SCHWARZ LEMMA FOR HOLOMORPHIC MAPPINGS IN THE UNIT BALL

DAVID KALAJ

Faculty of Natural Sciences and Mathematics, University of Montenegro, George Washington nr 18, 81000 Podgorica, Montenegro
e-mail: davidkalaj@gmail.com

(Received 05 February 2016; revised 30 September 2016; accepted 4 January 2017; first published online 4 September 2017)

Abstract. In this note, we establish a Schwarz–Pick type inequality for holomorphic mappings between unit balls \mathbf{B}_n and \mathbf{B}_m in corresponding complex spaces. We also prove a Schwarz–Pick type inequality for pluri-harmonic functions.

2000 Mathematics Subject Classification. Primary 32H04.

1. Introduction. The Fréchet derivative of a holomorphic mapping $f: \Omega \to \mathbb{C}^m$, where $\Omega \subset \mathbb{C}^n$, is defined to be the unique linear map $A = f'(z): \mathbb{C}^n \to \mathbb{C}^m$ such that $f(z+h) = f(z) + f'(z)h + O(|h|^2)$. The norm of such a map is defined by

$$||A|| = \sup_{|z|=1} |Az|. \tag{1}$$

The classical Schwarz lemma states that $|f(z)| \le |z|$ for every holomorphic mapping of the unit disk $\mathbf{B}_1 \subset \mathbf{C}$ into itself satisfying the condition f(0) = 0. This inequality implies the following inequality for the derivative

$$|g'(z)| \le \frac{1 - |g(z)|^2}{1 - |z|^2} \tag{2}$$

for every holomorphic mapping g of the unit disk into itself. On the other hand, if n, m are two positive integers and $\mathbf{B}_n \subset \mathbf{C}^n$ is the unit ball, then every holomorphic mapping $f: \mathbf{B}_n \to \mathbf{B}_m$, with f(0) = 0 satisfies the inequality $|f(z)| \leq |z|$, but the counterpart of (2) in the space does not hold provided that $m \geq 2$ (see e.g. [4] and corresponding sharp inequality (5) below). However, it holds for m = 1, while for $m \geq 2$, it holds in its weaker form namely $1 - |g(z)|^2$ should be replaced by $\sqrt{1 - |g(z)|^2}$. This is proved in Theorem 2.1, which is the main result of this paper. By using the case m = 1, in Theorem 2.3, we prove a Schwarz–Pick type inequality for pluri-harmonic functions, which extends a corresponding result for real harmonic functions [3].

1.1. Automorphisms of the unit ball. Let P_a be the orthogonal projection of \mathbb{C}^n onto the subspace [a] generated by a, and let

$$Q = Q_a = I - P_a$$

be the projection onto the orthogonal complement of [a]. To be quite explicit, $P_0 = 0$ and $P = P_a(z) = \frac{\langle z, a \rangle a}{\langle a, a \rangle}$. Put $s_a = (1 - |a|^2)^{1/2}$ and define

$$\varphi_a(z) = \frac{a - P_a z - s_a Q_a z}{1 - \langle z, a \rangle}.$$

If $\Omega = \{z \in \mathbb{C}^n : \langle z, a \rangle \neq 1\}$, then φ_a is holomorphic in Ω . It is clear that $\overline{\mathbf{B}_n} \subset \Omega$ for |a| < 1.

PROPOSITION 1.1 ([6, Theorem 2.2.2]). If φ_a is defined as above, then

- (a) $\varphi_a(0) = a$ and $\varphi_a(a) = 0$;

- (b) $\varphi_a'(0) = -s^2 P_a s Q_a;$ (c) $\varphi_a'(a) = -\frac{1}{s^2} P_a \frac{1}{s} Q_a;$ (d) φ_a is an involution: $\varphi_a(\varphi_a(z)) = z;$
- (e) φ_a is a biholomorphism of the closed unit ball onto itself.

