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The Carleson Measure Problem Between
Analytic Morrey Spaces

Jianfei Wang

Abstract. The purpose of this paper is to characterize positive measure g on the unit disk such that

the analytic Morrey space AL, is boundedly and compactly embedded to the tent space
‘Iq)l*% (1-n) (1)

for the case 1 < g < p < oo respectively. As an application, these results are used to establish
the boundedness and compactness of integral operators and multipliers between analytic Morrey
spaces.

1 Introduction

Let D and T be the unit disk and the unit circle in C, respectively. Let dA(z) stand
for the area measure on ID. Denote by 3 (D) the space of all analytic functions in D.

For (p —1,7) € [0,00) x [0, 00), let AL, , be the analytic Campanato space that
consists of functions f € H(ID) obeying

i
g =ssp( 17 [0 - ir5) <o

where the supremum is taken over all sub-arcs I ¢ T, and

dq] = lde’®| =d6, 1= m [latl = @A) [ £(0)lag].

Obviously, this value defines a seminorm on AL, ,. A complete norm can be equip-
ped with

| flagy, = £ O+ 1]pn-

Also, the following table can help us to understand the structure of AL, , (see e.g.,
[4,8] and [5, pp. 209-217] for the real counterparts.)

In particular, when p = 2, AL, , is introduced by Wu and Xie in [14]. Recently,
some fundamental function and operator-theoretic properties of AL, , have been
investigated including [6,7,12,13,17].
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Index (p,#) | Analytic Campanato space AL, ,

n=0 Analytic Hardy space H?
ne€(0,1) Analytic Morrey space AL
n=1 Analytic John-Nirenberg space BMOA

ne(L,1+p] | Analytic Lipschitz space A(,_1y/p
ne(l+p,00) | Space of constants C

Carleson measure plays an important role in complex analysis and harmonic anal-
ysis, which was introduced earlier in [2] in connection with the interpolation prob-
lem. Inspired by the idea of Xiao [16], it is natural to consider the following Carleson
measure problem between the analytic Campanato spaces.

Problem 1.1 Let u be a positive Borel measure. What geometric assumption must
have such that AL, , embeds boundedly (resp. compactly) into the tent space T 2°) (p)?

Here and henceforth, Ton () represents the tent space of all y-measurable func-
tions f on DD satisfying

1
w () = SU 17’1/ idu)” < oo,
Wllrzm = sup (17 [ 1)

where the supremum ranges over all Carleson square
S(I)={z=re eD:1-|I|<r<1, e’ el}.

The answer of Problem 1.1to 1< g < p < oo is the following result.

Theorem 1.2 Let y be a nonnegative Borel measure onD. If1< g < p<ooandn e
[0,1), then the identity operator |: AL, , 7;171(17’7)(y) is bounded (resp. compact)
p
if and only if
S(I S(I
#(S() <oo (resp. lim #(S(1) =0).
sayen M| -0 1|

Furthermore, we will consider the following Problem 1.3.

Problem 1.3 Let (p —2,1) € [0,00) x [0,1). What finite property must g have
in order for Vg, Uy and My to be respectively bounded (resp. compact) from AL, , to
ALzi-za-n?

Asusual, V, and U, stand for the Volterra-type operators with the analytic symbol
g on D, respectively:

Vef(2)= [ fOn)g (w)dw, zeD,
Ugf(2) = fo " f(w)g(w)dw, zeD.

Then the multiplication operator My is given as follows

Mef(2) = f(2)g(2) = £(0)g(0) + Vg f(2) + Ugf(2).
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Below is the solution to Problem 1.3.

Theorem 1.4  Suppose (p —2,7) € [0,00) x [0,1) and g € H(D). Let dug(z) =

(1-2*)Ig' (2)[*dA(2) and | g|loo = sup,cp, [g(2)]. Then

(i) VgAL,,+ ‘ALZ,I—%(I—W) is bounded (resp. compact) if and only if g € BMOA
(resp. g € VMOA).

(i) UgAL,, - ALM,%(I,H) is bounded (resp. compact) if and only if g € H*®

(resp. g = 0).
(iii) Mg AL, , - ALZ’I_%(I_W) is bounded (resp. compact) if and only if g € H>
(resp. g = 0).

