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Abstract

Random Fourier series are studied for a class of compact abelian hypergroups. The randomizing
factors are assumed to be independent and uniformly subgaussian. In the presence of a natural
technical hypothesis, an entropy condition of Dudley is shown to be sufficient for almost sure
continuity. The classical results on almost sure membership in Lp, where p < oo, are generalized to
this setting. As an application, it is shown that a simple condition on the dual object implies that the
de Leeuw-Kahane-Katznelson phenomenon occurs. Another application is the analogue of a classical
sufficient condition for almost sure continuity. Examples illustrating the general theory are given for
the hypergroup of conjugacy classes of SU(2) and for a class of compact countable hypergroups.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 43 A 30, 60 G 17; secondary 60 G
50.
Keywords and phrases: random Fourier series, uniformly subgaussian random variables, compact
abelian hypergroup.

1. Introduction

Random Fourier series have been studied in a variety of settings: on the circle
group [0,2TT), on compact abelian groups, on compact non-abelian groups, and
(under the label "random central Fourier series") on the space of conjugacy
classes of certain compact groups. In this paper we work in the generality of a
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46 John J. F. Founder and Kenneth A. Ross [2 ]

compact (metrizable) abelian hypergroup K whose dual K is also a hypergroup.
The generalizations obtained emphasize the common features of many of the
previous settings and raise some new questions.

The space of almost surely continuous functions is studied in Section 3. Recall
that by Parseval's relation (see Section 2) we have / E L2(K) if and only if
2^=1|/(^n)|2/fi(^n) < 00 where m denotes the invariant measure on K =
{»//,, ^ 2 , . . . } . A more restrictive condition, namely 2™=i\f(ipn)?>n(\l/n)

2 < 00, is
necessary for almost sure continuity. This condition imposes itself in several
places. An entropy condition of Dudley is shown to be sufficient for almost sure
continuity.

Section 4 contains an introduction to random series in LP(K) and M{K). A
simple condition on K is given that implies the de Leeuw-Kahane-Katznelson
phenomenon: whenever 2^=i|fenpw(^n) < 00, there exis ts /e C(K) such that
\f(xPn)\^\K\ f°r ^ "• The results in this section also yield the analogue of a
classical sufficient condition for almost sure continuity. Multiplier interpretations
of some of the material in Section 4 are offered in Section 5.

Examples illustrating the general theory and its limitations are given in Sections
6 and 7. The countable hypergroups in Section 6 are easily understood and are
very different from compact abelian groups. The hypergroups of conjugacy
classes of compact groups in Section 7 are less bizarre and the analysis on them is
more delicate and interesting.

We are happy to thank Giancarlo Travaglini for some helpful observations and
suggestions.

2. Preliminary results

A topological hypergroup is a generalization of a topological group in which
the product of two elements is a probability measure rather than an element.
Intuitively, it is a space in which the product of two elements is a variety of
elements with various probabilities, rather than a single element for sure. Exam-
ples include spaces of conjugacy classes of a compact group, spaces of orbits in a
locally compact group induced by a compact group of automorphisms, and
double-coset spaces. For many convolution measure algebras, it turns out that the
basic underlying structure is a hypergroup. For a survey, with examples, sse [Ross
(1977)]. Our main technical reference for hypergroups is [Jewett (1975)] where
hypergroups are called "convos".

For completeness, we give the definition of a hypergroup. Let K be a locally
compact Hausdorff space, and let M{K) denote the space of regular complex
Borel measures on K. For each x G K, Sx represents the point mass at x. The
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13 ] Random Fourier series on hypergroups 47

space AT is a h y p e r g r o u p if there is a b i n a r y m a p p i n g (x, y) i-> 8X * 8y of K X K
into M(A") satisfying the conditions listed below. Note that 8X * 8 need not equal
8xy since xy need not be defined.

1) The mapping (8X, 8y) H» 8X * 8y extends to a bilinear associative operation *
from M(K) X M(K) into M(K) such that

I fdn*v=j j j fd(8x * 8y) dn(x) dv{y)
JK JKJKJK

for all / in the space C0(A") of continuous functions /on Evanishing at infinity.
2) For each x, y G K, the measure 8X * 8y is a probability measure with

compact support.
3) The mapping (n,v)\-+n*t> is continuous from M+ (K) X M+ (A") into

M+ (A"), where M+ (AT) is the set of nonnegative measures in M(K), and is given
the weak topology with respect to the family C^(K) U {1}; here C^Q(K) is the
set of nonnegative continuous functions on A" having compact support.

