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Abstract. In this paper we construct examples of commutative rings of difference operators with
matrix coefficients from representation theory of quantum groups, generalizing the results of our
previous paper [ES] to thg-deformed case. A generalized Baker—Akhiezer functiois realized

as a matrix character of a Verma module and is a common eigenfunction for a commutative ring of
difference operators.

In particular, we obtain the following result in Macdonald theory: at integer values of the Mac-
donald parametek, there exist difference operators commuting with Macdonald operators which are
not polynomials of Macdonald operators. This result generalizes an analogous result of Chalyh and
Veselov for the casg = 1, to arbitraryg. As a by-product, we prove a generalized Weyl character
formula for Macdonald polynomials (= Conjecture 8.2 from [FV]), the duality for $héunction,
and the existence of shift operators.
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1. Introduction

Let N be a positive integer. Lemév be the algebra over the field ¢) generated
by the field of rational function€(q, X1,...,Xx) and commuting operators
T, ... T, with commutation relations

Tiof(q, X1,..., Xiy...,. Xn) = flg, X1,...,9Xi,...,XN) o T;.

This algebra is called the algebra @difference operators itV variables with
rational coefficients. Elements of this algebra are called difference operators.
LetV be a finite-dimensional vector space oZemtroduce the algeb@)’ (V')
of difference operators with matrix coefficients

N _ N
9, (V)=9, ® EndV).

Letg be a simple finite-dimensional Lie algebra oeof rankr, and let4,g be
the corresponding quantum group. In [EK], to any finite dimensional representation
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U ofU,g was assigned a family of commuting difference operatprparametrized
by Weyl group invariant trigonometric polynomiaison the Cartan subalgebta
of g. These operators are constructed as follows.

Let M) be the Verma module ové¥,g with highest weight\ and highest
weight vector,. Let U[0] be the zero weight subspaceldf For anyu € UJ0],
define the intertwining operatab}: M) — M) ® U by the condition®{v) =
vy ® u+ > w; ® u;, Wherew; are homogeneous vectors of weights< A. This
operator is defined for generic For any weight, let Pro]MAM: M, — M, bethe

homogeneous projector to the subspagg] of weightv. Let ¢y (Xy, ..., X,)
be the function with values in Eftl[0]) such that for any, € U[0]

PA(X1, o, Xp)u =Y XJ o XE Ty (PTO]y 1,00@% © PYOJ 37, )-
7

Let P be the weight lattice ap.

PROPOSITION 1.1. [EKFor any Weyl group invariant functiof(A) on* of the
form

c(N) = Z cuqz()\:lt)’ Cu € C(q), (1.1)
ner

there exists a unique difference operator € ©¢(U[0]) such that

chz)\ = C(>‘ + p)@z)\-

For any rootx of g, letk, = max{n|U[na] # 0}, whereU[u] is the subspace
of weightx in U. Let R(U) be the ring of functions op* of the form (1.1) such
that for any positive root of g

no no
c()\—7> —c()\—i—?), n=1...,kqa,

whenever(\,«) = 0. The main result of this paper is the following theorem,
proved in Chapter 4 of this paper.

THEOREM 1.2.There exists an injective homomorphigniz(U) — D7 (U[0])
such that for any Weyl group invariant elemerg R one ha<(c) = D.. For any
c € R(U), the operatok(c) is defined by the equation

£(c)pn = c(A + p)a.

We will denoteg(c) by D, for any¢ € R.
In the case whep = sy (type Ay _1), we can choose representatigrio be
SkNY whereV is the fundamental representation, in which case the Spéle
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is 1-dimensional. Then the operatdps for symmetric functiong are conjugate
to Macdonald operators, corresponding te ¢**1. Namely, if¢; are elementary
symmetric functions, thefiD,, } are simultaneously conjugate to

M= >

ICL,..,N,|I|=li€l,j¢I

qk+lXi _ q—k—l
X, - X,

7

(in suitable coordinates). In this case, the numbgrare all equal td; so we will
denote the algebrB(U) by R;.. From Theorem 1.2 we get (See Chapter 5):

THEOREM 1.3.For any positive integek, there exists an injective homomorphism
&Ry — @év such thatt(¢;) = M;, 1 = 1,..., N. The functiony, is a common
eigenfunction of the operato€sc), c € Ry, with eigenvalue(\ + p).

Note that Theorem 1.3 is a special property of Macdonald’s operators at integer
values ofk. If £ is not an integer, one can show that the centralizevigf . . . , M
in :Dév reduces to the polynomial algebra b4, ..., My. We call this special
property at integer values @f ‘algebraic integrability of Macdonald operators’,
by analogy with the case differential operators which was treated in [CV1, CV2,
VSC, ES]. In this sense, the results of this paper are precisgiyedormation of
the results of [ES].

As a by-product, we obtain several results in Macdonald’s theory. Namely, we
prove the partial Weyl group symmetry of thefunction, a generalized Weyl
character formula for Macdonald’s polynomials (which coincides with Conjecture
8.2 in [FV]), an explicit formula for the)-function in terms of shift operators, and
symmetry of thaj-function with respect to the interchange- .

The paper is organized as follows. In Section 2 we recall basic facts about
representations of quantum groups and intertwining operators. In Section 3 we
introduce the¥-function as matrix trace of an intertwining operator, and prove
its properties. In Section 4 we explain how to construct a commutative ring of
difference operators from the-function. In Section 5 we review some facts from
Macdonald theory for root system, and explain how to obtain them from our
construction. In Appendix we show how our technique works in the simplest
example.

