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R. A. RANKIN 

1. Introduction. Let œ be an irrational number. It is well known that 
there exists a positive real number h such that the inequality 

a) <hc2 

has infinitely many solutions in coprime integers a and c. A theorem of Hurwitz 
asserts that the set of all such numbers h is a closed set with supremum \ / 5 . 
Various proofs of these results are known, among them one by Ford (1), in 
which he makes use of properties of the modular group. This approach suggests 
the following generalization. 

Let T be a (real) zonal horocyclic group. That is, T is a Fuchsian group of 
bilinear transformations of the first kind (4) having the real axis as principal 
circle and o° as a parabolic fixed point. A bilinear transformation T is defined 
by 

r az + b 
w = Tz = — , 

cz + a 
where a, b, c and d are real numbers such that ad — be = 1, and w and z 
are complex numbers. It is convenient to use T to denote the matrix 

C-î) 
as well as for the transformation, and to assume that r is such that if T 
belongs to I\ then so does 

- * • - ( : : : : ) • 

Since — T gives rise to the same value of w as T, we do not distinguish between 
T a n d - T . 

Since V has a parabolic fixed point at infinity and is discrete, there exists a 
least positive X such that Ux Ç I\ where 

"-G ;)• «--G î)-
The number X has been called by Petersson the width of the cusp at <». The 
transformation f/x generates a cyclic subgroup of T which we call I V In 
particular, if T Ç T then T UmX Ç T for any integer m} and TUmX has the same 
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first and third entries, namely a and c, as T. Thus a and c are functions of, 
and are determined by, the left cosets of r ^ in r . 

In terms of a zonal horocyclic group T we can generalize Diophantine 
approximation to irrational numbers by asking if there exists a positive 
h = h(T) such that (1) is soluble for transformations T in infinitely many 
left cosets of IV in T, where co is any real number not belonging to a certain 
countable set, to be specified. We can, for this purpose, rewrite (1) as 

(2) l « - r » | < ^ , 
and it is possible to express the right-hand side in terms of T also, although 
it is not particularly advantageous to do this. The exceptional countable set 
will always include the set of all points congruent to oo with respect to T. 

If such a number h exists, we can then ask what is the supremum of all such 
h, and whether this supremum is attained. If (2) holds for infinitely many 
left cosets of IV in V, the numbers Too satisfying (2) will approximate to œ 
as closely as we please since it is known that \c\ is less than any given positive 
number for only a finite number of cosets of IV (3, Satz 2). 

In the particular case where T is the modular group T(l), this reduces to 
the approximation by rationals to an arbitrary irrational number co, as de­
scribed at the beginning of the paper. Ford's demonstration of Hurwitz's 
theorem does not, however, generalize immediately to an arbitrary zonal 
horocyclic group, since the possible existence of parabolic cycles not congruent 
to oo causes difficulties. Also, as might be expected, horocyclic groups of the 
second kind, which have an infinity of generators, are more difficult to treat 
since the set of points congruent to œ covers the real axis more thinly. In 
this paper we consider horocyclic groups of the first kind only (see §2 for 
definition). 

Applications of the results obtained to the modular group and some of its 
subgroups are given in §7 and compared with results obtained by others. 
Considering the generality of the methods used in §§2-6, it is somewhat 
surprising that best possible results are nevertheless obtained in some cases. 
The horocyclic group approach also sheds some light on the connexion 
between irrationals which cannot be closely approximated to and hyperbolic 
transformations. 

2. The existence of numbers h. We write z = x + iy, where x and y 
are real and use § to denote the finite upper half-plane y > 0, and 21 for the 
real axis y = 0, excluding the point at infinity. We suppose that T is a zonal 
horocyclic group and that 3) is a fundamental region for T constructed by 
Ford's isometric circle method (2, §35) and occupying the strip £ < x < £ + X, 
where X is the width of the cusp at infinity and £ is chosen suitably later. 

We suppose that T is a horocyclic group of the first kind, i.e. that 3) has 
finite hyperbolic area. This is the case if and only if T) has a finite number 
of sides. 
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Adjacent sides of 3) meet at vertices which are of two kinds. The point at 
infinity and vertices lying on 31 are called cusps. They can be divided into 
groups of congruent cusps with respect to T, called parabolic cycles. One such 
cycle, which may be the only one, consists of the point at infinity alone. 