Particularly, Theorem 1.4 generalizes recent results in [6,13] to AL, .

Notation Let X <Y and X 2 Y denote that there exists an absolute constant C > 0
such that X < CY and X > CY, respectively. Thus, X ~ Y means that X S Yand X 2 Y
hold.

2 Some Lemmas

In order to prove Theorems 1.2 and 1.4, we begin with the following lemmas. The first
lemma is due to Xiao and Yuan.

Lemma 2.1 ([18, Theorem1]) If(p—1,7) € [0,00) x [0,2), then the following two
statements are equivalent:

(i) feAL,,.

N Ly a,
(i) |flpo = supaep(1=al?) 7 [ f o 0a = f(a)|, < oo, where 04(2) = ££.

Next, we are present to a useful integral estimate.

Lemma 2.2 Letz,weDandt,s>1 Then

[t s Tt :
Th-zgf-wlls " A= lP) T —zwl o (= ) - 2wl
Proof Let
1
I: [ f|d(|.
T |1 - z{]H1 - w(|*

Consider the following partition of T:

Q= {CeT:[1-wl <|1-2z{}

Qy=T~Q={{eT:[1-2{ <1-wl]}.
Then

1 1
I:f f|d(|+/\ f|d(|:11+12-
o 1 - z{|*1 - wls 02 |1 -2z{]'1 - w(f*
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For { € T, we have
- zw| < |1-2{| + |2 — zw| < [1 - 2| + |¢ - w|
=[1-2{+1-w{| <21 - 2{].

Also, the following inequality is well known:

1 1
D —— d T A~ 1.
fnr |1—w(|5| s (1=[wf)s!

It shows that

he—— [ —— s :
-zl Jr i (1= [wP)s 11 - zw|t”

Similarly, we have

1 1
L< = [ ld¢] s 2)t-1 s
T Jr g - [y 2l
Putting the above estimates for I; and I, together, we get

1 1
+ b
(= [zP) = -zwl (= W)L —zw]f

IS
as desired. [ |

By Lemma 2.2, we can obtain the test function on Morrey space.

Lemma 2.3 Let (p—1,1,1) €[0,00) x [0,1] x [ =21 5 ,00) and w € D. Then functions

A=Wt
fuw(z) = oW

belong to AL, ,. Moreover, f,, is uniformly bounded in AL, ,, i.e.,sup,,p [ fuwllpn $1

Proof According to Lemma 2.2, we get
1-
(1=1al®) " fu o 0a~ f(a)l}
1-
= (=[P [ 1fu o 0a(0) - 1(a)

= (1=1aP)"™" [ (O fula)l

¢l

2n

1-laP |dg
[1-{(a,{)? 2
SU@PQ-lafy s -1 [1op 12

L (1= JaP) (- w2y Jaf?)>- m w)?

(1-
h 1= {a, w)[! f 1= (a, )?[1 = (w, {)|PA

4

Id(\
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_ Lo _ 1
Bl i 7 L el €l U A
” [T=(aw)lP? (1= WP)P = (@, w)P?
(1= a7 (1 )P0
1= (a, W)l (1= [a?)

T Ul N O D 0
” 1= {aw)le* 1= (a,w)P

L-faf e - (PO 1ofaP e 1wy
(= fwo) (=gam) (i) (o)
1.

Hence, applying Lemma 2.1,

N

N

fwe ALy, and SUP [ fwllp.nx S
Arguing as above and using sup,,.p, | f (0)| S 1, we obtain sup, .p, | fw]ac,, S1. ®

Remark If p>1and A =1, then Lemma 2.3 reduces to the result of Xiao and Yuan
in [18, Lemma 13].

The following lemma can also been found in [18].

Lemma 2.4 Let (p-1,1n)€[0,00)x[0,1). If f € ALy ,, then
1f1lp.n.

(- |7

If (2)| forzeD.

Moreover, the exponent 1 + 1_7" in the above inequality is sharp.

Based on Lemma 2.4, it is easy to obtain the following decay estimate on AL, ,,
which can be found in [3].

Lemma 2.5 Let(p—1,1)€[0,00) % [0,1). Then

1 flac,,

lf(2)] s =
(I-1z*)»

holds for all z € D.