2. Quantum groups and their representations

Notation. Letg be a simple (finite-dimensional) complex Lie algebra of ramkth
fixed diagonalizable Cartan matrix = (a;5),i,7 = 1,...,r, and letdy, ..., d,
be positive relatively prime integers such that the maBix= (b;;) = (d;ai;)
is symmetric. We denote its Cartan subalgebregbiet o; € b*,i = 1,...,r
denote simple roots be the corresponding root systeRr and R~ be the sets
of positive and negative roots, respectively.
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The invariant form(-, -) onp* is defined by(«;, ;) = d;a;;. LetAq, ... A, €
b* be fundamental weights, i.€A;, oj) = 6;5,4,7 = 1,...,r. Putp = Y711 A;.
Denote

Q=) 20,Q, =) Zia, P=>" 1z, P =Y 7ZA;

Forp,v e Pwewritep > vif p—v e Q.
LetW be the Weyl group of. The Weyl group generatogsact onh* by simple
root reflections

(v, 1)
<ai7 ai)

g

Si-p=p—2
We also introduce a shifted action of Weyl group by

wf - p=wp+p) —p-

Forw € W letl(w) denote the length of, i.e. the number of generators in a

reduced decompositian = s;;- , ..., -s;,.

Quantum groupsThe quantum grouf, g, associated to a simple Lie algelyas
a Hopf algebra ovet(q) with generator€s;, F;, K;, i = 1,...,r and relations:

K,K; = K,;K;, KEj=¢"E;K;, KFj=gq ""FK,

K;— K1
EiFj — FjE; = §jj———4—,
q; — g,
b [1—a;; ] g
S (F| T Y| BT B E =0, i#
k=0 L 44
1-ai; (1 g ]
DN R I T P
k=0 L g

whereg; = ¢% and we used notation

—n

n] n],! B _q"—q
lk]q_ma [n]g! = (g - [2g -, [n]g [n]q_m'

ComultiplicationA, antipodeS and counit in U,g are given by

AE)=E®1+K, ®E, AF)=FK '+1aF,
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S(Bi) = —K;'E,  S(F)=-FK;, S(K)=K;"
e(B) =e(F) =0, e(K;) =1

We define aC-algebra involutionw of 2/, g by
w(E;) = —F;, w(F;) = —E;, w(K;) = K; wlg) =q "

We have a decomposition of vector spatgs = U~ ® U° @ UT, whereld~
(resp.U™) is the subalgebra generated By (resp.E;), andi/° is generated by
KK ti=1..r

Verma modulesFor any\ € h* we can introduce Verma moduld, overif,g,
i.e.U~-free module with a single generator and relations

Bwy=0,  Kpwy =g,

Remark. Here and below we work over the field = C({¢%,a € C}). In this
setting,¢‘*) is a functiony* — F.
We have the decomposition

M)y = 69 M/\P‘ - ,U,],
MEQJ,_

of M, into direct sum of weight subspacks, |\ — u], where we say that a vector
v has weighiu € p* if

The restricted dual modulk/; is al{gg*-module with a lowest weight vector
v* , suchthatv* ,,v\) = 1. By definition we have

(gv*,v) = (v*,S(g)v), v €& M),v* € My.
Introduce a symmetric form’ on M, defined by

F(g1vx, g2v)) = (w(g1)v™ y, g2v1r), 91,92 € U_.

The weight subspaces are pairwise orthogonal with respect to this form. The restric-
tion of £ to weight subspace&/,_, is proportional to the quantum Shapovalov
form F, introduced in [CK]:

FM('? ) = Cuqio\“u)fu('a ')7

for some constanis,,.
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Fix a basisg! € U [u]. Let F, = (F,)ij,1,5 = 1,2,...,dimM[\ — p,
denote the matrix of the restriction of fori to M,[\ — u] with respect to the
basisg!vy of My[X — p]. A variation of the quantum determinant formula [CK]
asserts that

detf, =C [] I (1 _ q—2<a,A+p>+n(a,a>)Pa'(u—noc) |

a€eR+T neN

where Par is the generalized Kostant partition function (@rsla constant, depend-
ing on the choice of basig'.

This determinant is a linear combination of tergm$»-*) wherey’s belong to
a finite subsef. C Q, with some coefficients front(¢). Motivated by this fact,
we introduce:

DEFINITION. Expressions of the forriy -, auq_2</‘v/\>, a, € C(g), will be
calledg-polynomials with suppott and coefficients,,.

Verma modules are reducible when the foffris degenerate, i.e. dé}, = 0
for somey. This happens wheh satisfies one of the Kac-Kazhdan equations:

(a,)\—i—p):%(a,a}, n=12... (2.1)

For X\ generic from Kac-Kazhdan hyperplandg, contains a unique submodule
M}, isomorphic toM)_ 4.

Intertwining operators. Let U be an irreducible finite-dimensiona,g-module
with non-trivial zero weight subspadé[0]. Foru € U let ®§: My — M) ® U
be an intertwining operator such thgt — vy ® u+ higher order terms, where
‘higher order terms’ mean terms of the foury_,, ® w,,, u > 0.

If M) is irreducible, thend! exists and is unique for any € U|[0]. Indeed,
we have a uniqué/*-intertwiner Q: M} — U, such thatQuv*, = wu. Since
Hom(M;,U) = My* @ U = M, ® U, it corresponds to a singular (i.&/(*-
invariant) vectorp € M, ® U. We now construc®} by putting®jv, = ¢ and
extending®} to the wholeM), by the intertwining property.

For our purposes we need an explicit form for that singular vector.

PROPOSITION 2.1For any (homogeneous) badig!'} of i/~

¢ = Z (Z (F}:l)ij gllftv)\ ® w(g;)u) , (2.2)
1

()

is a singular vector inlVf, ® U.
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Note that sincé/ has a highest weight, the summation is over the finite set of
w's such thatU [p] # 0.