The remaining vertices all lie in § . They include points at which different 
isometric circles meet, and possibly elliptic fixed points of period 2 belonging 
to T which lie at a midpoint of a single bounding arc. Such vertices we call 
ordinary vertices of the first kind. 

It may happen that some sides of 3) consist of complete semicircles: if this 
happens it is convenient to regard such a semicircle as two equal sides meeting 
at a vertex which is the point farthest from 31; such vertices we call ordinary 
vertices of the second kind. 

We now choose £ so that the line x = £ passes through an ordinary vertex 
of the first or second kind. Then every vertex of 3) in § is of the first or second 
kind, and 35 is bounded by a finite number of sides which can be grouped in 
pairs of equal arcs transformable into each other by transformations of Y. 
One side of such a pair (if not part of a straight line) is an arc of the isometric 
circle 3»(JT) of a transformation T, and the other is an equal arc of 3 ( T - 1 ) , 
where T 6 I\ 

Define hT to be twice the minimum distance of the vertices of 3) in § from 
31. We are now in a position to state 

THEOREM 1. Let V be a zonal horocyclic group of the first kind, and let œ 
be any real number which is not a parabolic fixed point for Y. Then there are 
infinitely many left cosets of Y v in Y whose members T satisfy 

(3) Too < 
1 

hvc
2 (c * 0). 

3. Proof of Theorem 1. Let œ be any real number which is not a parabolic 
fixed point for Y and let 8 = 8(co) be the straight line through co which is 
perpendicular to 31. 

For any T Ç Y with T $ Yv and for any h > 0, let ®(7\ h) be the circle 

(4) cz — a — 7-
hc he' 

which is of radius 1 /(he2) and touches 31 at a/c, but otherwise lies in § . 
If 2 cuts ©(T, h), we have 

<h?' 
and conversely; i.e. (2) holds. 

Let 8'(A) be the line y = \h\ then 

rg'(A) = @(r,A) 
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if T e T, T i I V For T e Tn we define ® ( r , A) to be 8'(A) and it then 
follows that 

S®(T,h) =®(ST,h) =ST%'(h) =ST&(E,h) 

for all S, T £ I\ where E is the identical transformation. 
Accordingly 8 cuts ®(7\ A) ( r $ IV), and so (2) holds, if and only if T~l 8 

cuts 2'(h). But T~~l ? is a circle centred at a point of 21 and so cuts 2'(h) 
if and only if its radius exceeds \h. Also, if T~l 8 cuts 8'(A) so does (TO - 1 8 
if T" and T are in the same left coset of Tv in T; for T - 1 8 and (TO - 1 8 are 
equal circles r\ apart where r is an integer. Thus the theorem will follow if 
we show that 8'(/zr) is cut by infinitely many circles T~l 8 (7" Ç T) at points 
lying in the strip £ < x < g + A. 

Since co is not a parabolic fixed point, the line 8 passes through the interiors 
of infinitely many fundamental regions JHD (T £ T). Let the fundamental 
regions through whose closures 8 passes be TnT) (n = 1, 2, 3, . . .) taken in 
order as a point z moves along 8 from oo through § to §1; if 8 passes through 
any points congruent to vertices of 3) round which more than two fundamental 
regions cluster, then some definite ordering of the associated transformations 
Tn must be determined. 

We suppose that Theorem 1 is false. Then there exists an integer N such that 
2n = Tn~

l 8 does not cut 8'(Ar) for n > N. Let k be the maximum number of 
images of 33 which are grouped round an ordinary vertex of 3). We show first 
that 8n does not pass through an ordinary vertex of 33 if n > p = N + k. 

For suppose that 2n passes through the ordinary vertex A of 3) for some 
n > p. Then A is at a distance \hv from 31 and is that point in § of 8„ which is 
farthest from §1, i.e. the summit of 8W. It follows that A is not an ordinary 
vertex of the second kind since, if it were, then 8W would cut 21 in two parabolic 
fixed points which is impossible since co is not a parabolic fixed point. 

