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Abstract

This paper is concerned with non-trivial solvability in p-adic integers, for relatively large primes
p, of a pair of additive equations of degree k > 1:

f(x)=a|xf+---+a,.x,’f=0,
g(x)=b|x{‘+---+b,.x,'f =0,

where the coefficients a,, ..., an,by,..., by are rational integers.

Our first theorem shows that the above equations have a non-trivial solution in p-adic integers
if n > 4k and p > k®. The condition on # is best possible.

The later part of the paper obtains further information for the particular case k = 5. Specifi-
cally we show that when k = 5 the above equations have a non-trivial solution in p-adic integers
(a) for all p> 306! if n > 21; (b) for all p except p = 5,11 if n > 26.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 D 88.

1. Introduction
It is well known (see, for example, Chapter 1 of Borevich and Shafarevich
[3]) that the number of solutions of a polynomial congruence
F(xi,....xp) =0 mod p
may be estimated using exponential sums. For an additive form
(1) axf+--+anxk = mod p,
—@—)—man Mathematical Society 0263-6115/89 $A2.00 + 0.00
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where p tay - --a,, it follows from Theorem B of Borevich and Shafarevich
[3, page 15] that the number N of solutions of (1) satisfies

(2) IN — p" ! < Cp-t,
with C = (k — 1)". Therefore a congruence
(3) axk + by* +¢cz*=0  mod p, ptabc,

has a non-trivial solution for all p > k°. The condition on p may be improved
to p > k* (see Theorem 1 of Chowla [4] or Lemma 2.4.1 of Dodson [17]).

Before considering pairs of additive equations we recall some of the results
on the p-adic solvability of a single additive equation

(4) fX) = axf +-- +anxf =0,

with coefficients in Z. For quadratic forms (k = 2) the equation has a non-
trivial solution in p-adic integers for every prime p provided that n > 5 =
2.2 + 1. This result is best possible since when n = 4 and p = 3 mod 4 the
equation

(5) 2+ x3+p(x2+xH)=0

has no non-trivial solution in p-adic integers.

For k = 3 Lewis [20] showed that (4) has a non-trivial solution in p-adic
integers for every prime provided that n > 7 = 2.3 + 1. In order to see that
the condition n > 7 is best possible, let p be any prime with p = 1 mod 3
and let ¢ be a cubic non-residue mod p. Then the equation

(6) (X} — qyi) + p(x3 — qv3) + P*(x3 — qy3) = 0

has no non-trivial solution in p-adic integers.
For k = 5, Gray [19] showed that (4) has a solution in every p-adic field
provided that n > 16 = 3.5 + 1. This is best possible since the equation

5
(7) Y1) + 2y} +42)) =0
i=1

has no non-trivial solution in 11-adic integers.

Davenport and Lewis [11] showed that for any k > 1 the equation (4) has
a non-trivial solution in p-adic integers provided that n > k% + 1. This is
best possible for any exponent k such that k = p — 1 for some prime p, as
can be seen from a generalization of the example (5); see [11, page 454].

The next theorem is a “folklore” result, which does not seem to appear
explicitly in the literature. It follows on combining the arguments of Daven-
port and Lewis [11] with the result for congruence (3), and the proof is left
to the reader.
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THEOREM A. Let n > 2k+1. A single additive equation (4) has a non-trivial
solution in p-adic integers for all p > k*.

A generalization of the example (6) shows that the condition n > 2k + 1
is best possible. The interest of the result is that the problem of p-adic
solvability is reduced to a finite, and explicit, question; for a given equation
the remaining primes can be dealt with by a computer.

Our aim here is to produce an analogue of Theorem A for pairs of addi-
tive equations and to exploit this further in the case k = 5. To gain some
idea of what may be feasible for given k£ and large primes p we consider a
generalization of the example (6). For any exponent k and any prime p = 1
mod k, let g be a kth power non-residue mod p. Then the equation

k
(8) dop T xf—gyf)=0

i=1
has no non-trivial solution in p-adic integers. We consider (8) together with
a “disjoint copy” of (8) (the equation obtained by replacing x;, y; with new
variables x;, y; fori = 1, ..., k). This gives a pair of equations in 4k variables
which have no non-trivial solution in p-adic integers, no matter how large p
is. Thus in order to generalize Theorem A to a pair of additive equations we
must at least assume that n > 4k + 1.

