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Abstract
Certain hypotheses cannot be directly confirmed for theoretical, practical, or moral reasons. For some of
these hypotheses, however, there might be a workaround: confirmation based on analogical reasoning. In
this paper we take up Dardashti, Hartmann, Thébault, and Winsberg’s (2019) idea of analyzing confirma-
tion based on analogical inference Bayesian style. We identify three types of confirmation by analogy and
show that Dardashti et al.’s approach can cover two of them.We then highlight possible problems with their
model as a general approach to analogical inference and argue that these problems can be avoided by
supplementing Bayesian update with Jeffrey conditionalization.
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1. Introduction
Sometimes evidence for a hypothesis cannot be directly observed. This might be the case if the
evidence is inaccessible for theoretical reasons. An example would be evidence for certain hypoth-
eses about the dynamics of black holes (Winsberg, 2009; Dardashti, Thébault, andWinsberg, 2015).
But even if observing the evidence for a hypothesis is theoretically possible, we still might not
possess the know-how or the right tools tomeasure it, or the costs to produce it, or building the tools
required to measure it might be too high. In such cases, evidence cannot be accessed for different
practical reasons. The existence of widely recognized moral reservations might also make it
impossible to observe evidence. Producing evidence to directly confirm a certain psychological
hypothesis might, for example, require surgical interventions on the brains of test subjects.

Cases in which a hypothesis H cannot be directly confirmed by observing evidence
E obviously cause trouble for scientists. Though such a hypothesis cannot be directly confirmed,
it might make perfectly reasonable true or false claims about the world. Is there really no way to
confirm (or disconfirm) such a hypothesis at all? One possible option consists in trying to find
systems s0 that are similar (or analogous) enough to the systems s about whichH claims this and
that. One could then formulate a corresponding hypothesis H0 for these similar enough systems
s0. Contrary to the systems s, these systems s0 might produce evidence E0 that can be observed
directly. Now, the hope is that our original hypothesisH can somehow be confirmed on the basis
of observing E0. After all, H0 makes a claim about systems s0 that is analogous to what H claims
about systems s. If E0 can somehow be used to confirmH, then it seems that there is a possibility
to empirically assess hypotheses whose corresponding evidence cannot be observed (for
whatever reasons).
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Some kind of confirmation on the basis of analogical reasoning is clearly applied in sciences
such as biology, climate science, economics, medicine and pharmacology, etc. However, whether
evidence E0 that directly confirms a hypothesisH0 can be used to confirm an analogous hypothesis
H is controversial (see, e.g., the critique of Duhem 1991, 97ff.; Bartha 2010, sec. 1.9). A recent
approach put forward by Dardashti et al. (2019) seems to support the view that confirmation
based on analogical inference is quite reasonable. They propose a Bayesian analysis of confirma-
tion on the basis of analogical reasoning (for confirmation within a Bayesian framework, see,
e.g., Bovens and Hartmann 2003; Hartmann and Sprenger 2011). In particular, they argue that if
the systems described by H and H0 (at least partially) share the same structural features, there
might be a connection betweenH andH0 that establishes probability flow between evidence E0 and
hypothesisH. This seems to be everything required for E0 to (indirectly) confirmH Bayesian style
and, thus, confirmation based on analogical inference would turn out to be a kind of Bayesian
confirmation.

In this paper, we take up Dardashti et al.’s (2019) idea to make sense of confirmation based on
analogical inference in a Bayesian framework. We first identify three more or less classical types
of analogical inference in section 2. In section 3, we then introduce and illustrate Dardashti
et al.’s approach by means of a simple toy example. We argue that their approach—in its original
version—covers only one of the types of analogical inference and show that it can be expanded in
such a way that it also covers a second type. We then generalize their approach to scenarios in
which common causes play the same role as shared structures (or analogies) play in their account
in section 4. This move will turn out to be quite straightforward since, from a formal point of
view, common causes work exactly like shared structures. We also discuss general problems
(subsections 4.a and 4.b) and more specific problems with the view that evidence E0 for a
hypothesis H0 can confirm another hypothesis H making a claim about a different system
(subsection 4.c). In section 5, we discuss approaches not plagued by the possible problems due to
cross-system confirmation. In particular, we make a new proposal for the missing type of
inference by analogy and develop a model which supplements Bayesian update by Jeffrey
conditionalization for cases in which direct evidence for the hypothesis of interest is inaccessible.
We conclude in section 6.

2. Three types of analogical inference
In this section, we briefly discuss the traditional characterization and distinguish three types of
analogical inference. This will provide the basis for the discussion of analogical inference in the
Bayesian framework in subsequent sections. A standard form of an argument by analogy goes as
follows (cf. Walton 2005, 96):

Similarity Premise: Generally, case s0 is similar to case s.
Base Premise: Q0 holds in s0.
Conclusion: Q, which is similar to Q0, holds in s.

Figure 1. Horizontal and vertical relations in analogical reasoning.
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Similarly, Bartha (2010, 1 and 13) states that “an analogical argument is an explicit represen-
tation of analogical reasoning that cites accepted similarities between two systems in support of the
conclusion that some further similarity exists,” which amounts to the following schema:

(1) s0 is similar to s in certain respects P0i and Pi (where P0i and Pi with 1≤ i ≤ n are similar).
(2) s0 has some additional feature Q0.
(3) Therefore, s has feature Q (where Q and Q0 are similar).

In her seminal monograph on analogical reasoning, Hesse (1966, 59f) suggests to represent
analogies by help of a tabular representing features of a source and target system:1

Note that Hesse (1966, 59f; see also Hesse, 1974) already distinguished between horizontal and
vertical relations between the target and the source system’s features. The horizontal relations
between echoing and reflection, loudness and brightness, etc., consist in similarity or identity,
while the vertical relations between echoing, loudness, etc., and propagation in air consist in
causal dependence. Explicitly describing these relations constitutes an argument by analogy and
brings the tabular notion in line with the schemata above. In accordance with Bartha (2010, 24),
one can further distinguish between empirically established relations and merely possible
(or conjectured) relations. The similarity of s and s0 with respect to Pi and P0i (with 1≤ i≤ 4),
for example, was a de facto established relation back at the time of ether theories. Hence, the
similarities between Pi and P0i were considered to be horizontal relations (simpliciter). However,
the similarity betweenQ andQ0 was not an established relation, but also not excluded back then. It
was, hence, considered to be a possible horizontal relation. It is interesting to note that Bartha
(2010) also applies this more subtle distinction to vertical relations. The relation between echoing
and propagation in air, for example, was an already established causal relation and, hence,
considered to be a vertical relation (simpliciter). The similarity between reflection and propaga-
tion in ether, on the other hand, was not established on empirical grounds; it was considered to be
a possible vertical relation. By extending the approach of Bartha (2010, 24), who considers
possible horizontal and vertical relations not independent of each other, but as mutually
constrained, we can distinguish two types of analogical inference, namely the type of inferring
a (possible) horizontal relation and the type of inferring a (possible) vertical relation. The
schemata of these two types of inference are provided in Figure 1.