Proof. We check that the corresponding elemént Hom(My, U) defined as
the composition/; — M3 ® M, ® U — U is ald " -intertwiner. We have:

® (wlghv*y)) =D (Z (£:7)

(w(gn)v™y, gé‘mw(g?)U)
1% ¥

v

=30 (R7),, elahvt s gioa)etap

-3 (Z (#7), <Fv>m') “Aop

= Z dinw(g;)u = w(gp)u. O
J

Recallthatin the classical case (iye= 1) matrix elements of the inverse matrix
Fl;1 were rational functions ok with at most simple poles on the Kac-Kazhdan
hyperplanes given by (2.1). (see [ES]). A similar argument, also involving Jantzen
filtration, proves that the same is true in the quantum case. Therefore, expression
(2.2) for the singular vectap is a ratio of twog-polynomials, with at most simple
singularities on a finite collection of Kac-Kazhdan hyperplanes.

If we multiply theg-rational expression (2.2) by the least common denominator
x(A), we willgetawell-defined for alk’s formula for a singular vectat € M)\QU.

We are now going to show that in fact the least common denominator may only
contain factors

X%(A) —1_ q—Z(a,)\-I-p)-l-n(oe,a)’
corresponding te, « such that/[na] # 0. Indeed, suppose thg{\) contained a
factorx&(A), butU[na] = 0.

ConsiderX generic from the hyperplangy, A + p) = 5(a, ). Then M)
contains a unique maximal submodul! = M, ., generated by the singular
Vectoruvy_,,. Since the first termy(A\)v, ® w in the expression fop turns into
zero on our hyperplane, the singular vector must have the form

¢ = vr_nao @ @ + higher order terms

The intertwining property implies that € U[na], and by assumption = 0.
Therefore g is zero for\ generic from the hyperplane, and by Bezout theorem is
divisible by x&. This shows thaf()\) was not the least common denominator —
contradiction.
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Denotek, = max{n|U[na] # 0},

ng{y|yz Z maa, 0<m, <k, forall a€R+}.

a€Rt
We conclude this section with the following:
PROPOSITION 2.2If U is an irreducible finite-dimensionak,g-module with

highest weight, the singular vectop € M, ®U, given by(2.2), can be represented
as

6= 2SN Gioa ® g
IIQGI{FIlﬁ%:l(1___q72ﬁuk+p)+nxa¢@)v

whereg, € U, u; € U, andg-polynomialsS;(\) have supports, contained ity.

Proof. We already proved that the least common denominator for the expression
for ¢ may only contain factorg(A),n = 1,..., kq.

The statement about the support of the polynonfiala) follows from the fact
that the support of the numerator must lie within the convex hull of the support of
the denominator, which in this case is exadily O

3. Matrix Trace, the ¥-function and its properties

We now fix an irreduciblé/,g-moduleU with highest weigh® and nontrivial zero
weight subspace. We use the notation

ko = max{n|U[na] # 0}, O = Z ko -a€Qy,
aERT

o
XE(A) = 1 — g Hertortntea) ) = T T xe0),

acRt n=1

ng{uEQ+|u: Z maa, 0<m, <k, forall aER*}.

acRT

As in [ES], define a new intertwining operator
DY = y(N)®Y: My — My, @ U.

From Proposition 2.2 it follows thab$ is well-defined even when belongs to
Kac-Kazhdan hyperplanes, whebg did not always exist.
Introduce an En@/[0])-valued function¥ (A, z), A, z € h*, by

YA, z)u=Tr |MA(<i>1)fex).
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PROPOSITION 3.1The function¥ (A, z) defined above has the form

U (A, z) = em) Zq ApwAte) p P,(x),
neLyg

whereP,(z) € EndU|0]) and Pg(z) is invertible for generic.
If (o, A+ p) = %(a, ) for somex € R*,n =1,2,...,k, then

U\, z) = ¥(A —na,z)Bpa(A). (3.1)
for some (possibly infinite) sum

= > ¢%NBY,, Bl € EndU0).
MEQ+

(In fact, the matrix elements @f,,(\)’s are ratios ofg-polynomials.)

Remark. If we takeU to be a trivial module, then th&-function becomes the
usual character of the Verma module. Therefore, we can regaf-thaction as
a generalized (matrix-valued) character of the Verma modifje

Proof of Proposition 3.1

Tr |y (@he”) =€) 3 e B, (A,

#EQ+

where ‘partial tracesB,(\) € EndU][0]), corresponding to weight subspaces
M\ — p], are defined by

B,(\u =Tr (ProjMA[,\fu] 0o ®Yo ProjMA[AfM) .

By Proposition 2.23,,(\) are EndU [0])-valuedg-polynomials with suppotk. If
we letz — oo in such a way thafw, z) — +o00, « € R (this just means that we
are keeping only the highest weight terms of the series), we will get asymptotically

T\, z) ~eMy(N) - 1.

ThereforePy (z) ~ 1, andPg(z) is invertible for generie:.

We now prove the second property.

If \is generic from hyperplangy, A+ p) = 5(a, a), thenM, is reducible and
contains a unique submoduMAl generated by singular vectoy_,,,. It is clear
that for such there are no ordgr terms in®{v, unless: > na. In other words,
dY% mapsM, into M} ® U, and

PYvy = vy_na ® u' + higher order terms
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PYUN_na = Ur_na @ u” + higher order terms
Clearly, bothu’ andw” depend linearly om. More precisely,
u" = Bha(\)u. (3.3)
Therefore we have
X(A = na) @[y 0 = 8%,
Taking the traces of the operators from the last equation and using (3.3), we get
XA —na)¥(\ z) = ¥(A —na,z)Bpa(A).

