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Abstract

Continuous gait phase plays an important role in robotic prosthesis control. In this paper, we have conducted the
offline adaptive estimation (at different speeds and on different ramps) of continuous gait phase of robotic transtibial
prosthesis based on the adaptive oscillators. We have used the capacitive sensing method to record the deformation of
the muscles. Two transtibial amputees joined in this study. Based on the strain signals of the prosthetic foot and the
capacitive signals of the residual limb, the maximum and minimum of estimation errors are 0.80 rad and 0.054 rad,
respectively, and their corresponding ratios in one gait cycle are 1.27% and 0.86%, respectively. This paper proposes
an effective method to estimate the continuous gait phase based on the capacitive signals of the residual muscles,
which provides a basis for the continuous control of robotic transtibial prosthesis.

Introduction

Lower-limb robotic prostheses can assist amputees’ daily activities. The control of robotic prosthesis is
one critical issue, and the widely used control approach in lower-limb robotic prostheses is the finite state
machine method (Sup et al., 2008; Au et al., 2009; Wang et al., 2015). This method is to build different
control strategies corresponding to the several different gait phases within each gait cycle (Sup et al.,
2009; Lenzi et al., 2014; Feng andWang, 2017). Therefore, it relies on the accurate detection of gait events
(heel strike, toe off, and so on) to trigger state transitions between different states, which could limit the
smoothness and robustness of control (Villarreal et al., 2017; Yan et al., 2017).

To solve these problems, several alternatives have been proposed in recent years. Eilenberg et al.
(2010) have designed the neuromuscular controller. The neuromuscular controller is to use models of
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muscle dynamics and hypothesized reflexes. However, this method involves many parameters which are
difficult to tune. Another alternative is based on the continuous gait phase. Quintero et al. (2018) have
conducted the continuous-phase control of a powered knee-ankle prosthesis and achieved some effects.
Seo et al. (2019) have also conducted continuous gait phase estimation by recurrent neural network
(RNN) method to control ankle exoskeletons. These control methods are based on the estimated
continuous gait phase.

Continuous gait phase increases monotonically from 0 to 2π rad (or 0 to 100%) in each gait cycle. For
the moment, there are three methods in the continuous gait phase estimation. The first method is to
calculate the average duration of several previous gait cycles as the denominator, and then calculating the
time percent (i.e., the gait phase, from 0 to 100%) relative to the average duration in each gait cycle. This
method is easy and simple, however, the estimation accuracy based on this methodmay encounter decline
for the lower-limb amputees, since there may be stride-to-stride variation for lower-limb amputees, even
in the steady walking mode, which can cause the difference between the average duration and the current
gait cycle time length. The second method is designing or utilizing a specific algorithm to estimate
continuous gait phase, such as the adaptive oscillators (AOs) (Yan et al., 2017; Xu et al., 2020b) and the
extended Kalman filter (Thatte et al., 2019). Xu et al., 2020b) have used the inertial measurement unit
(IMU) signals to estimate the continuous gait phase of robotic transtibial prosthesis, and their study has
shown some estimation adaptation to different walking conditions based on the AOs. Thatte et al. (2019)
have used the extended Kalman filter to estimate the continuous gait phase in the stance phase (namely
starting at heel strike (0%) and ending at toe off (100%)) based on IMU and angle signals of powered
transfemoral prosthesis. The third method is based on the polar angle method (Holgate et al., 2009).
Holgate et al. (2009) have found that the polar angle between the tibia angle and its scaled angular velocity
has an invertible relationship with the gait phase and is not subject-dependent, and they have built a fitting
function between the polar angle and gait phase and realized the continuous gait phase estimation.
Quintero et al. (2018) have computed the continuous phase utilizing the thigh angular position and its
corresponding integral to form a well-defined thigh orbit. The third method has good adaptations because
of its subject-independent features, whereas its performance is susceptible to signal drift and integral drift
and it is also sensitive to stride-to-stride gait variation. It is important to solve the gait variation problem.
As known, the stride-to-stride gait variation can cause sensing signal variation. The property ofAOs refers
to the capacity to synchronize to an input sensing signal while learning its features (frequency, amplitude,
etc.; Buchli et al., 2008; Ronsse et al., 2013). The error between the estimated signal (output) and the
actual sensing signal (input) drives the evolution of the dynamic system to keep its output in phase with
respect to the input signal (Ronsse et al., 2010; Yan et al., 2017). Therefore, the AOs can adjust the
estimated gait phase when facing the stride-to-stride gait variation and handle this variation better in
continuous gait phase estimation.