Thus A must be an ordinary vertex of the first kind, and so lies on an 
isometric circle 3 ( T ) of a transformation T of T, of which a finite arc y 
forms one of the sides of 2). If T is chosen in its right coset of IV in V so that 
TA is also a vertex of 3), then T2n = TTn~

l 8 meets the closure of 3) in TA, 
and so TTn~

l = Tm~l for some m ^ n. Moreover m > n — k > N. Hence 
8m = T %n does not cut 8r (hT) but meets the closure of 3) in 7M which must 
therefore be the summit of 2m. We thus have two equal circles 8W and T 8„ 
with summits A and TA. Since the transformation T is equivalent to an 
inversion in 3(T) followed by a reflexion in the radical axis of 3 (T) and 
^ ( r - 1 ) , this is possible only if A lies on $ ( D and if 8n = 3 ( T ) . Hence y 
is an arc of %n with one endpoint at its summit A. The other endpoint is either 
an ordinary vertex of the first kind which is nearer to 21 than A, or is a parabolic 
fixed point which is congruent to co since it is not congruent to °o. In either 
case we have a contradiction. 

Hence %n does not pass through an ordinary vertex of 3) if n > p. Thus, 
for each n > p, 8„ passes through the interior of 35 cutting its sides at interior 
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points. This is a contradiction if there are no parabolic cycles other than that 
containing the point at infinity, and so the theorem is true in this case. 
Suppose therefore that other parabolic cycles exist. Then, for each n > p, 
8n contains in its interior a cusp An of 2), and consists in part of an arc lying 
in the interior of 2) whose endpoints Bn, Bn

f lie on sides lni ln' of 3) which 
meet at An. Here 

Tn Bn = Tn+\ Bn+i, 

and the points Bny Bn' are interior points of the sides lni ln\ respectively. It 
follows that 

Tn+i Tn 

transforms ln' into ln+i and therefore-maps An into An+i. Hence all the points 
An for n > p are congruent and so belong to the same parabolic cycle. Accord­
ingly there exists a positive integer q such that 

Av+rq = Av (r = 0 , 1 , 2 , . . .) 

and 

T£rt Tv = P\ (r = 0, 1, 2 , . . .) 

where 
p _ 7-*— l J-

± ± V+Q. ± V • 

Here P is a parabolic transformation having Av as fixed point. 
Choose a bilinear transformation S\ having §1 as fixed circle and such that 

S\AV = oo. Then P = Sf1 U* Si for some /x ^ 0, and so 

(5) S12p+rq = S1P
r 271 S = U^ S^;1 2 = C/̂ r 5i8,. 

Since %p+rq cuts /p and /p
;, 5 i? p + r ç cuts 5i/p and 5l/^,

, ; these are lines perpendicular 
to % since they pass through S\AV = œ, and this holds for r = 0, 1, 2, . . . . 
But, by (5), the set of circles Si%v+Tq consists of the circle S\% and its translates 
through multiples of fx parallel to 31, and so Si%p+rq cannot cut S\lv and S\lv' 
for every r > 0. 

This contradiction shows that no integer N exists, and this completes the 
proof of Theorem 1. 

4. Upper and lower bounds for sup h. Let (£(£, r ) denote the set of 
all positive numbers h for which (2) holds for transformations T belonging 
to infinitely many left cosets of IV in T, where T is, as previously, a zonal 
horocyclic group of the first kind. The reason for displaying E will appear 
later. By Theorem 1, hr G S(£ , T) and so h £ @(£, T) for all positive 
h < hT. In this section we obtain an upper bound for S(E, T). We prove 
first 

THEOREM 2. 77ze ^ / @(E, r ) w bounded above. 

Proof. The group r contains hyperbolic transformations since if T Ç T 
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and c 7e 0, then UrXT £ V for all integers r and is hyperbolic if r is sufficiently 
large. Let 

»-(£ 2) 
be a hyperbolic transformation belonging to T with C > 0 and 4̂ + D > 2: 
this latter condition can always be satisfied by taking H~l if it is not true for H. 
Write 

A + D = 2 sec 6> (0 < 6 < |TT). 

Then the fixed points of H are 

Si = {tan(i7r - \B) - D}/C, z2 = {tan(j7r + £0) - D}/C. 

They are the points Fi, F2 of Fig. 1. 

