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ABSTRACT

Fix a prime p > 11. We show that there exists a positive integer m such that any subset
of IF) x F}; containing no nontrivial configurations of the form (z,y), (z,y + 2), (z,y +
22), (z + z,y) must have density < 1/log,, n, where log,, denotes the m-fold iterated
logarithm. This gives the first reasonable bound in the multidimensional Szemerédi
theorem for a two-dimensional four-point configuration in any setting.

1. Introduction

Szemerédi’s famous theorem on arithmetic progressions, which states that any subset of the
integers with positive upper density contains arbitrarily long arithmetic progressions, has the
following multidimensional generalization due to Furstenberg and Katznelson [FKT78].

THEOREM 1.1. Let X be a finite, nonempty subset of Z%. If S C [N]? contains no nontrivial
homothetic copy a + bX of X, then |S| = o(N%).

Here we use the standard notation [N]:= {1,..., N}. There has been great interest over the
past few decades in proving a quantitative version of this theorem with reasonable bounds, i.e.
with an upper bound for |S| whose savings over the trivial bound of N¢ grows at least as quickly
as a finite number of iterated logarithms. Indeed, Gowers has posed the problem of proving such a
result on several occasions [Gow98a, Gow0la, Gow01b], and others, such as Graham [Gra97], have
asked for bounds for sets lacking particular multidimensional configurations. While reasonable
bounds are known in Szemerédi’s theorem due to work of Gowers [Gow98b, Gow01b], none are
known in the Furstenberg—Katznelson theorem in general. Furstenberg and Katznelson’s original
proof, which was via ergodic theory, produces no explicit bounds, while the hypergraph regularity
proofs of Nagle, Rodl, Schacht, and Skokan [NRS06, RS04], Gowers [Gow07], and Tao [Tao06]
each give a saving over the trivial bound of inverse Ackermann type.

Reasonable bounds in Theorem 1.1 are currently known for only one genuinely multidimen-
sional configuration: two-dimensional corners

(), (ry+2), (z+2y), (1)

(and, thus, their linear images) due to the work of Shkredov [Shk06a, Shk06b], who proved that
any subset of [N] x [N] containing no nontrivial corners has size at most < N?2/(loglog N)¢ for
some absolute constant ¢ > 0. No reasonable bounds are known for any two-or-more-dimensional

Received 4 July 2022, accepted in final form 26 July 2023, published online 4 December 2023.

2020 Mathematics Subject Classification 11B30 (primary), 05D99 (secondary).

Keywords: multidimensional Szemerédi theorem, corners theorem, finite field model setting.

(© 2023 The Author(s). This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited. Compositio Mathematica is
(© Foundation Compositio Mathematica.

https://doi.org/10.1112/S0010437X2300756X Published online by Cambridge University Press


http://www.compositio.nl/
http://www.ams.org/msc/
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1112/S0010437X2300756X

SUBSETS OF [} X )} WITHOUT L-SHAPED CONFIGURATIONS
four-point configuration, such as three-dimensional corners,

(‘/I"ﬂ y7 Z)7 (x7 y’z+w)7 (x’y+w7 Z)? (:I:_’_w’ y7 Z)’ (2)

or axis-aligned squares,

(z,y), (v,y+2), (r+29), (r+2zy+2). (3)

The latter of these two configurations is the topic of a conjecture of Graham [Gra97], which
states that any subset S C N x N for which }Z, )cq1/ (22 4 y?) diverges must contain an axis-
aligned square. Graham also conjectured, more generally, that if Z(w,y) es 1/ (22 4 y?) diverges,
then S must contain a homothetic copy of [m] x [m] for every positive integer m. This is a
two-dimensional generalization of the famous and still unresolved conjecture of Erdds that
every subset T'C N for which ) _,1/n diverges must contain arbitrarily long arithmetic
progressions.

Proving reasonable bounds for sets lacking the four-point configurations (2) and (3) seems
to be out of reach. This is because no one has managed yet to prove anything useful about a
certain two-dimensional directional uniformity norm that naturally appears in the study of these
configurations. Details on this difficulty can be found in the work of Austin [Ausl3a, Ausl3b],
where he demonstrates how enormously complicated and difficult even 100% and 99% inverse
theorems can be for directional uniformity norms.

The purpose of this paper is to identify the first two-dimensional four-point configuration
for which reasonable bounds in the multidimensional Szemerédi theorem can be proven, and to
prove such bounds in the finite field model setting. We will study the configuration

(z,9), (v,y+2), (v,y+22), (v+2y), (4)

which, when plotted on a two-dimensional integer grid, takes the shape of the capital letter ‘L’.
Because of this, we refer to (4) as an L-shaped configuration, and an L-shaped configuration with
z # 0 as a nontrivial L-shaped configuration.

THEOREM 1.2. There exists a natural number m and a constant C' > 0 such that the follow-
ing holds. Fix a prime p > 11, and set N :=p". If n > C, then all S C F; x F} containing no
nontrivial L-shaped configurations satisfy

2

log,, N’

m

|S] <

The m obtained in the theorem is huge, so we do not attempt to compute it. The bulk of
the size of m comes from our use of a recent quantitative inverse theorem for the U'%-norm on
) due to Gowers and Mili¢evi¢, who in [GM20] give a rough upper bound for the number of
iterated exponentials appearing in their result. Based on this, m is likely at least 24 trillion. The
use of this inverse theorem is necessary in our proof, and no amount of care to argue efficiently
in the rest of the argument can reduce m by much. Thus, we have not tried to optimize the
proof of Theorem 1.2, choosing instead to present the simplest argument that gives a reasonable
upper bound.

It is likely that the proof of Theorem 1.2 can be adapted to the integer setting to prove
a reasonable bound for subsets of [N] x [N] lacking L-shaped configurations, with the bound
obtained being far more reasonable than the bound in Theorem 1.2. This is because the quan-
titative aspects of Manners’s [Manl8| inverse theorem for the U®-norm on cyclic groups are
better than those of Gowers and Mili¢evi¢’s inverse theorem when s > 4. It is also likely that
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Theorem 1.2 can be extended to more general L-shaped configurations with a longer vertical ‘leg’,

(z,y), (x,y+2),...,(x,y+mz), (z+2z1y),

in both the finite field model and integer settings. We expect, however, that understanding
L-shaped configurations with two longer ‘legs’,

(@,y), (@y+2),....(@@y+mz), (x+zy),. .. (x+zy),

is significantly more difficult, for some of the same reasons that proving reasonable bounds for
sets lacking three-dimensional corners or axis-aligned squares seems out of reach.

While progress in proving a quantitative version of the multidimensional Szemerédi theorem
has so far been extremely limited, there has been a bit more success in proving reasonable bounds
for sets lacking multidimensional configurations with more degrees of freedom than those in
Theorem 1.1. Prendiville [Prel5] has proven reasonable bounds for subsets of [N]¢ lacking any
sufficiently nondegenerate three- or four-term matrix progression, and one consequence of his
work is that any subset of [N] x [IN] containing no four vertices of any square (not necessarily
axis-aligned) has size at most < N?/(loglog N)¢ for some absolute constant ¢ > 0.

The remainder of this paper is organized as follows. In §2, we give a detailed outline of
our proof of Theorem 1.2, including statements of the three main components of the density-
increment argument: control of the count of L-shaped configurations by directional uniformity
norms, obtaining a density increment on a structured set, and pseudorandomizing the structured
set obtained previously. After introducing additional technical preliminaries in §§3 and 4, we
prove these three main components in §§ 5, 6, and 7, respectively. We then carry out the density
increment argument in § 8, proving Theorem 1.2.

2. Outline of the proof of Theorem 1.2

We begin this section by introducing the minimum amount of notation and preliminaries needed
to understand our proof outline. We will use the standard asymptotic notation O, {2, and o,
along with Vinogradov’s notation <, >, and <. For any two quantities A and B, the relations
A=0(B),B=Q(A), A< B, and B > A all mean that |A| < C|B| for some absolute constant
C > 0. We will write O(B) to represent a quantity that is < B and Q(A) to represent a quantity
that is > A. When any of these asymptotic symbols appears with a subscript, the implied
constant is allowed to depend on the parameters in the subscript. Since we fix a prime p in
Theorem 1.2, the implied constants appearing throughout the paper will sometimes depend on
p even though we will not alert the reader to this with a subscript. We will use log,,, to denote
the m-fold iterated logarithm, so that log; := log and log; := logolog,_; for all i > 1, as well as
exp™ to denote the m-fold iterated exponential, so that exp! = exp and exp’ := exp oexp’~! for
all 7 > 1.
We will frequently denote the indicator function of a set A by the letter A itself, so that

ao={y 2oh

For any pair of finite sets X C Y with Y # (), we denote the density of X in Y by

py (X) = K/(;
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For any function f: X — C, we denote the average of f over X by

zeX
When X = F}, we will usually drop ‘€ X’ and just write E, for Emeﬁrg. Whenever f satisfies
|f(x)| <1 for all z in its domain, we say that it is 1-bounded. Note that the indicator function
of any set is 1-bounded.
For any f:F) — C and £ € F)), we define the Fourier coefficient of f at § using the
normalization

F(©) = Euf(x)ep(—€ - ),

where e,(2) := e?™2/P and - denotes the usual dot product in Fy. With this choice of
normalization, the Fourier inversion formula and Parseval’s identity read

=3 F(©)ep(€ - x)

E€Fn
and
Eolf(2)]* = ) 17(6)
S
respectively.
Let H be any abelian group and g : H — C. For any h € H, we define the function Apg :
H — C by

Apg(z) := g(z)g(x + h),
and, for any hy,...,hs € H, define the s-fold iterated differencing operator Ay, ., by
Apy,iheg = Apy o Apg

Note that Ay, . p.9 = Ahc(l)“_,,hm)g for any permutation o of {1,...,s}.
Now we can recall the definition of the Gowers uniformity norms.

DEFINITION 2.1. Let s € N, H be an abelian group, and f: H — C. The U®-norm of f is
defined by
£ 1) = B, et Dy, f ()

The basic properties of these norms can be found in [Taol2]. One such fact needed in the
upcoming outline is the inverse theorem for the UZ?-norm, which is a simple consequence of
Fourier inversion and Parseval’s identity.

LEMMA 2.2. Let H be an abelian group and f: H — C be 1-bounded. If | f||y2(fr) > 6, then
there exists a v € H such that

Epen f(z)y(x)| > 62

We will also sometimes need the notion of the U?-norm on an affine subspace w + V of F
which is defined by || f||y2(wtv) = [If(- — w)|[z2(v). The corresponding inverse theorem for these
norms follows from Lemma 2. 2

2.1 A review of Shkredov’s argument in the finite field model setting

Before we outline the proof of Theorem 1.2, it will be instructive to review Shkredov’s argument
for corners (1) in the finite field model setting. A detailed account of the argument can be found
in the expositions of Green [Gre05a, Gre05b].
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Shkredov’s proof proceeds via a density-increment argument. As in all analytic approaches
to Szemerédi’s theorem and its generalizations, we begin by defining a multilinear average over
the configuration of interest. For go, g1, 92 : Fy X F) — C, set

AL(90: 91, 92) = Euy 290(z, )91 (2, y + 2)g2(z + 2, y).
Then, for any S C F; x F}, the quantity A_(S, S,5) equals the normalized count,

oy, z €Fp: (2,9), (w,y +2), (x+ 2,9) € 5}
p® ’
of the number of corners in S. Setting N := p" = |[Fp|, we let o := |S|/N? denote the density of

S in F) x ) and gg := S — o denote the balanced function of S. It follows from the trilinearity
of A_ that

A(S,S,S)=0A.(1,5,5)+ A _(gs,S,S).

Since A_(1,5,S5) > o2 by the Cauchy-Schwarz inequality, if the normalized count of corners in
S is far below the ~ o2 expected for a random set of density o, which is the case when S has no
nontrivial corners and N is sufficiently large in terms of o, then |A_(gs, S, 5)| must be large.

It can then be shown, by an appropriate sequence of applications of the Cauchy—Schwarz
inequality, that gg must have large box norm

1/4
19510 = (Byy sy 95 (2, 9)gs (@ ) gs (@, )gs (2, ) ™.

If ||lgs||o is large, it follows by an averaging argument that S has density at least o 4+ Q(c®™)
on a product set A x B for some large A, B C F}.

One may then hope to continue the density-increment argument by proving the following
generalization of the result just sketched: if S is a subset of density o of a product set T'= A x B
and contains no nontrivial corners, then S has density at least o + Q(¢®™)) on a product set 7"
contained in T

It turns out, however, that the Cauchy—Schwarz argument mentioned previously yields a
lower bound on the box norm of large enough size only when A and B are sufficiently Fourier
pseudorandom, meaning that their balanced functions A — |A|/N and B — |B|/N both have small
U?-norm. The components of the product set just obtained are essentially arbitrary aside from
being large. They are, in particular, not guaranteed to be Fourier pseudorandom.

To overcome this difficulty, Shkredov introduced a pseudorandomizing step into his proof. He
used an energy increment argument incorporating the UZ2-inverse theorem to partition Fy x Fy
into products of large affine subspaces of the form

(u+V) x (w+V), (5)

for most of which the sets (A —u) NV and (B —w)NV are Fourier pseudorandom in V. By
an averaging argument, there must exist such a product of affine subspaces (5) on which the
restrictions of A and B are both sufficiently dense and Fourier pseudorandom, and such that S
still has increased density o + Q(c®™M)) on the intersection of T with (u + V) x (w + V).

By passing to this product of cosets and using that corners are preserved by translation
and invertible linear transformations of the form (x,y) — (Ez, Fy), one can then continue the
density-increment argument with Fj x F} replaced by Fg, X Fg/, where ' =dimV. If SCT
contains no nontrivial corners and A and B are sufficiently Fourier pseudorandom, then gg must
have large box norm localized to T. One must then prove that .S has a further density increment
on a product set contained in 7', which is, fortunately, of exactly the same difficulty whether

T =TF, x F, or some other large product set. By applying the pseudorandomizing procedure

180

https://doi.org/10.1112/S0010437X2300756X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X2300756X

SUBSETS OF IFZ X IFZ WITHOUT L-SHAPED CONFIGURATIONS

to the factors of the product set just produced, one can then deduce that if S is a subset
of density o of a product set T'= A x B, where A and B are large and sufficiently Fourier
pseudorandom, and S contains no nontrivial corners, then S has density at least o + Q(ao(l))
on a product set T/ = A’ x B’ contained in T', where A’ and B’ are also large and sufficiently
Fourier pseudorandom. The density increment iteration can be carried out repeatedly to produce
a good bound for subsets of F; x F}} lacking corners.

2.2 An outline of our argument
The obstructions to uniformity for L-shaped configurations are not just (skew) product sets, as
was the case for corners, but also very general sets of the form

{(z,y) € Fy xFy 1y € ug + Vi },

where each u; + V; is an affine subspace of F). For example, assume that n > 3, and consider
the set

{(z,y) e Fy xFy :2-y =0}
This set has density

(N-1)N/p+N 1
N2 P

in F x Fp, but
N N N N N N3
N-1)—(p—1 <—1>+(—1>p—1+N+2N—1~
[( ) —( )]p e ’ ( )p ( )p e

L-shaped configurations, in contrast to the ~ N3/p* expected in a random subset of Fy x F) of
density 1/p. Similarly, the number of L-shaped configurations in the sets

{(z,y) € Fy xFy : () -y = 0}
and

{(z,y) € Fy x Fy :y1 = u(x)},

where ¢(x) € F and u(z) € F, are now chosen uniformly at random, is also ~N 3 /p3 with high
probability, while the sets have density ~1/p with high probability. These new sorts of obstruc-
tions to uniformity are the main reason why the study of L-shaped configurations is significantly
more difficult than that of corners, and must be taken into account to prove Theorem 1.2.

For any functions go, g1, 92, g3 : Fy x Fy — C, we define

A(g0,91,92,93) == Eay-90(x, )01 (2, y + 2)g2(z, y + 22)g3(z + 2,v), (6)

so that A(S, S, S, S) equals the normalized count of L-shaped configurations in any subset S of
[y x . The multilinearity of A implies that

|A(S’ S7S>S) 70’4| < 02|A(1alagSaS)| +U’A(1795a575)| + |A(957Sa Sa S)|’ (7)

where, as before, gg = S — ¢ is the balanced function of S. Thus, if the normalized count of
L-shaped configurations in S is far from the random normalized count o, one of |A(1,1, g5, S)],
|A(1,gs,5,9)|, or |A(gs,S,S,S5)| must be large. In particular, when S contains no nontrivial
L-shaped configurations and N is sufficiently large in terms of o, one of these quantities will
be larger than o#/2. It then follows from several applications of the Cauchy-Schwarz inequality
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that one of the following directional uniformity norms of gs must be larger than o#/2:

||g||*1 = (Er,y,hl,hg,hgA(O,hl),(O,hg),(hg,,())g(‘rvy))l/g) (8)
19112 = (B i ha B 0.h0),(~ho )9 (@ ), (9)

or
19lles = By Ay 20092, 9) 2. (10)
Here || - ||+ is only a semi-norm, while || - ||+, and || - ||, are genuine norms. Since these are all
Gowers box norms, one can find a proof that they are (semi-)norms in Appendix B of [GT10].
The norm | - ||, had been studied previously, in the setting of cyclic groups, in work of

Shkredov [Shk09].
Directional uniformity norms with two differencing parameters,

[Ex,y,h,kGHAhvl,kvgg(xv y)]1/47

for fixed nonzero vi,ve € H x H, are well-understood. Either vy and vy are scalar multiples of
each other, in which case the norm is just the U%mnorm on (v1) averaged over cosets of (v1), or
they are linearly independent, as in the definition of || - ||,, in which case the norm is, after a
change of variables, equivalent to the two-dimensional box norm. Directional uniformity norms
with three differencing parameters,

[Ea,y,h1 b2 b€ HA Ry w1 hova,hgvs (T y)]l/g’
for fixed nonzero vy, ve,v3 € H X H analogously fall into one of three cases: either vy, vo, and
vy are collinear, lie on exactly two lines, or are in general position. In the first case, the norm
is just the U3-norm on (v1) averaged over cosets of (v1). In the third case, the norm is linearly
equivalent to the intractable norm that arises in the study of three-dimensional corners and
axis-aligned squares. The norm || - ||4, we encounter falls into the second case, and the study and
fruitful use of this norm turns out to be possible (though still complicated) due to its structure
as a ‘U' x U?-norm’.