2. The main results.

THEOREM 2.1 (The main theorem). If f is a holomorphic mapping of the unit ball $\mathbf{B}_n \subset \mathbf{C}^n$ into $\mathbf{B}_m \subset \mathbf{C}^m$, then for $m \geqslant 2$

$$||f'(z)|| \le \frac{\sqrt{1 - |f(z)|^2}}{1 - |z|^2}, \ z \in \mathbf{B}_n$$
 (3)

and for m = 1, we have that

$$||f'(z)|| \le \frac{1 - |f(z)|^2}{1 - |z|^2}, \quad z \in \mathbf{B}_n.$$
 (4)

The inequalities (3) and (4) are sharp for z = 0. In other words, we have the following sharp inequalities

$$||f'(0)|| \le \begin{cases} \sqrt{1 - |f(0)|^2}, & \text{if } m \ge 2; \\ 1 - |f(0)|^2, & \text{if } m = 1. \end{cases}$$
 (5)

We need the following lemma.

LEMMA 2.2. Let n be a positive integer and let $M = M_a = -s^2 P_a - sQ_a$ and N = $N_a = -\frac{1}{s^2} P_a - \frac{1}{s} Q_a$, where $s = \sqrt{1 - |a|^2}$. Then,

$$||M|| = \begin{cases} \sqrt{1 - |a|^2}, & \text{if } n \ge 2; \\ 1 - |a|^2, & \text{if } n = 1 \end{cases}$$

and

$$||N|| = \frac{1}{1 - |a|^2}.$$

SCHWARZ LEMMA FOR HOLOMORPHIC MAPPINGS IN THE UNIT BALL 221

Proof of Lemma 2.2. If a = 0, then M = N = -I, where I is the identity. So the claim of the lemma follows easily.

Assume now that $a \neq 0$. We have

$$s^{2}P_{a}z + sQ_{a}z = sz + (s^{2} - s)\frac{\langle z, a \rangle a}{\langle a, a \rangle}.$$

So

$$|Mz|^2 = |s^2 P_a z + s Q_a z|^2 = \left| sz + (s^2 - s) \frac{\langle z, a \rangle}{\langle a, a \rangle} \right|^2$$
$$= s^2 |z|^2 + (s^4 - s^2) \frac{|\langle z, a \rangle|^2}{\langle a, a \rangle} \le s^2 |z|^2.$$

For $z \perp a$, the previous inequality becomes an equality. It follows that $||M|| = \sqrt{1 - |a|^2}$. The case n = 1 is trivial and in this case $Q_a \equiv 0$. Further, we establish the norm of the operator

$$N = N_a = -\frac{1}{s^2} P_a - \frac{1}{s} Q_a.$$

Similarly as above, we obtain

$$|Nz|^2 = \frac{1}{s^2}|z|^2 + \left(\frac{1}{s^4} - \frac{1}{s^2}\right) \frac{|\langle z, a \rangle|^2}{|a|^2}.$$

By using Cauchy–Schwarz inequality and choosing z = a/|a|, we obtain that $||N|| = \frac{1}{1-|a|^2}$.

Proof of Theorem 2.1. Let φ_a be an involutive automorphism of the unit ball \mathbf{B}_n onto itself such that $\varphi_a(0) = a$ and let b = f(a). Let φ_b be an involutive automorphism of the unit ball \mathbf{B}_m onto itself such that $\varphi_b(b) = 0$ and let $g = \varphi_b^{-1} \circ f \circ \varphi_a^{-1}$. Then $f = \varphi_b \circ g \circ \varphi_a$ and so in view of Proposition 1.1, we have

$$f'(a) = \varphi_b'(0)g'(0)\varphi_a'(a) = M_b g'(0)N_a.$$

Since g maps the unit ball into itself and satisfies g(0) = 0, by [6, Theorem 8.1.2], it follows that $|g'(0)| \le 1$. Since $||A \cdot B|| \le ||A|| ||B||$, according to Lemma 2.2, we obtain (3).

The sharpness for z = 0 is proved by the following example. Let $t \in (0, \pi/2)$ and define $f_t(z, w) = (z \sin t, \cos t)$. Then $f_t : \mathbf{B}_2 \to \mathbf{B}_2$. Moreover, $||f_t'(0)|| = \sin t$ and $||f_t(0)|| = \cos t$. So $||f_t'(0)|| = \sqrt{1 - |f_t(0)|^2}$.