Sincex (A — na) is invertible in the ‘Laurent series’ completion 6fP], we can

introduce
Bra
BnOé(A) = ( _ na Z q u’
X REQ,
and (3.1) follows. Proposition 3.1 is proved. O

We prove that property (3.1) of the-function determines it uniquely up to multi-
plication by a factor, depending only an

PROPOSITION 3.2Suppose we have &nd U [0])-valued function

\P,()\7 x) = e<)‘7$> Z q_2<u7A> Qu(x)7

neL

whereL C Q. andQ,(z) € EndU[0]), satisfying conditiorn(3.1). Then theL
contains at least one weigpt> ©.
Proof. (cf. [ES]). Let us rewrite the condition (3.1). We have:

an/2)(a,z) Z q—2<u7/\+(n06/2)>Pu($)
neQ

—(n/2){a,z) Zq na/2 quZV)\ Bu
neQ reQ

For everyu € Q consider the set

Zo(p) =p+Za={v e Qlv=p+ma forsomem e Z}.
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Comparing coefficients fay{“*), we getforn = 1,2, ..., kq:

Z <en<a,x)qn(u,a)Py(m) _ Z qn<ﬁ,a>puﬁ(x)35a> =0.
1)

I/EZa( BeQ

This is a system of linear equations on unknown functiénge). Note that the
summation oveys is finite, sinceP,_g = 0 if v — 3 ¢ Q.. The matrix of this
system has a block-upper-triangular form, blocks corresponding to sufygets
for different . The determinant of this matrix is an entire functionsofand
asymptotically whera, ) — +oo,a € Ry

LHS ~ > eemignaip, ().
VEZo (1)

Therefore, asymptotically the determinant of the matrix of this system is equal to a
Vandermonde-type determinant, which is nonzero. It follows that the determinant
of the system of equations is honzero for generic

Supposeg. is such that not alP, () are identically zero (i.e. we have a non-
trivial solution of the system of equations). Then for suclwe need to have
Card Z, (1)) > ko forall a.

Below we will prove the following:

LEMMA 3.3. LetS = {v1,...,v,} be a system of pairwise noncollinear vectors
in R”; assume that al; lie in the halfspacén, v;) > 0 for some vecton € R".

Let B be a closed bounded convex polytop&in such that the origirD is a
vertex ofB, and moreovei3 \ O lies in the halfspacén, z) < 0.

Suppose that for any € B, v; € S we can draw a line segme#itthrough:z,
parallel tov; and of length at leadt;|, such that/ C B.

ThenB D By, where the polytop& is defined by

k
Bo = {—Zsiviwg 8 < 1}.

i=1
Let £ be the convex hull of the sdt, S = A, v, = kqa. Taken from the
positive Weyl alcove, so that it is not orthogonal to any edge, @nd letu be the
vertex of £ such that the produch, po) is maximal. ThenB = £ — pg satisfies
all the conditions of Lemma 3.3, and we conclude thaontains all vectors of the
form

p=po— Y, Sq0, 0<sq < kg
aEA+

Sinceg contains only positive weights, we see in particular that

po— O =po— Y kqa>0.
OCEA+

https://doi.org/10.1023/A:1000498420849 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000498420849

136 PAVEL ETINGOF AND KONSTANTIN STYRKAS

Being a vertex of¢, the weightyuo also belongs to the (discrete) skt which
completes the proof of Proposition 3.2. O

Proof of Lemma 3.3We use induction on.

Base of induction: n=2Note that the polygo? has exactly two (opposite) edges,
parallel tov1, both of length at leagw]. It can be easily seen that the polygBn
defined by

B = {z € B|z + v, € B},

satisfies the condition of the Lemma for the family of vectsrs: {vz, ..., v}
We can therefore use induction ento prove the statement, which is obvious for
m = 1. The technical details are left to the reader.

Induction step.Let n > 3. Consider orthogonal projections of our data in the
directionsu from the hyperplanéu,n) = 0. ProjectionsB’, B of B, By are
convex closedn — 1)-dimensional polytopes, lying in the halfspagez) < 0;
the projections; of v; lie in the halfhyperplanén, v}) > 0. For generia, vectors
v; will be pairwise noncollinear, and by induction hypothesis we will conclude that
By C B'. By continuity, this is true for all.

Suppose now that there exists a poinsuch thatz € Bo,z ¢ B. Consider
a (generic) hyperplane separatindrom B. Its intersection with the hyperplane
(u,n) = 0 has codimension 2, and therefore is nonzero. Tafkem this intersec-
tion; then for projection:’ of = we will havez’ € B{,z' ¢ B' — contradiction.
Therefore, we have proven the induction step.

Lemma 3.3 is proven. O

COROLLARY 3.4.The ¥-function, satisfying(3.1), is unique up to a factor,
depending orx.

Proof. If we have another functiod’(\, z) with highest coefficienf;, (),
satisfying (3.1), then the function

¢(\,z) = U'(\,z) — Ph(z) (Po(z) HT(N,z),

will still satisfy (3.1), but its support will only contain weights < ©. By Propo-
sition 3.2,4(A, ) = 0, and the statement follows. O

Remark We use this opportunity to correct some errors in our paper [ES].

1. Corollary 5.3 in [ES], which is used to prove the uniqueness of the clas-
sical-function, is incorrect (a counterexample is the funcéoh® ¢()), where
q is any polynomial vanishing on the hyperplanes involved in (4-11)). The mis-
take is that the polynomiah () introduced in the proof does not have to satisfy
any invariance condition, s (A, ) does not have to satisfy (4—11). The statement
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and the proof of Corollary 5.3 are valid only #(\,z) = e Q(A, z) with
deg@ = >, na, Which still implies the uniqueness property (Corollary 5.4).

2. Corollary 5.3 is implicitly used in the proof of Theorem 6.1. The theorem is
correct, but the proof has to be changed. Namely, one should prove the following

PROPOSITIONAny End U/[0])-valued functionp(\, z) = M Q(), z), satis-
fying (4—11) can be represented ag \, z) = D (), z) for a unique differential
operatorD with coefficients, depending anbut not onA.