4) There exists an element e in K such that 8e * 8X = 8X * 8e — 8X for all x G K.
5) There exists a homeomorphic involution x \-> x of K onto K so that given

x, y in K we have (8X * 8y) = 8p * 8~ and also

e G supp(8x * 8 ) if and only if y = x.

6) The map (x, y) i-> supp(8x * 8y) is continuous from KX K into the space
6( A") of compact subsets of A", where G(K) is given the topology whose subbasis
is given by all

Quy= {A &e{K):A n U¥= 0 andA C V)

where [/, V are open subsets of K.
We will study random Fourier series on a compact abelian hypergroup A". Such

a hypergroup carries a Haar measure m, such that w(A") = 1 and 8X * m = m for
all x in AT. Associated with E is a set K of continuous functions on K called
characters; they form an orthogonal basis for L2(K, m). Throughout this paper
we make two additional assumptions about K:

(a) K is a hypergroup under pointwise operations;
(b) K is metrizable, or equivalently K is countable.
Assumption (b) is an inessential convenience, since the Fourier transform / has

countable support for/ G L\ K). If K were not metrizable, the study of/could be
reduced to the metrizable case by standard methods; see the appendix to [Vrem
(1978)]. We always assume for definiteness that K is infinite.

Assumption (a) is essential. It can fail for a 3-element hypergroup, but it
appears to hold for most "natural" hypergroups, including spaces of conjugacy
classes of compact groups. See [Hartmann-Henrichs-Lasser (1979)] for a general
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class of hypergroups satisfying (a). Assumption (a) tells us the following: given
\j/,\p' EL K, the product ip\p' is a finite sum S^g^ a^> where all a^ > 0 and

2.1. Fourier series. Let m and m be the invariant measures on K and K
normalized so that m(K) = w({l}) = 1. We write K = { ,̂, \f/2,...} and we write
m(\pn) in place of m({ipn}). Observe that

(1) « (* , )= lk l l2 2 ^ r all «;

see 7.1 A of [Jewett (1975)] and 3.6 of [Dunkl (1973)]. For/ £ L\K, m) its Fourier
series is

Parseval's relation states that/ £ L2(/C, m) if and only if / e 12(K, m), and that

\2 dm(x) =
n= 1

f \f(x)\2 dm(x) =

Also, A(K) denotes the Banach space of all functions / such that / e ll(K, m)
with the norm \\f\\A = 1%X l/dfc,)!»»(*„).

2.2. LEMMA. Let (ha) be a sequence in L\K) such that supn||/in||, < oo. The
following are equivalent:

(i)(hn) is an approximate unit for Ll(K);

PROOF. TO show (i) => (ii) use the identity hn* rp = hn(\p)\p; see [Jewett (1975),
7.3E]. The reversed implication is established by a standard argument using the
fact that trigonometric polynomials are dense in L}(K); see [Vrem (1979), 2.13].

2.3. LEMMA. L\K)has an approximate unit (hn) such that
(i) each hnis a trigonometric polynomial;

(iii) /in5=0 for all n\
(iv) l im, ,^ hn(t) = 1 for all * £ K.

PROOF. According to [Chilana-Ross (1978), 2.8], L\K) has an approximate
unit (/„) consisting of trigonometric polynomials such that 11 /„ 11, = 1 for all n. Let
8n ~ fn * f* a n ^ ^« = ll̂ nllr'̂ n- Properties (i)-(iii) can be checked directly and a
citation of Lemma 2.2 yields (iv).
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[5] Random Fourier series on hypergroups 49

2.4. PROPOSITION. / / / e L°°(K) andf> 0, thenf E A(K) and\\f\\A = \\f\\x =
f(e).

PROOF. Let (hn) be as in Lemma 2.3. For a finite subset F of K, Parseval's
relation leads to

2 /(*)*„(*)»»(*)<

= Jfhndm<\\

Now let n -> oo and then let Fincrease to K to obtain \\f\\A — f(e) < H/H,*,. Since
in general, the proposition is proved.

We will need a property of K that corresponds to "local central Ap" in the case
of the space of conjugacy classes of a compact group [Rider (1972a)]. The
definition can be made quite general.

2.5. DEFINITION. Let ^be a set of Lx functions on a probability space (fi, P). For
1 < p < oo, we say tfhas property \p provided

(1)

2.6. REMARKS, (a) Of course f^has property Xp if and only if {|/|: / £ <?} does.

(b) For/> > 2 the requirement 2.5(1) is equivalent to

(1) sup{||/|M|/||2:/e^}<oo,

by an argument using Holder's inequality; see [Lopez-Ross, page 54].
(c) 'fhas property A2 if and only if there is a constant K > 0 such that

(2) P{\f\> Wh}>K2/K forall/G^.