THEOREM 2.3. Let f be a pluri-harmonic function of the unit ball \mathbf{B}_n into (-1, 1). Then the following sharp inequality holds:

$$|\nabla f(z)| \le \frac{4}{\pi} \frac{1 - |f(z)|^2}{1 - |z|^2}, \quad z \in \mathbf{B}_n.$$
 (6)

For Schwarz–Pick type estimates of arbitrary order partial derivatives for bounded pluri-harmonic mappings defined in the unit polydisk, we refer to the recent paper [1].

Assume that m = 1 and let a be a holomorphic function of the unit ball \mathbf{B}_n into $\mathbf{C}^m = \mathbf{C}$. Since a' is \mathbf{C} linear, we regard a'(z) as a vector $(a_{z_1}, \dots a_{z_n})$ from the space \mathbf{C}^n and we will denote it by ∇a .

Proof of Theorem 2.3. Let h be the pluri-harmonic conjugate of f, i.e. assume that a = f + ih is a holomorphic mapping. Then a maps the unit ball \mathbf{B}_n into the vertical strip $S = \{w : -1 < \Re w < 1\}$.

Let

$$g(z) = \frac{2i}{\pi} \log \frac{1+z}{1-z}.$$

Then g is a conformal mapping of the unit disk U onto the strip S. Hence, $b(z) = g^{-1}(a(z))$ is a holomorphic mapping of the unit ball onto the unit disk U. Then we have that

$$a(z) = \frac{2i}{\pi} \log \frac{1 + b(z)}{1 - b(z)}. (7)$$

By (4), we have

$$|b'(z)| \le \frac{1 - |b(z)|^2}{1 - |z|^2}.$$

On the other hand,

$$a'(z) = \frac{4i}{\pi} \frac{b'(z)}{1 - b(z)^2}.$$

Since a is holomorphic, we obtain that

$$|a'(z)| = \sqrt{\sum_{k=1}^{n} |a_{z_k}|^2} = \sqrt{\sum_{k=1}^{n} f_{x_k}^2 + \sum_{k=1}^{n} f_{y_k}^2}$$

and

$$|\nabla f| = |(f_{x_1}, f_{y_1}, \dots, f_{x_n}, f_{y_n})| = \sqrt{\sum_{k=1}^n f_{x_k}^2 + \sum_{k=1}^n f_{y_k}^2} = |a'(z)|.$$

We will find the best possible constant C such that

$$|\nabla f(z)| \le C \frac{1 - |f(z)|^2}{1 - |z|^2}.$$

Observe first that

$$|a'(z)| \le \frac{4}{\pi} \frac{1 - |b(z)|^2}{|1 - b(z)|^2} \frac{1}{1 - |z|^2}$$

and find the optimal constant C such that

$$\frac{4}{\pi} \frac{1 - |b(z)|^2}{|1 - b(z)|^2} \frac{1}{1 - |z|^2} \le C \frac{1 - |\Re a(z)|^2}{1 - |z|^2}$$

SCHWARZ LEMMA FOR HOLOMORPHIC MAPPINGS IN THE UNIT BALL 223

or what is the same, in view of (7),

$$\frac{4\pi}{(\pi^2 - 4|\arg\frac{1+b}{1-b}|^2)} \frac{1 - |b|^2}{|1 - b^2|} \leqslant C, |b| < 1.$$

Let $\omega = \frac{1+b}{1-b} = re^{it}$. Then, $-\pi/2 \leqslant t \leqslant \pi/2$ and

$$1 - |b|^2 = \frac{4r\cos t}{r^2 + 2r\cos t + 1},$$

$$|1 - b^2| = \frac{4r|e^{it}|}{r^2 + 2r\cos t + 1},$$

and hence the last inequality with the constant $C = 4/\pi$ follows from

$$\frac{|\cos t|}{1 - \frac{4}{\pi^2}t^2} \leqslant 1$$

which holds for $t \in (-\pi/2, \pi/2)$. This yields (6).