The following lemma, which can be found in [11, Lemma 3.7], plays an important
role in proving the compactness of the Carleson measure problem and the integral
operators.

Lemma 2.6 Let X, Y be two Banach spaces of analytic functions on D. If

(i)  the point evaluation functions on Y are continous;
(ii) the closed unit ball of X is a compact subset of X in the topology of uniform con-
vergence on compact sets;
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(iii) T:X — Y is continuous when X and Y are given the topology of uniform conver-
gence on compact sets,

then T is a compact operator if and only if given a bounded sequence {f;} in X such
that f; — 0 uniformly on compact sets. Then the sequence {T f;} converges to zero in
the norm of Y.

3 Proof of Theorem 1.2

Proof The argument is divided into the following two steps.

Step I: Boundedness. Suppose
|:.ALP),7 — 7;?1_%(1_,1)(‘14)

is bounded. Then we have to prove y is a Carleson measure.
In fact, for a given subarc I c T, let w = (1 — |I|){ and let { be the center of I.
We choose
2 1o
A= wpP)s >

(1- wz)§

fw(z) =
From Lemma 2.3, we obtain that

fu € ALy, and suplfulac,, $1

welD
Notice that
(3.1) 1-wz|~1—|w|*~|Il, zeS(I).
In terms of (3.1), we have
9(1-n)
1 (1-w)* 7 #(S(1))
12 | fuld. Zif ——————du(z) » ———=.
If ”(‘Tq,lfiw;w W7 G Jsay - k() =y
Accordingly,
S(I
6.2 Julexc= sup O o
syep Ml

Conversely, if (3.2) holds and f € AL, ,, then we need to prove that
Hf“ir:_q“;ﬂ) ) S Iflac,,-

Suppose I ¢ T is an arc and { is the center. Let a = (1—|I|){. Then
1

—aw Jy, f@u)

1
st [ 10@) - f@)ltdu(e) + LD paye
=5 s =
= Int; + Int,.
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We first estimate the Int;. A simple calculation shows that
(1-la)A-12P) 1-lef?

2 _
1_|Ua(z)| - |1_az|2 ~ |I|

holds for all z € S(I).
Since || p|lent < oo, we have y is a Carleson measure on D.
The condition 1 < g < p < oo shows that

‘ALP)’? c .Aﬁq 1—a0=n) -
> »

Using the Carleson theorem and Lemma 2.1 we calculate

Int, = ml S F@) = F(@)l1du(2)

~-laf) 5 [ 1) )l e du)
Sa-laf) S [ 1)~ f@l' e du(z)

q(1-n)

“(1=1aP)"5" [ If 0 0u(2) - f() 9du(2)
S luleact=1a) 5™ [ £ 0 0u(®) - f(a)l7]ag

Slelexcl I son , < lelenclflac,,-

P F

For Int,, the decay estimate gives

L—l
|f(a)| S |I| r HfHALq,IJO;n) :

Hence,

Int, S #(TI(|I)) ||f”?cw%

Putting the estimates of Int; and Int, together, we get

S lulenclf1% ¢
q,

q(1-n) q0-n)
-2 -4

1
£~ o0 S Ilencl flac,,
9> 77

Thus, the identity operator l: AL, , ‘J'Z’k 101y (u) is bounded.

Step 2: Compactness. Let us prove the sufficiency part. Suppose

L)
-0 |1

Then we need to show that the operator
AL, , — ‘J':l_%(l_n)(‘u)

is compact. First, Lemma 2.6(i) holds by setting
eZ(f) = f(Z):‘ALp,W = :1_%(1_,7)(/'{)'
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Second, the following estimate

Iflac,.,
—
(1-|z2) 7
shows that Lemma 2.6(ii) holds. Hence, we only need to verify assumption (iii), i.e.,

if any bounded sequence {f;} c AL, , with f; = 0 converges uniformly to zero on
compact sets of D, then | fj |y y = 0.