The necessity of (2) is shown in Lemma 13.7.1 of [Kawata (1972)], and the
sufficiency is trivial to verify.

(d) Since UW^ = <//(e) = 1 for all ^ e K, (1) and 2.1(1) show that K has
property \ x if and only if infn||^n||2 > 0 if and only if suprt m(\pn) < oo.

2.7. EXAMPLES. For ^ in G, where G is a compact abelian group, all Lp norms
are equal to 1 and so G trivially has property Xp for all p . As observed in 7.2, if K
is the space of conjugacy classes of SU(2), then K has property Xp if and only if
p < 3, and if SU(2) is replaced by a compact, connected, simply connected Lie
group, then K has property A for some values of p > 2. On the other hand, there
are hypergroups K such that K has property \p for nop > 1; see 6.1. We know of
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no hypergroup K for which K has property A2 and yet K has property \p for no
p>2.

We finally define the principal object of study in this paper.

2.8. DEFINITION. For/ E L2(K) we consider random Fourier series as follows:

n=\

Here (£„) is a sequence of symmetric independent random variables on a
probability space (fi, P) where Var(£n) = 1 and £(£„) = 0 (automatically) for all
n. We also assume that (£„) is uniformly subgaussian: there exists $ > 0 such that

(1)
0A2

exp| - y | for all X E R and all n.

Note. If the sequence (£„) is identically distributed, then the adjective "uni-
formly" is of course superfluous. A gaussian sequence is subgaussian and so is a
Rademacher sequence. In fact, any uniformly bounded sequence (£„), with
££„ = 0 for all n, is uniformly subgaussian. This follows from Lemma 5.3, page
111 in [Jain-Marcus (1978)]; 0 can be taken as 4 • supn||£n||£,.

According to Example 5.5, page 113 in [Jain-Marcus (1978)], our process has
subgaussian increments provided 2"=i |/(i//n)w(^n) |

2 < oo. In Section 3 we will
impose this condition on / and this forces all Xx to be in L2(B); see 3.7. In any
case, for / £ L2(K) we have Xx E L2(Q, P) for m-almost all x G K and Xa G
L2(K, m) for almost all w G Q.

The following useful result, familiar for Rademacher sequences, holds for our
uniformly subgaussian sequence (£„).

2.9. LEMMA (Khintchine's inequality). There is a constant K > 0, depending only
on 0, such that

(1)

for p>2 and(an) E I1.

PROOF. Let £ = 2^= ,«„£„, a series that converges a.s. We may suppose that all
an are real and that ||^||| = 2^=, a2 = 1. Using the independence of the £„, one
shows easily that £ also satisfies the subgaussian inequality 2.8(1). Inequality (1)
now follows from an observation of Kahane (Proposition 9 in [Kahane (I960)] or
Exercise 10, Chapter VI, in [Kahane (1968)]).

00

n = l P

00

2^n
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[7] Random Fourier series on hypergroups 51

00

n=\
< (2K)2

2

00

2.10. REMARKS, (a) Using Holder's inequahty as in [Lopez-Ross (1975), page
55], and 2.9 iorp = 4, we obtain

(1)
n=\

In particular, we have \\£n\\x > (2K)"2 for all n, and so

(2) i n f | | U , > 0 .
n

(b) Khintchine's inequality and a slight generalization of (1) together tell us
that the set {£„} of functions on 0, has property \p for all p > 1.

In Section 4 we will need a sharpened version of (1) which we base on the
following general lemma.

2.11. LEMMA. Let 5 b e a set of functions on a probability space ( 8 , P.). Suppose
that <5 has property \2- Then there exist e > 0 and c > 0, depending only on
B = supfll/IMI/H.i/E 9}, such that

(1) P(A) > 1 - e and imply h*cf\f\dP.

PROOF. Select e > 0 so that BJe < { and let c = 2B. For P(A) > 1 - e and
£ 9, we have

Q\A
\f\dP*[f \f\2dP) P(fl\A)

<\\f\\2fe <

hence / A | / | dP > i | |/ | | , so that

| | / | | 2< 2*11/11,

1 /2

2.12. PROPOSITION. Let ( |n) be as in Definition 2.8. There exist e > 0 and c > 0,
depending only on 0, such that

2»(A) > 1 - e *>«/>//« 2 <*„«»
l n = l

< C

n=\

dP

for(an)El2.