The upshot is that if S contains no nontrivial L-shaped configurations, then it must have
density at least o + Q(c?™M) on a set of the form

T :={(v,y) € F) xF, : By)C(z +y)D(2z + y)®(x,y) = 1}, (11)
where ® C A x F}} is of the form
Q= {(r,y) € AxF):ycu+V,}, (12)

for some element u € [y and collection of subspaces {V,. : x € A} of Fy}, where A, B,C, D C
are large and codim V,, is small for each x € A. Note that this set ® is not quite as general as
the one appearing at the very beginning of this subsection, as the element u of I} does not vary
with z. It takes some extra work to show that we can guarantee ® to be of this special form,
which turns out to be necessary for our density-increment iteration. We say more about this
point in §6.

We would like to continue the density-increment iteration and show that S’ := T NS, which
also lacks L-shaped configurations, has a further density increment of at least the same size as
the first on a subset 7" of T' of the same general form (11). Analogously to Shkredov’s argument
for corners, we can only hope to do this if A, B,C, D, and ® are sufficiently pseudorandom, for
some appropriate notions of pseudorandomness. We will need to control the count of L-shaped
configurations by the norms || - |l«,, || - |lxs, and || - ||lx; defined in (8), (9), and (10) with no loss
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of density factors, i.e. show that

|A(fo, f1, f2, f3)] | follx:

>5 — S5 1, 13
AT, T, T,7) 170, 13)
AT, f1, fa, f3)] I|f1llx

>0 = >5 1, 14
ATTLT) 2 Il > 14

and

‘A(T7T7f27f3)| Hf2H*3
ki S b A4 LR SN 51, 15
A(T7T’T7T) o HTH*?, ’ ( )

and also obtain a density increment with no loss of density factors when some localized norm
|| - Il of the balanced function of a set is large, i.e. show that if

lgsllxs  llgsllx 195 15
or >4
1Tl Ty [ea/F—

where now gg := S — T, then there exists a subset 7" C T' of the same general form,
T":={(z,y) € Fy xFy : B'(y)C'(x + y)D'(2x + y) ' (2,y) = 1},
as T on which S has a density increment
E@yerS(,y) > 0+ Qs(1)

depending only on §. Such results are needed so that the density increment obtained at each
step of the iteration is independent of the step. If one is not sufficiently careful, it is easy to end
up with a density increment that gets smaller as the subset T' of )} x ) gets sparser, which is
not enough to close the density increment iteration.

To carry out these arguments, we will need A, B, C, and D to be pseudorandom with respect
to the U0 (Fj)-norm. The situation for ® is more complicated, and deciding on a good measure
of pseudorandomness for ® that is amenable to a Shkredov-like pseudorandomization procedure
and can also be used to analyze the various averages appearing throughout our argument is one
of the challenges of the proof of Theorem 1.2. A suitable condition on ¢ turns out to be that
it is pseudorandom with respect to the U S(Fg X FZ)-norm. This condition is not, on its own,
immediately useful in the arguments of §§5 and 6, since the various averages that appear are
not controllable by the U® (Fp x F)-norm of ®. It takes a bit of work to show that it implies a
roughly equivalent statement about the typical codimensions of certain affine subspaces obtained
from ®. We prove this in §4, deriving some new results on the combinatorics of approximate
polynomials along the way.

The proof of the implications (13), (14), and (15) when A, B, C, D, and & are sufficiently pseu-
dorandom consists of many careful applications of the Cauchy—Schwarz inequality, along with
appeals to standard facts about the number of linear configurations of bounded Cauchy—Schwarz
complexity in products of pseudorandom sets intersected with subspaces of bounded codimension.
We carry out this argument in § 5.

Obtaining a large enough density increment when ||gs||x, is large for S C T' requires some
new ideas and a significant amount of extra work beyond the proof of the non-localized case, in
contrast to the situation for the box norm localized to product sets, where the argument is the
same as the non-localized case. In order to get such a density increment that only depends on
0 and not on the densities of A, B, C, D, or ®, one of the key ingredients is a density-preserving
inverse theorem for the U?(®(x,-))-norms on pseudorandom sets derived from A, B,C, and D,
which we prove using a version of the transference principle. We carry out this argument in §6.
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As was the case for corners, the sets A’, B, C’, D', and ® obtained in the previous para-
graph are not guaranteed to be pseudorandom. We must also carry out a pseudorandomizing
procedure to locate a product of large affine subspaces of the form (u+ V) x (w + V) on which
A',B',C", D', and ®' are sufficiently pseudorandom and S still has a large density increment on
T'N[(u+V) x (w+ V)]. Our pseudorandomization procedure is similar to Shkredov’s, but with
some new complications coming from our desire for A’, B, C’, and D’ and ®' to be pseudoran-
dom with respect to the U 10([5‘;‘)— and U® (F} x F})-norms, respectively, and from ®"’s particular
structure as a union of affine subspaces in the second factor of F)y x . To handle the first
complication, we use a recent quantitative inverse theorem of Gowers and Mili¢evi¢ [GM20] for
the U®-norms on vector spaces over finite fields, combined with a result of Cohen and Tal [CT15]
that allows us to partition I} into large affine subspaces on which any finite collection of bounded
degree polynomials are all constant. The structure of ® has the potential to cause issues in a
Shkredov-like pseudorandomization argument, since the intersection of ® with a cell may no
longer be the union of affine subspaces all having the same dimension. We will explain how this
complication is dealt with in § 7, since it requires a bit of set up.

2.3 Key intermediate results
We finish this section by stating the key intermediate results needed to prove Theorem 1.2 that
we just described in the outline. Recall that g¢ = S — o denotes the balanced function of S.

LeEMMA 2.3 (Estimation of A(T,T,T,S)). There exist absolute constants 0 < ¢; < 1 < ¢z such
that the following holds. Let d be a nonnegative integer, and set p:=p~%. Suppose that
A, B,C, D C F} have densities «, 3,7, 9, respectively, and that ® C Fy x ) takes the form

®={(z,y) e AxFy:ycu+V},

where each V; is a subspace of F; of codimension d. Define T' C F) x F by (11) and suppose
that S C T has density o in T. Let ¢ < ¢1(cafvdp)®? and assume that

A = a

vs@n), 1B —=BllusEn), 1€ =Allus@n), 1D -0l

US(FR)> [P — aPHW(}ngIF;;) <e.
Then
AT, T,T,S) > ca? 334363 p3.

As a consequence, we get that if € is small enough, n is large enough, and S C T has no
nontrivial L-shaped configurations, then

max(|A(gs, 5, S, S)|. [A(T, gs. S, )|, [A(T, T, gs, 5)|) > o*a®3175% .

LEMMA 2.4 (Control by || - ||, norms). Let d be a nonnegative integer, and set p := p~%. Suppose
that A, B,C, D C ) have densities «, (3,7, 9, respectively, and that ® C F; x F} takes the form

®={(z,y) e AxFy:ycu+V},
where each V,, is a subspace of F)) of codimension d. Assume that

A= allys@ny, 1B =Blus@n), 1€ =us@ny, 1D —dllus@n), 12— apllysEnxrm <e.
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Define T'C F)) x F} by (11) and suppose that fo, f1, fo, f3: Fy x F, — C are 1-bounded
functions supported on T'. Then

~2(1)
(A (for f1. for F3)[® < 0152041561518 fo 3, + 0<po<1>> (16)
01
’A(T7 f17 f27 f3)|4 < a8ﬂ871058p8”f1”i2 + @) “om ) (17)
,00)
and
~2(1)
‘A(Ta T7 f27f3)|2 < a637354p3“f2”33 + 0 "o |- (18)
200

Thus, if € is small enough, n is large enough, and S C T has no nontrivial L-shaped
configurations, then one of

lgsler — lgsle - 195l
Y 9y
[0 PR [ 1715

is > g0,

THEOREM 2.5 (||gs]l«5 [lgs]l«s, OF [|gs||xs large implies a density increment). There exist absolute
constants 0 < ¢; < 1 < ¢g, c3 such that the following holds. Let d be a nonnegative integer, and
set p := p~?. Suppose that A,B,C,D C ) have densities «, 3,7, 0, respectively, and that ® C
[y x [y takes the form

d={(r,y) c AxTFy:ycu+V,},
where each V,, is a subspace of I} of codimension d. Let o,7 > 0 and
e < c1(oTaByip) exp(—(64/7%)%),
and assume that
[A = allgio@y, 1B = Bllrown, I1C=lvogs), 1D —=dllpogn), (12— apllus@nxrn <e.
Define T' C )y x F)y by (11) and assume that S C T' has density o in T'. Suppose that
lgs |l = Ta/* 81/ 2y5p%",

lgs e = T 25y 25p,
or
lgs]lxs > TaBy8" 2 p.
Then, S has density at least o + Q(7°M) on a subset T' C T of the form
T":={(z,y) € Fy x Fy : B'(y)C"(x +y) D' 2z + y) @' (x,y) = 1},

where the densities of A’, B',C", D" C F} are all > (o1aBy6p)°M, and the set &' C Fy x Fy
takes the form

' = {(z,y) € A’ xFy :y e +V,},
where each V, is a subspace of ), of codimension d + 1.

The first three lemmas combined tell us that if S has density ¢ and contains no nontrivial
L-shaped configurations, then one can find a subset 7" of )y x Fy of the form (11) on which S

has density at least o + Q(O‘O(l)). The next lemma tells us that, after restricting to a product of
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large affine subspaces, we can get this same conclusion with A, B, C, D, and ® as pseudorandom
as we need, which will allow us to continue the density-increment iteration.

LEMMA 2.6. There exist absolute constants 0 < ¢; < 1 < ¢, ¢, such that the following holds.
Let d be a nonnegative integer, and set p := p~%. Let ¢’ > 0, and suppose that A, B,C, D C Fy
have densities «, 3,7, 0, respectively, and that ® C F) x ) and takes the form

b= {(r,y) e AxFy :ycu+V,},

where each V,; is a subspace of F)) of codimension d. Define T C F) x F; by (11), and assume
that S C T has density o + 7 in T, as well as that

(/) )

n>exp’ | c
=P <2dTMF;;xIF;;(T)

Then there exists a subspace V' < F) of dimension

O(exp®(e! /&) /dr g ey (T))

dimV > n“ .
u,w € F, and 0 < i < d such that, on setting C = (u+ V) x (w+V):
- B :=BnN(w+V);
- =Cnut+w+V);
- D :=DNR2u+w+V);
~ U :=0NCand ¥ :={(z,y) € V : Ercpiv¥'(z,2) =p~'};
~ A ={rxeu+V :Ecpiv®(z,2) #0};
=o' = pyrv(A);
- p = ,Uw-H/(B/);
= = v (C);
= 0" = poutwrv(D');
— p:=p7"; and
- Ti=A{(z,y) € C: B'(y)C'(x + y)D' (2w + y)@' (2, y) = 1};

we have
14" = P'llvrorvys 1B = Blloowsvys 1€ =Y loowrwsvy, 11D =8 lloo@uswrvy,
HQ)/ — O/,O/HUS(C) < 2¢,
CK/,IB/,’)’I, (5/ > TMF;XFg (T)/4, and

pe(SNT) 2 (747 el

By combining the previous four lemmas and using that L-shaped configurations are pre-
served by translation and invertible linear transformations of the form (z,y) — (Ez, Ey), we thus
deduce the following density-increment lemma, which we will iterate in § 8 to prove Theorem 1.2.

LEMMA 2.7. There exist absolute constants 0 < ¢; < 1 < ¢g,¢3,¢q4, ¢, such that the following
holds. Let d be a nonnegative integer, and set p := p~%. Suppose that A,B,C,D C [, have
densities «, 3,7, 9, respectively, and that ® C ) X F} takes the form

b= {(r,y) e AxFy :ycu+V.},
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where each V,, is a subspace of F)) of codimension d. Define T' by (11) and let S C T have density
oinT. Let € < (cafvp)? exp(—(64/0)), and assume that

A = allpogn), 1B = Bluogn),  I1C=llvwogn), 1D —=dllgown, |2 —apllys@nxrn) <e.
Let ¢’ > 0, and suppose that S has no nontrivial L-shaped configurations. Then either:

(i) n < exp®(caexp’(d/e)/(aafydp)?); or
(i) there exists natural numbers n' and d’ satisfying

oxpo(e! /") [ (gaBrbp)©2

n' > n“
and0 < d <d+ 1, subsets A, B",C", D’ C IFZ/ of densities o/, 3',+', ', respectively, a subset
o' C Fg/ X IF';‘/ of the form

O ={(z,y) € A xFY 1y e +V]},
where each V! is a subspace of Fgl of codimension d' (so that ® has density o'p’, where
o :=p~ %), and a subset S’ C T', where
T':={(a,y) € F} x F} : B'(y)C' (@ +y)D' (22 + y)¥'(a,y) = 1},
of density at least o + Q(c©™M) in T, such that
A"~ a,HUIO(]Fg’y 1B" — 5/||U10(ﬁrg’)7 IC" ’YIHUIO(F;;’)»
1D~ 5/HU10(]F;’)7 1" — Oé,P/HUfS(IF;L’ng’) <é,

o, B,74,8 > (caBydip)®2, and S’ contains no nontrivial L-shaped configurations.

3. Additional preliminaries

In this section, we present some more preliminaries that were not needed for the outline of the
proof of Theorem 1.2, but will be convenient to have for the proof itself. We begin with the
notion of Cauchy—Schwarz complexity, first defined by Green and Tao in [GT10].

DEFINITION 3.1 (Cauchy—Schwarz complexity). Let v1,...,%4: (F;)" — F} be a collection of
linear forms in r variables. We say that 1, ..., 14 has Cauchy—Schwarz complexity at most s if,
for every j € [d], there exists a partition of {¢1,...,94} \ {¢;} into at most s+ 1 subsets such
that 1 is not contained in the linear span of any of the subsets.

The smallest s such that {v1,...,1%4} has Cauchy—Schwarz complexity at most s is called
the Cauchy—Schwarz complexity of {11,...,14}.

For example, four term arithmetic progressions,
T,z +y, v+ 2y, 2+ 3y,

have Cauchy—Schwarz complexity 2.

Any system of linear forms of complexity at most s can be shown to be controlled by the
Us*!norm using repeated applications of the Cauchy-Schwarz inequality. In particular, carrying
out the proof of the generalized von Neumann theorem of Green and Tao in [GT10] in the finite
field model setting (where the technical details are much simpler) produces the following useful

result.
THEOREM 3.2. Let t1,...,%q: (Fy)" — F, be a collection of linear forms in r variables
with Cauchy—Schwarz complexity at most s. For any 1-bounded functions f1,..., fq: F) — C,
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we have
d
Eovoe TL0 )| < i vy
j:
Further, if all of fi,..., fa are supported on a set A C F) of density « that satisfies |A —

()é‘|Us+1(F;r)1) < e, then

d
d—1 . Qa1
Eovwe TL50 )] < 0 i s+ O
j:
We will use the following immediate corollary of Theorem 3.2 numerous times throughout
the proof of Theorem 1.2.

COROLLARY 3.3. Let 91,...,%q : (F})" — F) be a collection of linear forms in r variables with
Cauchy—Schwarz complexity at most s. Suppose that f1, ..., fa : F}; — C are 1-bounded functions
having average values ag, ..., ay, respectively, and that

15 = ejllorsrreny <€
for all 1 < j <d. Then

< d max ¢;.
1<j<d

d d
Ewl,...,:vr H fj(wj@:l? e 7xT)> - H Qj
j=1

j=1

We also need the Gowers—Cauchy—Schwarz inequality.

LEMMA 3.4 (Gowers—Cauchy—Schwarz inequality). Let s be a natural number, H be an abelian
group, and f,, : H — C for every w € {0,1}*. We have

< H | follors (-

‘Ex,hl,...,hseH [ fol@+w-(h,... h))
we{0,1}3

we{0,1}

Next, we record the basic fact that a function on Fj; with small U 2_norm has small average
on affine subspaces of small codimension.

LEMMA 3.5. Let f : F)y — C be a 1-bounded function satisfying HfHUQ(F;L) <eandw+V CFp
be an affine subspace of codimension d. Then

Escwrv f(z)] < pdg-
Proof. The indicator function of V' can be written as
1
d Z ep(f : 33),
p cevt
so we have that
1
Eof(z —w)V(2)] < — Y [Eaf(2)ep(€ - 2)] < | f o2y,
P cevd
by the Gowers—Cauchy—Schwarz inequality. Since |[V| = [F}|/ p?, the desired result follows. [

The last lemma of this section will be used to analyze the various averages appearing in the
proofs of Lemmas 2.3, 2.4, and 2.5.
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LEMMA 3.6. Let ¢1,...,¢%q € Fpla1,..., 24, y] be a collection of linear forms such that the coef-
ficient of y in each of n,...,14 is nonzero, and F : (IFZ)t x ) — [0,1] be a function of the
form

d
H %Xy

for some 1-bounded functions f;:F) — C with average value (3;, each satisfying ||f; —
Bj HUS(FZ) < e. If the Cauchy—Schwarz complexity of the set of linear forms

d
j=1

in the variables x1,...,x,y, h, k, is at most s — 1, then

(e[ -ILn

Proof. Set 3 := H;l:l B;. Note that Exe ) [|F(x,-) — ﬁ||U2 Fn) equals

> 61/8> <4 \/E

U2 (Fn

D (B By By p 7 (06, y) 15 (%, y + 1) 5 (6, y + k) fF (%, + h + k),
weq{0,1}4

where

w N 1 wizl
fi (X7y)_{F(X,y) Wi:O

for each w € {0,1}* and 1 < i < 4. Since (19) has Cauchy-Schwarz complexity at most s — 1 by
hypothesis, Corollary 3.3 implies that

ey By nr i (%, 9) 5 (6,5 + ) f5 (5,9 + k) f£ 5,y + h+ k) = 87 4+ 04(e)
for every w € {0,1}*. Thus,
EXG(FQ)tHF(Xa ) - IBH?JQ(]F’II)L) Lg €

Markov’s inequality then gives

n g
P(x € (Fp) - [|[F(x,-) = Bluzgey) = 1) <a 'l

for every r > 0. Taking r = £1/® gives the conclusion of the lemma. O

4. Pseudorandomness of ®

The main purpose of this section is to show that if ||® — ap|| p2s+2(Fnxpn) 18 small and @ is a
subset of the form

®={(z,y) e AxFy :y€u+Vy},

where each V,, < F}) is a subspace of density p in F); and A C F)} has density o in F}, then, when-
ever ¥1,...,0p € F plT1,...,Tm] is a collection of hnear forms of Cauchy—Schwarz complex1ty at

189

https://doi.org/10.1112/S0010437X2300756X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X2300756X

S. PELUSE

most s and wy, ..., w, € F), the affine subspaces

{vem: i]f[f(wi(x),w w)=1f

typically have maximum possible codimension. This allows us to transform the condition that
D is UB(F;} x [F)-pseudorandom into a more useful property for evaluating the various averages
that arise in the proof of Theorem 1.2.