This can be easily proved by induction (cf. [CV], and also Proposition 4.1
below). Theorem 6.1 is the special case of this Proposition.

3. We would also like to point out a misprint in the definitiongfin Section 3
of [ES]; it should read); = max,,{n € N|K(u —na) # 0} = max,{n €
Nna < p}.

4. Existence of difference operators

Introduce a family of difference operatdra, corresponding to weightd € P,
acting onh*, by

Ta(z) = 2+ Alogg?, € p*.
They naturally act on functions ayi; for example, forf (z) = e{*% we have
(Tof) (o) = lrHO00) = gl glet) = g2 ().
PROPOSITION 4.1Any functiong(\, x), satisfying(3.1), which has the form
¢ =M P @),
for someg-polynomial P(\, z), can be represented as
d(N\,z) = DU(\, z),

for a unique difference operatdp with depending on: coefficients.

Proof. Unigueness is obvious, since otherwise #héunction would be anni-
hilated by a nontrivial difference operator for all which is impossible. (See, for
example, [EK]).

To prove existence ab we use induction on the support B{ A, z). Consider
the family of all finite subsetd, C Q. suchthatify € L,v € Q. andv < p,
then alsa € L.

We prove that if our statement is true for gHpolynomials P(\, z) whose
supportis strictly contained ih, then it is also true fog-polynomials with support
L.
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If L does not contain weights > © then by Proposition 3.2 we hay \, z) =

0, and the operatab = 0.
Suppose there isiae L such thatr > ©. Consider the set of all suakis and

let » be a maximal element from this set.
Consider the function

¢ (N z) =\ z) — Py(2)Ty—0 (A z).
It satisfies (3.1) and has support strictly contained. iBy induction hypothesis
we can represent as
¢' (A, z) = D'T(\ ).
The operator
D =Py(#)Ty-0+ D,
satisfies the required properties. O

We now prove a simple technical
LEMMA 4.2. Let ag-polynomiale()\) be represented as

W)= D eV,
T€P/Q

wherec, (\) are g-polynomials with support in the coset+ Q.
Suppose for some o we have that
(4.1)

no no
c(r+)=c(r-5).

whenevefa, \) = 0. Then(4.1) is also satisfied for eachy ()).
Proof. Property (4.1) is equivalent to divisibility by*** — 1 of the ¢-

polynomial

- no no
c()\)—c<>\+7> —c()\—7).
On the other hand, one can see that

¢(A) = Z cr(N),
T€P/Q

where
&x(N) = cr (A+%> e (A—%).

Clearly,&()) is divisible byg@* — 1 if and only if all &;())’s are divisible by
¢¥*A — 1, and the Lemma follows. O
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THEOREM 4.3.For anyg-polynomialc()) such that for anyr € R

whenever(a, \) = 0, there exists a difference operatdr, with coefficients in
EndU]0]) such that

D .Y (\, z) = U\ z)c(\+ p).

The correspondenceg)) — D, is a homomorphism of rings.

Remark.We putc(A + p) on the right since in that form it admits generalization
to the matrix case (see Theorem 4.4). Of course, for sqatelynomialc(\) we
could write it in a more traditional forrb, ¥ (\, z) = ¢(A + p) ¥ (A, z).

Proof. By Lemma 4.2, it suffices to prove the theoremdp(X) of the form

c(\) = q2<uo,>\) Z C!Lq*2<uy>\)7
MEQ+

for someyo € P. Consider the function
PN, x) =T_ 1 U (\ z)e(A+ p).
It satisfies (3.1), and it has the form

p(\,z) =X 3T g NQ, ().

BEQ
By Proposition 4.1 it can be represented as
d(A,z) = DY(A, z),
for some difference operatd?. PutD. = T,,,D. Then we have
DY (N, z) = Tyo DU (N, z) = Tyop( N, x)
=TT ¥ (N, 2)e(X + p) = V(A z)c(A + p),

We now prove the homomorphism property. Suppose we have two polynomials
c(\) andc'(A). It is easily checked that operatby.. — D.D. annihilates theb-
function for any); therefore it has to be identically zero. Hence our correspondence
is a homomorphism of rings. O

We have big supply of (scalagrpolynomials, satisfying (4.2), arising from the
algebra of Weyl group invariant-polynomials, which is freely generated by the
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Casimir elementsy, . .., ¢,.. This give usn algebraically independent difference
operatords, ..., D,. However, there exist otherpolynomials, with this property.
For instance, any polynomial divisible by

ko

CO(A) _ H H (q2<o¢,)\>+n<o¢,a> _ 1) ,

also satisfies (4.2). It gives rise to a difference operator, commuting with all those
generated by the Casimir elements, but not necessarily lying in the ring generated
by them. This procedure gives examples of what we called algebraically integrable
commutative rings of difference operators.

Theorem 4.3 can be slightly generalized to the matrix case.

THEOREM 4.4.For anyEnd U [0])-valuedg-polynomialC(\) such that

C (A+ %) Bra(\) = Bna(V)C (A - %) . aceRYn=1.. . k.,
wheneveta, A\) = 0, there exists a unique difference operakdy with coefficients
in EndU[0]), such that

De®(\,z) =T\, z)C(\+ p).

The correspondende C'(\) — D¢ is a homomorphism of rings.
Proof. The argument used in proof of Theorem 4.3 in the obvious way extends
to the matrix case. a

Remark.OperatorsD1, ..., D, act on ¥-function as scalars, and therefore
commute with all operator®. constructed as above. In fact, one can show that
the centralizer of the subring generated by operafoys..., D, in D (UI[0])
coincides with the image &f. We do not include the proof of this statement here.

In the next section we explain how our construction is related to Macdonald
theory.