For k = 2, two quadratic equations (not necessarily additive) have a non-
trivial solution in p-adic integers for all primes p provided that n > 9 (see
Demyanov [16]), and this result is best possible. For k = 3, Davenport and
Lewis [12] showed that two additive equations
©) fX)=axk+ - +axk=0 a ez,
g(x)=b1x{‘+---+b,,xf,‘=0, b,'EZ,
have a non-trivial solution in p-adic integers for every prime p provided that
n > 16. They also gave a counterexample with n = 15 and p = 7 showing
that this is best possible. More recently, Cook [7] has shown that forall p # 7
a sufficient condition is 7 > 13 = 4.3+ 1. In view of the example (8), and the
remarks following it, this result is best possible; if we reduce n to 12 there are
infinitely many primes p (p = 1 mod 3) for which we have counterexamples.

Davenport and Lewis [14] studied the case of two additive equations (9)
with an exponent k > 1, obtaining sufficient conditions for the equations to
have a non-trivial solution in p-adic integers for every prime p. For odd &
they showed that n > 2k? + 1 variables are sufficient, but for even k they
were only able to prove that n > 7k3 variables would suffice.

THEOREM 1. Let n > 4k. Any two additive equations (9) of degree k with
integer coefficients a;, b; have a non-trivial solution in p-adic integers for all
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primes p > kS. Further this result is best possible in the sense that it fails to
hold when n = 4k.

The last sentence of Theorem 1 follows from the remarks following the
example (8). We also note that Theorem 1 follows from the results of De-
myanov [16] when k = 2 and Cook [7] when k = 3, so we may suppose
that k > 3. The case k¥ = 5 has already been investigated in some detail
by Cook [8,9] who showed that n > 31 variables will suffice expect possibly
when p = 11. Moreover, consideration of two disjoint copies of the equation
(7), in a total of 30 variables, shows that the best possible condition for such
a result covering all primes p would be n > 31. However, for p = 11 Cook
[9] was only able to show that n > 41 variables will suffice.

We investigate those primes p for which the condition n > 21 = 4.5 + |
is sufficient. Theorem 1 deals with those primes p > 5% = 15625. Some
primes p < 5% may be dealt with by explicitly calculating exponential sums,
and appropriate computer investigation deals with other cases. The primes
p for which n > 26 = 5.5 + 1 is sufficient were also investigated by similar
methods. The results are summarized in the following theorem.

THEOREM 2. In the case k = 5 the equations (9) have a non-trivial solution
in p-adic integers

(a) for all p > 3061 when n > 21,

(b) for all p except p=5,11 if n > 26.

When p = 11 we have already constructed an example in 30 variables
having no non-trivial solutions. Computer searches have revealed examples
which may be used to construct similar counterexamples in 25 variables for
p = 31 and 41. These are listed at the end of this paper.

Apart from their intrinsic interest, p-adic solutions are an essential prelim-
inary to any application of the Hardy-Littlewood method. In the case k = 3,
Davenport and Lewis [12] showed that two additive cubic equations have a
non-trivial simultaneous solution in rational integers provided that n > 18.
Subsequently ‘18 was reduced to ‘17° by Cook [6] and ‘16’ by Vaughan [24].
In view of the counterexample of Davenport and Lewis [12] with n = 15
and p = 7 this is the best that could be done without making some 7-adic
assumption. More recently, Baker and Briidern [2] have shown, using the
p-adic results of Cook [7], that 15 variables are sufficient if we assume the
existence of non-singular 7-adic solutions. Atkinson [1] has classified those
pairs of additive cubic equations in # = 13, 14 or 15 variables which do not
have 7-adic solutions.
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The Hardy-Littlewood method requires the existence of non-singular (not
just non-trivial) p-adic solutions. In view of the recent advances in this
method, see for example Vaughan [25], we state (without proof) an appro-
priate version of Theorem 1. The point here being that this reduces any
p-adic assumptions to a finite (and explicit) set of primes.

THEOREM 3. Let p > k* and suppose that the equations (10) have a non-
trivial p-adic solution. If every form Af + ug, (A, u # 0,0) in the pencil of f
and g has at least 2k + 1 variables with non-zero coefficients then the equations
have a non-singular p-adic solution.