LEMMA 4.1. For each nonnegative integer s and positive integer r, there exist constants
Csrycsr > 0 such that the following holds. Let d be a nonnegative integer, and set p := p .
Let 6 > 0, A C F)) have density o, and ® C [F;y X )} be a set of the form

®={(z,y) e AxFy:ycu+V},
where each V,, < IFZ is a subspace of codimension d. Assume that
1P — apHU25+2(]F;LX]F;l) < C57r(a5p)cs,'r.

Let i,...,¢p € Fplz1,...,2m,] be a collection of linear forms of Cauchy-Schwarz complex-
ity at most s. Then, for all but at most a d-proportion of m-tuples x € (Fg)m for which
P1(X), ..., (x) € A, we must have that

codim {y el : H@(wi(x),y +w;) = 1} =rd
i=1
for all wy, ..., w, € Fy.

We begin by showing that if ® is pseudorandom with respect to the U*(F; x [F}})-norm, then
A is pseudorandom with respect to the U®(F})-norm. This result will also be useful at a few
other points in the proof of Theorem 1.2.

LEMMA 4.2. Let d be a nonnegative integer, and set p :=p~%. Let A C [ have density  and
® C Fy x ) be of the form

®={(z,y) e AxFy:ycu+Vy},

where each V,; is a subspace of F)) of codimension d. Then, for every natural number s, we have

1
A = sy < ;H@ — apllyswn xrn)-
Proof. We write

HA_a||2USS(Fg) :]E:c,hl,...,hs H (A—oz)(a:+w (h17"'7hs))
we{0,1}5

and then, for each w € {0,1}%, insert the identity
1
(A—a)(x+w- (hi,...,hs)) = ;Ekw(@ —ap)(z+w-(h,...,hs), k)

to get that ||A — oz||2U:( equals

Fn)

1
FEx,hh...,hsE roerr [ (@ —ap)(@+w- (ha,... k), ko).

we{0,1}° ye{o0,1}¢
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We can average the above quantity over y,/1,...,¢s and make the change of variables k, —
kw+y+w-(l1,...,0) to get that it equals
1
?E kaFZ Ex,y7h1,.,.,hs,€1,...,fs H (Q) - Oép)((.l‘, kw + y) +w- ((hla 61)7 ey (hs> ES))) (20)
we{0,1}° we{0,1}s

Applying the Gowers—Cauchy—Schwarz inequality bounds (20) above by
1 1 s
—E k,ern H (@ — ap) (-, b + )llvsmn xwn) = p?”‘p - OépHgUs(ngFg)a
we{0,1}* ue{o,1}s
which gives us the conclusion of the lemma. ([l

To prove Lemma 4.1, we will need the notion of an approximate polynomial of bounded
degree, which we define using the additive discrete difference operator 0. For ¢ : H — H and
h € H, define Op¢ : H — H by

ho(z) == ¢(z) — ¢(x + h),
and, for hy,...,hs € H, the s-fold additive difference operator Oy, .. 5, by
ahl,...,hsf = ahl T ahsf

DEFINITION 4.3. Let H be an abelian group, A C H, and ¢: A — H. We say that ¢ is an
e-approximate polynomial of degree at most s — 1 on A if

Ohy,..hs®(x) =0

for at least an e-proportion of (s+ 1)-tuples (z,hi,...,hs) € H**1 for which z+w-
(hi,...,hs) € Afor all w € {0,1}°.

We will also need the following result, which is the key combinatorial input into the proof of
Lemma 4.1.

LEMMA 4.4. For each nonnegative integer s, there exist constants Cs,cs > 0 such that the
following holds. Let A C I} have density «, with

A = al[y2s2@n) < Cs(ad)®

and ¢ : A — I} be a d-approximate polynomial of degree at most s on A. Then, for at least a
Q,(69M)-proportion of (2s 4 2)-dimensional parallelopipeds

(:1:. 4+ w - (h17 e 7h25+2))w6{071}25+2

in A2 the derivative of ¢ on the (2s + 1)-dimensional face (z + w - (hq, . .., has+2))wefo,1}25+2

w;=€

Y (DM@t w- (b, haera)),

we{0,1}25+2
wi=¢€
vanishes for all 1 <1 <2s+2 and e =0, 1.

Proof. We proceed by induction on s, beginning with the case s=0. If ¢ is a
d-approximate polynomial of degree at most 0 on A, then Ey yealym)=¢(y) = 0, so that, by the
pigeonhole principle, there exists some z € [F) for which pa({z € A:d(z)=2})>4.
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Set X :={z € A: ¢(r) = 2z}, and consider the set of quadruples
X' ={(z,c+hx+kar+h+k)ecAt v a+ha+kr+ht+kecX})
Note that if (z,z + h,x + k,z +h+ k) € X', then
B(z) = oz +h) = Bz + k) = G+ h+ k) =
so certainly the derivatives
o(x) — d(x+h),0(x) —dp(x + k), p(x + h) —plx +h+ k), and o¢(z+k)—¢(x+h+k)

of ¢ on each of the 1-dimensional faces of the parallelopiped (x,z + h,z + k,x + h + k) vanish.
Since

X\
a3 < 1Xlisp) < Xl = (S )
we must have |X'| > (ad)*p®*. Taking co = 8, the total number of quadruples (z,z + h,z +
k,x 4+ h+k)in A% is (o* + O(Coa®))p®” by Corollary 3.3, which means that X’ consists of at
least a §*/2-proportion of parallelograms (x,z + h,x + k, 2 + h + k) in A* if Cp is chosen small
enough. Thus, for at least a §*/2-proportion of parallelograms (x,z + h,x + k,z + h + k) in A%,
the derivative of ¢ on each 1-dimensional face vanishes, as desired.
Now suppose that the result holds for a general degree s — 1 > 0, and let ¢ be a §-approximate
polynomial of degree at most s on A. By Corollary 3.3,

2s
Enern [|ApA — 042||2U25(Fg) <5 Cs(ad),
so that, as long as Cs is sufficiently small and ¢, is sufficiently large, it follows from Markov’s
inequality that

Cs_1 (015/2)263‘1
2 )

[ARA — a2”U2s(Fg) <

and, thus,
Cs_1 (04(5/2)205*1
2

lurn (AN (A= h)) —a®| <

as well, for all but a O(§?)-proportion of h € F). Thus, for at least a €(d)-proportion of
hs+1 € Fy, we have |[Ap, A — 042||U23(F;) < Cs_1(ad/2)%es-1 /2, \rp (AN (A = hsya)) — a?| <
Cs—1(ad/2)%-1/2, and that the function 9y, ,,¢ is a O(d)-approximate polynomial of degree
at most s —1 on AN (A — hst1). Denoting the set of such hsi1 by H, so that ,u]Fg(H) > 0, the

induction hypothesis then says that, for each h € H, there are at least a Qs(éos(l))-proportion of
2s-dimensional parallelopipeds (z +w - (h1, ..., has))wefo,132s in (AN (A — h))2* for which the
derivative of dj¢ on each (2s — 1)-dimensional face vanishes.

Summing over all b € H, it follows that, for at least a Q4(69+(1))-proportion of (2s + 2)-tuples
(2,9, h1, ..., has) for which (z +w - (h1,..., has))weqo,1y2s and (y +w - (h1, ..., has))weqo,1)2s are
both in AQQS, one has

ahl:'“:ﬁ\iv--thsgb(x + Ehi) - ah1,~~~7];i7~--7h2.s¢(y + ehi)
forallt=1,...,2s and ¢ = 0,1. By Corollary 3.3,

Ehh---,hzs ||Ah1,---,hzsA - O‘QZS H?]l(lﬁ‘g) <s CS(O‘(S)csv
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and so, by Markov’s inequality,
() 1A= (e ) = 02 4 O([C a2 o1)
we{0,1}2s

for all but a O([Cs(ad)]*M)-proportion of (hy, ..., hgs) in (F)**. By taking C, small enough
and ¢, large enough, there are therefore at least a €24 (5O~§(1))—proportion of 2s-tuples (hy, ..., has)
in (Fg)% for which (21) holds and, for at least a Q,(69())-proportion of pairs (x,y) € A% such

that (z +w - (h1,...,h2s))wefo,132s and (y +w - (ha, ..., has))weqo,132+ are both in A% one also
has

ahlv'-~7ﬁ\i’~~-7h25¢(x + ehl) - ahl,...,f,l,\i,...,hgsqﬁ(y + Ehl)

foralli =1,...,2s and € = 0, 1. For each such 2s-tuple h, it follows from the pigeonhole principle
that there exists a yy in the set

Ay = ﬂ (A_w'(hla-'-7h28))
we{0,1}2s

such that, for at least a Q4(09(1))-proportion of = € Ay, one has

ahla"',ﬁi7~~7h25¢($ + Ehz) = ahh...,fL\i,...,hQqu(yh + Ehl)

foralli=1,...,2s and e =0, 1.
Now set v cn = 6h1,...ﬁi,...,hgs¢(yh + €h;),
Xp:={x € Ap: 8h17.__ﬁi7“_7h25¢(x +eh;) =vjepn foralli=1,...,2s and e = 0,1},
so that pa, (Xpn) >s 695, and
X, ={(z,z+kz+k c+k+K)ec A}z, a+ka+k,z+k+k € Xy}
Note that (z,z + k,z + K,z + k + k") € X, if and only if
8h1,...,ﬁi,...7h25¢(x +ehi +w' - (kK)) =vien

foralli=1,...,2s,e=0,1,and ' € {0,1}* Thus, whenever (z,z + k,z +k',z + k+ k') € X],
we have

Ohy oo has kD) = Oy hoa ke D(T) = Oy oe k(@ + k) = Ony ppo (@ + k)

=v10nh— V11,0 — (V1,0,h — V1,1,h)

=0
and
3h1 ..... ,;l.,“.’h%,k,k@(fﬂ + €hi) = Vieh — Vieh — Vigh + Vieh =0
foralli =1,...,2s and € = 0, 1. That is, the derivative of ¢ vanishes on all (2s + 1)-dimensional

faces of the (2s + 2)-dimensional parallelopiped (z + w - (h1, ..., has, k, k') )wego,1325+2-
As in the s = 0 case,

0.1 #X5\ !
500 sy (An) e Xl < [ Xilomgy = (£

so that
#X7, > 503(1)/@; (Ap)*p®"
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for at least a Q4 (69 (M))-proportion of 2s-tuples h. Each ordered quadruple (z, h, k, k') for which
(z,x+k,x+ K,z +k+k) e X] corresponds to a unique (2s + 2)-dimensional parallelopiped

P(z,h,k, k') = (x +w- (h1,..., has, k, k’))we{071}23+2
in A?**2. Thus,
#{P(x,h, k, k') :he (Fg)% and (v,z+ k,z + K,z +k+ k) e X}}
>, 505(1)(a228+2 +O([CS(ad)cs]ﬂ(l)))p(%-‘riﬁ)n'
In comparison, the number of (2s + 2)-dimensional parallelopipeds in A is
(0422”2 " O(Cs(aa)cs))p(zsjt?,)n

by Corollary 3.3. The conclusion of the lemma now follows as long as C; is sufficiently small and
cs is sufficiently large. O

With a bit more work, it is possible to prove a version of Lemma 4.4 with (2s + 2)-dimensional
parallelopipeds replaced by (s + 2)-dimensional parallelopipeds (which is optimal), and thus a
version of Lemma 4.1 with the U?**2-norm replaced by the Us*t2-norm, but this would make a
negligible difference in Theorem 1.2.

Now we can prove Lemma 4.1.

Proof of Lemma 4.1. We proceed by induction on r and s, beginning with the r = 1, s = 0 case'.

Since codim{y € F} : ®(z,y) = 1} = d for all z € A, certainly
codim{y € F; : ®(¢1(x),y +w1) = 1} = codim({y € F} : ®(¢1(x),y) =1} —w1) =d

for all x € (IF))™ for which 41 (x) € A, and this case follows trivially without even needing the
assumption that [|® — apl|p2(En«pn) is small.

Now let » > 2 or s > 1, and assume that the result holds for all pairs of integers (r’,s’)
satisfying:
(i) 0<r" <rand1<s <s;or
(i) 1 <¢ <s;
and let C’ be at most the minimum of C, ¢ and ¢’ be at least the maximum of ¢ g over
all such pairs with 7/ < max(r,25%1). As long as |® — ap|lys+2(mnxmm) < C'(adp® /2)¢?", it fol-
lows from the induction hypothesis that for all but a O(6)-proportion of x € (IF;)™ for which
P1(x), ..., (x) € A, we must have

Ey [[(® = p)(@i(x),y +wi) = By [ @(wi(x), y +wi) — p"
=1 =1

for all wy, ..., w, € Fy. If the codimension of some {y € Fyy : [Ti_; ®(¢i(x),y 4+ w;) = 1} is not
rd for one of these typical x, then it is either n or at most rd — 1, which means that

E, [ [(®@ = p)(@i(x), y + wi) Z%r (22)
=1

in either case, since p > 2. Squaring both sides of (22), multiplying by [[;_; A(¢)i(x)), averaging
over all x € (F}})™, swapping the order of summation, and applying Lemma 4.2 (to deduce the

! Note that if a system of r linear forms has finite Cauchy-Schwarz complexity, then it has Cauchy-Schwarz
complexity at most r — 1.
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uniformity of A) and Theorem 3.2 yields
Ey:[[(® = pA) (-, 9) (@ = pA) (-, 2)lys1 () > 597 (@ + O5, (€)M h)),
By Holder’s inequality, we then have
r s+1 s+1 s c/_

Ew,h1,..-,hs+1 ‘EyA(h1,0),...,(hs+1,0)((I) - pA)(ac, y)‘Q > (5p2 )2 (O‘Q + OS,T((C/)Q (1)a 1))
It follows from this, the induction hypothesis, our assumption that || — aPHU?S“(ngJFg) <
C'(adp? /2)¢?" | and Lemma 4.2 that

s+1 r s+1 s+1 s C/_
Euhr, ot By Ay 0)r(hapn 0 (@ 9) = 07 A@)P > (67)7 (0¥ + 0,,((C1)HWa™h)),
since the Cauchy—Schwarz complexity of any proper subset of
{z+w-(h1,..., hey1) 1w e {0,115}

is at most s — 1.
Thus, by taking C’ sufficiently small and ¢’ sufficiently large, we get that

codim{y € F : Ap, 0),....(hosr,0) P (2, ) = 1} # 2°F1d (23)

for at least an Q4((6p)?*M)-proportion of (s + 2)-tuples (x,hi, ..., hey1) € (Fp)st2 for which
(+w- (h1y. ooy hst1))weqoystr € A" The condition (23) implies that, for each such

(z,h1,...,hst1), there exist vectors vy pn, € V5 1, w € {0,1}5TL not all of which are zero,

4w
such that
Z Vg hw = 0.
we{0,1}s+1
Fix a basis {7.,1,...,7:,a} of VZL for each z € IFZ. We can write every vector v, n . in terms of

this basis, giving us that
d
Z Z bx7h,w,]7:c+wh,j = 0
we{0,1}s+1 j=1

for some 25*!d-tuple of constants (bz,hw,j)wef0,1}5+1, 1<j<d> DOt all of which are zero.
We apply the pigeonhole principle to deduce that there is some 2°T!d-tuple of constants
(bw.j)weqo,135+1, 1<j<d> not all of which are zero, such that

d
Z Z bw,jr)/a:—&-w-h,j =0

w€{0,1}5+1 7j=1

for at least a Q,((6p)%*M))-proportion of (s + 2)-tuples (x, hi, ..., hey1) € (Fp)5*2 for which (x +
w - (hl, ceey h8+1))w6{0,1}3+1 S A2s+1. Defining

d
$u(2) = bu e
j=1

for each w e {0,1}*T! the above says that, for at least a Q((5p)?*())-proportion of
(s +2)-tuples (x,hq,...,hst1) € (IE‘Z)SJr2 for which (z +w: (h1,...,hst1))wefo,135+1 € AT
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we must have

Z ¢w($+Wh):0,

we{0,1}s+!

where at least one of the functions ¢, : Fy — F} does not have the zero vector in its image
(because ¢, (z) is always a nontrivial linear combination of linearly independent vectors). Let ¢
be any such ¢,,. It then follows by applying Corollary 3.3 to the inside average of

EyBa hi,....hoir €p (?J : Z du(r +w- h))A(qﬁw(x +w-h))

we{0,1}s+1

that O, _n..,d(x) = 0 for at least a Q4((5p)?*(V)-proportion of (s + 2)-tuples (z, b1, . .., hst1) €
(F7)+2 for which (z +w - (h1, ..., hst1))wefo1}+1 € A" again provided that C is sufficiently
small and ¢ is sufficiently large. That is, ¢ is a Q,((5p)?*(1))-approximate polynomial of degree
at most s on A.

If ¢’ is small enough and ¢ is large enough, Lemmas 4.2 and 4.4, then imply
that for at least a Q4((adp)(M)-proportion of (2s+ 2)-dimensional parallelopipeds (z 4 w -
(h1,. .. hast2))wefo,1}2s+2 in A2 the derivative of ¢ on each (2s+ 1)-dimensional face
vanishes, i.e.

Z (=) gz +w- (hy,... hasra)) =0

WE{O,1}25+2

w;=€

for all i=1,...,2s+2 and ¢ =0,1. Call the set of (2s+ 3)-tuples (x,hy,...,hasy2) corre-
sponding to such (2s + 2)-dimensional parallelopipeds X . Consider ||® — pA||2U2;LQ(anFn), which,
P P
plugging in the expression
pA) D ep(v-(y—u))

0£veVz-
for ® — pA, equals

2542 w
p2 Ew,h1,~~7h25+2Ah1,~~,h2s+2A(x) Z H 10( Z (_1)| |Uw>-

Oivwevziw-h 1§’i§281+2 w€{0’1}2s+2
wefo,1y2et2 0 e

The above has size >, (p — 1)(ap)?”" (adp)P+1) >, (adp)?*D, coming from the contribution of
Uy = Ad(z +w - (hy,...,host2)) for each X € F) and (x,h1,...,h2sy2) € X. On the other hand,

we have
@ — PAHU28+2(IngIFg) = [|® — po + pa — pA|’U25+2(IFg><F$)
<@ = pallyzstz@nxrn) + pllA — allyzsez .,
so that
(Oéép)os(l) <<S Hq) - pA||U25+2(]F§><]F§) < 2Cs7r(a5p)cs,r.