5. Root systemA,, and Macdonald theory

Consider a special case of our constructiongfer siy, U = U, = S*NV, where
V isthe fundamental representation. It is well-known that the zero weight subspace
U10] is one-dimensional, and we can regdr(h\, z) as a scalar-valued function.
Note also that in this cade, = k foralla € RT, and® = k) cp+ o = 2kp.
We haved; = 1, and thereforg; = gforalli =1,...,r.

We will use the notation

I e T Rt
e N L e
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We first prove an important property of partial traces

B,(\) =Tr (ProjM/\[A_H] o dYo ProjM/\[A_M) ,
introduced in Section 3.
PROPOSITION 5.1Given anya € RT,n =1,...,k, we have for ali € Q
Bu(\) = ¢ "9 By na(A = na), (5.1)
wheneveka, A + p) = n.

COROLLARY 5.2.Fora € R",n =1,...,k, the function¥ (), z) satisfies

no o no
()\ + ,x) q A , T

whenevefa, \) = n.

Proof of Propositiorb.1. For givern, « it is sufficient to prove a special case of
(5.1), corresponding to = na :

Bha(A) = ¢ "9 . By(A — na) = ¢ Oy (X — na). (5.2)

Indeed, let\ be such thate, A + p) = n. Then the image ob¥ is contained in
My _p0 ® U. From (5.2) we see that

T U _ —(na,®) Fu
/\|M)\_na =49 < X A—na

and the more general formula (5.1) follows. We now use induction on the height
of root « to prove formula (5.2), and thus Proposition 5.1.

Base of induction.Consider the case whan = «; is a simple root. Let\ be
generic in the hyperplangy;, A + p) = n. ThenM, contains a unique nonzero
proper submoduIMAl, generated by the singular vecigr_,,, = F;'vx. One can
check that

-1_ \n k
Byo, — 0" f’ ( I1 x?‘,{(A))

[n] m=n+1

k
X ( II II X&(M) Vr—na ® E'u 4 t.o.w,

B#a; m=1

where t.0.w. denotes ‘terms of other weights’ (in the first component).
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It follows that

Bpa,(\) = M ( ﬁ (1_q—2(n—m))>

m=n+1

x (H I x:;m) FPEL.

pa; m=1

It is known thatF;* E;* acts as multiplication b kiﬁ: in U[0]. Since

L k + n]!
(q .q) ( H (1_q—2(n—m))> {ki—n%

m=n+1

_ q—an ﬁ (1_ q2(n-‘rm))7

m=1

for A from the hyperplanéuo;, A 4+ p) = n we have

Bua,(\) = g2 Hl(l q n+k) (H H Xm >

B#a; m=1

k
zq_Zk"<H X?rf(/\—mz> (H I X (x _”O‘Z>
m=1

y#a; m=1

—2:0) v (X — nay).

=4q
Induction step.Suppose (5.1) is true for all roofssuch that heigh < heighta.
We are going to prove that (5.2) is true also dor
We first show thaB,, (1)) is divisible by factors(? (A —na) forall 8 # «,m =
1,..., k. Itsuffices to prove thaB,,, () vanishes whenevép, A —na + p) =
Consider two cases:

(1) If so(B) € R, puty = s54(8). Then(y, A + p) = (6, A — na + p) =m
If X is generic from hyperplangy, A + p) = m, then the image of} is
contained inV/) _,,,. Sincena—m-y ¢ Q_, there will be no terms contributing
to Bua(A) = Tr |MA[A_W]<1>§, andB,,(A) = 0 generically (and, therefore,
identically) in the hyperplanéy, A + p) =
(2) If so(B) ¢ RT, puty = —s,(8) € R™. Thena = 3 + v, and we can assume
the induction hypothesis true fgrand-y.
We have:

(v, A+ p) = —(B, X —na+p) = —m,
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(B: A +my +p) = (B, A —na+ p) +n(B, ) + m(y, )
=m+n—m=n.
Therefore,
Bha(A) = q<m%®>3na+m7(>‘ +my)
= 4" OBy (A ey — ).
Also,
(, A +my—nf+p)=n+m-—n=nm,
so the image o@ﬁ is contained iV _(,;, 4,,)3, and
B ymyy (A +my —npB) =0,
becausena — (m + n)8 ¢ Q, and there are no terms contributing to
Bintmyy (A +my = nB).

We have proved tha,,(\) vanishes on the required hyperplanes, and is
therefore divisible by all the required factors. Thus, in the hyperglane+p) = n
we get

k
Bua(N) =CN) T TI x5 (A — nay),
B#a j=1

for someg-polynomialC'()). Itis easy to see by comparing highest terms @gt)
is constant on the hyperplarie, A + p) = n. To compute this constant, take
generic suchthdty, A+p) = (3, A+p) = n. Then automaticallyy, A+p—ng) =
n. We have:

V(A 2) = ¢~ PO\ = nf,x) = ¢~ POGTIOU(N —nf —ny, ).

ButA—nfB—nvy = A—na does not lie on any Kac-Kazhdan hyperplanes, therefore
(A —na,z) # 0, and

Proposition 5.1 is now proved. 0

Let A be a dominant integral weight, and is the irreducible{,g-module with
highest weight\.

PROPOSITION 5.3 (Generalized Weyl formuld)he operatoﬁﬂ;: My — M\®
U descends to a homomorphidi — V), ® U. The function

pale) = Trly, (8% €),
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is expressed in terms of the functiob§\, z) by

¢ONpa() = 30 (-1 WOV (W, 2). ®-3)
weW

Proof. The operatoﬁ)ﬁ defines an operatavl/, — V), ® U. This operator has
to factor throughV’, because it lands in a finite dimensional representation. Thus,
®Y in fact defines an operatdf, — Vy @ U.