PROOF. Apply 2.10(1) and Lemma 2.11 with B = (2K)2.
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2.13. REMARK. The same technique shows that in certain discussions of the
notation of strict 2-associatedness [Bonami (1970), pages 294-296; Lopez-Ross
(1975), 9.3-9.5] the hypothesis that a certain set E be a A q set for some q > 2 can
be weakened to E being a A2 set.

3. Almost surely continuous functions

We continue to write K= {^, ,^2 , . . .} , but we now stress that ^, ,^2 , . . .
endows K with an ordering. The next definition, of U(K), depends on the
particular ordering of K.

3.1. DEFINITION. U(K) consists of all fin L\K) such that (S,v/)tf=i converges
uniformly where SNf= ^=

Our first proposition is completely elementary.

3.2. PROPOSITION. A(K) C U(K) C C(K).

3.3. PROPOSITION. / / / E U(K), then l^=\Mn)m{i>n) converges.

PROOF. The series must converge at the identity e and if>n(e) = 1 for all n.

3.4. REMARKS, (a) The converse to Proposition 3.3 can hold for a particular K
and a particular ordering of K; see 6.2.

(b) Consider a function / such that f E. U(K) for all orderings of K. Then
2"=1/(^n)/w(i|/n) converges for all orderings and so the series converges abso-
lutely. Therefore we must have/ e A{K).

(c) As noted in 6.2, the equality U(K) = C(K) is possible. On the other hand,
the equality U{K) = C(K) cannot persist for all orderings of K, for this would
imply A(K) = C(K) by part (b), whereas A(K) = C(K) if and only if Kis finite
by 2.11 in [Vrem (1978)]; see also 5.4 herein.

(d) It will be shown in 5.4(d) that if K has property A2, then U(K) # C(K) no
matter how K is ordered.

We next define the space Cas(K) of almost surely continuous functions.

3.5. DEFINITION. Cas(K) denotes the space of al l / in L\K) such thatCas(

(1) Xo~ 2
n = l
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represents a continuous function on K for almost all w e B. Similarly, Uas(K) is
all / in L\K) such that the series (1) converges uniformly on K for almost all
w Efi.

The definition of Uas(K) appears to depend on the ordering of K, but the next
theorem shows that this appearance is illusory.

3.6. THEOREM. For any ordering of K, we have Uas(K) = Cas(K).

PROOF. We will apply Theorem 1, Chapter II of [Kahane (1968)]. Consider
fECas(K) and let Xm(a) = A ^ ) * ( t B ) { J « ) f c each Xm is a symmetric
C(K)-valued random variable. Let (hn) be an approximate unit as in Lemma 2.3,
and let anm = hn(rpm). Then S = (anm) is a summation matrix as defined by
Kahane. Since C(K) — L}(K) * C(K) by the Cohen factorization theorem
[Hewitt-Ross (1970), 32.22], we have

lim II* * hn ~ glloo = ° fora l lgEC(tf ) .
n-»oo

In particular, for almost all w G fl we have

lim 1 anmXm(u) = ]imhn*Xa = Xa

n-°° m=\ "^°°
in the Banach space C(K). Thus 2 ^ = , ^ is a.s. S-summable in C(K), and by
Kahane's Theorem 1 this series converges in C(K) a.s. This shows that/must be
in Uas(K).

3.7. PROPOSITION. Forf G L2(K) we have (i) => (ii) => (iii) where
(i)fECM(K);
(u)I™=]\Mn)\

2m(4,n)
2 < oo;

(iii) x -• Xx maps K continuously into L2(fi).

PROOF. By Proposition 3.3, the series 2"=,/(>/'n)w(»/'n)|n(w) converges a.s.
Hence (ii) holds by a standard theorem about real-valued random variables; see
for example Theorem 13.7.1 in [Kawata (1972)]. Note that liminfnE\£n\> 0 in
view of 2.10(2).

If (ii) holds, then each Xx is in L2(fi) since

l«2= I |AO»(*.)*,(*)|2
n = l

and 1^(^)1^ 1 f°r all n. A routine argument, using the continuity of each ipn,
shows that \\XX — Xy\\2 is small provided j> is sufficiently close to x.
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54 John J. F. Founder and Kenneth A. Ross

3.8. COROLLARY. Cas(K) is a Banach space with the norm

[10]

II/1L = 2 /(*„)*(*,)«„(«)*»
7 1 = 1

dP(co).