Taking C; , sufficiently small and c,, sufficiently large will thus yield a contradiction if

codim {y el : H@(wi(x),y +w;) = 1} #rd

i=1
for some wy, ..., w, € Fy for a d-proportion of x € (F)™ for which ¢y (x),...,¢¥r(x) € A. O
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5. Control by directional uniformity norms

This section is devoted to proving Lemmas 2.3 and 2.4. Our arguments mostly consist of careful,
repeated applications of the Cauchy—Schwarz inequality to ensure that there is no loss of density
factors and using the results of §§ 3 and 4 to analyze the resulting averages. As a simple warm-
up, we begin by showing that if T' C ) x F}} has the form (11) and B, C, and D are sufficiently
pseudorandom, then T has density close to the product density aGvdp.

LEMMA 5.1. Let d be a nonnegative integer, and set p:=p~%. Let ¢ >0 and assume that
A, B,C, D C F}) have densities «, 3,7, and §, respectively, and satisty

1B = Blloagny, 1€ =va@nys 1D —dllpagn) <e
and that ® C Fg X ]FZ takes the form
®={(z,y) e AxFy:ycu+V},

where each V. is a subspace of ) of codimension d. Then the set T'C F}; x [} defined by (11)
has density

afyip 4+ O(eV/?).
Proof. The density of T in Fj x F}) can be written as

EryF(z,9)®(2,y),
where F(z,y) := B(y)C(x 4+ y)D(2x + y). Set L(z,y) := {y,x + y, 2z + y}. Lemma 3.6 says that

P(x € Fy : |F(z,) = BYdlly2ay) > €'/®) < Ve,
since
L(z,y)U L(x,y+h)UL(z,y+ k)U L(x,y + h + k)
has Cauchy—Schwarz complexity at most 3. Thus, Lemma 3.5 yields
B, F(x,y)®(x,y) = (By5p + O(c"/*)) A(x)
for all but a O(y/¢)-proportion of x € F}, so that
B, F(z,y)®(z,y) = afydp + O("/®). O
Now we can prove Lemma 2.3.
Proof of Lemma 2.3. The quantity of interest A(T,T,T,S) is
Eyy:(B(y+2)B(y+22)C(z+y)C(x+y+22)D(2x +y)D(2x + y + 2)
O(x,y)P(x,y + 2)S(x + 2,9)),

which, after a change of variables, can be written as

EeyS(@, y)u(z, y),
where p(x,y) equals

E.(B(y+2)By+22)Cx+y—2)Cx+y+2)D2x+y—22)D2x+y — 2)
O(x—2,9)P(x — 2,y + 2)).

We will show that pu(z,y) is very close to the constant value a3%y262p? for almost every pair
(z,y) € Fy x F}, from which it will then follow that A(T,T,T, S) is close to oo’ 33363 p3.
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The first moment E, ,u(z,y) equals
Eyy By +2)B(y+22)C(z+y)C(x +y+22)D(2x + y) D2z + y + 2)P(z,y)P(z,y + 2).

Applying Lemma 3.6 yields

P((z,y) € Fy x Fy : |[F(x,y,-) — 890[|y2y) > €'/°) < Ve,
where

F(z,y,z) :=B(y+2)B(y+22)C(z +y +22)D(2z +y + 2).
It therefore follows from Lemma 3.5 that

E.F(z,y,2)®(x,y + 2) = (6°76p + O(e"/%)) A(x)

for all but a O(y/€)-proportion of (z,y) € F} x F}. Thus,

o ypi(2,y) = B270pBe yC 2 + y)D(2z + y)®(z, y) + O("/®).
By arguing as in the proof of Lemma 5.1, we have

E.y Oz +y)D (22 +y)®(z,y) = avdp + O('®),
and, thus, conclude that
By (2, y) = aB*y*6%p* + O(e/®).
The second moment E, ,u(x,y)? equals
Epy2n(AnB(y + 2)Aop By + 22) A, C(x + y)ApClx + y + 22)

A _9n D27 +y)A D27 +y + 2) A0y 2(, Y) A(—p,n) (2, Y + 2)).

Applying Lemma 3.6 again yields
P((w,y,h) € By x By x By« |G(,,h, ) — 89?8 ||pay) > €'/%) < V5,
where
G(z,y,h,z) = ApB(y + 2) Ao B(y + 22)ApC(x + y + 22)A_, D2z + y + 2),

and applying Lemma 4.1 yields

JReIE)

200

P((z,z —h) € Ax A:codim{z € F) : A_p py@(z,y +2) =1} # 2d) <
for all y € F)). Thus, by Lemma 3.5,
E,G(2,y, h, 2)ACnm®(a,y + 2) = §19°0° % + O(e)
for all but a O(e2(M) /p°M)-proportion of (x,z+ h,y) € A x A x F7, so that

(1)
Eoyp(z,y)® = B9°0°0° By n A—nC(z + y) A_an D(22 + y) A(_p0)®(2,y) + O <p0(1)> :
By Lemmas 3.6 and 4.1 again, we have
P((x, ) € F} x F2 ¢ [ H(z, h,) =720 qey) > £/%) < V2

and
Q(1)

P((z,2 —h) € A x A: codim{y € 7 : A_p0)®(w,y) = 1} # 2d) < %,
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where
H(.’E, h7 y) = A_hC($ + y)A—2hD(2a“ + y)7
so that
2¢2 2 e
EaynA-nC(x + y)A_on D2z + y)A_p0)®(x,y) =776 p"Ee nA_p A(x) + O(p0(1)>

by Lemma 3.5. Using Corollary 3.3 to estimate E, , A_p A(x), we thus conclude that

2 224 A4 4 )
Ex,yu(:v,y) =« ﬁ v J 1Y +O<p0(1)>

Our estimates for the first and second moments of p imply that p has variance Eg |pu(z,y) —
a32726%p|? < W) /pOW) Tt follows that

EayS(x, )z, y) = 00’ B°7°6° 0° + O(Bay|p(z, y) — aB4°6%p%)
= 00’ F5°5°p + O([Eay (e, y) — af*r?6%p P12

233,353 53 O<EQ(1)>
=oa’ [y 0 p” + .
pPM)
When ¢, is sufficiently small and ¢y is sufficiently large, this gives the desired lower bound for
AT, T,T,S). g
To finish this section, we prove Lemma 2.4.

Proof of Lemma 2.4. We prove (16), (17), and then (18), proceeding in decreasing order of the
number of applications of Cauchy—Schwarz required. For (16), we make the change of variables
z +— z —x —y to write A(fo, f1, fo, f3) as

Em,y,zf0($7y)fl(x7z - w)fg(a:,2z — 2z — y)f?)(z - yvy)a

which, by applying the Cauchy—Schwarz inequality in the x and z variables, has modulus squared
bounded by

pen<n (T) - By 2 B(z — 2)D(x + 2)|[Ey fo(z,y) fa(z, 22 — 20 — y) f3(z — y, ) *.

The first factor equals a3vdp + O(¢'/®) by Lemma 5.1. Expanding the square and making a
change of variables, the second factor equals

Eyy,zn B(z — 2)D(x + 2) A ) fo(2, Y) Ao, —ny) f2 (2,22 — 22 — y) A py 0y f3(2 — 4, 9)-

By another application of the Cauchy—Schwarz inequality in the y,z, and h; variables, the
modulus squared of this is at most

Ey,n Any B(y)C (2 + y)A_p, D22 + ) Ay i) @ (2, 9) (24)
times
Ey,zh (C(2) Ay 0 @(2 — 4, y) B B(z — ) D(x + 2)
A0n) fo(T ) Ao —niy fo(x, 22 — 22 — y)[°).

The first factor (24) can be estimated in the same manner as the averages appearing in the
proof of Lemma 2.3, and equals o232762p% + O (221 /p®(1)) . Expanding the square and making
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a change of variables, we get that the second factor equals
Euy,2hihe (Bpy B(y — 2)C(x +y — 2)Ap, D(22 + y — 2)A(_py 5y) (2 + 2,y — 22)
A(0,h1),(h2,0) J0 (T, Y = 22) D (0,—hy),(ho,—2hs) f2(T, 1))

A final application of the Cauchy—Schwarz inequality in the z,y, h1, and ho variables bounds the
modulus squared of this by

B yhy ha D —hy, 20 B A _py — 1o C(x + Y) Ay D27 + y)A(0,— k1), (ho,—200) P(T, Y) (25)
times

By hhaD—hy, 20 BY)A_py — 1, C(x + Y)A_py D27 + y)A(hy,—200) P (7, y)
JEA By — 2)C(x +y — 2)An, D22 +y — 2)Apy n)@(2 + 2,y — 22)

A(0,n1),(ho,0) Jo(,y — 22) 7
By Lemmas 3.6 and 4.1, we have

P(($,y7 h?) € ]FZ X ]Fg X F;)L : HF(I’,y, h27 ) - 62’725HU2(F;}) > 61/8) < \/ga
]P)((JZ, h2) € F}T; X F;)L : ||G($,h2, ) - 52725”U2(]Fg) > 51/8) < \/5:7

Q(1)
P((z,z + ha) € A X A: codim{hy € F) : A, _op,) (7, y — h1) = 1} # 2d) < %
for all y € F), and
Q(1)

P((z, 2+ ha) € Ax A: codim{y € T2 : Ay _ony)®(x,y) = 1} # 2d) < %,

where

F(w,y, ho, hl) = A_ghQB(y — hl)A_hZC(l' +vy— hl)D(Ql’ +vy— hl)

and

G(x, h2,y) == A_on, B(y) A—p, C(x 4+ y) D (22 + y).

It then follows from Lemma 3.5 that (25) equals

(1)
37?60 Eay s D—2hy BY)A_p, C (@ + y) D (22 + y) Ay —2hy) () + O <p0(1)> ;

which equals

Q(1) Q(1)

€ 294 4¢2 4 €
0(1)> =a By 6% +O<p0(1)>'

p

ﬁ4’y452p4Ex,h2Ah2A($) + O<
It remains to relate

By hyhoD—hy,—2n B(Y)A_py—ny O + y)A_py D22 + ) A1y, —2h,) P(2, Y)
. “EzAfth(y - Z)C(CU +y— Z)Ath(2flf +y— Z)A(*hl,hl)(p(x +z,y— 22)
A0,y (h,0) o,y — 22)
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to || foll«,- Expanding the square and making a change of variables yields
Boay,2h1,he,hs (B—hy,—2ho By + 22) A_py —ny B(y + 2)
A_p —n,Clz+y+22)A_p,Clx+y+2)
A_p, D2z +y+22)An, —p, D2z +y + 2)
Ahy,—2h) P, Y + 22) A (Zhy hy) (hs,—2hs) (T + 2, Y)
A(0,h1),(ha,0),(0,—2h3) Jo (T, Y)),
which can be written as
Ea .1,k hs (0,11, (ha,0),(0,—2h3) Jo (T, Y) p(, y, b, ha, hs),
where
p(z,y, ha, ho, hg) i= Eo (A _py —on, B(y +22)A_py —py B(y + 2)
A_p —nClx+y+22)Ap,Clx+y+2)
A_p, D2z +y+22)An, —p, D2z +y + 2)
Ahy,—2h0) P(T, Y + 22) A(Chy hy), (hs,—203) P(T + 2, ).

We will show that, for almost every 5-tuple (z,y,h1,ha, hs) € (IFZ)5 for which z,z + ho €
A, p(z,y,hi,ho,hs) is very close to the constant value a?3%7%65p5. Indeed, the first

moment Ex,y,hl,hg,hg:u(x> Y, hla h27 h3) is
r,x+ho€A

1
mE%y%hl,h%hs(A7h1,72h2B(y +22)A_p, By + 2)

Ay —pn,Clr+y+22)Ap,Clz+y+2)
A_p, DQ2x+y+22) A, —n, D(2x +y + 2)
A(hy,—2h0) (T, Y + 22) ALy hy),(ha,—2h3) R(T + 2,9)).
Lemmas 3.6 and 4.1 tell us that
P((x,2,h1, ha, hs) € (Fp)® : | H(w, 2, b1, ha, hg, ) — 859568 12y > €'/%) < v/
and
P((z,2 4 ho, x4+ 2,2 + 2 — hy, x4+ 2+ h3,x + 2 — hy + h3) € A®
. " (1)
: COdlm{y € IF‘p : A(h2772h2)q)<m7 Yy + 22)A(*h1,h1),(h3,72h3)q)<$ + Z7y) = 1} 7é 6d) < Wa
where
H('T, Y, hla h27 h3a Z) = (A—h1,—2th(y + 22>A—h2,—h3B(y + Z)A—hl,—hgc(x +y+ 2'2)
A O +y+2)A 5 D2z +y + 22)An, —ns D22 + y + 2)),
so it follows from Lemma 3.5 that the first moment equals
3165500 Apg A2)A_py oy A o
mﬁ Y P z,z,h1,ha,h3 2 ha (.’L’) —hi,hs3 (:L‘ + Z) + W 9
which equals

4ﬁ8 656 ,6 O<5Q(1)>
a peyotpT +
pOM)
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by Corollary 3.3. The second moment Ez,y,hl,hg,hg,ﬂ(ﬂ?a Yy, h1, ho, h3)2 is
z,x+ho€A

1
a2 + 0(5) E%y,%hl,hz,hs,k(A*hh*?hQ,?kB(y + QZ)A*hz,*hs,kB(y + Z)

A py—he2kCx +y+22)A_p, 1, Clz +y + 2)
A_p 2k D(2x +y +22) Ay —py kD22 +y + 2)
A (hy,~219),0.26)R(@, Y + 22) Ay 1) (hg,—2h3),(k,0) R (T + 2, 1)),
which, noting that
A (hy,—2h2),0,28) (T, Y + 22) = Ay, —2hy) P(2, Y + 22) A4y, —ony) P, 2k — u),
we can write as
Eoy b1 hoha ke (A—hy —2he 26 B(Y + 22) A_py —ny 1k B(y + 2)
Ay —hy2kC@+y+22)Ap, 1 Clx+y+ 2)
A_py ok D22 + y + 22) Apy—py 1 D(22 + y + 2)
Ay, —2my) R(2, Y + 22)A(_py 1) (hs,—2hs),(k,0) (T + 2, Y)
A(h2,72h2)¢)(x7 2k — u)),
Lemmas 3.6 and 4.1, analogously to the case of the first moment, tell us that
P((x, 2, h1, ho, ha, k) € (Fp)® : | (2, 2, b1, ha, ha, k, ) — /616712512“U2(Fg) >etl¥) <« Ve
and

IP’<JU cAN(A—hy)and z+ 2z € m (A—w-(—=hy, hs,k))
we{0,1}8

tcodim{y € Fpy : Ay —ony) (2, Y + 22) Ay 1), (hs,—203),(k,0)R(2 + 2,y) = 1} # 10d>

where
I(z, 2z, k1, ho, ha, k) o= (A_py —2n26 By +22)A_py —ny k B(y + 2)
Ay —hy2kCx+y+22)Ap, 1Clx+y+ 2)
A_py ok D22 + y + 22) Apy —py 1 D(22 + y + 2)),

so it follows from Lemma 3.5 that the second moment equals (a? + O(g)) ™! times

Q1)

€
516712612p10Em7z,h1,h27h37kA*h17h3,kA(x + Z)A(h2,72h2)cb($a 2k — ’LL) + 0 (pO(l) ) . (26)
To estimate the main term of (26), we note that

[®(,2 —u) - OCPHUﬁ(IngIF;;) =[® - aPHUG(IF;;xIF;;)
and apply Lemmas 3.6 and 4.1 again to get that
P((.’L‘,Z,hl,hg) € (IF;L)4 : HJ(':Uvzvhth% ) - a4HU2(Fg) > 81/8) < \/g
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and

Q(1)
P((z,2 4 h2) € Ax A: codim{k € T : A, _opy) (1, 2k —u) = 1} # 2d) < ET(l)’
p

where
J(x,2,h1, h3, k) == A_p, p Al + 2+ k).
Thus, by Lemma 3.5, we have that
By 2 0y hashs kA —hy g kAT + 2) Ay —2n,) P(@, 2k — u)

equals
42 2
ap Ex,z,hl,hg,hgAhQA(fU)A—th?,A(I' + Z) + O (pO(l))’
which equals
Q(1)
10 2 €
e sof )
pOM)
by Corollary 3.3. It therefore follows that the second moment is
Q(1)
8 916,12512 12 €
at By p e + O< >
pOM)
Thus,
498,656 62 )
By ooy [1(2, Y, By B, hia) — o 379°6°p°F < 55,
z,x+ho€A P

and we conclude that

Q)
By b i D (0,00), (h,0),(0,—23) Jo (2, W) (i, y, b,y o, hig) = o 834580 foll3, + O <p0(1) > '

Putting everything together gives

6Q(l)
’A(f()a fl)f27f3)’8 < 0514620716516/)18”]00“?1 + O(pO(l))’

as desired.
For (17), we make a change of variables and apply the Cauchy—Schwarz inequality to bound
‘A(T? f17 f27 f3)|2 by

pEn xin (1) - Bz y B(y)C(x + y)@(z, y)
B.Cla +y — 22)D (20 +y — 22) falw,y — ) fala + 2,y — 22) 2
Expanding the square in the second quantity and making a change of variables yields
EyyznBly+22)C(x+y+2)A0n,Clex+y—2)A_op, D2z +y — 22)0(z — 2,y + 22)
A —n)fri(x — 2,y + 2)Apy —2n,) f3(2,9).

By applying the Cauchy—Schwarz inequality again in the z,y, and h; variables, the modulus
squared of this is bounded above by

By hi Aon B(Y)A_p, C(z +y) D27 + y) A, —2n,) (7, Y) (27)
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times
Bz y.ny (A—on B(y) D (22 + y) A, —2n) (2, y)
|E.[B(y +22)C(x +y+ 2)A_opn, C(z+y — 2)A_op, D2z +y — 22)P(z — 2,y + 22)
Ay fi(e = zy+2)]]%).
Expanding the square and making a change of variables, the second factor equals
Eq 2,01, Dony B(Y + 2) A_op, B(y — 2)A_op, —n, C(x +y — 2)Ap,C(z +y + 2)
A _opy,—2n, D22 +y — 2)D(22 + Yy + 2) AL py no) P(T, Y + 2) Ay —on ) @(2 + 2,y — 2)
A(0,~h1),(~ha ko) f1(2, Y),
which we can write as
Ea g i ha (0, h1),(~ha,ho) J1 (@, W) 1 (2,9, B,y o),
where
W (z,y, hi, he) == E.Aop, By + 2)A_op, B(y — 2)A_op, —n,C(x +y — 2)Ap,C(x + y + 2)
A opy,—2n, D(2x +y — 2) D27 +y + 2) A(_py 1) P (7, y + 2)
Ay —on)@(T + 2,y — 2).