For an analogical inference of a (possible) horizontal relation we have already provided an
example above: the ether example. A prime example of an analogical inference of a (possible)
vertical relation would be the famous violinist case presented by Thomson (1971). Here it is argued
that similarly to the case where a violinist’s right to live does not establish a claim on someone else’s

(source) properties of sound [s0] [s] properties of light (target)

echoes [P01 s0ð Þ] [P1 sð Þ] reflection

loudness [P02 s0ð Þ] [P2 sð Þ] brightness
pitch [P03 s0ð Þ] [P3 sð Þ] color
detected by ear [P04 s0ð Þ] [P4 sð Þ] detected by eye

propagated in air [Q0 s0ð Þ] [Hence: Q sð Þ] propagated in ether

1There are more subtle schemata of inferences by analogy—for example, some schemata including dissimilarities, or
so-called negative analogies (Keynes 1921). To keep things simple, we stick to this general schema of positive analogies.
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body (whose kidney is used to keep the violinist alive), a baby’s right to live does not establish a claim
on the mother’s body. Put into the argumentation schema above, this amounts to:

(1) Generally, the violinist case s0 is similar to the case of unwanted pregnancy s, i.e., P01,P1 and
Q0,Q are similar.

(2) A violinist’s right to live P01 s0ð Þ does not establish a right to use someone else’s body Q0 sð Þ.
(3) Therefore, also a baby’s right to live P1 sð Þ does not establish a right to use the mother’s

body Q sð Þ.

Let us simplify this structure by considering only single hypotheses (conclusions) about and
evidence (premises) for features of the source and target systems. LetH stand for such a hypothesis
about and E for such evidence for features of the target system s. Likewise, let H0 and E0 stand for
such a hypothesis about and such evidence for features of the source system s0. Furthermore, let us,
in accordance withHesse (1964) and Bartha (2010), assume that the possible horizontal and vertical
relations are confirmational relations. Then characterizing the first kind of analogical inference
(type I)—which is based on a possible horizontal relation betweenQ sð Þ andQ0 s0ð Þ—amounts to the
task of evaluating the confirmational impact of E0 on E. Note that, speaking in terms of the
traditional terminology, in this type of confirmation the possible horizontal relation is established
on the basis of established positive analogies (similarities); what role these positive analogies play
will become more clear when we present Dardasthi et al.’s (2019) Bayesian approach in the next
section. Characterizing the second kind of analogical inference (type II)—establishing a possible
vertical relation between Q sð Þ and P1 sð Þ,…,Pn sð Þ—amounts to the task of evaluating the confir-
mational impact of E on H on the basis of E0’s confirmational impact on H0.

Note that these two types are not the only possibilities of how evidence about features of the source
systems could be used for analogical reasoning. It is easy to see that there is also a third kindof analogical
inference (type III) which consists in evaluating the confirmational impact of evidence E0 (source
system) on hypothesis H (target system). This third type is not explicitly discussed in the traditional
literature on analogical reasoning. However, as we will see in the next section, it is the central kind of
inference discussed in the literature on so-called analogue simulation. In the traditional framework, this
type of analogical reasoning could be described as an inference along the lines of a possible diagonal
relation. The three different types of inference by analogy are depicted in Figure 2.

3. Confirmation by analogy Bayesian style
In this section, we present Dardasthi et al.’s (2019) Bayesian approach to confirmation based on
analogical reasoning and show that it can cover type I and III analogical inferences.Wewill use a toy
example for illustration throughout the paper: assume we are interested in the efficacy of a new
antiviral compound on humans who suffer from a certain viral disease. Experts think that this new

Figure 2. Three types of analogical inference. Thick arrows represent inferred possible relations, dotted arrows established
relations, and dashed lines similarity relations.
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antiviral compound is incredibly promising. To avoid possible negative side effects, however,
physicians decide to first test the antiviral compound on nonhuman model organisms such as rats.
Only after several successful trials with rats would the physicians consider cautiously starting to
investigate the efficacy of the antiviral compound with human test subjects. This procedure seems
to suggest that they make some kind of inference from the success of the treatment on rats to the
future success of the treatment on humans. In other words: they seem to assume that a successful
treatment of the model organism can be employed to confirm a corresponding hypothesis about
humans. Physicians might justify this by pointing to the fact that the immune system of rats works
analogously to the immune system of humans in relevant respects.

Let us now describe the toy example introduced above in amore precise way. (For an illustration,
see Figure 3.) Let s stand for human test persons and s0 for rats. Let H be a hypothesis about the
human immune system and H0 a hypothesis about the immune system of rats. If H is true, then
humans suffering from the viral disease who have been treated with the antiviral compound will
recover without severe negative side effects. Likewise, ifH0 is true, then rats treatedwith the antiviral
compound will recover without noteworthy negative side effects. Finally, let E describe whether
infected humans treated with the antiviral compound recover without severe negative side effects
and E0 for whether infected rats do.

What goes on in the above toy example seems to be the following: at the beginning, the physicians
are quite confident thatH (claims about the human immune system) holds, but they still consider it as
too risky to perform human trials in order to directly confirm H. So they start to test the antiviral
compound on rats instead. They also think that a hypothesis H0 similar to H holds for the immune
systemof rats. So the experts are quite confident that the immune systems of humans and rats (s and s0,
respectively) are adequately modeled by H and H0, respectively, and that the immune systems of
humans (s) and rats (s0) share important structural features (i.e., are in many relevant respects
analogous). They then collect evidence E0 (treatment success with rats), which directly confirms H0.
Because the immune systems of humans and rats are assumed to share relevant structural features,
physicians conclude that the results of the rat study can somehowbe used to at least weakly confirmH.

So far the rough schema. The problem is that it is still not well understood how the confirmation
involved here works. Here is a rational reconstruction of how the confirmation would work in
Bayesian terms according to Dardashti et al. (2019). They would stress the fact that the inference
seems to crucially employ assumptions about the structure shared by the immune systems
of humans and rats.2 Consequently, they would propose to model this shared structure with a

Figure 3. Schema of analogical reasoning.

2Note that this is our reconstruction of how Dardashti et al. (2019) would apply their approach to this specific case. In this
work, they focus on the dynamics of black holes instead, and the structural similarities they rely on are based upon universality
arguments or, more generally, upon connections between background assumptions of the two models (see also Dardashti et al.
2015). Since we are not specifically interested in physics but rather in the more general picture, we choose the much easier to
comprehend rat study case as our main example throughout this paper.

178 Christian J. and Alexander

https://doi.org/10.1017/can.2019.18 Published online by Cambridge University Press

https://doi.org/10.1017/can.2019.18


variable X that is a common ancestor of H and H0 in a Bayesian network. Bayesian networks are
especially well suited forDardashti et al.’s endeavor because they allow formodeling and graphically
representing the paths over which probabilistic information spreads between variables. A Bayesian
network consists of a setV of random variables X1,…,Xn, a set E of directed edges (!) connecting
some of these variables, and a probability distribution P over V. A triple 〈V,E,P〉 is a Bayesian
network if and only if it conforms to the Markov factorization (Pearl 2000, 16):

P X1,…, Xnð Þ¼
Yn

i¼1
P XijPar Xið Þð Þ, (1)

wherePar Xið Þ is the set of Xi’s parents in the Bayesian network, i.e., all X j ∈V with X j!Xi. If P
factors according to equation 1, then one can read off certain independencies from the graph
〈V,E〉. In particular, every Xi ∈V has to be independent of every X j (where j �¼ i) that is not
connected to Xi over a path Xi!…!X j conditional on Par Xið Þ.

Now, Dardashti et al. (2019) would analyze the kind of inference used in our toy example above
by means of the Bayesian network in Figure 4: this Bayesian network allows for probability flow
from E0 to H over the path H X!H0 ! E0. In particular, observing E0 confirms H0. This
increases the probability of X which, in turn, increases the probability of H. Thus, E0 increases
the probability of H which, according to Dardashti et al., shows that E0 indirectly confirms H. So,
according to their understanding, confirmation based on analogical reasoning coincides with
Bayesian confirmation of H given E0. They claim that their approach provides a general schema
for indirect confirmation by analogy, where by “indirect confirmation” we mean confirmation
citing evidence E0 from the source system, but not evidence E from the target system.