The proof mimics the proofs of Theorem 2 of Davenport and Lewis [14]
except that we appeal to Theorem A instead of their result {11] on additive
forms in k2 + 1 variables.

One question which naturally arises is how these results generalize to R > 2
simultaneous equations. An example given by Davenport and Lewis [13,
Section 4] shows that the generalization is not straightforward. The p-adic
results obtained by Davenport and Lewis [15] for R simultaneous equations
required [9R2k log 3Rk] variables when k is odd, and [48 R2k3 log 3Rk?] vari-
ables when k is even. These results have recently been improved upon by
Schmidt [22] and Low, Pitman and Wolff [21].

When R = 3 the “Artin question” is whether 3k2 + 1 variables are sufficient
to ensure non-trivial p-adic solutions for every prime p. In the case k = 2
this was proved by Ellison [19]. When k = 3 Stevenson [23] showed that,
except possibly for p = 3 or 7, n > 28 variables are sufficient. More recently
Atkinson {1] has shown that 25 variables are sufficient to ensure non trivial
p-adic solutions of three additive cubics in every p-adic field, except possibly
p=3or7.

We are indebted to the referee for many useful comments which have
improved the exposition of our results.

2. Preliminaries to Theorem 1

We begin by recalling a normalisation procedure introduced by Davenport
and Lewis [12, 14, 15). With a pair (9) of additive forms f, g we associate
the parameter

(10) 0 = 0(f, g) = [[(aib; — a;b).

i#j
For a given pair of forms with 8(f, g) # 0 and a fixed prime p, there is a
related p-normalized pair of forms (f*, g*). Further the equations f = g =0
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have a non-trivial p-adic solution if and only if the equations f* = g* = 0
do. Also, by the p-adic compactness argument in Davenport and Lewis [14,
Section 5], it is sufficient to prove Theorem 1 with the additional assumption
that § # 0. We may now suppose that the forms f, g are p-normalized,
with 8 # 0, and use the following property which is essentially Lemma 2 of
Davenport and Lewis [12].

LEMMA 1. Let f and g be a p-normalized pair of forms. Then we may
write

(11) f=rfo+ph,

& =8+ P&

Here fy, go are forms in m > n/k variables, each of which occurs in one at
least of fy, go with a coefficient not divisible by p. Further, if q denotes the
minimum number of variables occuring explicitly in any form Afo+ ugo (A, u
not both divisible by p) with a coefficient not divisible by p, then q > n/2k.

Our next lemma is a version of Hensel’s Lemma; it is Lemma 7 of Dav-
enport and Lewis [14].

LEMMA 2. If p t k and the congruences
(12) fo=axt+---+anxk =0 mod p,
go=bxF+- +byxk=0 modp

have a solution & = (&, ...,¢&y) for which the matrix
alél T amém )
13
(13) (blél---bmém
has rank 2 (mod p) then the equations fy = gy = 0 have a non-trivial solution
in p-adic integers.

In the proof of Theorem 1 we have p > k% so p t k. It is therefore sufficient
to show that the congruences (12) have a solution of rank 2 (mod p). We
may also suppose that p = 1 mod &, see Lemma 3 of Davenport and Lewis
[9]; similarly we may suppose that p = 1 mod 5 for Theorem 2.

Since n > 4k, Lemma 1 gives the bounds m > 5,¢ > 3. We partition the
variables x,..., X,, into blocks such that in each block the ratios a;/b; are
equal (mod p). Let r be the length of the longest block of common ratios
a;/b;. We note that replacing fy, go by suitable linear combinations we may
take a;/b; = “1/0” for these r variables. Further, let ¢ be the length of the
second longest block of common ratios. We may take the ratios in this block
to be “0/1”.
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We assert that if ¢ > 3 then the congruences (12) have a common solution
of rank 2. This follows from our remarks on the single congruence (3) since
the congruences (12) contain two disjoint congruences in 3 variables. Now
we assume that ¢ < 2 and reduce m from its initial value to 5 by discarding
variables from the longest block of common ratios. We end up with a pair
of congruences (12) satisfying

(14) m=235, g>3 and r<2

sincer = m —q.