9 —%(1—'1)

[f(2) s

(u
In fact, when r € (0,1), we choose the cut-off measure dy, = y{zep:|z|>r} d 44, Where

xe means the characteristic function of a set E c ID. Then

pSM) o Sm)

~

(3.3)

syen e—r Ml

Now, assume | fi[ 4z, S 1and f; converges uniformly to zero on compact sets of I,
then from (3.3) and Lemma 2.5 we get

1
- 194
=5 (=) fsa) itan

1 1
- 19 _ - |2 _
ml—%(lfq) A(I) |f]| X{ZGD‘\Z\S"}dM+ |I|1,%(1,n) ﬂ([) |f]| X{zeD‘\zbr}d‘“

1 u-(S(1))
< |4 . d PAZAN77 .
~ |I|l—%(1—q) /S(I) |f1| X{zeD:|z|<r} G Y + |I| Hf]“-/lﬁp,,,
- 0.
Hence, the sufficiency part of Theorem 1.2 is proved.
On the other hand, we will verify the necessity. Let the operator

ALy > T2 a1 ()

be compact. Suppose I; is a sequence of subarcs of T obeying |I;| - 0. Let {; be the
center of I; and w; = (1-|I;]){j.

Let

1-|w;? =
i) - (1|—]v|v-)z)2
j

Then | fi[az,, $1,and f; - 0 uniformly on compact sets of ID.

Applying Lemma 2.6, we have

1 u(S(15))
0« | f]9 > — f | fdp > =
Hf]H(Iq,lf%(u)(#) |Ij‘17§(17'7) S(Ij) |f]| # |If|

Thus, the desired vanishing condition holds. ]

4 Proof of Theorem 1.4

Before we give the proof of Theorem 1.4, let us recall some basic facts on #7-Carleson
measure associated with Morrey space AL, ;.
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For 1 € (0,1], we write CM,, for the class of all -Carleson measures on ID. A non-
negative measure y on ID is called a bounded or compact n-Carleson measure provided
I I
WMD) o u(s)

<
|| = IT, |1]-0  |I|"

llleat, = sup 0,
IcT

where
S(N)={z=reeD:1-|I|<r<1,e eI}
is the Carleson square based on a subarc I ¢ T.
Assume the following:
a-z

» Vs 0)1 ]D D) a = _
(haz) e QDD 0(2) =

E(f,a)=(1-]a]*)"" fD f' (D)1~ loa(2))dA(2).

According to [15,17], the following statements are equivalent:
e feALy,.

* |f (2)?(1 - |2])dA(z) is a bounded ;-Carleson measure.
e sup,.p E(f,a) < .

Now we give the proof of Theorem 1.4.

Proof We split the argument into three parts.

(i) The operator V. Let A = 1-2/p(1 - 17). Notice that f € AL, ; is equivalent
to |f'(2)|*(1 - |z]*)dA(z) is a bounded A-Carleson measure. Thus, Theorem 1.2 and
(Vgf)'(2) = f(2)g'(z) guarantee that V, is bounded. The corresponding compact-
ness can be obtained similarly.

(ii) The operator U,. First, we consider the boundedness. Suppose |g[o < oo.
Since U, (f)(0) = 0, using Lemma 2.1 and the Littlewood-Paley equality, we obtain
that

IVeflac,, 540

2(1

$1Us () +sup( (1-1aP) 5" [ 17 (@)Pla(2)P(1 - lou (2)P)dA(2))

1I-n
S lgleo sup(1=[al*) 7 | f o 0 ~ f(a)]2
aeD

S Mgl Su]g(l ~1a’) 7 [ f o 0a - f(a)l,

S lglooll flac,,:

This implies that [Ug| < [ g] . Hence, Ugt AL, , — ‘AL"Z,I—%(I—n) is bounded.
Conversely, if Ugt AL, , ‘ALZ,I—%(I—W) is bounded, we then need to prove that

g€ H> and |g[e S |Ug]. To do so, given a nonzero point w and 3 < |w| < 1, we
choose a Carleson square S(I) such that

{zeD:[ow(2) < 1} e S() and 1~ |wf =1l
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Let

(1-|wp) "

w(l-wz)

fw(z) =

Then
fw € ALP,,] and wa ”ALW; S
Using [19, Lemma 4.12] and the boundednenss of U, we get

[Ugl® 2 1Ugfulllac

2 (-
21-2 (1-n)

2 g o U P )G
) |]|1f:1(1’1) fS(I) Ifh(2)]Plg(2) (1 - |2]*)dA(2)

(ﬂ‘rrl 1))

ml_f(l 5 fo DT ey~ A

1= wzl*

S oy EEP A P)aAR)

1

2 2)|*(1-|2)*)dA(z
" Jreisosiopery EOF A= )dAGR)

S T lg - )’ g (w)P.