Before we go on to generalize Dardashti et al.’s (2019) approach in such a way that it can also
cover causal scenarios (which play a central role in the traditional literature on analogical inference;
see, e.g., Hesse 1964; Bartha 2010) and discuss several possible problems, some remarks are in order.
First, note that the role of X (the shared structure) is to mediate probabilistic influence between the
source system s0 described by H0 and the target system s modeled by H. How exactly X must be
specified is not entirely clear yet. We will come back to this issue and provide a general theoretical
recipe in subsection 4.b. Second, the interpretation of the directed edges in the underlying Bayesian
network is more or less flexible. The arrow H0 ! E0 stands for some kind of direct confirmation
relation, while the arrows X!H and X!H0 express that X describes a common feature of both
systems relevant for H and H0. We will argue in section 4 that X could also be understood as a
common cause ofH andH0. Third, note that Dardashti et al. do not speak of hypothesesH andH0,
but rather of models that are assumed to adequately represent certain systems. This is due to their
interest of explicating what is called an analogue simulation in the modeling literature
(Winsberg 2009). We have decided to speak of hypotheses instead because this is much more in
line with the traditional philosophical debate on analogies and confirmation (see, e.g., Carnap 1962,

Figure 4. Bayesian network of analogical reasoning type III.
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appendix D; Hesse, 1964). However, it does not make that much of a difference whether one speaks
of hypotheses or of models, because it seems quite straightforward to think of models as complex
hypotheses about certain systems. Fourth, note that E0 can increase the probability ofH only under
certain circumstances. Dardashti et al. identify the following four conditions that have to be
assumed in addition to the structure of the Bayesian network depicted in Figure 4:

(i) 0< P Xð Þ< 1
(ii) P HjXð Þ> P Hj¬Xð Þ
(iii) P H0jXð Þ> P H0j¬Xð Þ
(iv) P E0jH0ð Þ> P E0j¬H0ð Þ

Condition (i) states that the probability distribution over X is not extreme. Conditions (ii) and
(iii) say that H and H0 must become more plausible in the light of X. Finally, condition (iv) is a
necessary condition for E0 to be considered evidence for H0. It can be proven that P HjE0ð Þ> P Hð Þ
holds if conditions (i) through (iv) are satisfied and the probability distribution P over V¼
X,H,H0,E0f g factors according to equation 1 (Dardashti et al. 2019, Theorem 1). Dardashti et al.
see this as support for the view that evidence E0 of the source system can actually confirm hypothesis
H about the target system. As a measure for indirect confirmation by analogy, one could, according
to this approach, simply use the ordinary Bayesian difference measure

Bconf HjE0ð Þ ¼P HjE0ð Þ�P Hð Þ: (2)

In this paper, we use this particular measure as a proxy for all kinds of Bayesian confirmation
measures. (For an overview, see Fitelson 1999.)

Note that the Bayesian approach proposed byDardashti et al. (2019) amounts to amodel of what
we labeled type III analogical inference in section 2. It aims at confirming H on the basis of E0—
where the confirmational impact can be expressed by Bconf HjE0ð Þ—which corresponds to the
confirmatory relation indicated by the thick diagonal arrow in Figure 2. Their approach can be
easily expanded to a model that can also cover type I analogical inference by adding a variable E
standing for (unknown) direct evidence for H to one’s model and by assuming the additional
condition (v) P EjHð Þ> P Ej¬Hð Þ. It follows that P EjE0ð Þ> P Eð Þ holds and, hence, that E can be
Bayes confirmed by E0, which corresponds to the confirmatory relation expressed by the thick
horizontal arrow in the type I pattern in Figure 2. The confirmational impact can, again, be
expressed by Bconf EjE0ð Þ.3

4. Shared structures, common causes, and problems with indirect confirmation
In this section, we will do two things: First, we will generalize Dardashti et al.’s (2019) Bayesian
approach to indirect confirmation by analogy in such a way that it can also cover causal scenarios.
Since analogies involving causal dependencies are particularly appreciated in the traditional
literature on analogies (Bartha, 2010), supplementing their approach with such an interpretation
seems promising. To this end, we will start this section by introducing the basics required for the
causal interpretation of Bayesian networks. Second, we will highlight possible problems this

3Note that confirmation is typically understood relative to some background knowledge K. To account for the role this
background knowledge plays, the confirmatory impact of E0 on H would better be measured by P HjE0,Kð Þ�P HjKð Þ than by
P HjE0ð Þ�P Hð Þ. In order to keep things simple, we bracket background knowledge K in our discussion. It is, however,
important to mention that Bartha (2019, sect.5.1) discusses the worry that analogical arguments might not be able to provide
confirmation because it is inappropriate to treat E0 as evidence. Rather, E0 should be seen as part of the background knowledge
K.Observing E0 would, thus, not increase the probability ofH givenK. (Note that this is a version of the problem of old evidence).
We agree with Dardasthi et al.’s (2019, sec. 2) argumentation for why E0 should be considered as new evidence anyway.
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generalized approach has to face. These problems do not depend on causal setups and, hence, might
pose a threat also to Dardashti et al.’s original non-causal approach. However, they are not intended
to deny the rationale of confirmation by analogy type I and III in general. By putting them forward
we rather want to stress that inferences by analogy type II (which are not exposed to these problems)
and other strategies for using evidence of the source system for confirming a hypothesis about the
target system are significant as well.

The causal interpretation of Bayesian networks was developed by Spirtes, Glymour, and Scheines
(1993) and later by Pearl (2000). In this interpretation, the arrows of a Bayesian network are
interpreted as direct causal dependencies: IfXi!X j, thenXi is a direct cause ofX j. If there is a path
of the formXi!…!X j, thenXi is called a (direct or indirect) cause ofX j. If a variableXk lies on a
path of the form Xi!…!Xk!…!X j, then Xk is called an intermediate cause. A variable Xk

lying on a path Xi … Xk!…!X j is called a common cause of Xi and X j, and a variable Xk

lying on a path Xi!…!Xk … X j is called a common effect of Xi and X j.
Under the causal interpretation of Bayesian networks, the Markov factorization (equation 1)

implies (among other things) that conditionalizing on intermediate causes or common causesXk on
a path Xi!…!Xk!…!X j or Xi … Xk!…!X j, respectively, screens Xi and X j off
each other (provided Xi and X j are not connected via other paths), and that variables Xi and X j,
connected only via a common effect path Xi!…!Xk … X j, are independent but might
become dependent after conditionalizing on their common effect Xk or on one of its effects.

Note that from a formal point of view, all that a Bayesian network does is provide a graphical
representation from which certain independencies in an associated probability distribution can be
read off. A common direct ancestor structure such asH X!H0, for example, produces the same
screening off effect regardless of whether the directed edges are causally interpreted or not.
Whatever the true nature of the relation between X and the hypotheses H and H0 might be, as
long as it has the right formal properties, it can be represented by the structure H X!H0.4 If
dependence due to shared structure is adequately represented by H X!H0, then it seems to be
straightforward to assume that if Dardashti et al.’s (2019) story about indirect confirmation via a
pathH X!H0 through a variableX representing relevant shared structural properties is correct,
then E0 should also confirm H if X represents a common cause of H and H0 instead of a shared
structural feature as long as the conditions (i) through (iv) from section 3 are satisfied. Indirect
confirmation via common cause paths would work exactly like indirect confirmation by analogy in
Dardashti et al.’s approach does. Thus, Dardashti et al.’s Bayesian approach to indirect confirma-
tion by analogy type III (and also type I) can be straightforwardly generalized in such a way that it
also covers causal structures.