In addition to the estimation method, it is also very important to choose the proper sensing signals.
The mechanical or inertial sensors have been used in gait phase estimation, for example, the IMU
(Villarreal et al., 2017). However, these sensors may easily encounter wearing gap or misalignment
problems. Surface electromyogram (sEMG) sensors can record muscles’ electrical potential and are
widely used in robotic prosthesis. However, sEMG signals are easy to be contaminated by noises and
motion artifacts, which will influence the estimation performance of gait phase. In addition to muscles’
electrical potential, there exist muscle deformations during limb motion. The capacitive sensors have
been designed and used in prosthesis and exoskeleton (Zheng et al., 2014). In our previous study, we
conducted the preliminary study of the continuous gait phase estimation based on capacitive sensing
signals with the AOs (Xu et al., 2020a). The previous study just conducted the continuous gait phase
estimation on one amputee at normal walking speed (Xu et al., 2020a). In this study, we improved the
capacitive sensing design and extended the study on two amputees at different walking speeds and on
different ramps to realize the offline adaptive estimation of continuous gait phase. This paper is
organized as follows. First, we introduce the related studies and research progress in “Introduction”.
Then, we introduce the robotic transtibial prosthesis, capacitive sensing design, experimental protocol,
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signal processing, and evaluation method in section “Materials and Methods”. Then, the result,
discussion, and conclusion are presented.

Material and Method

Robotic Transtibial Prosthesis

A robotic transtibial prosthesis (developed by Peking University, Beijing, China) was used in this study,
and its details are shown in Figure 1a. The sensing units of prosthesis were comprised of one angle sensor,
one strain gauge, and two IMUs. One angle sensor was positioned on the prosthetic ankle to detect ankle’s
rotation. The strain gauge was positioned on the prosthetic foot to detect the interaction between the
prosthesis and ground during walking, and the gait phase could be detected based on the strain signals. In
this study, we adopted the position control (to return to the equilibrium position) in the swing phase and
damping control (to provide assistance) in the stance phase, respectively (Wang et al., 2015; Feng and
Wang, 2019). Two IMUs were mounted on the prosthetic shank and foot to measure acceleration, angle,
and angular velocity information. More details of this robotic transtibial prosthesis could be seen in some
previous studies (Wang et al., 2015; Feng and Wang, 2019). Capacitive sensing method could measure
muscles’ deformations, and its principle has been described in a previous study (Zheng et al., 2014). Four
capacitive sensorswere placed on the residual lower limb (labeled as 1, 2, 3, and 4 in Figure 1b). Therewas
a liner placed over the residual lower limb and capacitive sensors, after which the socket was fitted. The
capacitive sensors could record the deformation which was caused by contraction and relaxation of
residual muscle and the interaction of the residual limb, liner, and the socket.

Angle Sensor

Strain Gauge

Battery

Control 

Circuit

IMU1

Gearbox

Ball Screw

Motor

IMU2

(a)

(b)

Prosthesis

Socket

(1)

(2) (3)

(4)

Capacitive 

Sensors

Figure 1. The designed robotic transtibial prosthesis and wearing diagram. (a) The designed robotic
transtibial prosthesis includes the mechanical, sensing, and actuation components. (b) The wearing

diagram. Four capacitive sensors (labeled by 1, 2, 3, and 4) are placed on the residual limb.
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Capacitive Sensor Design

Capacitive signal measurement
In this study, capacitive sensing method is used to measure the lower-limb deformations during human
walking. The calculation formula of capacitive signal is as follows:

C ¼ εs
d
, (1)

where the ε is the dielectric constant of the dielectric layer, and the s and d are the relative area of the two
electrodes and the distance between the two electrodes, respectively. The capacitor is attached to the
surface of the limbs.When people walk, themuscles of the limbs will be in contraction and relaxation. For
the prothesis wearer, there is the interaction among the residual limb, liner, and the socket. Both of these
will lead to the changes in the distance between the two electrodes or/and the relative area of the two
electrodes, and finally, cause the changes in the capacitive signal.