3. Exponential sums

Since r < 2 we may renumber the variables in (12) so that {a,/b,,a2/b,}
and {a3/b3,a4/bs, as/bs} are sets of unequal ratios mod p. We count the
number N of solutions of the congruences (12) using exponential sums:

(15) N=p2 33" T(A) - T(As)
u,u; mod p
where
(16) Aj=ulaj+u2b~, j=1,...,5,
(17) T(A)= ") e(Ax’/p),
x mod p

and e(0) = exp(2xif).
Separating out the term u; = u; = 0 in (15) we find that

(18) N-p*=p 23 T(A)-- T(As)

w (545

where E' denotes the omission of the term u, = u; = 0, ), is the sum
over those terms for which no A; = 0 and ), is the sum over those terms
(u1,u3) # (0,0) for which some A; = 0.

Now
(20) |Ely2 <D ITADT @A) Y IT(A3)T(A)T(As).
We put
p—1
(21) S, =) |Tw)"
u=1
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Since A, A; are independent linear forms the mapping (A, Az) — (uy, u2)
isa bijection and therefore

Z ITANT(A)P < > IT(A)NT(A)? Z |T ()T (u2))? = 3.
AjA, 20
Similarly, using Holder’s inequality, we have

2 ITANTANT A < max 37 ITANT? (A

(23)
= AT @) Y IT(u2)|* = S1Sa.
u) u;
Thus
(24) lzll < S¥2s).

In order to estimate ), suppose first that the ratio as/bs mod p occurs
only once amongst the a;/b;. Then the contribution of the points (u;, ¥3)
with As =0 to }, is at most

p Y IT(A)- T(Ad)| < pmax 3 [T(A)*

As=0 As=0
(25)

-
=pY_|TW)* = pSs,
since the mapping (A;, As) — (u;, ¥3) is a bijection. If the ratio as/bs occurs

twice amongst the a;/b; a similar argument shows that the contribution is at
most p2S3. Thus

(26) }Zzl < max(5pSy, 3pSa + p*Ss, pSa + 2p*853).
Now (see Dodson [17, Lemma 2.5.1]),

(27) S2=(k-1)p(p-1)

and (see Davenport [10, Lemma 12})

(28) |T(w)| < (k-1)v/p, u#0 modp

so that

(29) IS3] < (k — 1)2p°?

and

(30) S| < (k - 1)°p?

Hence

_2 -2 3..9/2 2..9/2 3.4
I3, + 30| < Mk = 10p%2 + 20k = 1)2p% + (k - 1 p*}
<k3 5/2,

since p > kS,
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Any solution of rank | occurs in a pair of linearly dependent columns
and since r < 2 there are at most 2 such pairs of columns, each pair giving
5(p — 1) solutions. Further there is one solution of rank 0 and so at most
10p — 9 solutions of rank < 2. Thus we obtain the required solution of rank
2 provided that p3 — k3p5/2 > 10p.

This is equivalent to

(32) h(p. k)= p* - k*p*?-10>0,

and, for fixed k, h(p, k) is an increasing function of p so it is enough to
verify (32) when p = kS + I:

k'2 4+ 2k8 —9 - k2(1+k=%)%2 >0

or
(142k76—9k~122 > (1 + k—6)3.

Writing y for k°, we obtain H(y) = y3 —17y2 -37y + 81 > 0. Now H' >0
for y > 37/3 and the inequality is easily verified for y > 2% = 64, which
completes the proof of Theorem 1.

4. Preliminary remarks for Theorem 2

After Theorem 1, we only need to consider those primes p < 5¢ = 15625.
The quintic residues mod p form a cyclic subgroup of the non-zero residue
classes, and the value of the exponential sum 7' (1) depends only on the coset
in which u lies. For each prime p = 1 mod 5 with p < 15625 we find the least
quintic non-residue ¢ mod p, using a computer. Then S = {1,¢, ¢2, ¢%, ¢*}
is a set of representatives from the 5 cosets. Using double precision Fortran
we calculate the absolute values of the exponential sums

(33) Ti=| > e@ 'x3p)|. i=1,..., 5,

x mod p

and these values are checked using the identity
5
(34) Y T =20p.
i=1

As u runs through 1,2,..., p — 1 it falls into each coset exactly (p — 1)/5
times and so