Recall that forA € P, we have a resolution

0 Vy = MO« M} MZ -,
where

M? = M,, M= P My
(w)=i

l i

For matrix traces we have as for usual characters

pa(z) = Tr|VA(<i>K e') = Z(—l)i Tr|Mi-(<f>§f e’).

i

When is generic from hyperplangy;, A + p) = 3 (i, i), n > k, thenM,
contains a submodulM} = M) _na,, generated by a singular vectoy_,,,, =
F]'vy. SinceM, [\ — na;] is one-dimensional, we can write

HU n
(I))\U)\fnai =Urpg; QU + -

. To computeu” we use the formula

A—nao;

Then we will haveby|, . = %
A

Hu :Z(ql—Q)m(ﬁ oci>\>
AU T x;'(A)

m=0 [m]+ l=m+1

X (H HXf()\)) Fimv)\@)Egnu+...7

[B#a; =1
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where we retained only terms, which will contribute to the expression.for
Applying A(F]") to the RHS, and collecting terms involving_,,,, we deduce

that
k n -1_m k .
u" = Z lm] e [n] ?) < H Xlal(A))
m=0 + l=m+1

x (H f[xfm) F"K! "By

B#a; =1

k _1 k
- _1ymgm—Fk n| (g —q"n—m-—1_!
;0( )"q [ ]

m [m]4! [n—k—1]_!

H H Xl m(n— m)FmEm
B#a; =1
The operatof]” E* acts inU [0] as multiplication by%
Also, we need to use the identity

k . [n]! [n—m—1)! [k+ m]!
2 el ol o — = 21 (b — ]l

m=0
It can be interpreted as equality of two polynomialszin= ¢°* of degreek. To
prove this identity it suffices to check it far = 0, ..., k, when there is only one
nonzero term in the LHS of the equation.
After easy transformations, we conclude that

u" =q2k"<ﬁ(1—q 2t > (H 11 xm(x )

m=1 B#o; m=1

Z#a; m=1

(e ) (1 )

= ¢ MOy (X — nay)u.
It follows that the restriction o@“ tothe submoduIM,% = M)_nq,; COiNcides with
g @O Y forAgenerlcfrom hyperplangy;, A+p) = %(a;, ;). Therefore,
itis true for all>\ from that hyperplane. Even more generally, foe P, , we have
q<@ A)q)u|M , q<@ w”A)q)u _Thus

wP A wP

¢‘ON TrlMi(i)K &) = Z Y Tr|wa,\(‘i>1i &)
l(w)=t

= Z ¢ NG (WP, 1) .
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Therefore

q<®’/\>ﬁ,\(:1:) _ Z (_1)l(w)q(@,w/’/\>\11 (u)p()\),:L‘) . a
weWw

Introduce a normalized matrix trace by

_ ¢OA=PT(\ = p, z)
acrs [T (gh el@n)/2) — g=i g—(@)/2))’

P(A, z)
Condition (3.1) can be rewritten for the functigii), z) as
no no
¢<A+7)—@b<>\—7), (5.4)

foralla € RT, n=1,...,k and for all\ such thata, \) = 0. Combining(5.3)
with results inf[EK], we get:

COROLLARY (Macdonald polynomials)Macdonald polynomials are equal to

pa@) = > (=) ™p(w(A + (k + 1)p), z). (5.5)
weWw

up to a factor

PROPOSITION 5.4 (Macdonald operatorsjhe functiom (), z) is a common
eigenfunction for Macdonald operators, corresponding te ¢**1 :

k+1 sloyx)/2 _ —k—1 o—(a,z)/2

o q € q € .

Mi= 2w ( 11 a2 _ g (a2 Tm) » i=1o
weW (a,Ai)=1

The corresponding eigenvalues ar@ -invariant g-polynomials ¢;(A\) =
ZWEW q<AawAi>:

Mﬂﬁ(% (II) = CZ(A)QP(A? :E)

Proof. We already know that thé&-function is the common eigenfunction for a
family of commuting difference operators, corresponding(£a, satisfying (4.2).
It is shown in [EK] by using central elementsifyg, that for the¥-function nor-
malized as above, the operators, corresponding to elementary symmetric functions
c¢i(\), are exactly Macdonald operators. O

Now we study relations betweep-functions for different values of. We use
notationyy (A, =) for thes-function constructed from representatiop
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THEOREM 5.5 (Shift operators)There exist difference operatof; such that

Yrr1(A, ) = Grpe(A, 7).

These operators ar@/ invariant, and their action in the basis of Macdonald
polynomials is given by the formula

Grpia(®) = Prrir—p(®), A —p € Py Geper =0, A—p¢&P,.
Remark.Shift operators in the-deformed case were introduced by Cherednik,
[Ch1].

Proof. The argument from the proof of Proposition 4.1 can be used to prove
that any function, satisfying (5.4), can be represented as

¢(>‘7 17) = Di/)k(% :L‘),

for some difference operatdr. Applying this to the function; 1(A, z), we prove
the existence of an operat@y, such that

Yrt1(N, x) = Grepr(A, ).

From the generalized Weyl formula we get

Gipepn = Y (—D®Gpp(w(X + (k + 1)p), z)
weWw

= > (=)™ pa(w(A + (k+ 1)p),x) = prap(@).
weWw

If A — pis notdominant then the right-hand side of the last formula is zero by (5.4).
We see thatd;, maps Macdonald polynomials & -invariant functions. This
implies thatGy, is itself W -invariant. O

Remark. We saw that shift operators relate eigenfunctions for Macdonald
operators, corresponding to different (integral) values of paraniet&ne can
write it in the form

GMP) = Mg, (5.6)
One can check that, analytically depends oty therefore one can extend equality
(5.6) to the case of arbitray. This implies the existence of shift operators in the

general case, which is proven in [Ch1] using representation theory of double affine
Hecke algebras.
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Denote

k
(5k(x) = H H (qi e(a:$>/2_q—i e—(a,m)/z) ‘

aERT i=—k

THEOREM 5.6 (Duality). The functionpy (X, z) = 0k (x)r (X, ) is symmetric
with respect to transformatioff®*) « el

Proof. The idea of the proof is the same as in [VSC]. First we prove ¢hat
as a function ofr satisfies condition (4.2), and then duality will follow from the
unigueness property.