Capacitive sensing system is used to record the change of capacitance signal, mainly including the
front end (the capacitor) and the back end (the signal processing circuit). In the measurement of
capacitance signal, the basic principle is to record the charging and discharging time and then calculate
the capacitance value, as shown in Figure 2. In the measurement circuit, the capacitor C is in series with
the resistorR.When the square wave signal is applied in the circuit, it will charge the capacitor at the rising
edge to the highest voltage Vs. At the falling edge, the capacitor starts to discharge, and the voltage of the
capacitor can be formulated as follows:

Vt ¼ Vs�e
�t
RC: (2)

When the capacitor voltageV t ¼ 0:37Vs, the corresponding discharge time T ¼ RC. The discharge time
is proportional to the capacitance value, so the corresponding capacitance value can be obtained by
recording the discharge time. Themeasurement circuit also contains a reference capacitor (its value isCr).
When measuring capacitive signal, the ratio of the capacitance value to be measured to the reference
capacitance value can be calculated according to the time, and then the capacitance value to be measured
can be calculated. The charge–discharge time ratio is recorded by time-to-digital converter (TDC)module
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Figure 2. The capacitive signal measurement system. (a) The measurement circuit of capacitive signal
and (b) The measurement principle of capacitive signal.
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with an accuracy of 21 bit and a range of 1
8Cr–8Cr. The capacitance value of the reference capacitor is

100 pF in this study, and the measurement range of this capacitor signal measurement circuit is 12.5
pF–800 pF. The signal sampling frequency is 100 Hz.

Capacitive sensor fabrication
In this study, we used the copper electrodes to form capacitors with Ecoflex (Aliphatic Aromatic
Copolyesters). This capacitor couldwithstand stretching, bending, and other deformations. This capacitor
was composed of two copper electrodes and the dielectric layer (Ecoflex) between the two electrodes.
Besides, the entire capacitor waswrapped in Ecoflex.When peoplewore this capacitive sensor tomeasure
the capacitive signals, the copper electrodes of the capacitor were not in directly contact with the skin.
Thus, the noncontact measurement of muscle deformation could be realized.

The fabrication process of capacitor are shown in Figure 3. First, onemoldwasmade by 3Dprinting, as
shown in Figure 3a. Then, the Ecoflex was poured into the mold, as shown in Figure 3b. When the
EcoFlex was not cured, one copper electrode (thickness: 50 μm) was put on the Ecoflex, as shown in
Figure 3c. Next, the EcoFlex and electrode needed to be cured at 120–140°C for about 5 min, as shown in
Figure 3d. Then, we coated the cured EcoFlex and electrode with a new Ecoflex layer (thickness: 50 μm),
as shown in Figure 3e. The next step was curing and demolding. After this, half of the capacitor was
finished, as shown in Figure 3f,g.We could get the two-halves of the capacitor by repeating the fabrication
process (from Figure 3a to e). By bonding the two-halves structures (as shown in Figure 3h and then
curing and removing the mold (as shown in Figure 3i), we could get an entire capacitor. The finished
capacitor is shown in Figure 3j. The radius and thickness of fabricated capacitor are approximately 1 cm
and 2mm, respectively. Each copper electrode is about 1.2 to 1.5 cm in length, 1.2 to 1.5 cm in width, and
about 0.05 mm in thickness.

Figure 3. The fabrication process of capacitor. (a) printing 3D molds, (b) pouring Ecoflex, (c) placing
copper electrodes, (d) curing, (e) spin-coating Ecoflex, (f) curing, (g) removing the mold, (h) bonding the

two-halves structures, (i) curing and removing the mold, and (j) capacitor picture.
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Experimental Protocol

Two transtibial amputees joined in this study as subjects and their detailed information are listed in
Table 1. Each subject wore his customized prosthetic socket and liner, and the socket was connected with
the robotic transtibial prosthesis by an adapter. Both the two subjects have provided written informed
consent, and the experiments have been approved by the Local Ethics Committee of Peking University.