°< F; (i-D)/c F 2 A/C 
-D/C 

Fig. 1 

A fundamental region T)H in § for the subgroup T# of T generated by H 
is the region exterior to the circles 

3i = 3 ( i î ) : \Cz + D\ = 1, 
and 

3 2 = SOff-1): | C s - i 4 | = 1. 

The circles HnSi (n = 0, ± 1 , ± 2 , . . .) bound the images of £)# by TH, 
and consist of a set of non-intersecting coaxial circles with limit points Fi 
and F2. For w > 1, these circles are interior to H$i = $2> and all contain F>; 
for w < 0, these circles are interior to 3>i and all contain Fi. 
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Let 6 be the semicircle in § on P1P2 as diameter. S has radius (tan 6)/C 
and cuts 3 i and 3 2 orthogonally at the points P i and P2 , say; 0 is the angle 
P i Oi Pi, where 0i is the centre of 3i . 

Suppose that m is the least positive value of |c| for all transformations 
P Ç T; by considering T"1 Ux T we see that m > 1/X. Take any number h 
satisfying 

(2 tamS C -
h > maxl —7;— , —2 cot ^ 

\ C m 
[(A+D)2-4:]> L C2 \ 

(7) = |0| maxV' S ? Ô J T P F 2 ) / 
= Pi/, 

say. Also take co = Zi. We show that 8(co) cuts only a finite number of the 
circles or straight lines ®(P, h) for P £ T. 

If ? cuts ©(P, ft) at a point of § lying in H-n<S)H, then i P 8 will cut 

iP©(P, /*) = &(HnT,h) 

in a point of vSp lying in £)#. But for ft < 0, Hn 8 lies entirely within 3i , and 
so does not meet 3)#; thus we need only consider n > 0. Let Sw be the closure 
of the part of Hn 8 which lies in T)H- Then it suffices to show that the arcs 
S„ (ft = 0, 1, 2, . . .) have only a finite number of intersections with the 
curves © (T, h) for P £ T. 

For ft > 1, i P 8 is a circle orthogonal to 21 passing through the fixed point 
co and through fw = Hn 00. The point fw lies within Hn 3 i , and so within 3 2 , 
and 22 < fw < fi = ^4/C. Hence the arcs 6W for ft > 0 all lie in the closed 
region g of § lying between the abscissae x = — D/C, x = A/C and outside 
Si, 32 and S. Let Qi, Ç2 be the summits of 34 and $2 respectively so that the 
boundary of g consists of five sides (taken closed) joining the vertices œ, 
Qi, Pi , P2 , Ç2 and 00. We write ©1 and ©2 for the sides joining œ to Qi and 
Q2 respectively. 

We divide the proof into five cases. 
(i) The line 8' (h) = ©(P, h) cuts only a finite number of the arcs Sn, 

since Sw tends to S as ft —> œ and \h exceeds (tan 6)/C which is the radius 
of <£. 

We now show that no circle ©(P, h), for P £ I\ P $ IV, has any points 
in common with g. 

Suppose (ii) that © (P, h) meets @i but contains no point of the arc QiP\. 
Then its radius exceeds 1/C, so that 

C> he2 > h 

which is a contradiction since 6 < \ir. Similarly © (Tyh) cannot meet ©2 

and contain no point of Ç2P2. 
Write Pi = HT, where 

(8) T ^ ' h^ 
(ax 

1 = V C l 
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and suppose next (iii) that cx = Ca + Dc = 0, so that © (T, A) touches St 
at Oi. Then 7\ G IV, so that we may take c = C, a = — D. Then if © ( r , A) 
meets ft, 2/(Ac2) > 1/C so that, by (7), 

tan0 < 1, C2 < 2m2 tan \6. 

This gives a contradiction since 2 tan J0 < 2 ( \ /2 — 1) < 1 and C2 > m2. 
In the same way we can show that © (7\ A) cannot touch 21 at A/C. 

We now suppose (iv) that C\ ¥" 0 and that © (T, A) contains in its interior 
or on its perimeter a point 

z = (g* - £>)/C 

of ÇiPi, where 0 < <f> < |TT. Then, by (4), 

cz — a — T~ 
1 
C 

(c cos 4> — c\) + i Gsin*-£) < 
Ac ' 

Hence 

2C 
-r- sin $ > (s cos <£ 

\2 , 2 • 2 , 

ci) + c sin 0 
= (£ + ci) sin §<£ + {c — Ci) cos | 0 . 