The quantity (27) and the weight p' can be analyzed in the same manner as the corresponding
quantity and weight in the proof of (16), so that

AT S Jo 1 < 00l + 0 S )
Finally, for (18), we make a change of variables and apply the Cauchy—Schwarz inequality to
bound |A(T, T, fa, f3)|? by pEn xpn (T') times
E.B(y)C(z +y)®(z,y)E.B(y+ 2)C(x +y — 2)D(2x +y — 22) D2z + y — 2)
Bz — 2,y + 2) folx — 2,y + 22)|°.
Expanding the square in the second quantity and making a change of variables yields
Euy,2m B(y)C(z +y — 2)@(x + 2,y — 22) Ay, By — 2)A_p, Cz +y — 22)
A_op D2z +y —22)A_p, D2z +y — 2)Apy ny) (2, y — 2) Ay 2my) f2(2,Y),
which can be written as
By A(hy on) f2(2, )" (2,9, ha),
where
p (@, y,h) == E.By)C(x +y — 2)®(x + 2,y — 22)Ap, By — 2)A_p, C(x +y — 22)
A _op, D(2x +y — 22)A 3, D22 +y — 2)A_py 1) (2, y — 2).

This weight can again be analyzed in the same manner as the weights appearing in the proof
of (16), giving
(1)

Q@
|A(T7 Ta f2af3)|2 < a63’7354p3||f2”92<3 + O( 0(1)>7
p

and completing the proof of the lemma. O
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6. Obtaining a density increment

As was mentioned in §2, one ingredient in the proof of Theorem 2.5 is an inverse theorem
for the U?(®(x,-))-norm localized to pseudorandom sets. Applying the standard, nonlocalized
inverse theorem for the U?(®(x, -))-norm would yield a density increment that gets weaker as T
becomes sparser, which is inadequate to close the density-increment iteration. To get a strong
enough localized version of this inverse theorem, we will need to use the transference principle.
The particular instance of it required is an immediate consequence of the dense model lemma
from [Zhal4], which appears as Lemma 3.3 in that paper.

LEMMA 6.1 (Dense model lemma for the U*-norm on subspaces). For every natural number s,
there exists a constant cs > 0 such that the following holds. Let € > 0, V' < F}} be a subspace,
and f,v:V — [0,00) be functions satisfying:

i) 0< f<u;
(ii) Epev f(z) < 1; and
(ii) v — Llevy < exp(—e—¢).

Then there exists a f : V — [0,1] such that Eycy f(z) = Epey f(z) and || f — fHUs(V) <e.

One can see that this lemma is a consequence of Zhao’s lemma by using the
Gowers—Cauchy—Schwarz inequality to translate between his (s,e)-discrepancy pair condition
and our U®-uniformity condition.

In the course of the proof of Theorem 2.5, we will encounter various averages of linear forms
that turn out to be controlled by certain degree 1 and 2 directional uniformity norms. Because of
this, we will also need to obtain a density increment when these norms of the balanced function
gs = S — o are large. The first two subsections of this section are devoted to proving that this
is possible.

6.1 Results on degree 1 norms
We first show that the relevant fibers of any set of the form (11) typically have close to their
average density, provided that A, B, C, D, and ® are sufficiently pseudorandom.

LEMMA 6.2. Let d be a nonnegative integer, and set p := p~®. Suppose that A,B,C,D C Fy
have densities «, 3,7, 9, respectively, and that ® C )y X I} has density ap in F) x F and takes
the form

b= {(r,y) e AxFy :ycu+V.},
where each V,, is a subspace of F}; of codimension d. Let € > 0 and assume that
A= alys@ny, 1B =Blus@n), 1€ =Avs@ny, 1D —dllus@gn), 12— aplluz@nxr <e.
Define T by (11). Then

1/8

Pz e A: |MF;;(T(5Ua ) = Bydp| > €') < W’
1/8

B(y € B : ey (T(,9)) — avdpl > &) < g,
, 1/8

P(z e C: |MF;(T('7Z =) —aBip| > ') <« )2y’
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and
/8

(€)%

P(w € D : |pp (T(,w —2-)) — afypl > €') <

for any €' > 0.

Proof. From Lemma 5.1, we have Eye appn (T'(2,-)) = Bv0p + O(e'/®/a). For the second moment,
we argue as in §5 to estimate

E, A(x)|Ey B(y)C(z +y) D(2z + y)®(x,y)]* = af>y*5*p* + O(e'/%)

using Lemmas 3.5 and 3.6, giving Eyeapmy (T'(z, )2 = 52426%p% + O(¢Y/8 /). Tt now follows
from Markov’s inequality that
/ /8
Pz € A:|upy (T (z,-)) — Bvop| > €') < 7

for all & > 0. The three other estimates are proved analogously. O

Now we can obtain a density increment when the degree 1 uniformity norms controlled by
| |x, and || - |lx, are large. The proof is essentially an averaging argument, like the proof of
the analogous Lemma 3.1 in [Gre05a]. The most substantial new feature, which will arise many
times in this section, is that we must now verify that the set on which we claim to have found
a density increment actually has close to the correct density in F)) x F}. In the case of corners,
any product set A x B trivially has density equal to the product of the densities of A and B.
This is not, in general, the case for sets of the form (11) unless further assumptions are made
about A, B,C, D, and ®.

LEMMA 6.3. There exist absolute constants 0 < ¢; < 1 < ¢y such that the following holds. Let d
be a nonnegative integer, and set p := p~%. Suppose that A, B,C, D C [, have densities a, 3,7, 9,
respectively, and that ® C F; x F}) takes the form

b= {(r,y) e AxFy ycu+V,},

where each V, is a subspace of I}, of codimension d. Let 7 > 0 and € < ¢1(Taf3v0p)?, and assume
that

A - O‘HU5(]Fg)a B — /8||U5(]Fg)a 1C — '7||U5(]FZ’})7 1D — 6HU5(IF;;)’ | ®o — pHU?(]ngIFg) <Ee&.
Define T by (11), and let S C T have density o in T. Suppose that

Eoyn Ao, 9s(x,y) > Taf?y*6%p?, (28)

Eoyhn,0)9s (2, y) > T02Bv°6%p?, (29)
or

EoyhA—nmgs(@,y) > 7a?3%76%p. (30)

Then S has density at least o + Q(7°(1) on some subset T' of T of the form
T'={(z,y) € Fy xFy : A'(2)B'(y)C'(x + y) D(2z + y) (v, y) = 1},
where the densities of A', B',C" C ), are Q(r°Wa), Q(r°M3), and Q(r9Vy), respectively.
Proof. The assumption (28) can be written as
EcealEygs(z,y)* > 76%78%p%.

Since pupp (T'(z,-)) > 287dp for at most a O(e'/8 /B 32~262 p?)-proportion of z € A by Lemma 6.2,
it follows that, as long as cs is sufficiently large, there exists a subset Ay C A of relative density
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at least 7/4 for which

VTByp
[Eygs(z,y)| 2 ———
for all x € Ap, provided that ¢; is small enough and c; is large enough. Note that E,gs(x,v) is a
real number, and thus is either positive or negative. There must therefore exist a subset A1 C Ag
of density at least 1/2 in Ay such that either

Eygs(z,y) > ‘ET&’O

for every x € Ay or

Eygs(z,y) < _xﬁi%p

for every x € Aj.
In the first case, setting A’ = Ay and o' = ppn (A4’), we have

TP
ErcBy05(r.1) — (EseaByS(a,y) — ofyip)| < Y17

by Lemma 6.2 whenever c¢; is small enough and cs is large enough, so that

?)a’ﬂ’yép.

Since E, ,A'(x)B(y)C(x +y)D(2z + y)®(z,y) = o/Bydp + O('/1%/a) by Lemma 6.2, the
conclusion of the lemma follows when c¢; is small enough and co is large enough by taking
B’ = B.

In the second case, setting A’ = A\ A1 and o/ = ppy (A’), we use the fact that B, ygs(z,y) =
0 to deduce that

EyyA' (2)S(z,y) > <a +

2 By8p

16
whenever ¢; is small enough and ¢y is large enough. Note that E, ,A'(z)B(y)C(z + y)D(2z +
y)®(z,y) = o’ By0p + O(c'/19/a) in this case as well by Lemma 6.2, so the conclusion of the
lemma will follow as long as o/ = Q(7°(a). But this also follows from Lemma 6.2, for we have

Ta(By0p) + O(e19) < |E A1 (2)gs (2, y)| = [Eo A (2)gs(x, y)| = o/ (By3p) + O(d/e/ 16 /a).

The proof of the lemma starting from the assumptions (29) and (30) is essentially identical, but
using the second and third probability estimates from Lemma 6.2, respectively. U

EreaBygs(z,y) >

6.2 Results on degree 2 norms

To obtain a density increment when the relevant degree 2 directional uniformity norms of gg are
large, we first need to show that certain degree 2 ‘inner products’ are controlled by the degree 1
directional uniformity norms studied in the previous subsection.

LEMMA 6.4. Let d be a nonnegative integer, and set p := p~*. Suppose that A,B,C,D C Fy
have densities «, 3,7, 0, respectively, and that ® C Fy x )} takes the form

b= {(r,y) e AxFy :ycu+V,},
where each V,, is a subspace of F}; of codimension d. Let € > 0 and assume that
[A=allys@ny, 1B =Blus@n), 1€ =us@yy, 1D —dlus@n), 12— apllyi@nxrp) <e.
Define T by (11), and let S C T and 7 > 0.
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If

Ex,y,h,k H gw((l’, y) +w- ((07 h)7 (07 k)))) 2 7'0{64"}/454 37 (31)
we{0,1}2

where g,, equals T or gg for all w € {0,1}2, at least one g,, equals gs, and at least one g, equals
T, then

Q(1)
2 92 9262 2 e
Eyynlongs(®,y) > 77aBy"0%p +O<(a575p)0(1)>'

If

E;p,y,h,k H gw((x, y) Tw- ((h7 0)7 (07 k)))’ 2 Ta252’7464 47 (32)
we{0,1}2

where g,, equals T or gg for all w € {0,1}2, at least one g,, equals gs, and at least one g, equals
T, then

(1)
EeynDo,n9s(@,y) > 7°af°4*6%p* + O (O(l)) ’

(aBvop)
or
2 2, 22 2 e
By nAn0)9s(7,y) > 772" By76%p +O((aﬂ75p)o(1)>'
If
Bugns T] o)+ (0.0, (-1 1) = ra?5t215", ()

we{0,1}2

where g,, equals T or gg for all w € {0,1}2, at least one g,, equals gg, and at least one g, equals
T, then

Q(1)
2 22 2¢2 2 e
Esyndongs(@,y) = m°af v 6%p +O((am5p)0(1)>’

or

Q1)
2 272 <2 2 e
EgynAnmgs(®,y) > 72”770 +O<(aﬂ~y§p)0(1>>'

Proof. We rewrite the various assumptions that (31), (32), and (33) hold when at least two of
the g, equal T as

B yngs(2,y)gs(x,y + ) (z,y, h)| > rafiy's'p®,

B y9s(x, y)pa(, y)| = Taf*y*6*p%,
Ta262’)/4(54 4?
7'(12527454 4?
Ta262,y454 4?
7'(12547254 4?

7'(12647254 4?

v

Bz k95 (2, y)gs(x, y + k)us(z,y, k)
|Ea,y.n9s(x,y)9s(x + h,y)pa(z, y, h)
B y9s(z,y)ps(z,y)

)

)

v

v

Eay.n9s (@, y)gs(x,y + h)ps(x,y, h

|
|
|
|
|
|
|Esykgs(®,y)gs(x — k,y + k)pr(x,y, k)|

>
>

and
Eq.y9s (2, y)us(z, y)| > Ta?Biy25p?,
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where
p1(z,y, h) = By T(z,y + k)T (z,y + h+ k),
oz, y) = Ep i T(x,y + h)T(x,y + k)T (x,y + h+ k),
ps(x,y, k) = EpT(z + h,y)T(x + h,y + k),
pa(z,y, h) = EpT(x,y + k)T (xz+ h,y + k),
ps(z,y) = EppT(x + h,y)T(x,y + k)T (x + h,y + k),
po(w,y, h) = ExT(w — b,y + k)T (z = k,y + h+ k),
pr(@,y, k) = ByT(z,y + )T (@ — k,y + h+ k),
and

Using the definition (11) of 7" and arguing as in §5 using Lemmas 3.5, 3.6, and 4.1 gives that
each of uy,...,us is typically very close to its average value on its support. Precisely, we have

the estimates
(1)
ON

)

9(1)

EpyA@)® (2, y)|ua(w, y) — B54°6% 22 < = o
)

EqynA(z)®(z, h — u)| (z,y, h) — 8°7%6%p]> <

Q(l

pC1)’
2¢2 2 2 (1)

]El'vy’hA('r)A(x + h)‘ﬂ4(l‘, Y, h) - /8/7 d P | 0(1) )

)

E,y i B(y)B(y + k)|ps(z,y, k) — ay?6?p?|* <

200
EqyA) B(y) us(z,y) — 5°7°6°p° ) < o
81
EyynC(x +9)O(z 4y + h)|us(z,y, h) — af?0?p*|> < O

)
8Q(l)
Ez,y,kA(x)A(x - ]{?)‘/1,7(1‘7:(/7 k) - /82752p2|2 < p0(1)7

and

)
Euy A(2)C (2 + y)lus(w.y) — aB*78%° < =55,
p

which imply that
Q(1)
e
Boyngs (x, y)gs @,y + h) (2,9, h)| = 627°6° pBay ngs(2, y)gs (@, y + h) + O <p0(1) > ’

()
Beygs(z, y)pa(z, y)| = 82726 0% [Eaygs (2, y)] +O<p (1))’
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Q1)

g

Esy k952, 9)9s(x,y + k)us(x, v, k)| = av?0?p°Ey y 195 (2, y)gs(z,y + k) + O :
O(1

|Ex,y,hgs ($7 y)gS(x + h7 y)lu’4 (l’, Y, h)| = B’YQCSQPQEx,y,hQS(x» y)gs (:E + ha y) +0 (,00(1) > ;
(1)
|Eaygs (2, y)ns(@,y)] = 677°6° 0°|Eaygs(z,y)| + O (/)0(1)>
0(1)
By y.n9s (2, 9)gs (2, y + h)us(x, y, h)| = aB26%p* By y ngs(x, y)gs(z,y + h) + O <p0(1)) :

Q(1)
Boy k95 (2, y)gs(x — b,y + k)pr(z,y, k)| = 776 0° By k95 (2, y)gs(z — k,y + k) + O <p0(1) ) :

and

Q1)
B y95(x, y)us(z, y)| = af°v0°p°|By ygs (2, y)| + O (pou) )

Since |E;y9s(7,y)> < aEyyngs(z,y)gs(z,y + h) by an application of the Cauchy-Schwarz
inequality, the conclusion of the lemma easily follows starting from any one of the assump-
tions (31), (32), or (33) when at least two of the g,, equal T'.

To prove the lemma when only one g, in (31), (32), or (33) equals T', we will apply the
Cauchy—Schwarz inequality once, and then argue analogously. By making a change of variables,
we may start from the assumption that

Eey.nk9s(x,y)gs(z,y + B)gs(z,y + k)T (x,y + h+ k)| > Taf'y 6" p?,
Bo g hkgs (@, 9)gs (@ + h,y)gs(z,y + k)T (x + b,y + k)| > Ta® 32416 p",
or
By ynigs(@v)gs(@,y+ h)gs(@ — k,y+ k)T (x — k,y+ h+ k)| > 1?8925
We apply the Cauchy—Schwarz inequality in each of these three cases to get that
E:ﬂ,y,h EkgS(xv Y+ k)T(.T, y+ h + k)|2AhB(y)AhC(x + y)AhD(ZT + y)@(:ﬂ, y) (34)
times E; o, nA¢on) T (7, y) is at least 7202 38~858 b,
EeynlErgs(@,y + k)T (z + h,y + k) *B(y) ApC(z + y) Aop D (2 + y) A, 0y @ (2, y) (35)
times E; y nA(,,0)T' (7, y) is at least 2043498688, or
Ex,y,h|EkgS(x — k, Y+ k‘)T(.%' — k, Y+ h + k)‘QA(x)AhB(y)AhD(Qx + y)A(O,h)(I)(xa y) (36)

times E; y n Ao T'(z,y) is at least 204384468 p8.
We have

2 2¢2 2 )
E%y,hA(O,h)T(livy) = af"y76"p" + O(pO(l))

and

29252 2 )
Ex7y,hA(h,0)T(xvy) =a’By°6°p" + O po(l)
by Lemmas 3.5, 3.6, and 4.1. Expanding the square and making a change of variables, (34) equals
Em,y,ZA(O,E)gS ('1"7 y):u9 (I‘, Y, 6)7
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where
po(x,y, ) == Enk ApnB(y — k)ArB(y + h)AnClx +y — k)AC(x +y + h)
ApDQ2z +y—k)A/DQ2x+y+ h)®(z,y — k)P(z,y + h)
(35) equals
Eqey,0A0,095(,y)10(x, y, £),

where
pio(x,y, £) :=Epp By — k)AC(z +y — k)AC(z +y + h)
AopD(2x +y — k)AyD (27 +y + 2h) A4 0)® (7, y — k) A(0,0P (7 + h,y)
and (36) equals
EzyeAr9s(@, y)un(z,y,0),

where
p(2,y, £) := Ep kA By — k)AeB(y + h)C(z +y + h)
ApD(2z +y+k)A D2z +y + h)A@n®(x +k,y — k) Ay @(2,y + h).
Analogously to the weights p1, ..., ug, Lemmas 3.5, 3.6, and 4.1 give the estimates

Q(1)
13
Ex7y,€A(0,€)q)(xv y)|#9($7 Y, K) - ﬁ47464102|2 < po(l) 5

(1)
Eay0A(@)AeB(y)|po(z, y, ) — afy*6*p* ) < paot
and
22(1)
EqyeA_gA(z)| (2,9, 0) — aB'8'p')? < Ok
p

from which it follows that

o)
By 0,095 (@, y)po(x,y, )] = B4 6% p° By 0A 0,095 (2, y) + O< o0 >,

Q1)
B0 0,095 (2, )10z, y, 0)| = By 6" p Ea y 1A 0.0 95(x, y) + O < 200 ) ,

and

20(1)
By, eAe,0)95 (2, y) 1 (2, y, 0)| = aB*y6* 0 Ea y 0 A 095 (2, y) + 0( o )

This completes the proof of the lemma. O

Now we are almost ready to prove our desired density-increment result for the localized
degree 2 directional uniformity norms controlled by || - |,

LEMMA 6.5. There exist absolute constants 0 < ¢; < 1 < ¢, c3 such that the following holds.
Let d be a nonnegative integer, and set p := p~%. Suppose that A, B,C,D C [, have densities
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@, 3,7, 9, respectively, and that ® C F x [} takes the form
d={(r,y) e AxFy:ycu+V,},
where each V,, is a subspace of F)) of codimension d. Let 7 > 0 and
e < ci(Tafyip)® exp(—(32/7)%),
and assume that
A= allys@ny, 1B =Blus@n), 1€ =Aus@ny, 1D —dllus@n), |12 — apllya@nxmm <e.
Define T' by (11), and let S C T have density o in T'. Suppose that
Eay b,k A 0,109 (€, ) = Taf*y 6% p° (37)
or
Eg 0, kA h,0),(0,k)95 (T, ) = ra?B2ytetpt. (38)
Then S has density at least o 4+ Q(7°(1)) on some subset T" of T' of the form
T'={(z,y) e Fy xFy : A'(2)B'(y)C(x + y)D(2z + y) ' (2,y) = 1},
where the densities of A', B' C ¥} are both Q((o7afy6p)°M), and &' is of the form
¢ = {(z,y) € A xFy:ye u + VI3,
where each V, is a subspace of ), of codimension d 4 1.