The research tasks were comprised of two experiments. The first experiment was to conduct the offline
estimation of continuous gait phase at each subject’ different walking speeds (speed experiment). In the
speed experiment, subjects walked on the treadmill at their self-selected three speeds (slow, normal, and
fast). The second experiment was to conduct the offline estimation of continuous gait phase on different
ramps (ramp experiment). In the ramp experiment, subjects walked on the treadmill, and the treadmill
inclination varied over five different angles (10°, 5°, 0°,�5° and�10°). Subjects walked on the inclined
treadmill at their normal speed. The offline estimation of continuous gait phase was conducted based on
the collected capacitive signals and strain signals of prosthetic foot during subjects’ walking at different
speeds and on different ramps.

Offline Estimation of Continuous Gait Phase

The framework of offline estimation of continuous gait phase is shown in Figure 4,which consist of (1) the
AOs and (2) the gait event detection. The AOs have been widely used in cyclical movements (Ronsse
et al., 2011). Some studies have conducted the continuous gait phase estimation based on the AOs (Yan
et al., 2017; Zheng et al., 2017). In this study, the inputs of the AOs were the capacitive sensing signals of
residual limb. The collected raw capacitive sensing signals contained drifts and noises: low-frequency
drifts (lower than 0.1 Hz), random impulses, and high-frequency noises (Zheng et al., 2014). In this study,
we designed three filters in series (a median filter, a first-order DC-notch filter, and a second-order 10-Hz
low-pass Butterworth filter) to regulate the raw capacitive sensing signals by removing drifts and noises.
The gait event detection was conducted based on the strain signals of prosthetic foot by the threshold rule.
In this study, the detected heel strike was the start point of each gait cycle and it was also corresponding to
0 rad gait phase.

Table 1. The information of two transtibial amputation subjects

Gender Age Weight (kg) Height (cm)
Years

post-amputation The amputation side
Residual limb
length ratio (%)

Subject 1 Male 31 72 171 10 Right 33
Subject 2 Male 54 70 170 18 Left 40

Capacitive Signal C(t)

Gait Event Detection
Gait Phase 

Calculation

Φ(t)

φ1(t)

-

...

+
αN, φN(t)F(t)

Strain Signal 

C(t)
~

Adaptive Oscillators

~

Figure 4. The framework of gait phase estimation (adapted from Gams et al., 2009; Yan et al., 2017; Xu
et al., 2020b). The capacitive sensing signals are input to the AOs. The strain signals of prosthetic foot are

used to detect gait events.
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In Figure 4, the inputs of the AOs are capacitive sensing signals (C tð Þ), which could be decomposed

into different harmonics. The outputs are the estimated signals (eC tð Þ). The error F tð Þ
(F tð Þ ¼ C tð Þ � eC tð Þ) between the actual signal (input) and the estimated signal (output) drove the

evolution of the oscillator (Yan et al., 2017). The eC tð Þ could be denoted as follow:

~C tð Þ ¼ α0 tð Þ þ
XN
i¼1

αi tð Þ sin φi tð Þð Þ, (3)

where the i denoted the ith harmonic (i ¼ 1,2,…,N and N ¼ 25 in this study). The other variables and
their principle formulations were as follows:

_φi tð Þ ¼ ω tð Þ � iþ λF tð Þcos φi tð Þð Þ, (4)

_ω tð Þ ¼ γF tð Þcos φ1 tð Þð Þ, (5)

_αi tð Þ ¼ ηF tð Þsin φi tð Þð Þ, (6)

_α0 tð Þ ¼ ηF tð Þ, (7)

where λ, γ and η were the learning rates corresponding to phase (φi tð Þ), frequency (ω tð Þ), and amplitude
(αi tð Þ), respectively.

The lower-limb locomotion could be viewed as periodic or quasi-periodic. Therefore, we defined the
continuous gait phase corresponding to the interval [0, 2π) rad. The acquired phase φ1 tð Þ (in Figure 4)
based on the AOs was normalized into the interval [0, 2π), and the normalized phase was denoted as φn tð Þ
(in Figure 4):

φn tð Þ ¼ mod φ1 tð Þ,2πð Þ: (8)

In this study, we defined the heel strike as the start point (0 rad) of one gait cycle. The 0-rad phase should
be matched with each heel strike at timing tk in gait cycles, so there might exist phase error ~e tkð Þ between
the estimated phase φn tð Þ at tk and 0 rad. The final estimated gait phase ~Φ tð Þ could be denoted as follow:

~Φ tð Þ ¼ mod φn tð Þ � ~e tkð Þ, 2πð Þ: (9)

More details about the preprocess of ~e tkð Þ could be seen in the study by Yan et al., 2017). As was known
that the gait phase increases forward within each gait cycle, we could revise the current estimated gait
phase by comparing it with the last estimated gait phase(s) to make sure the monotonic increasing feature
of gait phase forward in each gait cycle.