Since T\ Ç T and Ci ^ 0, either |c + d\ > 2m or | 
sin2J</> < cos2^</>, so that 

2 £ • , ^ A 2 • 2i , 
~ s m </> > 4m sin <̂/>. 

cJ > 2m. Also 

Thus 
C C 

A < —2 cot %<}> < —2 cot J0, 
m m 

which contradicts (7). We can also show that © (F, A) cannot contain a point 
of Ç2P2; for, if it did, © (H~l T, A) would contain a point of QiPi. 

Finally (v) suppose that © (T, A) contains a point of P\P<i but not any point 
of Q\P\ or Q2-P2. Then the radius of © (T, A) is greater than that of the circle 
which touches SI and touches S internally at Pi . This circle has radius 
(tan |0)/C, so that 

I/(he2) > tan %6/C. 

Thus 
A < (CA2) cot \B < (C/m2) cot \0, 

which contradicts (7). 
We have therefore shown that no circle © (7\ A) with J1 G I\ T ^ TUy 

has any point in common with %, so that ? cuts at most a finite number of the 
circles © (T, A) and therefore A $ @(E, T). This proves Theorem 2. 

If we define 
HE, r) = sup A (A e eus, r)), 
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and write 
(9) hv' = inf pH (H hyperbolic in T), 

we have proved 

THEOREM 3. hv < h(E, T) < hr'. 

5. Approximation to co by ST co for fixed S. Let S Ç iïR, where QR 

is the continuous group of all bilinear transformations with SI as principal 
circle, and 

(10) 
- ( ; « ) • 

We consider whether it is possible to approximate to a real number co by 
ST oo where T belongs to a zonal horocyclic group T of the first kind. This is 
not quite the same as approximating to S"1 wby Too, since instead of using 
1/c2 as a measure of approximation we shall use 1/ci2 where 7\ = ST and is 
given by (8). 

Let 3ê(TUt r ) be a set of representatives of the left cosets of Tv in T 
arranged in such an order that \c\ —» oo as T runs through &(TUf T). We 
prove the 

LEMMA. Let $%' he any subset of &(Tu, T) consisting of transformations T 
for which 7\oo = ST oo is bounded. Then \ci\ < M for only a finite number of 
T Ç 3%' where M is any given positive number. 

Proof. Suppose that |7\oo | < K for all T 6 3t'. Then 

\c\\ = \ya + ôc\ = ICHYTOO + 5| = \c\/\yTxco — a\ 

>\c\/{\y\K+\a\}. 

Since \c\ < M{\y\K + \a\} for only a finite number of T G ^(TUt T), the 
result follows. 

Now suppose that co is any finite real number such that 5_1co is not a parabolic 
point of T. Then, for any h Ç g (£, T), 

(H) 5~ co — Tc <h ( c ^ 0 ) > 
for infinitely many T Ç ^ ( r ^ , r ) . Let St1 be an infinite subset of âg(TVl T) 
for which (11) holds. Since \c\ —> oo as T runs through â^(TUy T), we may 
suppose that &' is taken so that the points Too, for T G ^ ' , He in as small an 
interval as we please round 5_1co, and hence that the points SToo He in a 
bounded region containing co. It follows from the lemma that \ci\ < M for a 
finite number of T Ç 3ft1 only, and we may therefore arrange the transforma­
tions T in 3Î' in such an order that both \c\ and |ci| tend to infinity as T runs 
through St'. 
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For any T £ &' we have, from (11), 

|co - SToo | = |(5_1co - Tco){(yS-1œ + ô)(yT™ + d)}~1\ 

< 
1 yTco + 8 

1 

7 5 co + ô 
yTco -f- d 

\c(yTœ + 5 ) | 

~ he? 
As T runs through 

yS 1œ + 8 

yTco + 5 
i, I 7 5 co + 8 I 

and so, if h' is any positive number less than h, we have 

|co — 5Too | < -7—2 

for infinitely many T Ç &{TV, T). We have therefore proved 

THEOREM 4. If h < h(E, T), 5 G Œ#, and co is any finite real number such 
that 5-1co is not a parabolic fixed point of T, then 

Ico — STco I = Ico — 7"ioo I < - — Ô 
1 Acf 

for all T belonging to an infinite subset 3Î' of &{Tu, Y) which may be arranged 
so that \d\ —> oo as T runs through &'. 

