2 − 4k)β4 + 2k2(3ε2 + 4k)Pβ3 − 4k2(ε2 + 2k)Qβ2}α2

+ 8k4β5P − 4k4β4Q,

where P := τxk yk +2τ 2β and Q = θxk yk −θ2−3τ 2(k−1α2 −2β2). Note that Φ and Ψ

are homogeneous polynomials in y and α =
√

ai j yi y j is in a radical form. Equation
(24) implies that Φ = 0, and Ψ = 0. First we consider the equation Φ = 0. It can be

written as

(25) {2kεPα2 − 4k2εβ2P + 8k2εβQ}α2
= {14k3εβP − 8k3εQ}β3.

Since α2 does not contain the factor β, there is a scalar function c1 = c1(x) such that

(26) 14εβP − 8εQ = c1α
2.

Then (25) becomes

(27) 2εPα2
= k{4εβP − 8εQ + c1kβ2}β.

Since α2 is not divisible by β, there is a scalar function c2 = c2(x) such that

(28) 4εβP − 8εQ + c1kβ2
= c2α

2.

Then (27) is reduced to

(29) 2εP = c2kβ.

It follows from (26) and (28) that

(30) 10εβP − c1kβ2
= (c1 − c2)α2.
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Plugging (29) into (30) yields k(5c2 − c1)β2 = (c1 − c2)α2. Thus c1 = c2 = 0, and

(31) εP = 0, εQ = 0.

First we assume that ε 6= 0. Then (31) implies that P = Q = 0. The formula for
Ψ is reduced to Ψ = 3(ε2 − 4k)τ 2α2(α2 − kβ2)2. Under the assumption that τ 6= 0,
the equation Ψ = 0 implies that ε2 = 4k.

Now we assume that ε = 0. We are going to show that this is impossible. The
formula for Ψ is reduced to

Ψ = −4k{3τ 2α4 + k(Q − 6τ 2β2)α2 + k2(3τ 2β2 − 2Pβ + 2Q)β2}α2

+ 4k4(2βP − Q)β4.

Then Ψ = 0 implies that there is a scalar function δ1 = δ1(x) such that

2βP − Q = δ1α
2,(32)

{3τ 2α2 + k(Q − 6τ 2β2)}α2 + k2{(3τ 2β2 − 2Pβ + 2Q) − kδ1β
2}β2

= 0.(33)

It follows from (33) that there is a scalar function δ2 = δ2(x) such that

3τ 2β2 − 2Pβ + 2Q = kδ1β
2 − δ2α

2,(34)

3τ 2α2 + k{Q − 6τ 2β2} = k2δ2β
2.(35)

It follows from (32) and (34) that Q = (δ1 − δ2)α2 + (kδ1 − 3τ 2)β2. Substituting it
into (35) yields that {3τ 2 + k(δ1 − δ2)}α2 = k{9τ 2 − k(δ1 − δ2)}β2. We conclude
that 3τ 2 + k(δ1 − δ2) = 0, 9τ 2 − k(δ1 − δ2) = 0. This is impossible, since τ 6= 0.

Therefore, ε 6= 0.

5 Solving the Equations

In this section, we assume that F = α + εβ + kβ2/α is projectively flat with zero flag
curvature K = 0 and τ 6= 0. By Proposition 4.3, ε2 = 4k > 0. Then

F =
(α ±

√
kβ)2

α
.

We shall prove the following .

Theorem 5.1 Let k > 0. Let F = (α ±
√

kβ)2/α be locally projectively flat with

τ 6= 0. Suppose that F has constant flag curvature. Then the flag curvature K = 0 and

one of the following holds:

(i) F is locally Minkowskian.
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(ii) At every point there is a local coordinate system (xi) in which α and β are given by

α =
(δ + 〈a, x〉)2

1 − c2|x|2

√

(1 − c2|x|2)|y|2 + c2〈x, y〉2)

1 − c2|x|2 ,

β =
1

c
√

k

(δ + 〈a, x〉)2

1 − c2|x|2
{ 〈a, y〉

δ + 〈a, x〉 +
c2〈x, y〉

1 − c2|x|2
}

,

where δ and c are non-zero constants and a ∈ Rn is a constant vector.

Proof Without loss of generality, we may assume that k = 1, thus ε = ±2 and

F =
(α ± β)2

α
.

By Theorem 3.1 and Proposition 4.3,

bi| j = τ{(1 + 2b2)ai j − 3bib j},(36)

Gi
α = θyi − τα2bi ,(37)

τxi + 2τ 2bi = 0,(38)

θxi yi − θ2
= 3τ 2(α2 − 2β2).(39)

We are going to solve (36)–(39) for α and β.
It follows from (36) and (38) that

(τbi)| j − (τb j)|i = τ (bi| j − b j|i) + τx j bi − τxi b j = 0.

Thus τβ is closed. Locally, there is a scalar function ρ = ρ(x) such that

(40) τbi =
1

2
ρxi .

Substituting it into (38) yields τxi + τρxi = 0. We obtain

(41) τ = ce−ρ,

where c = constant.
Let ᾱ = e−ρα. Then Gi

ᾱ = Gi
α − ρ0 yi + 1

2
ρiα2, where ρi := ρxi aik.

By (37) and (40), we get

(42) Gi
ᾱ = (θ − ρ0)yi .

Thus ᾱ is projectively flat. By the Beltrami theorem, ᾱ has constant sectional curva-
ture Kᾱ = µ. We may assume that

ᾱ =

√

(1 + µ|x|2)|y|2 − µ〈x, y〉2

1 + µ|x|2 .
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We have Gi
ᾱ = − µ〈x,y〉

1+µ|x|2 yi . Substituting it into (42), we obtain

θ = [ρ − ln
√

1 + µ|x|2]0.