Performance Evaluation

The variance ratio (VR) could be used to analyze the repeatability of gait signals waveforms over gait
cycles (Erni and Colombo, 1998; Hwang et al., 2003; Godiyal et al., 2018). VRwas formulated as follows
(Hershler and Milner, 1978):
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VR ¼
1
n

Pn
i ¼ 1

1
N�1

PN
j ¼ 1 Xij�Xi

� �2� �
1

nN�1

Pn
i ¼ 1

PN
j ¼ 1 Xij�X

� �2 , (10)

where N denoted the number of gait cycles in this study. For each gait cycle, signals were normalized by
interpolation and had a fixed length (n, nwas 1000 in this study). TheX ij was the ith capacitive signal value
in jth gait cycle. The X i was themean of signals at ith data point overN gait cycles, and theX was the mean
of X i over the gait cycle. The X i and X were formulated as

Xi ¼ 1
N

XN
j ¼ 1

Xij, (11)

X ¼ 1
n

Xn
i ¼ 1

Xi, (12)

The VR could measure the degree of dispersion of data. The smaller the VR was, the better the signal
repeatability was. If the VR < 0.3, it represented a good signal repeatability (Nilsson and Thorstensson,
1987).

To evaluate the estimation performance, the root-mean-square error θrms between the estimated phase
and the ground truth was used, which could be formulated as follows:

θrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

~Φ ið Þ � Φ ið Þ� �2
M

vuut , (13)

whereM denoted the sample number in one gait cycle, the ~Φ ið Þ denoted the estimated ith gait phase and
theΦ ið Þwas the actual ith gait phase in one gait cycle. Besides, we also introduced the ratio (R) of the root-
mean-square error (θrms) in one gait cycle. The R could be calculated as follows:

R ¼ θrms
2π

�100%, (14)

where 2π was the gait phase length of one gait cycle.

Experimental Results

Capacitive Signal Repeatability

The capacitive sensing system recorded the muscles’ deformation of residual limbs during walking. We
conducted capacitive signal normalization process to evaluate signal’s repeatability. Taking the level
ground walking at normal speed as an example, the four channels’ filtered capacitive sensing signals were
normalized into one gait cycle, as shown in Figure 5(a)–(d). The black solid curves denoted the mean and
the two red solid curves denoted meanþ standard deviation and mean – standard deviation of capacitive
sensing signals. The areas between the two red solid curves reflected the signals’ differences.

We usedVR to further evaluate the repeatability, and the results are shown in Tables 2 and 3. For subject
1, the maximum and minimum of VR were 0.003 and 0.151 (in Table 2), respectively. For subject 2, the
maximum and minimum of VR were 0.005 and 0.090 (in Table 3), respectively.
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Figure 5. The normalized capacitive sensing signals. (a)–(d) represent 4 channels’ capacitive sensing
signals. The black solid curves denote the mean of capacitive sensing signals of 50 gait cycles. The red
solid lines denote the mean � standard deviation. The gait cycle starts at the heel strike and ends at the
next heel strike, corresponding to the gait percent from 0 to 100% (shown in the horizontal axis). Data

come from subject 1 walking at normal speed.

Table 2. The VR of four channels’ capacitive signals (subject 1)

C1 C2 C3 C4

Speed Slow 0.043 0.007 0.042 0.006
Normal 0.035 0.007 0.027 0.005
Fast 0.043 0.007 0.034 0.004

Ramp 10° 0.034 0.025 0.151 0.007
5° 0.047 0.005 0.039 0.003
0° 0.035 0.007 0.027 0.005

�5° 0.021 0.006 0.022 0.004
�10° 0.080 0.021 0.023 0.008

Note. C1, C2, C3, and C4 denote the 4 channels’ capacitive sensing signals.