To prove this lemma starting from the assumption (37), we will apply a localized U?(®(x, -))-
norm inverse theorem for many fixed x, which will produce a density increment on a set of the
form

{(z,y) e Fy x Fyy : A'(2)B(y)C(z +y)D(2x + y)¥(z,y) = 1}, (39)
where
U={(z,y) € A xF} :yeu,+V,}
This is not yet what the conclusion of the lemma promises, since u/, varies with 2. To show that
we can select a fixed «’ (at the cost of shrinking the size of A" a bit) we will need Lemma 6.6.
The reader may wonder why we cannot just run the density-increment argument on sets of
the form (39) and skip having to prove Lemma 6.6. The issue with this hypothetical proof is
that U*(F); x F})-uniformity of a set of the form W is not strong enough to guarantee that the

analogue of Lemma 4.1 is true, regardless of how large s is taken to be. Thus, such sets are not
as amenable to a Shkredov-like pseudorandomization procedure.

LEMMA 6.6. There exist absolute constants 0 < ¢; < 1 < ¢y such that the following holds. Let
d be a nonnegative integer, and set p :=p~%. Let A C I, have density o, ¥ C ) x F)) take the
form

U= {(2,y) € AXFL iy € up+ Vil
where u, € ) and each V is a subspace of F)) of codimension d, and K C A x F} satisfy
EyK(z,y) — k|, |EyK(z,y)H(y)—krp| <e

for every x € A and every affine subspace H of Fj of codimension d. Let 7> 0, assume
that ¢ < c1(Tafvydp)®?, and suppose that S C [, x Fy has density at least o +7 in KNV,
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where o > 0. Then there exists a u € F; and a subset A" C A such that SN T’ has density at
least o 4+ 7/4 in T', where
T':= A xFyNnKN®,
= {(z,y) € A xFp:y cu+V},
and gy <y (A") = apt /2.
Proof. Define
Uy o= {(z,y) € AxFyy cut+Vy}
and
Ay ={re€eA:u, —ueV,}
for every u € F, and set a,, := MF;(Au), so that E,«, = ap. By our assumption on K, we have
prn xwn (K) = ak + O(e)
and
pEn xpn (K N Wy) = aykp + O(€)
for all u € Fy.
Note that
Eupmn xwn (SN K NWy) > plo +7)prn e (K) = (0 + T)arp? + O(e),

and set
B MIngIFg(S NKNWY,)

Gu):
) MIF;xIF;;(K Nw,)

for each u € IF;}. Then we have
(o + T)akp® + 0(e) < kpEya,G(u)
Kp T
<pn<<o+4> Z Qyy + Z au>

uely u€ely
G(u)<o+T1/4 G(u)>o+71/4

<f€p<<0+2>(a/}—n)+n),

where
1
= ﬁ Z Ay,
uEFg
G(u)>o+1/4

so that

ST

8

when ¢ is small enough and cs is large enough. The contribution to 1 coming from u for which
oy, < Tap/2 is obviously at most Tap/2, which implies that

1 TOp
pn Z Qu > 8 ’
u€lFy
G(u)>o+7/4
ay>Tap/2
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which is clearly positive. We thus conclude that there must exist a u € F) for which «a, =
prn (Ay) = Tap/2 and

-
HFn xFn (S NKN \I/u> > (O’ + 4)MIngIFg(K N \Ilu)

The conclusion of the lemma now follows by taking A" = A, and ® = ¥, N (A" x F}). O
Now we can prove Lemma 6.5.
Proof of Lemma 6.5. First assume that (37) holds. By writing S = gg + o7, we see that
By .0,k 0,1),(0,k)S (7, y) equals
By kD 0,0),00) T (@ Y) + By n i 0.1),(0,4) 95 (T5 )

plus 14 terms of the form

Exﬂ,h,k H gw((ac, y) +w- ((O> h)> (Oa k)))? (40)
we{0,1}2

where at least one g, equals gg and at least one other equals ¢T', and

-0(1)
U4Em,y,h,kA(0,h),(0,k)T(xa y) + Em,y,h,kA(O,h),(O,k)gS (:U, y) > (04 + T)a647454p3 +0 <p0(1)> :

If one of the terms (40) has absolute value larger than 7TaB*y%6%p3/32, then combining
Lemmas 6.4 and 6.3 produces the desired density increment. Thus, we may proceed under the
assumption that all have size at most Ta3%y*6p3/32, so that

.
EuynkB0m), 045, y) 2 <04 + 2>aﬁ4v464p3.

For each x € F}), set ®,(y) := ®(z,y), Tx(y) :=T(z,y), and S;(y) = S(x,y). Lemmas 3.5, 3.6,
and 4.1 tell us that
A(@) By p g DniTaly) — 176" p°] < 20,
A@)| Tz = Bl fr2(a,y < ™,
and that
EA(z)|Eyea, Se(y) — aByd|* < 4aﬁ2 25202,

or else Lemma 6.3 will again give the desired density 1ncrement. It follows that there exists a
subset Ay C A of density > 7 in A such that

1Szllba ey ("* )ﬁ“ 150 ||Te — Brdlluega,) < <20,

and
J
Eyea, Sily) — ofd] < 00

for every x € Ag. Setting

1 1

fzly) = =——=85, and v, = ——T,,
for all x € Ag we then have foH‘éQ(%) >0t +7/4,0< fr < vy, Eyfa(y) <1, and
201 .
vz — Ulp2(a,) < W < exp(—(32/7)%),
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provided that ¢; is small enough and ¢y is large enough. Thus, as long as c3 is sufficiently
large, Lemma 6.1 tells us that there exists a function f : P — [0,1] such that Eyco, fz(y) =
Eyca, f2(y) and || fz — fx||?‘]2(%) < 7/32. As a consequence, since Hfm”?ﬂ(@l.) > o + 7/4, we must
have

~ T
1Folleg,) = o + 2

8
as well. Set 6, :=E, f,(y) = Eyfx(y) and let v, € ®,, so that
oldew, =52+ 3 1 - )OI
0££€P, v,

Since |6, — 0| < 7/64, it follows that there exists a nonzero &, € @x/—\vx such that
. T

Eyea, (fr — o) (y)ep(&a - y)| > 6

where we have crucially used that f, is 1-bounded. As || f, — fa;H‘(l]Q (@) < 7/32, it therefore follows
that

.
Eyea. (fo —o)y)ep(&e - y)l 2 55
for every = € Ayp. -
Extend z — &, from Ag to A by picking a nonzero &, € ®, — v, arbitrarily for all z € A\ Ap.

We now split the average over y € ®, above into an average of averages over cosets of (£,)* in
®,. and average over all of A to get that

ECEEAEtG]Fp

E,co. (fo a><y>] >,
Exy=t

and use the fact that
ExeAEterEgigfit(fx —o)(y) = EreaEyce, (fo —0)(y) =0
to deduce that
BecaBrcs, ma (0.E ea. (e~ 0))) > 7
By applying the pigeonhole principle in the x and ¢ variables, it follows that there exists a subset
A1 C A of density > 7 in A and, for each x € Ay, an element ¢, € I, for which

E yeo, (fo—0)(y) >

Exy=ta

Thus, recalling the definition of f,, we have
EzeAlEEye% S(x,y) = (o4 Q(r))B76. (41)

z Y=tz
Define ¢ : ), — ) by taking ¢(z) = &, for all z € A and ¢(z) to be an arbitrary element of
(®z — vg)\ {0} for all 2 € F \ A, and similarly extend z — t, from A; to A by taking ¢, to
be an arbitrary element of IF,, for which

E yeD, S(.CE, y) > EyG‘PmS(xa y)
() y=ta

for all x € A\ A;. Such an element must exist by the pigeonhole principle. Set
Ui={(z,y) €P:9(z) y=ta},
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so that codim{y € F} : ¥(z,y) = 1} = d + 1 for every x € A, and a; := |A4;]/p". Then (41) can
be rewritten as

EryS(0. ) A1) ¥(,1) 2 (0 + () 2.

It remains to check that the density E,,A:(z)B(y)C(z+y)D(2x +y)¥(z,y) is close to
a137v0p/p, so that we indeed have the desired density increment. But by Lemmas 3.5 and 3.6,

we have
_ Byop

EyB(y)C(x +y) D2z +y)¥(z,y) +O0(E'%)

for all but a O(y/e)-proportion of z € A, from which it follows that
0
B,y (@)B)Cla +4)D(20 +5)W(o.y) = 1L 4 0.

Thus, S has density at least o + Q(7) on
Q= {(z,y) e Fy xFy: Ai(2) B(y)C(z +y)D(2z + y)¥(z,y) = 1},

provided that ¢y is large enough. The conclusion of the lemma now follows from Lemma 6.6
Now suppose that (38) holds. By writing S = gs 4+ o7 and arguing as in the first case, we
may proceed under the assumption that

Bt S 0SS )G f) = (o4 F )10t
We will first show that either
EeyS(z,y)S (@', y)C(z + y)D(2x + y)®(x,y) = (0° + O(7%))a3y°5°p

for almost every pair (2/,y') € S, or else we can deduce the desired density increment using
Lemma 6.3.
Consider the average

By gy S(x,y)S(2',y)S(@',y)C(x + y) D2z + y) (2, y).
Using that S = gs + 7', the above can be written as

0 Bzt gy T,y )T (2, ) T(y)C 2 + y) D (22 + y)®(z, y) (42)
plus seven other terms of the form
Ex,x’,y,y’g()(xv y,)gl (:L‘/v y)92 (I’l, y/)C(ZE + y)D(2az + y)(I)(ZL‘, y)? (43)

where gg, g1, and g2 all equal gg or ¢7T" and at least one g; equals gs. By Lemmas 3.5, 3.6, and 4.1,
the quantity (42) equals o3a2(2~%6%p* + O /p°M). Suppose that k of the functions go, g1,
and g9 in (43) equal ¢T'. By a similar argument to those used to prove Lemma 6.4, if any term
of the form (43) has size at least T20*a232y%6%p?, then

o)
By nAomgs(z,y) > r°af?y*6%p" + O <p0(1)>

or

-0)
oy A1,0)95(,y) > 75037679 + O <pO<1) )

so that the desired density increment follows from Lemma 6.3. Thus, we may proceed under the
assumption that

E(w yesBeyS(z,y)S(@,y)C(x + y) D2z + y)@(z,y) = 0208y’ p° + O(r ' aBy’6°p?).
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Now consider the average
Eqry S(2', ) |[Bay S(,y)S (@', y) Ol + y) D22 + y) @z, y) .
Using that S = gg + o1, the above can be written as
0 By T2,y ) By T,y )T (', y)C(x + y) D (22 + y)@(x, )|, (44)
plus 31 other terms of the form
Ea w902, 5)g1(2,9)92(2", y) g3 (2,5 )ga (2’ w)C (@ + y)C(z + )
-D(2x 4+ y)D(2z + w)®(x,y)P(z,w), (45)

where go, 91, 92, g3, and g4 all equal gg or ¢'I' and at least one g; equals gg.

By Lemmas 3.5, 3.6, and 4.1, the quantity (44) equals o®a?33y767p7 4+ O (41 /pO (1),
Suppose that k of the functions g, ..., g4 in (45) equal oT'. Analogously to the situation for the
first moment, if any of the terms of the form (45) has size at least 780*a33y767p7, then we will be

able to deduce the desired density increment. The most involved case is when g = -+ = g4 = ¢g.
All other cases can be handled using a simpler version of the argument we are about to
carry out.

Thus, consider this most involved case, i.e. that
Eo oty w295 (&' y)gs (2, 9)gs (@', y)gs (2,4 )gs (2", w)C(z + y)C(z + w)
-D(2x 4+ y)D(2z + w)®(z,y)P(z, w)

has size at least 780337767 p”. Applying the Cauchy-Schwarz inequality in the variables z’, v/, v,
and w gives that

Em’,y’,y,wT(xla y/)T($/7 y)T(:L'/, w)
times
By o yw(|Ez,295 (2,9 )gs (2,4 )C(x + y)C(z + w)D(2z + w)D(2z + w) D (x, y) (=, w)|?
- B(y)B(w)C(a' +y)C (2" +y)C(2" + w)
-D(22" + ') D(22" + y) D (22" + w)® (2, y) D (2, y) (', w))
is at least 7883041451414, By Lemmas 3.5, 3.6, and 4.1, Eyv o T(2', v )T(2,y)T(2',w) =
a33y36%p3 + 021 /pO(M) | Expanding the square in the average above, this means that
Eor g yw,e,2,u,0 (9s(z, y/)gS(zv y,)gS (u, yl)gS (v, y,)
B(y)B(w)C(z" +y)C(z" +y)C(2’ + w)
Clz+y)C(z+w)C(u+y)C(v+ w)
D(2z + w)D(2z + w)D(2u + w)D(2v + w)
D(2z' + ' )D (22" + y)D (22" + w)
D(z,y)®(2, w)®(u, y) @ (v, w)®(z',y)@(2", y) P (', w))

is > 78033y pll, provided that ¢ is small enough and ¢ is large enough. We can write the
above as

Ey 220095, Y)9s (2,9 )95 (u, ¥ )gs (v, y )y, x, 2, u, v),
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where
w(y's s z,u,0) = By g (By) B(w)C(2" +y)C (2" + y)C (2" + w)
Clz +y)C(z +w)C(u+y)C(v+ w)
D2z +w)D(2z + w)D(2u + w)D(2v + w)
D22’ + 4y )D(22" + y)D(22' + w)
D, y) B (2, w) D (u, ) B(v, w)B(, ) B(, y) (', w)).
Yet more applications of Lemmas 3.5, 3.6, and 4.1 give the estimate

Q1)
00

Ey 2,00 A@) A(2) A(w) A(w) |y, 2, 2,u,0) — af*y 76 p" | <

so that

Ey 02095 (®,9) 95 (2,9 )gs(u, ¥ )gs (v, y) > r8a’ By*6" .
It follows from one more application of the Cauchy—Schwarz inequality in the variables v/, z, u,
and v and a similar analysis to above that

Eoynn0)9s (@, y') > 7% By25°p?,

which, combined with Lemma 6.3, gives the desired density increment.
Thus, we may also proceed under the assumption that

B yyes|BayS(@,9)S (@, y)C(x + y) D22 + y)®(x,y) — 0*afy’8°p°|* < 71a?377°6%p°.
By Markov’s inequality, we therefore have
EqyS(2,y)S (@', y)C(x +y)D(2z +y)®(z,y) = (0% + O(r%))apfy’6°p° (46)

for all but a O(7?)-proportion of (2/,1') € S. As a consequence, there exists a pair (z',7') € S
for which both (46) holds and

By S(z,y)S(z,y)S(2',y) > (03 + D aBy*6°p?,

which together imply that

1S NT'|
7 > o+ Q(1)
when we take A’'(z) = S(x,y'), B'(y) = S(a’,y), C'=C, D' = D, and ® = ® in the definition
of T'. O
6.3 More preliminaries for || - ||4,
We will similarly need that certain || - ||+, -inner products are controlled by the degree 1 and 2

directional uniformity norms appearing in the previous subsections. The proof of the lemma
below is similar to the proof of Lemma 6.4, but with an extra application of the Cauchy—Schwarz
inequality in some cases.

LEMMA 6.7. Let d be a nonnegative integer, and set p := p~®. Suppose that A,B,C,D C Fy
have densities «, 3,7, 0, respectively, and that ® C Fy x ) takes the form

®={(z,y) e AxFy:ycu+V},
where each V,, is a subspace of I}, of codimension d. Let € > 0, and assume that

A= allgio@ny, 1B = Bllrogy, NC=vllpogn), 1D —=dllvwogn), [P —apllys@nxrn) <&

218

https://doi.org/10.1112/S0010437X2300756X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X2300756X

SUBSETS OF IFZ X IFZ WITHOUT L-SHAPED CONFIGURATIONS

Define T' by (11), and let S C T and 7 > 0. If

Ew,y,h1,h2,h3 H gw((xa y) +w- ((07 hl)a (07 hQ)) (h37 0)))' > Ta2ﬁ47858 67
we{0,1}3

where at least one g, equals T and another equals gg, then

Q1)
8 92 2¢2 2 e
Esyndongs(@,y) = m°afy"0%p +O<(a575p)0(1))’

00
Buando0s(e) 2 Potititet +0( ot )

Q(1)
8 a4 454 3 e
By kB0, 00)95 (T, y) 2 TfFy70%p +O<(a575/})0(1))’

or

(1)
8 2,2 Adc4 4 e
Eq y.n, kA 1,0),00,0)95 (2, y) = 7503y 6" p +O<(aﬁ75p)0(1)>'

Our final preliminary lemma says that, for almost every (z,z + h3) € A%, the function
A(h&O)S(aB, -) is supported on a Fourier uniform subset of the affine subspace {yEFg:

Ay 0)@(7,y) = 1}

LEMMA 6.8. Let d be a nonnegative integer, and set p := p~*. Suppose that A,B,C,D C Fy
have densities «, 3,7, 0, respectively, and that ® C Fy x ) takes the form

P ={(r,y) e AxFy :ycu+V.},
where each V,, is a subspace of F} of codimension d. Let € > 0, and assume that
A= allya@gny, 1B =Bluagn), 1€ =Avsgny, 1D —dllvagn), 12— apllya@nxmm <e.
Setting
Ry n(y) :== B(y)ArC(x + y) Ao D(22 + y)
and

Oy = A(h,O)(I)?