(35) S, = (K;_l) S
i=1
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In this way we calculate S,(= 4p(p — 1)), S3 and S4 exactly, and compute the
bound

(36) B = S3/4S}/? + max(5pSs, 3pSs + p*S;, pSs + 2p2S3)

for 3, +_,. Then, checking the primes up to 15625 we obtain

(37) pP—p 2B >10p for 6800 < p < 15625

which leads to the required solution of rank 2.
We now take p = 1 mod 5 to be a fixed prime in the range

(38) 11 < p <£6800.

We find the least quintic non-residue ¢ mod p and put

(39) S={l,q,...,q%.

LEMMA 3. Let p=1mod 5, p> 11. Ifabc # 0 mod p then
(40) ax’+by’+cz’=d modp

has a solution, which is non-trivial if d = 0 mod p.

Proor. For d # 0 mod p this follows from Theorem 3 of Chowla, Mann
and Straus [5]. Now d = 0 mod p and for p > 625 the result follows from
Theorem 1 of I Chowla [3] (or Lemma 2.4.1 of Dodson [17]).

For 11 < p < 625, using substitutions x — ax, we may assume that
a,b,c € S. This result is obvious unless a, b, ¢ are unequal and we may
suppose that

(41) l=a<b<ec

Thus for each prime p there are only 6 cases to consider and the result is
easily verified by computer.

5. Proof of Theorem 2(a)

The normalization process described in Section 2 results in a pair of forms
with m = 5,9 < 3 and r < 2, which we can write in the form
(42 fo=xi+ax3+ - + asx] =0 mod p,

) & = byxi+ -+ +x2=0 modp

where possibly a4 = 0 mod p but a3 Z O mod p, and a,, b3, by € S. In this
section we consider the case r = 2.
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LEMMA 4. Let p=1mod 5, p > 101. If abc # 0 mod p then the congru-
ence

(43) ax>+by’+cz’=d modp
has a solution with xyz # 0 mod p.

ProoF. We count the number N, of solutions of (43) using exponential
sums:

(44) |Mi — p*| < p~'S3 < 16(p - 1)V/D,

using (27) and (28).
When x = 0 the congruence (43) becomes

(45) by>+cz’=d  mod p.

For any given value y there are at most 5 solutions for z, so the number of
solutions of (43) with xyz = 0 mod p is at most 15p. We have

(46) Ny > p?—16p3% > 15p
for p > 291.

For 101 < p < 291 we take a, b,c € S with
(47) l=a<b<c

(after substitutions x — ax). The result is now easily verified by computer.

LEMMA 5. Let p = 1 mod 5, p > 101. If r = 2 then the congruences (42)
have a solution of rank 2 mod p.

ProoF. We begin by solving
(48) b3x3 +bax] +x3=0 mod p

with x3x4xs # 0 mod p. This solution involves 2 linearly independent columns
of coefficients.
Let

(49) A = a3x; + asx;.

If A =0 we take x; = x; = 0 to give the required solution. Otherwise we
multiply x3, x4, x5 by & and solve

(50) X} 4+ayx3+ A8 =0 mod p

with x;x2& # 0 mod p to give the required solution.

We now take ¢ to be the length of the second longest block of common
ratios a;/b; mod p.
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LEMMA 6. Letp=1mod 5,p > 11. Ifr =2,t = 1 and a, is a quintic non-
residue mod p then the congruences (42) have a solution of rank 2 mod p.

Proor. This is a repetition of Lemma 5 except that the solution of (48)
is non-trivial, but still involves two linearly independent columns, and the
solution of (50) has £ # 0 since a; is a quintic non-residue.

We are now left with the cases
(51) p=31,41,61 or 7I;
either r = 2,¢ = 2, and then
(52) Jo=x} + ayx3+azx3,
(53) &= b3x3 + bax] + x3
where a3, b3, by € S, a3 # 0 mod p;

orr=2,t=1,a; =1, and then

(54) fo=x} +x3 + asx3 + asx;

(55) & = b3x3 + baxj + x3,
where bs, by € S, azas # 0 mod p.