Table 3. The VR of four channels’ capacitive signals (subject 2)

C1 C2 C3 C4

Speed Slow 0.013 0.014 0.044 0.075
Normal 0.013 0.014 0.044 0.075
Fast 0.008 0.008 0.010 0.044

Ramp 10° 0.014 0.013 0.018 0.080
5° 0.090 0.006 0.012 0.034
0° 0.011 0.014 0.013 0.030

�5° 0.005 0.005 0.008 0.019
�10° 0.007 0.010 0.015 0.050

Note. C1, C2, C3, and C4 denote the 4 channels’ capacitive sensing signals.
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Gait Event Detection

The strain signals of prosthetic foot during level-ground walking at normal speed is shown in Figure 6.
The strain signals had different characteristics in different gait phases. In the stance phase, there were
interactions between prosthetic foot and the ground. Therefore, the strain signals showed obvious
changes. In the swing phase, therewere no interactions between prosthetic foot and the ground. Therefore,
the strain signals showed few changes. By analyzing the characteristics of strain signals, we could realize
the gait events (heel strike and toe off) detection.

Offline Estimation of Continuous Gait Phase

The AOs have three learning rate parameters λ, γ, and η (as shown in equations (4), (5), and (6)),
corresponding to the phase (φi tð Þ), frequency (ω tð Þ), and amplitude (αi tð Þ), respectively. In this study, they
were set as 0.15, 0.50, and 0.60, respectively. The values of the three parameters were kept constant for
different subjects waking at different walking speeds and on different ramps. Based on the capacitive
sensing signals and the strain signals, the continuous gait phase estimation result is shown in Figure 7.

The root-mean-square error (θrms) between the estimation result and the ground truth is shown in
Figures 8 and 9. For subject 1, the root-mean-square errors corresponding to different speeds and ramps
were 0.054 rad, 0.048 rad, 0.037 rad, 0.062 rad, 0.046 rad, 0.048 rad, 0.044 rad and 0.053 rad,
respectively. The maximum was 0.062 rad (corresponding to 10° ramp), and the minimum was
0.037 rad (corresponding to fast speed). For subject 2, the root-mean-square errors were 0.084 rad,
0.060 rad, 0.073 rad, 0.098 rad, 0.102 rad, 0.060 rad, 0.092 rad and 0.081 rad. The maximum was

0 5 10 15

Time (s)
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S
tr
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Strain Heel Strike Toe Off

Figure 6. The strain signals of prosthetic foot at normal walking speed (subject 1). The red solid curve
denotes the strain signal. The black dashed and solid lines denote the gait events: heel strike and toe off,

respectively.
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Figure 7.The estimated continuous gait phase and the ground truth. The black solid denotes the estimated
gait phase, and the red dashed denotes the ground truth.
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0.102 rad (corresponding to 5° ramp), and the minimum was 0.060 rad (corresponding to normal speed
and 0° ramp).

The average and standard deviation of root-mean-square errors and ratios are listed in Table 4. The
errors were 0.069 � 0.021 rad, 0.054 � 0.008 rad, 0.055 � 0.025 rad, 0.080 � 0.025 rad,
0.074 � 0.039 rad, 0.054 � 0.008 rad, 0.068 � 0.034 rad and 0.067 � 0.019 rad, corresponding to
walking at different speeds and on different ramps, as shown in Table 4. The maximum error and its
corresponding ratio were 0.080 rad and 1.27% (10° ramp). Theminimum error and its corresponding ratio
were 0.054 rad and 0.86% (normal speed and 0° ramp).
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Figure 8. The root-mean-square error between the estimation result and the ground truth (subject 1).
The numbers on the top of bars represent the error values.
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Figure 9. The root-mean-square error between the estimation result and the ground truth (subject 2).
The numbers on the top of bars represent the error values.