Let S (5, T) be the set of all positive h for which the conclusions of Theorem 
4 hold with the conditions there stated on 5, co and 3%', and let h(S, T) be its 
supremum. Then, by Theorem 4, 

But we have, conversely, 

5" 1 co - T 

h(s, r) > h(E, r). 

75~ co + ô 
Ac 

' 5 " 1 

yTco -f- 8 

for every h in (§ (5, T). Since 57"oo —» co as T runs through ^ ' , Too 
as T runs through £%' and so 

A(£, T) > A(5, T). 

We have therefore proved 

THEOREM 5. 7 / 5 Ç 0*, /Aéra A(E, r ) = h (5, r ) . 

Hence all the sets @ (5, T) are identical, with the possible exception of 
one point. 

We can also prove 

THEOREM 6. hv G g (5, r ) if 5 Ç 0*. 
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To prove this we carry through the argument of §3 with certain modifica­
tions. We wish to show that 5" 1 8 cuts @(7\ h) for T in infinitely many left 
cosets of Tv in T, when ,S-1co is not a parabolic fixed point. The demonstration 
proceeds as in §4 with 8 replaced by S - 1 2 wherever it occurs after (4). Where 
before we used the fact that co was not a parabolic fixed point we now require 
that 5-1co is not a parabolic fixed point. As before, 5 _ 1 8 will pass through the 
closures of infinitely many fundamental regions Tn& (n = 1,2,3, . . .). 
We now choose 7\(3)) to be the fundamental region containing the summit of 
5 _ 1 £ and proceed along 5 _ 1 8 towards vS_1co. The case where the other end-
point of 7 lies on 21 can now be excluded since, because of this choice this 
endpoint would have to be 5_1co which is impossible as S~1o) is not a cusp. 

6. Another upper bound for h. Suppose that r* is a zonal horocyclic 
group of the first kind and that T is a subgroup of finite index in T*, and so 
also a zonal horocyclic group of the first kind. Let /x be the width of the cusp at 
infinity for T*, so that A = kfj., where k is a positive integer, and let Tv* be 
the subgroup of T* generated by U*. 

The parabolic fixed points of T* are parabolic fixed points of T, and 
conversely. We suppose that co is not a parabolic fixed point for T. Then, by 
Theorem 5, 
(12) h(E, r ) = h(S, T) for all S Ç r*. 

Take a fixed S (E T* and a fixed hyperbolic H in r* with entries given by 
(6), such that 

(13) s i vlvl r, 
where r#* is the subgroup of T* generated by H. Further, let mHS be the 
least value of \c\ for all T Ç r#* ST, so that mHS > 0, by (13). Also take any 
h with 

(H) s > c c o t W c r M i | L i | - | . 
VKHS mHsL\A+D\—Zj 

where the notation is that used in §4. 
Take co = Z\. We apply the method of §4 to show that 8 does not intersect 

any © (ST', h) for T" Ç T. This is the same as showing that no circle1 © (T,h) 
intersects any arc 6W (n > 0) where T = HnST'. 

Case (i) of §4 does not arise, and the proof of case (ii) is similar, with m 
replaced by mHS. Case (iii) also does not arise, since if C\ = 0, where 7\ = HT, 
we should have 7\ = Hn+lST' £ IV*, which contradicts (13). Similarly if 
Ca — Ac = 0. The proof of cases (iv) and (v) is similar with m replaced by 
mHS. Thus we have shown that if h satisfies (14) and 5 satisfies (13) then 
h i g (S, T). 

Define 
h? = inf P'HS 

1 ©(T, h) cannot be a straight line by (13). 
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for all hyperbolic transformations i f Ç T* and 5 6 T* for which (13) holds; 
if no such H and 5 exist define hT" = oo. It follows from (12) and what we 
have just proved that the following result holds. 

THEOREM 7. A(5*, r) < hv" for all S* Ç r*. 

7. Applications, 

7.1. If we take V to be the full modular group T(l) and œ irrational, we 
obtain hT = V3 . By taking 

in §4 we see that if h > V5, then h $ @ (E, T(l)). Thus 

V3 < A(E, T(l)) < V5 . 