Let us now highlight several possible problems with this generalized Bayesian approach to
indirect confirmation. The first two problems (subsections 4.a and 4.b) can be solved.Wewill argue
that the other problems (subsection 4.c) should raise doubt with respect to the kind of cross-system
confirmation employed by type I and III analogical inferences. Our diagnosis will be that sometimes
confirmation should be restricted to system-internal confirmation and, hence, to analogies of type
II (to be discussed in section 5). We will also suggest an alternative procedure for how one can
confirm H on the basis of collecting evidence E0 that can avoid these problems.

4.a Paths between hypotheses

The first possible objection onemight raise is that it is not clear how to draw the arrows between the
variablesX,H,H0, and E0. It is quite uncontroversial that hypothesisH0 and evidence E0 are correctly
represented by H0 ! E0. (The reason for this is simply that further evidence for H0 is typically

4It seems, for example, that supervenience, constitutive relevance, and the grounding relation also produce the Markov
factorization (see, e.g., Gebharter 2017a, 2017b; Schaffer, 2016).
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assumed to be independent of E0 conditional on H0.) But what about the connection of X toH and
H0? Recall Dardashti et al. (2019) originally introduced X to mediate probabilistic information
between H and H0. There are basically four possible structures that would allow X to play this role
(see Figure 5). Since X represents something the systems described byH andH0 have in common, it
seems plausible to eliminate possibilities (a) and (b). But why should (c) and not (d) be the correct
structure? In the common cause scenario it is quite trivial that (c) is the right representation. But
what about the shared structure interpretation?

We think that we can come up with the following argumentation for why (c) is also the correct
representation in the shared structure case: (c) seems, contrary to (d), to be able to capture just the right
dependencies and independencies. Assume that the probability distribution over X is not extreme
(i.e., satisfies condition (i) from section 3). NowH andH0 can be expected to be dependent. When we
learn, for example,H0, then this might increase the probability ofH simply becauseH andH0 partially
share the same structure (described by X). But once we conditionalize on X, H and H0 will become
independent. When fixing X’s value, the general structural features (represented by X) of the systems
described byH andH0 cannot change anymore. So all changes inH orH0must be independent of these
structural features. But since probability flow between H and H0 is only established via the shared
structure described by X, learning about other features of the system described byH0 would give us no
additional probabilistic information forH and vice versa. The dependence and independence features
we have described are exactly the ones that come with structure (c); they are, on the other hand,
incompatible with structure (d). This will become even clearer in the next subsection.

4.b Choosing X and the Markov factorization

Here is another possible problem that is somehow related to the first one. To establish probability
flow between the target and the source system, not only conditions 1 through 4 are required, but one
must also be justified in assuming that H X!H0 ! E0 is a Bayesian network—one must be
justified in assuming that one’s probability distribution factors according to equation 1. In
particular, X does not only have to mediate between the source and the target system, but also to
screen the two systems off each other if conditioned on. A necessary condition for the latter is that

P Hj¬X,H0ð Þ¼ P Hj¬Xð Þ (3)

Figure 5. Four possibilities of connecting H and H' via X.
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holds. But why exactly shouldX satisfy this screening off condition? The problem is thatX cannot be
chosen just in any way sufficient for establishing probability flow between the target and the source
system. Assume, for example, X would have the two possible values H ∧H0 and ¬H ∨ ¬H0.5 We
would then get P Hj¬X,H0ð Þ ¼ P Hj¬H ∨ ¬H0,H0ð Þ¼ 0 and P Hj¬Xð Þ¼ P Hj¬H ∨ ¬H0ð Þ> 0 and,
thus, equation 3 would be violated. So, again, are there general rules how X must be specified for
analogical inference, and how can introducing an X that satisfies these rules be justified?

First of all, note that finding and specifying X has two aspects: a theoretical and an empirical
aspect. The theoretical task consists in two subtasks, in identifying general constraints for X that
guarantee that X will have the right formal properties—it must mediate probabilistic influence
between the target and the source system and screen both systems off each other if conditioned on—
and in finding a general method for inferring the existence of such an X. Let us say a few words on
the latter first. One possibility to infer the existence of a suitable X is creative abduction (Schurz
2008). The basic idea is that a stable strict correlation between two systems requires an explanation.
According to Reichenbach’s (1956) principle of the common cause, there must be a common cause
if these systems are not directly causally connected. One key feature of common causes is that they
screen off their effects, which guarantees that the inferred X has the right formal properties. This
basic idea can be generalized to nonstrict correlations and noncausal structures as well (Feldbacher-
Escamilla and Gebharter 2019). In that case, one infers dispositional or shared structural features of
the correlated systems instead of a common cause (see also Glymour 2019).

Though creative abduction can be used for inferring the existence of a suitableX, this does not yet
tell us more aboutX than that it must have the right formal properties. So, how could X generally be
specified? With this question, we have arrived at the other part of the theoretical aspect. A possible
answer to it comes again from the formal similarity between common causes and shared structural
features. Common causes do screen off if they are maximal, i.e., if all common causes are subsumed
under X. The same holds for shared components or constitutents (see, e.g., Gebharter 2017b) and
should also hold for shared structural features. If probability flow between the target and the source
system is due to shared structural features, then X must, to fully explain this correlation and to
guarantee the screening off property, cover all the features shared by both systems. One can, for
example, think in terms of INUS conditions (Insufficient butNecessary parts of a conditionwhich is
itself Unnecessary but Sufficient; cf.Mackie 1980) about these matters. Assume C is an effect to be
explained and A and B are causally relevant factors for C. Their logical connection to C can then be
described via

AU ∨BV ∨W$C, (4)

whereU,V, andW stand for further possibly unknown explanatory relevant factors. Note that each
causally relevant factor (such as A and B) is an INUS condition for C, i.e., an insufficient but non-
redundant part of an unnecessary but sufficient condition for C. Similar representations have been
used for constitutively relevant parts (Couch 2011; Harbecke 2010) and might, in the same way, be
used for characterizing structural relevance as well. Note that for establishing probability flow
between H and H0, two descriptions such as equation 4 having at least one INUS condition in
common are required. These descriptions could, for example, be

AU ∨BV ∨W$H (5)

and

AU 0 ∨ BV 0 ∨W 0 $H0 (6)

5We are indebted to an anonymous referee for pointing us to this problem.

Canadian Journal of Philosophy 183

https://doi.org/10.1017/can.2019.18 Published online by Cambridge University Press

https://doi.org/10.1017/can.2019.18


which share the structural features A and B. Now, for X to screen H and H0 off each other, it is
required that all INUS conditions appearing in both descriptions are featured inX. In particular,X’s
values must be the possible conjunctions of INUS conditions (and their negations) appearing in
both descriptions; it is in this sense that Xmust be maximal. According to this idea, Xwould, in our
example, have the four values A ∧ B (both structural features are present), A ∧ ¬B (only A is
present), ¬A ∧ B (only B is present), and ¬A ∧ ¬B (neither A nor B are present).