Table 4. The root-mean-square error (θrms) and ratio (R) (mean � Std) of continuous gait phase estimation

θrms (rad) R (%)

Speed Slow 0.069 � 0.021 1.09 � 0.34
Normal 0.054 � 0.008 0.86 � 0.13
Fast 0.055 � 0.025 0.88 � 0.40

Ramp 10° 0.080 � 0.025 1.27 � 0.40
5° 0.074 � 0.039 1.18 � 0.63
0° 0.054 � 0.008 0.86 � 0.13

�5° 0.068 � 0.034 1.09 � 0.54
�10° 0.067 � 0.019 1.07 � 0.31
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Discussion

The finite statemachine controlmethod is to set different control strategies and parameters in different gait
states. This relies on the accurate detection of several discrete gait events (heel strike, toe off, and so on) to
trigger the transition of control strategy from one gait state to another gait state, which can decrease the
smoothness and robustness of robot’s locomotion (Villarreal et al., 2017; Yan et al., 2017). One alternative
is control based on the estimation of continuous gait phase. This controlmethod is not limited to the states’
transitions to change control strategy in each gait cycle, which is helpful to improve the smoothness and
robustness of robot’s motion and then enhance the assist functions in people’s activities. Therefore, it is
important to realize an accurate estimation of continuous gait phase to control lower-limbwearable robot.
Hereby, this study has focused on the offline adaptive estimation of continuous gait phase of robotic
transtibial prosthesis.

The main contribution of this study is that we propose a capacitive sensing method to record the
muscle’s deformation to realize the adaptive estimation of continuous gait phase during different steady-
state motions. To achieve this goal, we have designed the capacitive sensors and the framework of
continuous gait phase estimation based on gait event detection and AOs.

Capacitive Sensing Signals

There may exist stride-to-stride variation for lower-limb amputees, even in the steady walking mode,
which can cause sensing signal variation. To estimate the gait phase, the input sensing signal is required to
be quasi-periodic with the gait cycles. Noncontact capacitive sensing method has quite small signal
variation, good signal repeatability, and periodicity in lower-limb locomotion, which has been validated
in a previous study (Zheng et al., 2014). The capacitive sensors are attached to the residual limb, and there
is a liner placed over them, after which the socket is fitted. The capacitive sensors can record the
deformation which is caused by the contraction and relaxation of residual muscle and the interaction
of the residual limb, liner, and the socket. For the two subjects, the maximum of VR is smaller than 0.3,
which means the capacitive sensing signals have good repeatability and periodicity. This provides
benefits for the estimation of continuous gait phase. The strain signals of prosthetic have different
characteristics in different gait phases. By analyzing the characteristics of strain signal, we could realize
the accurate gait events (heel strike and toe off) detection. The detected heel strike is the start of one gait
cycle and corresponds to the reset 0 rad.

Offline Estimation of Continuous Gait Phase

We have conducted the offline estimation of continuous gait phase based on the AOs. The initial values of
parameters in AOs are as follows. The initial values of ϕ1 and ϕi (i ¼ 2,3,…,25) are 0.5π and
1, respectively. The initial value of ω is 0.8*2π (i.e., 1.6π). The initial values of α0 and αi
(i ¼ 1,2,…,25) are 0 and 1, respectively. The AOs adapt over time based on these parameters. The
AOs have three learning rate parameters λ, γ, and η (as shown in equations (4), (5), and (6)) that are kept
constant for different subjects waking at different walking speeds and on different ramps. This eases
parameter tuning difficulty and reduces the dependence on the experimenters. In this study, our analysis is
limited to once the AOs have converged. Actually, the AOs do not perform good linear characteristics and
the estimation errors are big prior to convergence and become small over time. The convergence of AOs
takes about three to five gait cycles with these learning parameters. In this study, each trial takes about
3min (walking lasts about 3min), and the amount of each trial is about 100 gait cycles used in the analysis.
The maximum and minimum errors (and ratios) of offline estimation of continuous gait phase are
0.080 rad (1.27%) and 0.054 rad (0.86%) corresponding to slow and fast speeds, respectively. The results
of this study are comparable with the study by Zheng et al. (2017), which has conducted the estimation of
continuous gait phase based on the AOs on healthy people. Our previous study has conducted the
estimation based on the AOs using inertial sensing signals (Xu et al., 2020b). Compared with this study,
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there is no significant difference (P> 0:05) in estimation performance based on the capacitive sensing
signals and inertial sensing signals.

Thatte et al. (2019) have conducted the continuous gait phase estimation based on the extended
Kalman filter method, and the root-mean-square phase error (ratio) is more than 2.0%. Our study based on
AOs can achieve less error, and the biggest error ratio is 1.27% � 0.40%. Seo et al. (2019) have also
conducted a similar study. Though their study has not given specific numerical results, their continuous
gait phase estimation curve shows not good linear characteristics (Seo et al., 2019). Our study has
illustrated good linear characteristics of the estimated continuous gait phase, as shown in Figure 7.
Compared with the extended Kalman filter-based and RNN-based methods (Thatte et al., 2019; Seo et al.,
2019), this study has achieved better estimation performances.