For a fixed prime p there 25 forms g to consider. For each gy we begin by
forming a list of all solutions of gop = 0 mod p. We then run through 5(p—1)
forms f; of the first type (52) and (p — 1)2 forms f; of the second type (54).
The computer then runs through the list of solutions of gg = 0 mod p until

it finds one which is also a solution of f; = 0 mod p and which has rank 2.

In this way a computer search revealed the counterexample listed in Section
8.

6. Theorem 2(a): the case r = 1

In this case any non-trivial solution has rank 2 mod p. We begin by writing
the congruences as

fo=xj+ayx3 +---+asx} =0 mod p,

56
9) 8o = byxi+---+bsx3=0 mod p,
where by,...,bs € S.

Suppose first that b,, ..., bs consist of two pairs of equal values, say b, = b;
and by = bs. We take x; = —x3 = U, x4 = —x5 = v and the non-trivial
solution of
(57) X} + (a2 —a3)u’ +(aa — as)v>* =0 mod p
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gives the required solution of rank 2. (The coefficients are non-zero since
r = 1.) Now we may assume that for any form g* in the pencil generated by
fo. & and having one zero coefficient, the 4 non-zero coefficients do not all
lie in the same coset.

We count the number N, of solutions of (56) using exponential sums.
Since the ratios a;/b; are distinct mod p we have, as in Section 3,

Ny —p*=p72> "T(A1)-- T(As)
(58)

- (Zl +22)'

Here ), is the contribution coming from those points (u;, u;) for which
no A; = 0 mod p. Now

9 |Z| < T ITATA)P- T, ITA)TA)T AP

Since A; and A; are linearly independent the first sum on the right factorizes
to give S7. The second sum is majorized by

(60) max 3= |T(ANT(A)) = §3
Hence
(61) lle < 828;.

The term ), in (58) is the contribution coming from those points (u;, u;)
for which some A; = 0 mod p.

LEMMA 7. We have

(62) I3, < 5pss

PRrOOF. Since A| = u; the contribution to }_, coming from the terms with
A =0 mod p is at most

p—1 5 p—1 1/4
(63) pY_ T(bu)-- T(bsu)| < p[] {Z |T(b; u)|4}
u=1 i=2
As u runs through 1,2,..., p — 1 so does b;u. Thus each of these sums
p—1 p—1
(64) Do ITGa)l =Y IT(w)|* =S,
u=1 u=1

so this contribution to }_, is majorized by
(65) pSs.
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We assert that the same bound applies to the contribution arising from the
points (u;,u;) with A; = Omod p for each j = 2,...,5. If A; = 0mod p
then, interpreting bj’1 mod p, u; = —aju;/b; mod p and so for i # j
A; =ui(aibj —a;b;)/b; mod p

= Cil;

(66)

say. Thus the contribution of these terms is

p—1
(67) Y I T(ciw).

u=1 i#j
Now we can replace fj, go in (56) by any 2 independent forms in the pencil,
for example by f* = fy and

(68) g =(bjfo—ajg)/bj mod p.

The coefficients ¢; are just the coefficients of g* and therefore (67) is also
bounded by (65), which gives the lemma.

The estimates (58), (61) and (63) give
(69) N; > p? ~ 5,83 — 5pS..

For 11 < p < 6800 we calculate the bound on the right of (69) and find that
N; > 1 (implying a non-trivial solution, which will have rank 2) for p > 3061.

7. Proof of Theorem 2(b)

Now n > 26 so
(70) m2>6, g >3

Discarding excess variables we may take m = 6 and still have ¢ > 3,s0r < 3.
We suppose first that r = 1, and therefore any non-trivial solution of the
congruences (14) has rank 2. We begin by rewriting the congruences in the

form
(71) fo=xi+ax3+-- +agxi=0 mod p,
g@= bxi+---+bxi=0 modp

where by,...,bs € S.

Suppose first that some value is repeated amongst b,, ..., bs; then we may
take b, = bg = 1. Replacing fp by b fo — aggo we may also take ag = 0.
Consider any non-trivial solution of the congruence

(72) b3x; + bax] +bsx3=0  mod p.
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If
(73) A=a3x] +asx; +asx3=0 mod p

then we have the required solution. Otherwise we multiply x3, x4, X5 by &,
take x, = —x¢ = u and solve

(74) X} +au+ AL =0 modp
to give the required solution.
We may now suppose that b, ..., bg lie one in each of the distinct cosets.