Then (39) is reduced to

ρxi x j = −1

2
ρxi ρx j − µ

xiρx j + x jρxi

1 + µ|x|2 + (3c2 + µ)āi j ,

where āi j are the coefficients of ᾱ. Let ϕ := eρ/2. Then

ϕxi x j + µ
xiϕx j + x jϕx j

1 + µ|x|2 =
3c2 + µ

2
āi jϕ.

Let

(43) ξ :=
√

1 + µ|x|2 ϕ.

Then

(44) ξxi x j =
3

2
(c2 + µ)

√

1 + µ|x|2 āi jϕ.

Let h :=
|x|2√

1+µ|x|2+1
. Then

(45)
√

1 + µ|x|2 āi j = hxi x j .

It follows from (44) that ξxi x j =
3(c2+µ)

2
hxi x j ϕ. Differentiating it yields

ξxi x j xk =
3(c2 + µ)

2
{hxi x j xkϕ + hxi x j ϕxk}.

Under our assumption τ 6= 0, we claim that c2 + µ = 0. Suppose that c2 + µ 6= 0.

Then by symmetry, we get hxi x j ϕxk = hxi xkϕx j . Thus, by (45) āi jϕxk = āikϕx j .
Contracting it with āim, we get δm

j ϕxk = δm
k ϕx j . This implies that ϕxk = 0. That

is, ϕ = eρ/2 = constant. Then by (41), τ = ce−ρ = constant and by (40),
τbi =

1
2
ρxi = 0. Since β 6= 0, we must have τ = 0 and c = 0. This contradicts

our assumption.

Now we have that c2 + µ = 0. Then µ = −c2 ≤ 0. If c = 0, then by (41), τ = 0.
This is a contradiction. Thus µ = −c2 < 0. In this case, (44) is reduced to ξxi x j = 0.
We get ξ = δ + 〈a, x〉, where δ is a constant and a ∈ Rn is a constant vector. Then by
(43) and (41),

ρ = ln ϕ2
= ln

ξ2

1 + µ|x|2 = ln
(δ + 〈a, x〉)2

1 + µ|x|2 ,

τ = ce−ρ
= c

1 + µ|x|2
(δ + 〈a, x〉)2

.
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We obtain

α = eρᾱ =
(δ + 〈a, x〉)2

1 − c2|x|2

√

(1 − c2|x|2)|y|,2 +c2〈x, y〉2)

1 − c2|x|2 ,

β =
1

2τ
ρ0 =

1

c

(δ + 〈a, x〉)2

1 − c2|x|2
{ 〈a, y〉

δ + 〈a, x〉 +
c2〈x, y〉

1 − c2|x|2
}

.

6 Some Properties of Fa

In this last section, we are going to say a few words about the special metric Fa in (3).

Fa is given by Fa := (α+β)2

α , where α := λaᾱ, β := λaβ̄a, λa := (1+〈a, x〉)2/(1−|x|2).

First, it is easy to get |β‖α = 1 − 1−|a|2

λa
. Let gi j := 1

2
[F2

a]yi y j and ai j := 1
2
[α2]yi y j . We

have

det(gi j) =

( α2 − β2

α3

) n

Fn+1 [(1 + 2‖β‖2
α)α2 − 3β2]α

(α2 − β2)2
det(ai j).

Thus, if |a| < 1, Fa is a Finsler metric on the unit ball Bn ⊂ Rn.

Let b ∈ Rn be an arbitrary unit vector, i.e., |b| = 1 and m := 〈a, b〉. We have
|m| ≤ |a| < 1. Let c(t) := bt . The Fa-length of c ′(t) = b is given by

Fa(c(t), c ′(t)) =
(1 + m)2

(1 − t)2
.

Thus, the Fa-lengths of C− : c(t),−1 < t ≤ 0 and C+ : c(t), 0 ≤ t < 1 are given by

Length(C−) =
(1 + m)2

2
, Length(C+) = +∞.

This shows that Fa is positively complete, but not complete.

The Cartan torsion is unbounded. But the formula for the bound of the Cartan
torsion is very complicated.

At the origin x = 0 and x = −a,

Fa(0, y) =
(|y| + 〈a, y〉)2

|y| , Fa(−a, y) =
√

(1 − |a|2)|y|2 + 〈a, y〉2.

Note that Fa is Euclidean at x = −a. When a changes, the “Euclidean center”, −a, of

Fa moves.

We conjecture that Fa is a projective representation of Berwald’s metric F0 at
x = −a. However, we could not find a diffeomorphism ϕa : Bn → Bn with the fol-
lowing properties: (i) ϕ maps lines to lines, (ii) ϕ(0) = −a, and (ii) ϕ∗F0 = Fa.
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kürzesten sind. Math. Z. 30(1929), no. 1, 449–469.

[2] R. Bryant, Finsler structures on the 2-sphere satisfying K = 1. In: Finsler Geometry, Contemp.
Math. 196, American Mathematical Society, Providence, RI, 1996, pp. 27-42.

[3] , Projectively flat Finsler 2-spheres of constant curvature. Selecta Math. 3(1997), no. 2,
161–203.

[4] , Some remarks on Finsler manifolds with constant flag curvature. Houston J. Math.
28(2002), no. 2, 221–262.

[5] X. Chen, X. Mo, and Z. Shen, On the flag curvature of Finsler metrics of scalar curvature. J. London
Math. Soc. 68(2003), no. 3, 762–780.

[6] X. Chen and Z. Shen, Projectively flat Finsler metrics with almost isotropic S-curvature. Acta Math.
Sci. 26(2006), 307–313.

[7] S. S. Chern and Z. Shen, Riemann-Finsler geometry. Nankai Tracts in Mathematics 6, World
Scientific, Hackensack, NJ, 2005.
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