To show that the inequality (6) is sharp, take the pluri-harmonic function

$$f(z) = \frac{2}{\pi} \arctan \frac{2y_1}{1 - x_1^2 - y_1^2}.$$

It is easy to see that

$$|\nabla f(0)| = \frac{4}{\pi} = \frac{4}{\pi} \frac{1 - |f(0)|^2}{1 - 0^2}.$$

By using a scaling argument, we obtain

COROLLARY 2.4. If f is a holomorphic mapping of the unit ball $\mathbf{B}_n \subset \mathbf{C}^n$ into \mathbf{C}^m , then

$$||f'(z)|| \leqslant \begin{cases} \frac{\sqrt{||f|^2 - |f(z)|^2}}{1 - |z|^2}, & z \in \mathbf{B}_n, & if \ m \geqslant 2; \\ \frac{||f||^2 - |f(z)|^2}{||f||(1 - |z|^2)}, & if \ m = 1. \end{cases}$$
(8)

Here, $||f|| := \sup_{z} |f(z)|$.

Proof. Let $g(z) = f(z)/\|f\|$. Then, $\|g'(z)\| = \frac{|f(z)|}{\|f\|}$ and so

$$\frac{|f(z)|}{\|f\|} \leqslant \frac{\sqrt{1 - |g(z)|^2}}{1 - |z|^2} = \frac{\sqrt{1 - \frac{|f(z)|^2}{\|f\|^2}}}{1 - |z|^2}.$$

This implies (8) for $m \ge 2$. Similarly, we prove the case m = 1.

In order to state a new corollary of the main result, recall the definition of the Bloch space \mathcal{B} of holomorphic mappings of the unit ball \mathbf{B}_n into \mathbf{C}^m . We say that $f \in \mathcal{B}$ provided its semi-norm satisfies $||f||_{\mathcal{B}} = \sup_{|z|<1} (1-|z|^2)|f'(z)| < \infty$. Let \mathcal{B}_1 be

the unit ball of \mathcal{B} . Let \mathfrak{B} be the set of bounded holomorphic mappings between \mathbf{B}_n and \mathbf{C}^m , i.e. of mappings satisfying the inequality $||f|| = \sup_z |f(z)| < \infty$.

COROLLARY 2.5. The inclusion operator $\mathcal{I}: f \mapsto f$ between \mathfrak{B} and \mathcal{B} has norm equal to 1.

Proof. It is clear from (8) that $|\mathcal{I}| \le 1$. We prove the equality statement. Assume as we may that n = m = 2. Let $f_0(z, w) = (z, 0)$. Then,

$$||f_0||_{\mathcal{B}} = \sup_{|z|^2 + |w|^2 \le 1} (1 - |z|^2 - |w|^2) ||f_0'(z, w)|| = 1,$$

and

$$||f_0|| = \sup_{|z|^2 + |w|^2 \le 1} \sqrt{|z|^2} = 1.$$

This finishes the proof.

REMARK 2.6. The inclusion operator is a restriction of a Bergman projection \mathcal{P}_{α} , $\alpha > -1$, between $L^{\infty}(B_n)$ and \mathcal{B} whose norm is greater than 1. See corresponding results for the plane [5] and for the several dimensional space [2].

ACKNOWLEDGEMENTS. I would like to thank Dr Marijan Marković who drew my attention to pluriharmonic functions. I also thank the anonymous referee for a number of corrections and suggestions.

REFERENCES

- 1. Sh. Chen and A. Rasila, Schwarz-Pick type estimates of pluriharmonic mappings in the unit polydisk, *Illinois J. Math.* **58**(4) (2014), 1015–1024.
- 2. D. Kalaj and M. Markovic, Norm of the Bergman projection, *Math. Scand.* 115(1) (2014), 143–160.
- **3.** D. Kalaj and M. Vuorinen, On harmonic functions and the Schwarz lemma, *Proc. Am. Math. Soc.* **140**(1) (2012), 161–165.
- **4.** M. Pavlović, A Schwarz lemma for the modulus of a vector-valued analytic function, *Proc. Amer. Math. Soc.* **139**(3) (2011), 969–973.
- **5.** A. Perälä, Bloch space and the norm of the Bergman projection, *Ann. Acad. Sci. Fenn., Math.* **38**(2) (2013), 849–853.
 - **6.** W. Rudin, Function theory of the unit ball in \mathbb{C}^n (Springer, New York, 1980).