The maximal principle is used to deduce

lgleo = sup |g(w)] 5 Ul
1<fwl«1

Second, we prove the compactness of Uy. It is enough to show that if Ug: AL, ,

AL, 1 21y is compact, then ¢ = 0. By Theorem 1.4, g € H{*. Suppose g is not
o

identically equal to zero. Then the maximum principle tells us that gl cannot be
identically zero. It means that there exists a positive constant € > 0 and a sequence
{w;} c D such that w; - wy € T and |g(w;)| > e. Applying the classical Schwarz’s
lemma for g/| g/, we have

18(21) - g(22)] < 2| g o]0z, (22));

where 0,,(z;) = ZZ and z;, z, € D.

The above 1nequahty shows that there is a sufficiently small number § > 0 such
that [g(z)| > 3 holds for all j and z with |o;,,(2)| < d. It is easy to see that each
pseudo-hyperbolic ball {z € D : |, (z)| < 8} is a subset of a Carleson box S(I;) with

|I;| » 1 - |wj|*. Hence, if 17 € [0,1), we take

pHn=1

f]()—% and  fo(z) = 0.

j
Then f; — fo — 0 uniformly holds on any compact set of ID.
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Accordingly,
HUg(fj)”iwz’l_%(l_q)
2(pt+n-1)
1 (1—|WJ|2)T 2 )

R — 1-|2zP)dA
=50 [s(zj) 11— wizl* 8(2)I"(1 - |2[*)dA(2)
1

2T Jray O AR)
J j

62

Zif 1-|z*)dA(z) 2 €.
;| {ZE]DJ:|¢7W}.(Z)\<6}( [7)dA(z)

The compactness of Ug gives that [|Ug(fj)[ac,, — 0. Itis a contradiction with € > 0.
Thus, g = 0.

(iii). The operator M,. We will first prove that the boundedness of M,. The above
statementa (i) and (ii) show that the “if” part holds. To prove the “only part”, let

p+n-1
A-wP) *
z)= ———F—.
fulz) =
Then sup,,ep, | fulasg,, S1
By Lemma 2.5, we have
o) s e
w ~ 1-57 °
(1-1e)
Since Mg: ALy, = AL _2(1_y) is bounded, we have
op
HMng HALZ,I—%(I—Y]) 1
(1-[z?) 7 (1-1[z?)

Setting z = w, we obtain [g(w)| S | M|, which means g € J{*. Applying this to
Theorem 1.4(i), we get Vg: AL, > AL, _a(y_,y is bounded. Notice that
op

Ugf = Mgf = f(0)g(0) = Vg(f),
the boundedness of V, gives U is bounded.
Now, it remains to prove Mg: AL, ;= AL 1_5/p(1-y) (#) is compact if and only if
g = 0. Obviously, we need to prove the “only part”. Since this operator M is bounded,
we have ||g[e < oo. For any nonzero sequence {w;} c I, set

ptn-1
(A—w;) 7
fiz) = LD
- Wwjz
Suppose |w;| — 1. Then | fj|.az,, S 1and f; = 0 uniformly on any compact set in D.
Hence, H Mg(f]) H‘ALZ,I—%(I—q) - 0.

By the estimates

8(2)f5(2)| = Me (/) (2] § IMefil e, s 0 1

(1-J2) 7

>
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and choosing z = w;, we get
8O S IMe(lac,, 5, — 0.

This means that g(w;) — 0, which, together with g € J{*, gives that g = 0. [ |

Remark  The Volterra-type operators, which connect with Hankel operator, Toeplitz
operator, and multiplier, have been the interesting objects of analytic function spaces
in complex analysis and operator theory. It is well known that Vg:H* — 3? is
bounded (resp. compact) if and only if g € BMOA (resp. g € VMOA); see [9]. Fur-
ther, the results of the boundedness of V, on Hardy space H? can be found from
Siskakis [10] and Aleman and Cima [1]. During the last years, several authors have
been investigated the operator V, (see e.g., [6,13,15,16] and references therein).
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