We think that there is notmuchmore that can be said aboutX from a theoretical perspective.We
pointed to a method for inferring the existence of a suitable X and tried to provide a general logical
pattern for how X could be specified in order to have the right formal properties. Inferring and
specifying X in concrete cases (such as the dynamics of black holes studied by Dardashti et al. 2019,
Dardashti et al. 2015, or our rat case example) cannot be done a priori. Filling in these details is the
empirical task mentioned before that might require different methods depending on the specific
domain of application and the specific science (or sciences) concerned.

4.c Possible problems with cross system confirmation

In what follows, we put forward another type of problems whose brief discussion aims at a further
clarification of the model(s) on confirmation based on analogical reasoning. As we will argue,
confirmation across systems (type I and type III) might undermine intuitions about confirmation
by licensing inflation, scattering, employment of distrusted evidence, and outweighing of direct
evidence by indirect evidence.

Confirmation inflationism. This problem arises for the shared structure as well as for the
common cause interpretation. Let us have a look at the common cause interpretation first.
Physicists are quite confident (but not absolutely certain) about the existence of the Big Bang.
Let us say that X describes the Big Bang. Since the Big Bang is a common cause of everything going
on in the universe at any later point in time, we can formulate hypotheses H and H0 about any two
systems s and s0 in the world. Given the generalization of Dardashti et al.’s (2019) story about
indirect confirmation—given evidence E0 can actually confirm a hypothesis H if there is some
mediator X between H and H0—then evidence E0 for any hypothesis H0 indirectly confirms
hypothesis H about (almost) any other system simply because all current systems have the Big
Bang as a common cause. Everything required for indirect confirmation in a Bayesian framework is
that conditions (i) through (iv) from section 3 are satisfied, which seems to be very plausible in the
case of the Big Bang.

A similar point can be made for the shared structure interpretation. It seems that for almost
all real world systems there are some common structural features that could be described by X.
Note that conditions (i) through (iv) from section 3 may already be satisfied if there are very weak
dependencies of hypotheses H and H0 on X. This means that if all relations of confirmation by
analogy would be modelled by analogical confirmation type I and III only, then almost everything
would at least very weakly confirm almost everything else. We would have to face some kind of full
blown confirmation inflationism.

Confirmation of scattered hypotheses.Here is another possible problem. It is related to the last
one. If the generalized Bayesian approach to indirect confirmation is correct, then confirmation just
consists in Bayesian update, meaning that everything needed for a hypothesisH to be confirmed by
some E0 is that P HjE0ð Þ> P Hð Þ holds. But then variables that are quite scattered across a Bayesian
network adequately representing a scenario of interest can, in principle, be used for confirmation.
P HjE0ð Þ> P Hð Þmight already hold in some circumstances if there is some (maybe complex) path
connecting E0 with H in such a way that it can propagate probabilistic influence from E0 toH. This
leads to cases of confirmation that seem, at least at first glance, quite odd. Let us illustrate this by
means of the exemplary Bayesian network whose structure is depicted in Figure 6: the ALARM
network which was originally developed as a tool for monitoring medical systems of a certain kind
(Beinlich, Suermondt, Chavez, and Cooper 1989).
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The details of the ALARM network and the medical system modeled are not that important for
the point we want to make. Let us rather focus on the following two variables of the ALARM
network: 19 and 23 . 19 could represent the hypothesis that an anaphylaxis occurs, and 23 the
hypothesis that the ventilation tube is kinked. Now 19 and 23 are not directly connected to each
other in the ALARM network; they are rather scattered. They are, however, connected by several
quite complex paths. The path consisting of the bold arrows in Figure 6, for example, can transport
probabilistic dependence between 19 and 23 conditional on 9 (which stands for heart rate
obtained from oximeter). Now assume that we observe some evidence E0 for 23 . Since conditio-
nalizing on 23 increases the probability of 19 conditional on 9 , it might well be the case that
P 19 jE0, 9� �

>P 19 j 9� �
also holds. But in the generalized Bayesian approach to indirect con-

firmation, this just means that E0 confirms 19 in the context of 9 . However, one might hesitate to
speak of confirmation in this situation simply because the hypotheses 19 and 23 are too scattered.
It is not clear why E0 should count as evidence for 19 .

Distrust in indirect evidence. The third possible problem is that the generalized Bayesian
approach to indirect confirmation by analogy type I and III does not seem to be in line with how
many scientists understand and use the concept of confirmation as well as with the common sense
understanding of that concept. Let us illustrate this bymeans of the rat study example introduced in
section 3. Assume that Jones was affected with a certain virus. She goes to a physician who offers her
two possible treatments: medical compound A or B. A has been tested on humans and it turned out
that 80% of humans affected with the virus recovered after taking A. B, on the other hand, has only
been tested on rats so far. Let us assume that 95% of rats affected with the virus recovered after
taking B. Let us further assume that physicians have used Dardashti et al.’s (2019) method of
indirect confirmation. They chose the priors of X and everything else required for indirect
confirmation to the best of their knowledge and are quite certain that no mistakes occurred. They
might then come to the conclusion that 80% of humans affected with the virus should recover after
taking compound B. So which compound should Jones choose? Our guess is that almost every
patient (and physician) would prefer compoundA over B, simply because A has been tested directly
on humans. The rat study investigating B clearly gives us probabilistic information for whether B
will work when given to humans and makes it equally plausible that B will lead to recovery when
given to affected humans. Still, we distrust B to some extent. Maybe the best explanation for this is
that we hesitate to accept results from the rat study as evidence for hypotheses about B’s effect on
human recovery. If this diagnosis is correct, then at least sometimes confirmation has to be
constrained by structural rules (system internal confirmation versus confirmation across systems).

Figure 6. The ALARM belief network (reconstruction based on Spirtes et al., 1993, p. 12).
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Irrelevance of direct evidence. Another possible problem for considering the generalized
Bayesian approach to confirmation of a hypothesis H by analogy type III is that direct evidence
E for the hypothesis H about the target system does not play any role for confirming H in that
approach. All the confirmatory work is actually done by evidence E0 for the hypothesisH0 about the
source system and the connection between H and H0 established by the common cause or shared
structure X. However, E often plays an important role in confirming H in scientific practice, even
when scientists reason on the basis of analogies. If the generalized Bayesian approach to confir-
mation by analogy type III were the only mode of indirect confirmation of a hypothesisH about the
target system, then it is not clear why, in cases such as the rat study example, scientists are looking
for direct evidence E though they have already confirmed hypothesis H about the target system
indirectly. Evenmore problematic, it is easy to find scenarios in which indirect evidence E0 hasmore
confirmatory impact onH than direct evidence E has. Here is an exemplary probability distribution:

From this distribution the impact of indirect evidence E0 on H can be computed as
Bconf HjE0ð Þ¼ :053, which overshoots the impact of direct evidence E on H which can be
computed as Bconf HjEð Þ¼ :048.