Impacts of Estimation Errors

The lower-limb locomotion can be viewed as periodic or quasi-periodic, but it is not absolutely periodic.
Though the capacitive sensing signals have good repeatability and periodicity (VR < 0.3), there still exist
signals’ differences among different gait cycles. The signals’ differences will cause errors between the
estimated gait phase and the ground truth, and these errors will cause some different impacts on prosthesis
control (Villarreal et al., 2017; Rezazadeh et al., 2019; Embry and Gregg, 2021). If some errors are very
small, we can think they may cause small impacts on prosthesis wearers’ walking. Sometimes, some
errors may cause few impacts. For example, some errors occurring at the prosthetic swing stage may not
decline the prosthetic assist functions, since the goal of prosthesis control during the swing stage is to reset
prosthesis for the next heel strike and the prosthesis has no interaction with the ground in the swing stage.
On the other hand, some errors may cause big impacts on prosthesis wearers’walking, for example, these
errors that are big or occur at some gait stage (e.g., the whole stance stage). We need to pay more attention
to these errors. In short, the impacts caused by errors vary. Therefore, errors need to be carefully dealt with
by taking multifactors (such as the error value (big or small), the stage that error occurs at, the designed
control strategies, and so on) into consideration when continuous gait phase estimation is used in
prosthesis control.

Limitations and Future work

The continuous gait phase estimation still needs to be further developed. More amputees need to be
recruited to analyze the effectiveness and adaptability of the continuous gait phase estimation. Besides, it
is practical to conduct the study on the nonsteady-state motion in future work. There are few studies on
nonsteady-state motion up to now. The inherent synchronization properties of the AOs have provided
advantages in continuous gait phase estimation of steady-state motion, and it has shown some adaptations
to different steady-state motions. Whether the AOs work and how it performs on nonsteady-state motion
still need to be further studied. In addition, it is also a way to adopt another method or design a new
algorithm to realize the estimation of nonsteady-state motion.

The current continuous gait phase estimation is offline in this study. We need to embed the continuous
gait phase estimation algorithm into the prosthetic control circuit to realize the online estimation, and then
combine the online estimation with prosthesis control to improve the assist performance. The computa-
tion cost needs to be considered to meet the online requirement in the next work. We should choose a
strong computing hardware to embed the online algorithm to execute online computation, and the
computation must be fast and the computing time should less than the sample interval, that is, the
computation must be finished before the arrival of a new sample. In our study, the sample frequency is
100 Hz and the sampling interval are 10 ms. This means the online computation must be finished within
10 ms. If so, the delay time caused by computing will cause little influence since it accounts for less than
1.0% of one stride time (the average stride time is about 1.2 to 1.3 s in this study). Besides, the mapping
relationships between the joint torque (joint angle, angular velocity, etc.) and the continuous gait phase
need to be well-built. According to the online estimation result, a future control algorithmwill instruct the
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robotic prosthesis to make a response (for example, driving the motor to output specific joint torque
continuously). In addition, errors need to be carefully dealt with in future work, and the impacts caused by
errors vary and need to be further studied when continuous gait phase estimation is used in prosthesis
control.

Conclusion

In this study, we have conducted the offline adaptive estimation of continuous gait phase in robotic
transtibial prosthesis based on the residual muscles’ capacitive signals. The offline estimation experi-
ments of continuous gait phase are performed at different speeds (slow, normal, and fast) and on different
ramps (10°, 5°, 0°, �5°, and �10°). Based on the strain signals of the prosthetic foot and the capacitive
signals of the residual limb, the maximum and minimum estimation errors are 0.80 rad and 0.054 rad (the
corresponding ratios in 1 gait cycle are 1.27 and 0.86%), respectively. The results indicate that our
proposed method is an effective method to estimate the continuous gait phase and it has adapted to
different walking speeds, ramps, and subjects. The estimation of continuous gait phase provides a basis
for the continuous control of robotic transtibial prosthesis.
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