)

then the probability

' . c1/32
IP’<(33,33 +h) € A? . codim{y € Fy Q. n(y) =1} #2d or [|[Ry pPpp — 57252||U2(¢z7h) > [)3/2>

is < %) /p00),

Proof. By Lemmas 3.6 and 4.1, we have that ||R,, — ﬁ’7252”U2(1Fg) > el/8 or codim{y € Fp

O, p(y) = 1} # 2d for at most a O /p®M))-proportion of pairs (z,2 + h) € A% For all of
these typical pairs (z, h), we have

|Ren®ah = B0 12,y = P By bt Dt (R — 57282 (y) P () P (y + ) P (y + 6),

which is at most

Yo EyrelRon — 876 W)ep( - y)[Ron — BY0%)(y + k)ep(n - (y + k)
57777’/6(<I>ac,h_u)l

(R — B720%)(y + Oep(v - (y + 0)[Rap — 776 (y + k + 0)]
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by inserting the identity
1
Pyn(2) = o2 Z ep(§- [z —ul)
ge(q)z,h_u)L

for every » € ). For each fixed triple (£,7,v), the interior average above is bounded by || Ry, —
ﬂny(VHUz(F;) by the Gowers—Cauchy-Schwarz inequality. Since there are p~% possible triples to
sum over, we must have

1R p @ — 8720 t2a, ) < P71 R — 8720 2(ey) < e/ 5,

from which the conclusion of the lemma follows. O

6.4 Proof of Theorem 2.5
Now we can finally finish the proof of Theorem 2.5.

Proof of Theorem 2.5. First assume that
lgsle; > Ta 8124507,

Analogously to the proof of Lemma 6.5, by writing S = gg + o7, we see that ||S ||§1 equals
811718 8
TIN5, + llgslls,

plus 62 terms of the form

Ezvy,h17h2,h3 H 9o (2, y) +w - ((0, k1), (0, h2), (h3,0))), (47)
we{0,1}3

where at least one g, equals o1 and at least one other equals gg. Note that

8 2,4, 858 6 )
IR, = o325 +0 (S5 )

by Lemmas 3.5, 3.6, and 4.1. If any of the terms (47) have absolute value at least
ﬁ78a2ﬁ47858p6, then combining Lemma 6.7 with Lemma 6.3 or Lemma 6.5 produces the
desired density increment. We may thus proceed under the assumption that these terms are

all small, so that

7_8
Ea iy h1,ho,hs D 0,h1),(0,h2),(h3,0) S (T, Y) > <08 + 2)0?64785%6.

For each pair (z,z+ h) € A2, let R, and ®,5 be as in Lemma 6.8, and set Sy p(y) :=
A0)S(7,y). By Markov’s inequality, either

8 8
P((m,$ +h)e AxA:|E,Syn(y) — 0257262;)2\ > 6457252p2) < e (48)

or else Ey 1inealEySen(y) — 0287252p%% is > 71632416%p%, in which case a combination of
Lemmas 6.3, 6.4, and 6.5 will produce the desired density increment. We may thus proceed
under the assumption that (48) holds.
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By (48) and Lemma 6.8, there exists a subset Ag C {(z,h) € Fy x F) : 2,2+ h € A} of
density > 79(Ma? in [y x [y such that

8
. ] T 4 8¢8
152,n 2@, ) = <U + 4>ﬁ T

8
T
’Eysx,h(y) —0'2,8’}/252p2‘ < aﬁ,_y252 2’
1/32
93
|Ren®a — B0 02, ) < A

and codim{y € F}; : &, ,(y) = 1} =2d for all (x,h) € Ag. Note that S, is supported on
Ry 1, ®, 5, and, setting

1 1
fm,h = mscc,h and Vyh = WRm,h‘I)z,h,

we have ||fx7h||4U2(q> ») >o8+78/4, 0< Joh <ven, Efen <1, [Efpn— o?| < 78/64, and
lven — Uz, ) < /32 /34262 p3/% < exp(—(64/7)%), provided that ¢; is small enough and cy
is large enough. Applying Lemma 6.1 on the affine subspace ®, 3 yields a function th I

[0, 1] such that

7_8

Efx,h = ]Efac,h and ||]Za:,h - fa:,h||U2(<I>z7h) < a,
provided that c3 is large enough. We must then also have
8

o4 8 , T
lforlve e, 2" + 15

Arguing as in the proof of the first part of Lemma 6.5, it follows that, for every pair (z,h) € Ay,

there exists a nonzero §; 5, € ®, 5 — u such that

8
~ T
|Eye‘1>z,h(fx,h - Uz)(Q)ep(gx,h ) y)‘ > 727
so that
2 7
Byt (Fon — o) Wen(Ean 1) = =
as well.

Extend (z,h)— & from Ay to the set {(z,h) € F} xF) :z,x+h € A} by picking a
nonzero & p, € CDZE/JL?U arbitrarily for all pairs outside of Ag. We split the average over y € @, ,

up into an average of averages over cosets of <£gc7h>l and average over all pairs (z, h) such that
z,x+ h € A to get that

Ezztheaier, Eyecbz,h (fon — 02)(y) > 7° (49)
gm,h'y:t

for some absolute constant ¢ > 0. Note that

1
Ezorheabier,Eyea, , (fop —0%)(y) = 25257 2 LS (z,9)8(z + h,y) — 0”
éz,h'y:t azpry 1Y
1
= 225202, ewn9s (@ y)9s (@ + hoy),
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so that, if it were the case that

Ee ztheaBter, Eyea, , (fo,n — 0'2)(y)‘ > 7%
Ez,h'y:t

then we would be able to deduce the desired density increment from Lemma 6.3. Thus, we may
proceed under the assumption

Em,x—&—heAEte]FpEyeq)Lh (fac,h - 0-2)(3/)‘ < .
Ez,h'y:t

which we can combine with (49), a change of variables, and an application of the pigeonhole
principle in the ¢ variable to deduce that

Baneamax (0B e, (fuams ~ 7)) 7 (50)
&x,hfx'y:t
for some fixed ¢t € F),. Set
Uy, = {(SU,Z/) € FZ X IFZ YRS (I)m,hfa: and gm,hfx Y= t}' (51>

To deduce the desired density increment by applying the pigeonhole principle to (50), we will
have to show that almost every set of the form

{(z,y) € T: S(h,y)Ai1(x,h — z)Vp(x,y) =1}

has close to the ‘correct’ density. Most of the remainder of our argument for || - ||, is devoted to
this task.

Set Qun(y) :=S(h,y)C(x+y)D(2x +y). We start by showing that either [|Q,s —
Jﬂ”yzéQHU2(¢,z7h_z) is small for almost every pair (z,h) € A x A, or else we can deduce a density
increment from Lemmas 6.3 and 6.5. Note first that

Eeyh A(@) A(h)Pa h—2(Y)Qa,n () = Eay 1S (h, y) A(x)C(x + y) D(27 4 y)(z, y)
= EnyS(h, y)u(y),
where pu(y) := E;A(x)C(z + y)D(2z + y)®(x, y). By Lemmas 3.5, 3.6, and 4.1, we have
. (1)
P(y € Fy : [u(y) —avdpl > ) < PR

so that [Eyp,A@)AM)®spo(y)Qun(y) — 0a?By?6%p?| < 1) /pO0) | Similarly, the average
Ep n A(2) A(h) | EyQun(y) P n—a(y) — 0872520%? equals

Q(l)
,y,h kA( )A(h)q)x,hfx(y)(bx,hfx(y + k)Qz,h(y)Qx,h(y + k) — 0 042,82 454 4 + O< O(l))

and By nk A(2) A(R) P 0 (Y) Pa -2 (Y + k) Qun () Qe (y + k) equals
EynkS(hy)S(hyy + k)u'(y, k),
where
Wy, k) =EA(x)C(z +y)C(z +y + k)D(2x + y) D2z +y + k)@ (2, y)P(x,y + k).
By Lemmas 3.5, 3.6, and 4.1, we have

L20)

P((y,k) € Ty x Fy « [/ (y, k) — ay*6°p°| > €) < L0
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so that
Ex,y,h,k:A(l‘)A(h)(I)x,h—x(y)éx,h—x(y + k)Q%h(y)Qx,h(y + k)
equals
252 2 o
ay 0" p By 1 S(h,y)S(h,y + k) + O<p0(1) )
Thus, if

Ey h A(2) A(R) By Qu h (4) B o (y) — 0877602 > 717 0?0 8255 p*
for some ¢ > 0 (to be chosen later), and ¢; is small enough and ¢; is large enough, then
EyynS(2,9)S(@,y + ) > (0 + Q(r*))af>y* %,

in which case the desired density increment follows from Lemma 6.3. We may thus proceed under
the assumption that

EpnA@) AN By Qo () Po o (y) — 0070% 0P < 74 070 32415 p,
so that, by Markov’s inequality, we have
P((2,h) € Ax A: [EyQun(y)Pun-z(y) — 08778 0%| = 727 0 3776%p%) < 7.
It follows that E, p A(x)A(R)||Qzn — Gﬁ7252”4U2(<1>x,h_x) equals
E  anern  A@)AR)ArQun(y) — 0?0?3555 + O(r2 o 31456°).
Y y+k,y+ePy ho

By Lemmas 3.5 and 3.6,
Oé’)/4(54 Eﬂ(l)
E @, heF™ Ax) A(h) Ak eQan(y) = —5Eay ke A0k),0,05 (@, y) + O 200
y7y+k7y+86‘1>z,h7z p

If
‘Ex,y,k’,@A(O,k),(O,Z)S('rv y) - 0'40464’}/454p3’ > 7—40/05547454 37

then we could deduce the desired density increment from Lemma 6.5. Thus, we may
proceed under the assumption that this inequality does not hold, which implies that
E, nA(z)Ah)||Qun — 057262%]2(@1’#1) < 7402 314858. Tt then follows from Markov’s inequal-
ity that

P((z,h) € AX At |Qun— 0BV 2@, , ) > 72 B176%) < 7. (52)

Next, we will show that, for typical (z,h) € A x A, the average size of S(x,y)S(h,y)Vn(z,y)
is not very large. Certainly,

EyS(z,y)S(h,y)¥n(z,y) < EyT(z,y)T(h,y)¥n(z,y)
=EyB(y)C(z +y)C(h+y)D(2x +y)D(2h + y)Uu(z, y)
for every (z,h) € A x A. Setting
F(z,h,y) == B(y)C(z + y)C(h+y)D(2z + y)D(2h + y),
Lemma 3.6 says that
P((x,h) € Fy x By : | F(x,h,-) — By lp2ey) > €'/®) < Ve
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Thus, by Lemma 3.5, as long as ¢y is large enough, we have
. py?6%p? 16¢

P((m,h) ey xFy : |E,S(z,y)S(h,y)¥n(x,y)| > 10()p> < \er(oTapyip)™c,  (53)
say.

Now, setting ¢’ = 8¢, the contribution to the left-hand side of (50) coming from pairs
(x,h) € A x Afor which ||Q,n — 0572(52\\(]2(%,]171) > 7134262 or |E,S(z,y)S(h, y)¥n(z,y)| >
1003+262p? /p is < 71%¢. Thus, by the pigeonhole principle, there exists an h € A and a subset
A’ C A of density o > 7°Waq in [} such that

Eoca B yew, (fon — o) (y) > 7°

and ||Qzp — Uﬂ’deQHUz(% ) K 71634252 for every x € A’. Recalling the definition of f, , the
above displayed equation says that

/ 252 2
By yS(x, y)A'(2)S(h, y)Wn(z,y) = (0 + Q(TC))CMB;p.
We now use Lemma 6.6 to find a subset A” C A" of density o > 0/107-0(1) and a v € [, such
that
" 252 2
By S(o. ) A (@) (b, ) By a.0) 2 (0 + Ar) T
where

L=1{(z,y) € Fy xFp iy € ®pppand & (y — u') = 0}.
This gives the conclusion of the lemma.

The proofs of the two remaining cases are very similar to those appearing in earlier
subsections, so we will be more brief in our arguments. Next, assume that

195l > 70285126,

As in the second part of the proof of Lemma 6.5, we may proceed under the assumption that
4
-
Ey oy S(@,y)S(z,y' —2)S(—a',x +y +a)S(—2',a" +y') > <04 + 2) a?3ly28tpt,
and use it to show that either

EeyB(y)D(2z + y)®(z,y)S(z,y' — 2)S(—2',z + y + 2') = (0* + O(7°)) a5’

for almost every pair (2/,y’) for which (—2/,2" +y') € S, or else the desired density increment
follows from Lemma 6.3. By Lemmas 3.5, 3.6, and 4.1 and the Cauchy—Schwarz inequality, either

E o'y E;yB(y)D(2z + y)®(z,y)S(z, y —x)S(—2',x+y+2a)
(—:E/,(E/—i-y/)GS

— O,2aﬂ3,y§3p3 + O(T16&53753p3)
and

E oy  [EBayBy)D2z+y)®(z,y)S(x,y —2)S(—2',2 +y+2') — c?ap?y5°p*?
(=2, 2’ +y')eS

< 73202354255 56
or else we have the desired density increment from Lemma 6.3. It then follows from Markov’s
inequality that

EeyB(y)D 2z + y)®(z,y)S(z,y' — 2)S(—2',z + y + 2') = (¢* + O(7°)) a5’
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for all but a 7/4-proportion of pairs (z/,y') for which (—2’,2' + /) € S, which means that we
can find such a pair for which we also have

4
Ewﬂ%Wﬂ%y—@SFﬂw+y+ﬂﬂiGA+;>Jﬁ¢#4,

so that we get the desired density increment by taking A’ = S(z,y' —z), B'=B, C' =
S(—2',x+y+2a'), D'=D, and &' = ® in the definition of T".
Now assume that

195l > TBY2p

which means

EzED‘E21+y:zgs(;ﬂ, y)’Q > 7'2042ﬂ2’)’2p2.
By Lemma 6.2 and the pigeonhole principle, there exists a subset Dy C D of density at least
72 /2 for which

Tapyp
4

‘E2m+y:zgs(x7 y)‘ >

whenever z € Dy. As in the proof of Lemma 6.3, there is a subset D1 C Dg of density at least
1/2 in Dy such that either Eopty—.g5(x,y) > Tafyp/4 or Eopiy—zgs(x,y) < —TafBvyp/4 for all
z € D1. As in the proof of Lemma 6.3, we can simply take D’ = Dy and D' = D \ D; in these
cases, respectively, since, by Lemma 6.2, the fibers {(x,y) € T': 2z + y = z} typically have very
close to their average size. O

7. Pseudorandomization

This section begins with yet more preliminaries. To prove Lemma 2.6, we will need a result of
Cohen and Tal, which says that, for any finite set of polynomials in Fy,[z1, ..., 2y,], one can find a
partition of F)" into affine subspaces of relatively large dimension on which all of the polynomials
are constant.

THEOREM 7.1 (Cohen and Tal [Theorem 3.6, CT15] specialized to prime fields). Let d,m, and
t be natural numbers. There exists a positive integer m’ satisfying

/@)
such that, for any polynomials Py, ..., P, € Fp[x1, ..., xy] of degree at most d, there is a partition
of I} into affine subspaces of dimension m' such that Pi,..., P, are constant on each affine

subspace.

To see that this formulation of Cohen and Tal’s theorem is equivalent to Theorem 3.6
of [CT15], note that one can make all of the affine subspaces in the partitions produced by their
theorem have the same dimension by simply partitioning each subspace not of the minimum
possible dimension into more subspaces.

We will also need a ‘bilinear’ version of Cohen and Tal’s result, which we will use to find
partitions of F) x F}} into product spaces of the form (u + V) x (w + V') on which polynomials
in two sets of variables z1, ..., Zm,y1,...,ym are constant.

225

https://doi.org/10.1112/S0010437X2300756X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X2300756X

S. PELUSE

COROLLARY 7.2. Let d and m be natural numbers. There exists a positive integer m’ satisfying

. ml/(d=1)1?
m > e
such that, for any polynomial R € Fplx1,...,Zm,Y1,...,Ym| of degree at most d, there is a

partition of F;" X I} into products of affine subspaces of the form
(u+V)x(w+V),
with each dim V = m/, such that R is constant on each product of affine subspaces.

Proof. Write

d
x,y) =Y P(x)Qi(y),
1=0

where Py, ..., P, Qo,...,Q4 € Fplz1,..., 2y satisfy deg P, <i and deg@; < d —i for all 0 <4
< d. Applying Theorem 7.1 to Py, ..., Py gives us a positive integer my, > m!/@=1'/(d 4+ 1)¢ and
a partition

Fyr =[] (u; + V)

jedJ
of F)', with dimV; = my for each j € J, such that Pp,...,P; are all constant on each affine
subspace u; + Vj.
Now write
Fpox By =l + V) xFp =] I (w+V)x@+V)).
jeJ JEJ wrV;eFD/V;

Since restricting a polynomial to a subspace cannot increase its degree, for each j € J, we can
apply Theorem 7.1 on each affine subspace w + Vj to the polynomial

Qjuy ZP%+W@U

=0
to get that there exists a positive integer m’ satisfying
L (mh)M/E! ml/(d=1)12
m > >
(d+1)e de

and a partition

w+Vy= J[ (we+V)),
k’eKj,w

with each subspace V/ < V; having dim V| = m/, such that Q;,, is constant on each wy + V.
Thus, we can write

FrxFr =11 ]I I (u+ Vi) x (i + W),
J€J w+V;EFT /V; k€K a0

where R is constant on each product (uj + V;) x (wy + V}). Since V}! < V; we can further refine
this partition to one of the desired form

FrxFr =11 ]I 11 T w+ V) x (we+ V),

JE€J w ViR [V k€K w u+ V] EV; )V

on each part of which R is still constant. g
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Finally, we will recall the recent quantitative inverse theorem of Gowers and Mili¢evié¢ for
the U®-norms on vector spaces over finite fields.

THEOREM 7.3 (Gowers and Mili¢evi¢ [Theorem 7, GM20]). Let s be a natural number and
assume that p > s. There exist constants cs,c'&p >0 so that, if f:F" — C is a 1-bounded
function satisfying

[fllers =6,

then there exists a polynomial P € Fylx1,...,xy] of degree deg P < s — 1 such that

Eu f(2)ep(P(@))] ey M

7.1 Proof of Lemma 2.6
Our proof of Lemma 2.6 is modeled after the corresponding pseudorandomization arguments in
[Shk06a, Shk06b] and [GreO5a]. As was said in the outline, some new features arise from our
desire for B’,C’, D', and @' to be uniform with respect to U*-norms of degree greater than 2 and
from @’s particular structure as a union of affine subspaces of the second factor of IF) x . The
first of these two complications can be overcome by using Theorem 7.3 and then Theorem 7.1
or Corollary 7.2. We will discuss how ®’s structure influences our proof shortly.