Here is our diagnosis of the possible problems highlighted above. We think that the culprit is
an unconstrained application of Bayesian confirmation. In particular, it seems to be problematic
to only rely on probabilistic information P HjE0ð Þ> P Hð Þwhen doing confirmation, especially if
there is also structural information available. The situation seems to be similar to what was
historically going on in several other philosophical debates such as debates about explanation,
causation, decision theory, etc. According to Hempel’s (1965, 338) classical inductive-statistical
model of explanation, for example, an explanation of a phenomenon described by E consists of a
statistical law of the form P EjC1,…,Cnð Þ≈ 1 and statements C1,…,Cn about the occurrence of
certain events. If P EjC1,…,Cnð Þ≈ 1 and C1,…,Cn together make E very likely, then
P EjC1,…,Cnð Þ≈ 1 and C1,…,Cn explain E. After striking counterexamples (see, e.g., Salmon
1984) it turned out that structural information was missing in Hempel’s approach: for a
successful explanation it is also required that the events described by C1,…,Cn are causally
relevant for the event described by E. Naïve probabilistic theories of causation also share this
problem. They claim that C is a cause of E if and only if P EjCð Þ> P Eð Þ (this is, admittedly, an
oversimplified version of a probabilistic theory of causation andmore sophisticated probabilistic
theories typically make additional assumptions; they might, for example, require that the cause
always occurs before the effect, etc.). It turned out that a purely probabilistic criterion for
causation is not enough. Here, one also needs additional information about structure. Modern
accounts (e.g., Cartwright 1979) rather characterize causation by referring to additional causal
(i.e., structural) information. Finally, a similar move can also be found in the philosophical
literature on decision theory. It is well known that the purely probabilistic account
(i.e., evidential decision theory) has to face several problems. Some of them can be solved by
endorsing causal decision theory, which already comes with some structural constraints. The
approaches proposed byMeek and Glymour (1994) and Hitchcock (2016) consider richer causal
structural information, which allows them to handle even more problems. We think that
structural restrictions might also help to overcome problems that a generalized Bayesian
approach to analogical inference has to face.

In this section, we discussed three types of possible problems for analogical inference Bayesian
style. We think that the first two (subsection 4.a and 4.b) can be solved. The third type of problems
(subsection 4.c) concerns confirmation across systems and it seems that these problems force one

P Xð Þ¼ :65 P HjXð Þ¼ :75 P EjHð Þ¼ :55 P H0jXð Þ¼ :75 P E0jH0ð Þ¼ :75

P Hj¬Xð Þ¼ :25 P Ej¬Hð Þ¼ :45 P H0j¬Xð Þ¼ :25 P E0j¬H0ð Þ¼ :25
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to make a choice depending on whether one finds them alarming. If one does, one might want to
subscribe, as indicated above, to a structural constraint for confirmation:

(*). Only evidence E accessible via paths within a particular system s can be used for confir-
mation of a hypothesis H about s.

We do not want to commit ourselves to one of the two options mentioned. Rather, we think that
whatever path one takes, it still stresses the relevance of confirmation by analogy type II. (For details, see
section 5.) However, it is clear that if one subscribes to (*), then cross-system confirmation of type I and
III is excluded and type II is the only classical inference pattern (of the three introduced in section 2) left.
But even if one considers indirect confirmation of type I and III to be perfectly fine, it seems that type I
and III only work within their proper bounds: when considering confirmation on the quantitative scale,
for example via Bconf , then the problems of confirmation inflationism and confirmation of scattered
hypotheses might vanish simply because the degree of the general background confirmation or that of
confirmation of scattered hypotheses might be so low that it can be considered negligible. However,
these strategies will not work for a purely qualitative model of confirmation.

In the next section, we will discuss alternatives that conform to (*) and, thus, are not plagued by
the cross-system problems discussed in subsection 4.c. If evidence E of the target system is
accessible, one can go for the last remaining classical inference pattern: type II analogical inference.
For the case that E is inaccessible, we will propose an alternative to cross-system confirmation of
type I and III that adheres to the structural constraint (*).

5. Confirmation by analogy: Bayes meets Jeffrey
Let us start this section with type II analogical inference. The basic idea is to use information about
confirmation within the source system s0 for making confirmational claims about the target
system s. Schematically, the problem is to define Bconf HjEð Þ on the basis of Bconf H0jE0ð Þ. This
corresponds to establishing the confirmational relation indicated by the vertical thick arrow in
Figure 2. To this end, we first need to add a variable for evidence about the target system (E) to our
model (see Figure 7). Next, we have to think about how to establish the vertical confirmatory
relationwithin the target system on the basis of what we can learn about the source system.Note that
we cannot simply equateBconf HjEð ÞwithBconf H0jE0ð Þ. According to equation 2,Bconf HjEð Þ is
defined on the basis of P HjEð Þ and P Hð Þ and, hence, Bconf HjEð Þ cannot be determined indepen-
dently of the Bayesian network’s parameters a, c, and e. (Likewise, Bconf H0jE0ð Þ is defined on the
basis of P H0jE0ð Þ and P H0ð Þ andBconf H0jE0ð Þ cannot be specified independently of the parameters
b, d, and e.) The problem is that the nonparameter probabilities within a Bayesian network are fully
determined by and cannot be varied independently of the Bayesian network’s parameters
a through e, where a¼ 〈P EjHð Þ,P Ej¬Hð Þ〉, b¼ 〈P E0jH0ð Þ,P E0j¬H0ð Þ〉, c¼ 〈P HjXð Þ,P Hj¬Xð Þ〉,

Figure 7. Parameters in the Bayesian network for analogical reasoning type II.
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d¼ 〈P H0jXð Þ,P H0j¬Xð Þ〉 and e¼ P Xð Þ. Since parameters b through e are already fixed, specifying a
is the onlyway to influence the probabilitiesP HjEð Þ andP Eð Þ relevant for determiningBconf HjEð Þ.
Because of this, we suggest implementing type II analogical inference via equating parameter a of the
target system with the respective parameter b of the source system: a¼ b. This move amounts to
inferring a similar vertical relation for the target system as for the source system on the basis of the
similarity between these systems expressed via H X!H0.

Note that one could say a little bit more about the similarity relations between features of
the source and the target system in terms of the parameters c and d. That the first element
of c¼ 〈P HjXð Þ,P Hj¬Xð Þ〉 is significantly greater than the first element of d¼ 〈P H0jXð Þ,P H0j¬Xð Þ〉
could, for example, represent the fact that the structural featuresmodeled byX havemore impact on the
target system than on the source system. Equal parameters (c¼ d), on the other hand, could model
perfect similarity between the impact of these features on s and s0. In case of such a perfect similarity,
making a type II analogical inference, i.e., identifying awith b, implies thatE’s confirmational impact on
H equals E0’s confirmational impact on H0:

Observation: If c¼ d and a¼ b, then Bconf HjEð Þ¼Bconf H0jE0ð Þ:
Note that type II analogical inference adheres to the structural constraint (*) from section 4:

confirmation does not happen over cross-system pathways. Thus, type II analogical inference does
not have to face the problems of cross-system confirmation discussed in subsection 4.c. However,
type II analogical inference clearly requires that evidence E of the target system is accessible. This
requirement will often not be satisfied. This was what made type I and III analogical inference so
tempting in the first place. So, what if E is inaccessible? Canwe still somehow use E for confirmingH
given the similarity between the source and the target system while, at the same time, respecting the
structural constraint (*)? This question will be our focus in the remainder of this section. It is
especially relevant if we find the problems discussed in subsection 4.c alarming and are somewhat
skeptical regarding type I and III analogical inference.

Here comes our alternative to cross-system confirmation of type I and III: we propose a two-
step approach: in the first step, one updates the probability distribution over the target system by
conditionalizing on evidence E0 of the source system. So the first step consists in Bayesian
updating; no confirmation is involved here and, thus, (*) is respected. Confirmation happens
system-internal in the second step: here we use the updated probability of evidence E to confirm
H. Of course, E is not observed (in the strict sense); in the first step we have just reduced our
uncertainty about E to some degree. For this reason, we have to use an update method in step
2 that can handle uncertain evidence. A standard method for this is Jeffrey conditionalization
(Jeffrey 1983).