In fact h(E, T) = y/5 as can be obtained by a more detailed study of the 
modular configuration, as shown by Ford (1). 

7.2. If we take r = T(2), the principal congruence group of level 2 con­
sisting of matrices T = E (mod 2), we obtain by Ford's method the funda­
mental region © consisting of points in the strip — \ < x < 3/2, y > 0 
which lie outside the circles \2z ± 1| = 1, \2z — 3| = 1. Thus hr = 1. 

Write 

and take T* = T(l) in §6. Let 

for any positive integer n. Then (13) states that S ^ E, V, U, VU (mod 2) 
which is correct, and mHS = 1. Hence 

(2n + l V _» i 

as w —•> oo. Thus hv" < 1, and so, by Theorems 3, 5, 6 and 7, 

ft(s*, r(2)) = 1, i e e (5*, r(2)), 
for all 5* £ T (1). By taking (i) S* = E, (ii) 5* = C/7Î7, (iii) 5* = 7, we 
deduce that (1) is soluble for every irrational co for an infinity of coprime 
integers a, c in each of the three cases (i) a odd, c even, (ii) a, c both odd, 
(iii) a even, c odd, if and only if h < 1. These results are due to Scott (5), 
who also obtained them by considering T(2). 

7.3. Take r to be IV(2), the group of matrices T congruent to E or V 
modulo 2. A fundamental region for IV(2) is given by 
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0 < x < 2, y > 0, \z\ > 1, |* - 2| > lf 

so that fer = 2. 
As before, take T* = r ( l ) and 

5 . ^ . * -« - (* + ' ^Vl") 
for any positive integer w. Then (13) states that S ?£ E, V, U, UV (mod 2), 
which is correct, and mHS = 1. Thus pHS

f —» 2 as » —> oo, so that Ar
;/ < 2. 

Hence, by Theorems 3, 5, 6 and 7, 

A(5*f rF(2)) = 2 , 2 ç (g (5*, rF(2)) 

for all 5* Ç T(l) . 
By taking 5* to be (a) U, (b) £ , (c) Z7FJ7, we deduce that (1) is soluble for 

irrational co for an infinity of coprime integers a, c if and only if h < 2, in 
each of the following three cases (a) (i) or (ii), (b) (i) or (iii), (c) (ii) or (iii) 
(see §7.2). These results are also due to Scott (5). 

7.4. Let r be the principal (inhomogeneous) congruence group T(N) of 
level N > 2. This is a self-conjugate subgroup of T(l) of index n(N), say. 
From a set of n(N) representatives of the cosets of T(N) in T(l) we can choose 
a set GN of n(N)/Nmatrices S* with different a, y modulo N and (a, 7, iV) = 1. 
Let 5 be such a matrix with 

a = 0 (mod TV), T = [ è ( # - 1)] 

(integral part) so that (7, N) = 1. Also take T* = T(l) and 

* _ W _ ( * • + » * £ • + »>)-G ?) (mod*, 
Then 

^-(J J), H^(^ + \ ) (mod*) 
and S ?* Hr Us (mod AT), showing that (13) is satisfied. Also, if T £ 
TH*ST, c s= 7 (mod N), so that raHS = 7- We have, by (14), pHS' -> I /7 2 

a s w - > 00, and so, by Theorem 7, 

h(S*, T(N)) < { [ * ( # - l ) ] } - 2 ~ 4 i V - 2 

for large N and 5* 6 G^. 
Lower bounds for h(S*, T(N)) may be obtained from Theorem 3, by esti­

mating hT, for example by (4, Theorem 10), but this does not yield good 
results, at any rate for large N. 

Each 5* G GN yields a result on the approximation to irrational co by 
fractions a/c with a = a*, £ = 7* (mod TV), where a and c need not be positive 
integers. A considerable amount of work has been done by Descombes and 
Poitou, Hartman, Koksma and Tornheim (6) on this and related problems 
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using different methods such as continued fractions. See (6) for references. 
In particular, it is known that A(5*, T(N)) > 4/7V2and that h(S*, ?(N))~±/N2 

for large N. For N = 3, 4, A(5*, T(N)) = V(5/3) and i respectively. 
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