The proof of Lemma 2.6 proceeds via an energy-increment argument. Each step of the energy-
increment iteration will produce a partition €; = (C; j)ier; of F)y x Fy into cells C; ; of the form

Cij = (uij + Vi) x (wij +Vij)
for some subspace V; ; < F). For each cell C = (u+ V) x (w + V) in a partition €, we set

— Bc::Bﬂ(w—l-V),

- Ce=Cnu+w+V),

~ De:=DN2u+w+V), and
- P :=dNC,

and, correspondingly,

B(C) == pwsv(Be),

- ’Y(C) = Nu-&-w-ﬁ-V(CC)?

= 0(C) == p2utw+v(Dc), and
- ¢(C) = ,uc(CI)c),

so that

TNC={(z,y) € C: Be(y)Ce(z +y)Dc(2z + y)®c(z,y) = 1}.

Analogously to the pseudorandomization procedure for corners, we will show that if ||Be —
BEC)ls@n), [ICe = v(C)llus@n), or [|De = 6(C)|lys(gn) is large for a substantial portion of cells C
in a partition %, then there exists a refinement ¢’ of ¥ which has substantially larger energy.
But even if ®¢ is a union of affine subspaces of the same codimension d for most cells in the
partition, this may not be the case for the ®¢: corresponding to the cells C’ in the refinement %”.
The codimensions of the affine subspaces {y € w’ + V' : ®¢/(z,y) = 1} can range from 0 to d, so
before even considering how to obtain a pseudorandom @', we have already found an obstacle to
even getting a set of the same general form as @'.
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To get around this issue, we will pseudorandomize each of the sets
05 = {(2,y) € B¢ : Eecwiv®(z,2) > p '} (54)

for 0 <i < d, instead of just &¢ = @gd itself. The definition (54) of CIDCSi selects all of the sub-
spaces of the second factor of C comprising ®¢ that have codimension at most . This will
pseudorandomize each of

D = {(z,y) € D¢ : Eocwiv®(z, 2)

as well. At the end of the proof of Lemma 2.6, we will use an averaging argument to choose &’
to be some suitable <I>é.

For each 0 < i < d, set ¢=¢(C) := pc(
) x F) by

—pi) = (I)ng‘ \ (I)ng‘—l
@g’) We define the energy E(%) of a partition € of

d
)= 4id (; <ﬁ(6)2 +79(0)? +6(0)* + ; ¢<i<0>2> Hrp iy (C).

Note that the energy of any partition is bounded above by 1. We will now prove a couple of
lemmas concerning this energy.

LEMMA 7.4. Let m’ > m and d be nonnegative integers, A, B,C, D C Fy, ® C Fy x F be of the
form

®={(z,y) e AxFy:ycu+V},

where each V,, is a subspace of F)) of codimension between 0 and d, ¢ be a partition of F;; x Fy
with each cell C taking the form

C = (uc+ V) x (we + V)

for some subspace Ve < ) of codimension m, and suppose that ¢’ is a refinement of ¢ with

each cell C' taking the form
C/ = (Ué/ + Vé/) X ('U)/C/ + Vél)

for some subspace Vg, of codimension m'. Then

> BC) urnrp (C) = > BC) iy ey (C),
= cev
D A€ g xn (C) = D A(C) s ey (C),
= cev
Z 5(6/)2/11?;@71 25 M]an]Fn (),
= cev
and
PR () T (e = I (9 T (¢
=% cew

for every 0 <1 < d.

Proof. Note that it suffices to prove the result with the sum over C € € restricted to a single
cell Cyp and the sum over C' € ¢’ restricted to all cells contained in Cp, since one can then just
sum over Cy in € to get the desired result. Thus, we may assume without loss of generality that
% is the trivial partition {IF) x Fy}.
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Let 3,7, and 4 denote the densities of B,C, and D, respectively, in F). Since F)) x B has
density 8 in ) x F)), we have

B = Z "uEn<rn (C),

(g/

so that, by the Cauchy—Schwarz inequality,

B2 < < > ﬁ(C’)2>< > MFEXJFE(C/)z)

c'ee’ c'ee’
/
= > BC) prpxen(C),
c'e’
as desired, since
p2n 1 1 ,
Z prp xw (C')” = T = o = HEpxrp (C)

—t p2n72m p4m

for all cells C" of ¢”. Similarly, since {(x,y) € Fy x Fy : x +y € C} has density v in Fj) x F} and
{(z,y) € Fy x F} : 2z + y € D} has density 0 in F}; x F}}, we have

7= Z V(C/)Mlb‘gxﬂ?g(cl)
C'ee’
and

5= 8(Curpxr(C),

C'es’
it follows again from the Cauchy—Schwarz inequality that

> A€y (C) = 7
C'es’
and

Z 5(6,)2NIF‘;}><IF‘;}(C/) > 52,
=

The argument for the (bﬁ is also essentially identical, but with one small difference. For ease of
notation, set =% := @;ﬁxw and ¢= := qSSi(FZ X FZ) for all 0 < ¢ < d. Then we actually have
P P

< > () mp ury (C),
C'es’

instead of equality, since ®<'NC’' C <I>§,i (which is why we run the energy-increment argu-
ment with the ®<%, instead of the ®). It therefore follows yet again from the Cauchy-Schwarz
inequality that

> ¢%U(C) ey (C) > (657)°

C'es’

for all 0 <7 < d. O

229

https://doi.org/10.1112/S0010437X2300756X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X2300756X

S. PELUSE

LEMMA 7.5. Let m and d be nonnegative integers, A, B,C, D C Fy, ® C F;) x F} be of the form
b= {(r,y) e AxFy :ycu+V.},

where each Vy is a subspace of ) of codimension between 0 and d, and ¢ be a partition of
[y x ¥} with each cell C taking the form

C = (uc+ V) x (we + Vo)
for some subspace Ve < F)) of dimension m. There exists a positive integer
m > ml/(S!)2

and positive integers c, c;) > 0, such that the following holds.
Let C € ¥.

(i) If | Be — BO)|y10(we+ve) = € then there exists a partition 6; of C with each cell C' taking
the form

C/ = (’LL/C/ + VC//) X (U}é/ + VC/'/)’
with each dim V,, = m/, such that
1
B(C > B < )
Z(/, e+ exp®(cj,/€)?

(i) If |[Ce = v(Oll10(ue+we+ve) = €, then there exists a partition 6 of C with each cell C'
taking the form

Cl = (Ulcl + Vclr/) X (’LU/C/ + Vé/),
with each dim V, = m/, such that
1
7C'2CC/27C2+Q< )
A (@) 2007+
C

(iii) If | De — 6(C) |10 (2uptwe+ve) = €5 then there exists a partition ¢p of C with each cell C’
taking the form

C/ = (ulc/ + Vé/) X (wlc/ + VC/'/),
with each dim V/, = m’, such that
1
PRI« ) > 6(C)? + Q( )
crean exp©(¢,/¢)?

(iv) Let 0 <i<d. If H<I>§’ —¢=4(C Mus(cy > €, then there exists a partition 6 of C with each
cell C' taking the form

CI = (Ulcl + Vé/) X ('wlc/ + Vé/),

with each dim V\,, = m/, such that

S 65 elC) 2 650 + 9 )

=, exp7(c)/2)

Proof. Let ¢ and c; denote the constants cig and Cll(),p? respectively, from Theorem 7.3, and m/
denote the smaller of the two minimum values of m’ appearing in Theorem 7.1 when we take m
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as in this lemma, d = 9, and ¢ = 1 and m’ appearing in Corollary 7.2 when we take m as in this
lemma and d = 7.

First assume that || Be — B(C)||y10(we+v) > €. Then applying Theorem 7.3 with s = 10 yields
a polynomial P € Fplz1,..., x| of degree at most 9 such that

|]Eﬂc€wc+VC (BC - ﬁ(C))(SL‘)ep(P(x)” > exp ( p/g)

By Theorem 7.1, there exists a partition (w; + V;);er of we + Ve into affine subspaces of we + Ve
of dimension m/, on each of which P is constant. Thus, by the triangle inequality,

Eig[|Em€wi+V2 (BC B B(C))($)| > exp* (1 /6)

so that, by the Cauchy—Schwarz inequality,

Eict|Evew,+vi(Be — B(C))(x)[* > exp¢(c)/e)? /€)%

Expanding the square, this means that

1
Eicr|Eecw,+v: Be(z)|? > B(C)* + Q 55
ciBrcuiBe@)t 2 00 + 0 s ) (55)
Now we partition the whole cell of interest C by writing
C = (uc +Ve) x [J(wi + Vi) = [ J(ue + Ve) x (wi + Vi),
icl icl
and, for each ¢ € I, use that V; < V¢ to partition u¢ + V¢ into cosets of V; to get
C:H H (uc +u' +V;) x (w; +V;) = HC'
i€l W+VieVe Vi C'ete
Since pc(C') = |¢"|7! for each C' € ¢}, (55) reads
1
> B uc(C) = B(C)? + ( )
= exp‘(c)/e)?

The arguments for C¢ and D¢ are again analogous, but we include them for the sake of
completeness. Next, assume that [[Ce —v(C)|g10(ue+we+ve) = € Applying Theorem 7.3 yields
a polynomial P € Fp[z1,...,xy] of degree at most 9 such that

|]Ea:€uc+wc+Vc (CC - V(C))(:c)ep(P(x)ﬂ > m

By Theorem 7.1, there exists a partition (v; + V;);er of ue + we + V¢ into affine subspaces of

uce + we + Ve of dimension m’ on each of which P is constant. Thus, by the Cauchy—Schwarz
inequality again,

1
. 2> 4(C)* ey
EzEI’Exevz‘-i-ViCC (‘T)| - fY(C) + (eXPC(C%/@Q) '

Now we partition the whole cell C by writing

c=]] JI (i—we+v +Vi)x(we—v'+Vi)= [] C.

i€l v +VieVe/Vi crete
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Since (v; — we +v' + V;) 4+ (we — v' + V;) = v; + Vi, we conclude that

5 A€ Phele) 2 2(CP + 0 s ).

dee, exp©(c,/e)?

Now assume that [|[Dc — 6(C)|y10(2uc+we+ve) = € Applying Theorem 7.3 yields a polynomial
P e Fpylx1,...,xy] of degree at most 9 such that

IEzeauetwerve (De — 6(C))(x)ep(P(x))] > po ( 5

By Theorem 7.1, there exists a partition (v; + V;)ier of 2uc + we + V¢ into affine subspaces of
2uc + we + Ve of dimension m/ on each of which P is constant. Thus, by the Cauchy—Schwarz
inequality yet again,

1
Eict|Esev+v; De(2)? > 6(C)* + Q
rBacn Do) 2 60 + 9 oot )
Now we partition the whole cell C by writing
C:H H (uc +v' 4+ V;) x (v; — 2ue — 20"+ Vj) HC’
€l v'+VieVe /V; C'eéc

Since (2ue + 20" + Vi) + (v; — 2uc — 20" + V;) = v; + V;, we conclude that

/ 2 1
2 € he(€) 2 0(0) 0 )

(gl

Finally, suppose that ||<I><l (e Msey > € for some 0 <i < d. Theorem 7.3 then says that
there exists a polynomial R € Fp[z1,...,Zm,v1,...,Ym] of degree at most 7 such that

[Ewyec(@e = 6= (O)(@, y)ep(R(x,y))| > exp®(c)/e)’

By Corollary 7.2, there exists a partition 6 of C into affine subspaces of the form (v + V') x (w +
V) with dim V' = m/, on each of which R is constant. Thus, by the Cauchy—Schwarz inequality,
we have

Eere;

E(pyee®5 (2, 9)F = ¢=1(C)? + Q<exp ZCABE )

Since

E(x y)EC’(I)C (‘T y) < E(m y)EC/CI)c/ (x y) ¢<i(cl)’

the conclusion

<i (2 ! SHE)? !
Z d='(C")*pc(C’) = ¢=*(C) "’Q(exp(p/a))

c'ed)
now follows. O
Now we can prove Lemma 2.6.

Proof of Lemma 2.6. We proceed via an energy-increment argument, as described at the begin-
ning of the subsection. A cell C = (u+ V) x (w+ V) in a partition € is said to be expired
if B(C),~(C),8(C), or $=%(C) is less than Tprnxrn (1) /4, and a nonexpired cell C is said to be
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uniform if

| Be = BOvowrvy, 1€ —v(O)lvrorwivy: 1D = 6(C)lvro@urwivy < e
and
195" — 6= llyse) < e
for all 0 <1 < d. We will denote the subset of expired cells of €; by &}, the subset of uniform

cells by %;, and the subset of nonexpired, nonuniform cells by .4}, so that &;,%;, and .A4;
partition €;. For any subset K C I;, we define n(K) to be the measure of all cells indexed by K:

n(K) = MIF;;xIFg( H Ck,j)-
keK
Finally, we define a sequence of integers (mj)?io by setting mg = n and, for every j > 0, m; to
be the minimum of the value of m’ appearing in Theorem 7.1 when we take m = m;_1, d =9,
and t = 1 and of m’ appearing in Corollary 7.2 when we take m = m;_; and d = 7, so that

o
mj 2> cin?

for some absolute constants 0 < ¢1,co < 1.

Set 6o to be the trivial partition {F} x F}} of Fy x F}. Letting ¢ = c10 and ¢’ = c’w,p be as
in Lemma 7.5, then, as long as 7(4j) > 7ppnxpn (T')/2 and mj1 > 1, there exists a refinement
Gj+1 of € such that:

i) dimV; 11 > mjyq for every i € I;41 and dim V; ;41 = m,;11 whenever C; ;11 € A;11; and
J J J J J J J
(i) E(%j+1) = E(%)) + QTump <y (T)/dexpc(c;/s)Q).

Indeed, suppose that 7(4j) > Turnxwn(T)/2. Each cell C in .4j must be of dimension
mj X mj. By Lemmas 7.4 and 7.5, there exists a partition €}, j+1 = (Ck,j+1)kek, of each C € Aj

such that
d
1 i
1+d > (5(Ck,j+1)2 +9(Chj1)’ +6(Chjrr)’ + D> 6= (Ck,j+1)2) pic(Cr,j+1)
keKe i=0
is at least

BC)2 +~(C)2 +6(C)2 + 3L, 651(C)2 1
44+d : +Q(dexpc(c’/€)2)

and each Cj ;41 is of the form (v’ + V') x (v’ + V') with dim V' = m;;1 > 1. Taking
ij—i—l = {Ck,j—i-l ke Ke,C e e/ig} U éa] U %,

we see that multiplying both sides of the above by I X Fp (C) and summing over C € .4} yields

T HF7 xFp (T) >

E(€;+1) > E(€;)+Q
( ]+1) = ( ]) + <dech<C,/€)2
Since E(¢’) <1 for all partitions %, this iteration must terminate for some

J=jo < dexpc(c'/s)2/7'u]pgxﬂzg(T),

_ _—(o+1)
at which point either n(.45,) < 7urp xrp (1) /2 or mj,41 < 1. Assuming that n > ¢, “ ensures

that the latter case cannot occur.
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Since 1(&5) < Ty <rp (T')/4, we have
-
[V X (Sﬂ U C) > (U + 4)ngwg(T)-
ce,
This certainly implies that
-

> heyiy(500) 2 (045) T sgery(r )
Cej, Cej,

so that, by the pigeonhole principle, there exists a cell Cy in %;, for which

-
MngFg(S NCy) > (0’ + 4>MF;;X{F; (T'NCo).

Since ®¢, = ngo (I)éo, another application of the pigeonhole principle tells us that there exists
a 0 <17 < d for which we also have the density increment

HIF;XIF;(SQCO N (I)éo) Z (O' + 4>/-LIF;><IF;(T ﬂCO N @éo)

As noted at the beginning of this subsection,
196, — ¢*(Co)llusiey) = 195, = #5(Co) + 6= 71 (Co) = 25, llvs(en) < 2

so that the conclusion of the lemma now follows. O

8. The density-increment argument
Now we can finally prove Theorem 1.2 by iterating Lemma 2.7.

Proof of Theorem 1.2. Suppose that S C Fj x F) has density o and contains no nontriv-
ial L-shaped configurations. Set Sy:= S, ng:=n, dg =0, gg:=1, Ag=By=Cy =Dy = Fy,
and ®¢ := ) x ). Applying Lemma 2.7 repeatedly produces sequences of S;, n;, di, €i, A;, Bi,
C;, D;, and ®;, with A;, B;,C;, D; C FZ' and ®; C A; X ng of the form

P, = {(.f,y) € A; x Fgl Yy e ’U,+Vx},
where each V; <7 is a subspace of codimension d;, such that, on setting
T; = {(z,y) € Fy' x Fy' : Bi(y)Ci(z + y) Di(22 + y)®4(z,y) = 1},

Qy = ,U,IFZi(Ai), ﬁz = /LF;Li(Bi>, Yi = /Lng(Ci), 51 = ,UJ]F;LZ' (Dz>, and pPi = ,LLIFZiX]FZi(q)i)/O{Z' = pidi,
we have, for each 7 > 1, that:
(i) S; C T; has density o; in T;, where o; > 0,1 + Q(ao(l));
O(exp®(c! /e3) /(oevi—1B;—17i—16;—1p;—1) D))
(i) n; > n', ;
) & < (0aiBiyidipi)°V) exp(—(64/0)°W);
V) i, Biy i i > (001 Bi—1%i-18i—1pi—1)°WY;
)
)

s e

—~~
—
—
—

di <di1+1;

14i = aill groniys 1Bi = Billgrogmiy, |G = Yillgrogeniy, [1Di = dill groganiy,
||(I)i — aipi||U8(FZixIE‘Zi) < g;; and

(vii) S; contains no nontrivial L-shaped configurations;
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ni_1 > exp> (0 ( ( exp*(c'/e:) )) . (56)

00i—1Bi—1%i-10i—1pi—1)%

provided that

Since no set can have density larger than 1, the lower bound (56) must fail for some i = ig + 1 <
o~ Thus, there exists an absolute constant ¢/ > 1 such that

ni, < exp® (0(1/0°M))
while, on the other hand,

Otexpe” (017500
Nj, > N1
Comparing the upper and lower bounds for n;, and taking the ¢”’-fold iterated logarithm of both
sides yields the bound in Theorem 1.2. O
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