If one is ready to subscribe to (*), then one still needs to make sense of scientific practice as, for
example, illustrated in the rat study case. But if one finds cross-system confirmation type I and III
problematic, then onewill not find the reconstruction of the rat study case provided in section 3 very
tempting. In the following, we will use this example again for two purposes: First, to show how it can
be rationally reconstructed in terms of our two-step approach if one endorses (*), and second to
illustrate the two-step approach. In the rat case example physicians were, formoral reasons, not able
to collect evidence E about how humans react to the antiviral compound under investigation. So
they were not able to directly confirm the hypothesisH about the human immune system. For this
reason, they studied the effects of the antiviral compound on a model organism such as rats. Let us
assume that the physicians were able to gather evidence E0 for a similar hypothesis H0 about the
immune system of rats. Since it has already been empirically established that the source system and
the target system share relevant structural features, they infer, from observing E0, that if they were to
start testing the antiviral compound on humans, they would very likely find evidence E. This is the
first step in our two-step approach based on ordinary Bayesian updating; no confirmation is
involved here. They then use this inferred decreased uncertainty about E as evidence forH, meaning
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that they infer that it is sufficiently likely that infected humans will recover without severe side
effects if treated with the antiviral compound. This is the second step in our two-step approach; it is
based on Jeffrey conditionalization and marks the point where (system-internal) confirmation
happens. Having confirmedH that way will be sufficient for physicians to start tests with humans to
further confirm H (directly).

Here is our story again, this time with all the technical details: we assume that the rat study
example can be adequately represented by a Bayesian network with the structure depicted in
Figure 7. To confirm H, one needs access to direct evidence E. But, in our example, E cannot
be observed directly. However, what the experts have available is their (prior) estimation of
the probability that direct evidence E would occur if the antiviral compound were adminis-
tered to affected humans. What they can do now is employ the information they gathered
from their investigation of the model organism to update the probability P Eð Þ Bayesian style
to P∗ Eð Þ via

P∗ Eð Þ¼ P EjE0ð Þ: (7)

Since E0 is ordinarily gathered evidence—the physicians just observe E0—this move seems to be
straightforward. In this way, evidence E0 about the source system is used to achieve an empirically
informed estimation of the probability of the direct evidence E.Now this updated probability P∗ Eð Þ
can be used to confirmH directly. Because E is still uncertain—not observed in the strict sense—we
use Jeffrey conditionalization for this last step. We say that uncertain evidence E confirms H by
analogy if

P HjEð Þ �P∗ Eð ÞþP Hj¬Eð Þ �P∗ ¬Eð Þ> P Hð Þ (8)

holds. The left part of this inequality expresses the impact of direct but uncertain evidence E on
hypothesisH Jeffrey style (i.e., the impact onH given the updated probability of E). We have to use
the prior conditional probabilitiesP HjEð Þ and P Hj¬Eð Þ from the original distribution P here. Using
the posterior conditional probabilities P∗ HjEð Þ and P∗ Hj¬Eð Þ would amount to computing the
impact of E0 on H by simple Bayesian conditionalization and, thus, we would face at least the
problems of distrust in indirect evidence and irrelevance of direct evidence which we highlighted in
subsection 4.c. The structural constraint (*) which only allows for confirmation within a system
impedes to directly use external evidence for confirmation. However, such evidence is not
completely irrelevant: even if E0 cannot be used to confirm H, observing E0 can still (cross system-
wise) decrease uncertainty about our expectations of direct evidence E. We can then use this
decreased uncertainty to directly confirm (system-internal) H.

Before we go on to define a measure for this kind of confirmation, note that Jeffrey con-
ditionalization (but also Bayesian conditionalization) requires a rigidity condition to hold: one
has to use the initial conditional probabilities in calculating the unconditional ones. Since the
conditional probabilities remain unchanged, our two-step approach adheres to this rigidity
condition. Next to the uncertainty of evidence E of the target system, this is another important
respect in which the two-step approach differs from type II inference by analogy in form of
parameter mapping: parameter mapping changes the conditional probabilities and, hence, is a
form of nonrigid updating.

Based on the two-step approach to confirmation outlined above, we can define the simple
incremental confirmation measure

BJconf E0 HjEð Þ¼ P HjEð Þ �P∗ Eð ÞþP Hj¬Eð Þ �P∗ ¬Eð Þ½ ��P Hð Þ: (9)

BJ stands for the two steps: B for the first step using Bayesian update of the probability of E in the
light of E0 and J for the second step using Jeffrey conditionalization for confirmation.
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A similar result as the one Dardashti et al. (2019) proved forBconf can be proven forBJconf if

vð Þ P EjHð Þ>P Ej¬Hð Þ

is added as a fifth condition to (i) through (iv) from section 3. Condition (v) is analogue to (iv). It
guarantees that E can serve as evidence for H. If all five conditions are satisfied and the probability
distribution P over V¼ X,H,H0,E,E0f g factors according to equation 1, where the parents are
determined by the structure of the Bayesian network in Figure 7, then E confirmsH on the basis of
observing E0, even if E cannot be accessed directly.

Theorem 1. BJconf E0 HjEð Þ> 0, if (i) through (v) are satisfied.

Before we go on, let us briefly compare themeasuresBconf andBJconf . It can be shown that under
conditions (i) through (v) BJconf is always weaker than or equal to Bconf .

Theorem 2. BJconf E0 HjEð Þ ≤Bconf HjE0ð Þ, if (i) through (v) are satisfied.

The confirmational impact according to the two measures can be illustrated by means of
Figure 8: the formula in the squared brackets of equation 9 is a weighted average wa with
maximum P HjEð Þ and minimum P Hj¬Eð Þ and weights P∗ Eð Þ and P∗ ¬Eð Þ, respectively. Accord-
ing to Theorem 1, wa lies above P Hð Þ and the distance between wa and P Hð Þ corresponds to the
degree of confirmation according toBJconf . When replacing P HjEð Þwith P∗ HjEð Þ and P Hj¬Eð Þ
with P∗ Hj¬Eð Þ in equation 9, one gets Dardashti et al.’s (2019) confirmation measure Bconf .
According to Theorem 2,wa∗ of the posterior probabilities is equal to or lies abovewa used in our
measure BJconf simply because the former maximum and minimum are equal or lie above the
latter. Again, the distance betweenwa∗ and P Hð Þ represents the degree of confirmation according
to Bconf .

Recall from section 4 that, according to Dardashti et al.’s (2019) approach, indirect evidence
E0 sometimes provides more confirmation of a hypothesis H than direct evidence E for H, which
contradicts in relevant cases our intuitions and scientific practice. The next theorem shows that the
two-step approach does not share this problem with the generalized Bayesian approach to
confirmation by analogy type III.

Theorem 3. BJconf E0 HjEð Þ ≤ BJconf E HjEð Þ, if (i) through (v) are satisfied.

This result fits nicely with our intuitions and scientific practice. It shows that our approach
allows for an explanation of why, for example, the scientists in the rat study scenario still collect
direct evidence for the efficacy of the antiviral compound on humans though they have already

Figure 8. Illustration of confirmational impact of Bconf and BJconf.
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tested it on rats: in this case, direct evidence has an impact at least as strong as evidence from
different but structurally analogous systems; even more, direct evidence will almost always have
more impact. So, we think that in the case of the rat study, for example, the Bayes-Jeffrey measure
for confirmation provides a more adequate model of the confirmational relation in question than
the Bayes measure for type III confirmation.