We already know thaty, is the eigenfunction for the Macdonald operators.
Therefore, g, (A, z) is the eigenfunction for the operators, obtained from Mac-
donald operators by conjugation by(x). Such an operator, corresponding to a
minuscule weight\, is alsoW -invariant and has the form

M/A = Z fA(wx)Tw(A)a
weWw
where

qik e<ﬁaa:>/2 — qk e7<ﬂ:l'>/2

falz) = 522 — o= Ba)2
il e

Fix a roota and denotdV, = {w € W|(a,wA) = 1}. Let z be such that
(o, z) = 0. The ¢-function does not have singularities along that hyperplane.
Collecting all the singular terms in the equation

MA(PIC(Aa 17) = CA(A)QDk(Aa 17)7
which occur forw € W such thato, wA) = £1, we obtain

> falwz)Tynypr(, )

weWq

+ Y falsawm) s, wyny k(A z) = 0. (5.7)
wEWq

Whenz belongs to hyperplangy, ) = 0 we have

k-1 g82)/2 _ ghtl g (6)/2
w( ) ¢ e )
(5.4)=1

q_k e</87$>/2 — qk e_<ﬂax>/2>

= _(Saw) ( H eB,x)/2 _ @ (B,x)/2
(B,A)=1
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therefore (5.7) simplifies to

Z fa(wzx) (tpk (A,mw + %) — ¥k (A,mw - %)) =0,

U}EWa
where
1 «
Ty =2+ wA)" =z +wA) — >

also belongs to hyperplanie, x,,) = 0. It follows that

(0% (0%
Pk (Aax—i_E) — Pk ()\,(II— E) :Oa

identically when(c, x) =0, i.e. that condition (5.4) is satisfied far= 1. Taking

n-th power of operatora , and repeating the same argument, we can prove that
it is satisfied forn = 1,. .., k.

From the obvious modification of the theorem about uniqueness offthe
function, we conclude that the functias, (), z) transforms into itself when we
interchange(®V « ele), O

Remark.This duality result is closely related to the symmetry of the difference
Fourier pairing defined recently by Cherednik [Ch2].

Appendix. Example: g = sl

In this case we have only one raetand we can make identifications
M) oy M elar) ¢y 27 N o P

Operators’, T~1 act on a functiory (z) by
(Tf)(z) = fle+1), (T7f)(@)=flz—1).

Casek = 0. This is the simplest example, corresponding to the tadavial
representation. In that case

Ovy = Pvy\ = v\ Q u,

el eA D)z
T @) = l-e2r g _gu’
e\
1/)0(>‘7$) =

e —e '
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Formula (5.5) is the usual Weyl formula
eADz _ o= (A1)
er —e 7

charV, =

The operator, corresponding ¥ -invariant polynomiaky(\) = ¢* + ¢, is
the Macdonald operator

et _ -1 e ¢ e T _ -1 er
4 q 744 q -1

My — —
er —e 7 er—er

and we have
Mapi(X, z) = c1(A)1(A, ).

Condition (4.2) gives no restriction arf)), and we can sefy(\) = ¢*. The
corresponding operata¥lp, whose existence is predicted by Theorem 4.1, is equal
to

g€ —qgter
 er—e@

Mo

andM; = Mo + Mgt
Casek = 1. LetU now be the 3-dimensional representation. We have:
-1
A ® Bu,

q—4q
DYvy = -
AU =)\ Qu 14

D4vy = (1— ¢ )y ®@u—(¢— ¢ ) Fu, ® Eu,

e)\w — 2T
YA\2) = T <1 —q? = ("~ Cf%%)

1-qg2e
_ e\ 1—¢° e g2
l-eZ \1l-q? e ’
e A —A
1A @) = —z q—l —z 1 ! — |-
er —e q€& —q—- e g-ret—qge?

It is easy to check that indeed
\I’(O,$) = q_ij(_27$)7 1/)1(17:1:) = 1/)1(_17:1:)'
Functiom)1 (A, z) is related tapo(\, z) by

1/)1(>\7 17) = G0¢0(A7 ZL‘),
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where the shift operata¥ is equal to

Go:ﬁ(T—T*).

The Macdonald operatoy1; is equal to

Zem_ -2 ez Zefx_ 72er
_q q 744 q
et —e* er—er

Mi T_l,

Mapi(A, ) = cr(A)a(A, o).

The operatorM, corresponding to the eigenvalag\) = ¢** — [3],¢*, is equal
to

:q4 ez_q—4 e—a;q3 er_q—3 e T 3

er _ -1 e
ge&—qgle= e —e? = [3]qq - r

M
0 glee—qge=

Classical limit ¢ — 1. Sete = log(gq). We have the expansion

i\ z) = 22 - 0 (A, 2) + O(?),

where

e\ e’ +e?
(0) _ - =
P (N z) = ( - e—“f)z ()\ — el‘) .

is they-function for the classical case (cf. [ES]). The difference operators become
My =2+ 63Dy +4) + 0(3),
Mo = —2+ (3D, + 8) + 4e3(D3 + 1) + O(e*),

where commuting differential operatdPs, D3 are equal

9 LEre 0
or? e — e 9y’

o3 e +e T\ 92 12 G,
Dy = — = VL (1 —= 2L
3 0x3 +6<eT—e_“f> 0x2 +< + (ef—e—l’)z) ox

(€ 3E-3erte™
(er —e )3 '

Dy =
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