Similarly, for any form g* in the pencil generated by f; and gy which has one
zero coeflicient, the other 5 coefficients must lie one in each coset. Counting
the number N, of solutions of (71) using exponential sums we have

Ny - p*=p2Y T(A)-- T(As)

=p (ZI+ZZ)’

where ), is the sum over those (u;, u;) for whichno A; =0mod pand }_,
is the sum over those (u,, u;) for which some A; = 0 mod p.
Since r = 1 we have

(76) 3| =<5t

The contribution to ), coming from the points (#, ;) with Ay = u; =0
mod p is at most

(75)

p—1
pY_ T(byu)---T(bsu)

u=1

(77) <p(p-1T,---Ts

As in Section 6 the same estimate holds on each line A; = 0 mod p so

(78) ‘Zzi <6p(p- VT, Ts.
For 131 < p < 3061 we find that
(79) p*—S3—6p(p—1)T---T5> 1

so N; > 1, and we have the required solution.
Each of the remaining primes has ¢ = 2 so we may take

(80) 80 = X3 + 2x3 + 4x3 + 8x3 + 16xZ,

and we begin by forming a list of non-trivial solutions of gy = 0 mod p.
We may take f; to be form with a¢ = 0,4; = 1 and the other coefficients
lying one in each coset. If 4, B, C, D are representatives of the cosets then
a,...,as is of type A, B, C, D in some order, giving 24 different cases for
fo. For each of these cases there are ((p — 1)/5)* individual forms f to
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consider. The computer runs through each of these and then runs down the
list of non-trivial solutions of gg = 0 mod p until it finds a common solution
(since r = 1 this solution must have rank 2).

If r = 3 the congruences become

(Bl)  fo=aix}+ayx] +ayx3+- -+ aex¢ =0 mod p,
(82) &= byxi+ --+bxi=0  modp

where a;, a3, as, bs, bs, bg Z 0 mod p. We solve gy = 0 with x4, x5, xg not all
zero, and then solve fy = 0 with x|, x,, x3 not all zero. This solution has

rank 2.

Now we are left with the case r = 2. We discard one of x3, ..., x5 to reduce
the problem to the case
(83) m=>5, r=2, g=3

already contained in Section 5. The results of Section 5 provide the required
solution when p > 101 and we are now left with the primes 31, 41, 61 and
71.

We repeat the argument used at the end of Section 5; either

(i) r =t =2 and then
(84) Jo=x{ + axx3+a3x] + asx3,

(85) g = byx3 + bax] + bsx3 + x§
where a,, b3, by, bs € S, asas # 0 mod p; or

(ii) r=2,t=1,a; =1 and then
(86) fo=x + x3+a3x3 + agxi +asxi,

(87) g = b3x§ + b4x,f + b5x55 + x65
where b3, by, bs € S, azasas Z 0 mod p.

For a fixed prime p there are 125 forms gy to consider. For each g, we
begin by forming a list of solutions of go = 0 mod p. We then run through
5(p — 1)? forms of the first type (84) and (p — 1)3 forms of the second type
(86). The computer then runs through the list of solutions of gy = 0 mod p
until it finds one which is also a solution of fy = 0 mod p and which has

rank 2 mod p. In this way a compter (the IBM 3083 at Sheffield University)
completed the proof of Theorem 2.

8. Some counterexamples

The computer search described in Sections 5 and 6 produced the following
counterexamples with m = §:
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(i) p = 31,
(88) fo=x}+ x5+ x3 +3x3,
(89) = 2x3+4x35+2x] +x3;
(ii) p = 41,
(90) fo=xP+x3+ x3+  2x3,
(91) go= 2x5+4x3+22x; + x3;

(iii) p = 61, when there are only singular solutions,

(92) fo=x{ +x3+4x3
(93) g = 4x3 + 2x3 + x3.

It is well known that the p-adic fields with p = 5,11 are exceptional for
quintic equations. However the counterexamples above are of a different
character. The problem here is simply that the prime p is too small rather
than it being of any generic type (p = k or 2k + 1).
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