6. Conclusion
This paper started with the observation that in many cases it is not possible to directly observe
evidence E for a hypothesis H. In such cases scientists often investigate different but to some
degree analogous systems, models, or simulations instead. They consider H to be in some sense
confirmed if they succeed in collecting evidence E0 for a corresponding hypothesis about such a
source system. In section 2, we have, based on the traditional literature on analogies, identified
three types of analogical inference: type I, which establishes a horizontal relation between the
hypotheses or pieces of evidence and statements of the source and target system (E0,E); type II,
which establishes a vertical relation between the evidence and hypothesis of the target system
(E,H) on the basis of such a relation within the source system (E0,H0); and type III, which
establishes a diagonal relation between evidence of the source system and a hypothesis of the
target system (E0,H). In section 3, we introduced Dardasthi et al.’s (2019) approach, according to
which confirmation by analogy simply consists in standard Bayesian update.We argued that it can
cover type III analogical inference and can be expanded to cover type I. In section 4, we
generalized their approach to scenarios in which common causes play the role of analogies. We
then discussed several possible problems for this generalized approach. Our diagnosis was that the
more serious problems (subsection 4.c) might arise due to missing structural constraints. In
section 5, we proposed a model of confirmation by analogy type II which does not fall victim to
these problems. It requires, however, that evidence E of the target system is accessible. If one takes
the problems discussed in subsection 4.c serious and E is inaccessible, then one can replace cross-
level confirmation type I and III by a two-step approach adhering to the structural constraint (*)
which requires that only paths within a system can be used for confirmation. In a first step, one
decreases uncertainty about direct evidence E of the target system by Bayesian update on evidence
E0 of the source system. Confirmation happens in the second step. Here we use Jeffrey con-
ditionalization on the decreased uncertainty about E to confirm H. We finally showed that our
two-step approach allows for confirmation of H by E on the basis of E0 (if conditions (i) through
(v) are satisfied; Theorem 1). We also demonstrated that our measure of confirmation BJconf is
always weaker than or equal to Bconf (Theorem 2) and that confirmation of H by E based on E0

can never overshoot direct confirmation of H by E (Theorem 3). Finally, it seems appropriate to
once more emphasize that this paper was about the theoretical underpinning of analogical
inference to the background of a Bayesian setting. In the end, case studies from actual science
more realistic than our simple rat study example are required to further test its adequacy and to
explore specific empirical methods for establishing structural similarities X satisfying all the
requirements specified throughout the paper.
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Appendix
For the proofs of the theorems below, we assume that conditions (i) through (v) hold and that the
target and the source system are adequately represented by the Bayesian network in Figure 7.

Proof of Theorem 1. To show:

BJconf E0 HjEð Þ> 0

Proof. We first show that P∗ Eð Þ> P Eð Þ. Since P∗ �ð Þ¼ P �jE0ð Þ and the conditional probabilities
P XijPar Xið Þð Þ do not change after conditionalizing on nondescendants of Xi in a Bayesian
network (equation 1), we can state P∗ Eð Þ as

P∗ Eð Þ¼ P EjHð Þ �P∗ Hð ÞþP Ej¬Hð Þ �P∗ ¬Hð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔t2

:

It is a probabilistic fact that

P Eð Þ¼ P EjHð Þ �P Hð ÞþP Ej¬Hð Þ �P ¬Hð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔t1

:

The terms t2 and t1 express weighted averages. From (Dardashti et al. 2019, Theorem 1)we know
that P∗ Hð Þ> P Hð Þ, and from (v) that P EjHð Þ> P Ej¬Hð Þ. It follows that P∗ Eð Þ> P Eð Þ.

Due to equation 9,

P HjEð Þ �P∗ Eð ÞþP Hj¬Eð Þ �P∗ ¬Eð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔t4

�P Hð Þ ¼ BJconf E0 HjEð Þ (10)

holds. By probability theory, also

P HjEð Þ �P Eð ÞþP Hj¬Eð Þ �P ¬Eð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔t3

¼ P Hð Þ (11)

holds. The formulæ t4 and t3, again, express weighted averages. From (i), (ii), and (v) it follows that
P HjEð Þ> P Hj¬Eð Þ. Since P∗ Eð Þ> P Eð Þ, it follows that t4 > t3. Then, by equation 10 and equation
11, we get BJconf E0 HjEð Þ¼ t4� t3 > 0. ⎕

Proof of Theorem 2. To show:

BJconf E0 HjEð Þ≤Bconf HjE0ð Þ

Proof. According to Bayes’ theorem,

P HjEð Þ¼ P EjHð Þ �P Hð Þ
P EjHð Þ �P Hð ÞþP Ej¬Hð Þ � 1�P Hð Þð Þ (12)

holds. Since P∗ �ð Þ¼ P �jE0ð Þ and probabilities P XijPar Xið Þð Þ do not change after conditionalizing
on nondescendants of Xi in a Bayesian network (equation 1), also

P∗ HjEð Þ¼ P EjHð Þ �P∗ Hð Þ
P EjHð Þ �P∗ Hð ÞþP Ej¬Hð Þ � 1�P∗ Hð Þð Þ (13)
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holds. If we define a≔ P EjHð Þ, b≔ P Hð Þ, b∗ ≔ P∗ Hð Þ, c≔ P Ej¬Hð Þ, d≔ P HjEð Þ, and
d∗ ≔ P∗ HjEð Þ, we can write equation 12 and equation 13 down as

d¼ a �b
a �bþ c � 1�bð Þ and d∗¼ a �b∗

a �b∗þ c � 1�b∗ð Þ :

From (Dardashti et al. 2019, Theorem 1) we know that b∗ > b, from (v) that a> c, and from
(i) and (ii) that 0< b< 1. It follows that d¼ d∗ if c¼ 0 or b∗¼ 1, and that d< d∗ if c> 0 and b∗ < 1.
Thus, P HjEð Þ ≤ P∗ HjEð Þ holds. Similarly, it can be shown that also P Hj¬Eð Þ ≤ P∗ Hj¬Eð Þ holds.

Recall from section 5 that Bconf can be formulated as

Bconf HjEð Þ¼ P∗ HjEð Þ �P∗ Eð ÞþP∗ Hj¬Eð Þ �P∗ ¬Eð Þ½ ��P Hð Þ, (14)

and that BJconf can be formulated as

BJconf E0 HjEð Þ¼ P HjEð Þ �P∗ Eð ÞþP Hj¬Eð Þ �P∗ ¬Eð Þ½ ��P Hð Þ: (15)

Since the formulæ in the squared brackets are weighted averages and P∗ HjEð Þ and P∗ Hj¬Eð Þ are
greater than P HjEð Þ and P Hj¬Eð Þ respectively, it follows that BJconf E0 HjEð Þ ≤ Bconf HjE0ð Þ
holds. (For a graphical illustration, see Figure 8.) ⎕

Proof of Theorem 3. To show:

BJconf E0 HjEð Þ≤ BJconf E HjEð Þ

Proof. The left term of this inequality is defined as in equation 15. The right term is defined as

BJconf E HjEð Þ¼ P HjEð Þ �1þP Hj¬Eð Þ �0½ ��P Hð Þ: (16)

If the weight P∗ Eð Þ in equation 15 equals 1, then BJconf E0 HjEð Þ equals BJconf E HjEð Þ, and if
P∗ Eð Þ is smaller than 1, then BJconf E0 HjEð Þ<BJconf E HjEð Þ. Thus, BJconf E0
HjEð Þ≤BJconf E HjEð Þ. ⎕
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