PROOF. Cons ide r /£ Cas(K) and let (Xm) be as in the proof of Theorem 3.6;
we need to show that S = 2%=lXm is in L'(B, C(K)). By Corollary 3.3 in
[Hoffman-J0rgensen (1974)], it suffices to show that N £ L'(fi) where N(u) =
supm||Ar

m(w)||00 for u e Q. Observe that

m=\ m=l

Adding variances, and applying Proposition 3.7, we find

It follows that N belongs to L2(fi) and hence to L'(S2).

3.9. REMARKS, (a) The implication (i) =» (ii) in Proposition 3.7 can also be
proved using Theorem 7, Chapter III in [Kahane (1968)]. This implication does
not say anything if supn w(i//n) < oo, since in this case (ii) holds for a l l / £ L2(K).

(b) There are hypergroups K in which (i) and (ii) of Proposition 3.7 are
equivalent; see 6.3.

(c) If supn w(<J>n) = oo, then Cas(K) ¥* L2(K). To see this, select / £ L2(K)
that violates 3.7(ii).

For emphasis, we remind the reader that K is an infinite, compact, metrizable,
abelian hypergroup with hypergroup dual K.

3.10. THEOREM. (Dudley's theorem for hypergroups.) Consider f £ L2(K) satisfy-
ing

0) 2|A*.)l*(*.)2<oo.

Let X(x, w) be as in 2.8 and define the pseudometric

d(x,y)=\\Xx-Xy\\2 =
n=\

1/2
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on K. Let N(e) be the least number of d-balls of radius < e (with centers in K) that
cover K. If

(2) (i
]/logN(e)de<oo,

then f G Cas(K).

Note. Condition (1) is a reasonable hypothesis in view of Proposition 3.7.

PROOF. AS noted after Definition 2.8, the process (Xx)xeK has subgaussian
increments. By Proposition 3.7, the pseudometric d is continuous on K and
x -» Xx maps K continuously into L2(fi). By Dudley's theorem ([Dudley (1967)],
[Dudley (1973)], or Theorem 5.2, page 165 in [Jain-Marcus (1978)]), there is a
process (Yx)xeK equivalent to(Xx)xeK so that (Yx)xeK has J-continuous sample
paths. Such paths are continuous on K and so

(3) each Yu is continuous in K;
(4) P{XX ik Yx) = 0 for all x E K.
It suffices to observe that a.s.

00

Yu has Fourier series 2/(*„) '"( ' / 'n )*»(«) Vv

By the uniqueness of Fourier transforms, it suffices to show that a.s.

t(*J =/(*„)£» for all n.

Thus it suffices to fix n and verify

(5) *„(*-)=/(*»)««(«) a.s.

This can be shown by considering the L2(fl)-valued integral Z =
IK Yx^n(x) dm(x) and using (4) to show that Z = / (^ n ) | n as elements of L2(fi).
Since Z(«) = Yu(+n) for all w, (5) holds.

3.11. REMARKS, (a) It is known [Marcus-Pisier (1980), Theorem 2.32] that if K is
a compact abelian group, then the entropy condition (2) is also necessary for
almost sure continuity of / . We will see in Section 6 that on the countable
hypergroups considered there condition (2) is again necessary for / to be almost
surely continuous, but we do not know whether this condition is necessary in
general.
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(b) We give another sufficient condition for almost sure continuity at the end of
Section 4.

3.12. DISCUSSION. Suppose that the hypergroup K can be identified with an
interval [0, b]. Let /J(w) = u when 0 *s u < 1, and /?(«) = 1 when u > 1. Suppose
that there are constants Cn > 1 so that

(1) \tn(x) -+n(y)\ *z Cj(n\x - y\) for all n G N, x, y £ K.

Arguing as in Section IV.3 and applying Lemma IV.5.3 of [Jain-Marcus (1978)],
we can show that if

(2) «(logrt)1/5

then condition 3.10(2) holds, and / G Cas. When K is the circle group, condition
(1) holds with Cn = 2, and condition (2) is the Salem-Zygmund sufficient condi-
tion for almost sure continuity. When K is the set of conjugacy classes of SU(2),
condition (1) holds with Cn = Clog n, and condition (2) is then only a little more
restrictive than condition 3.7(ii), which is necessary for almost sure continuity; see
7.6 for more details.

4. Series in LP(K) and M(K)

We begin with a simple "sure" result that shows, among other things, that the
requirement Xu E C(K) for all w is a much stronger condition than the require-
ment Xa£ C(K) for almost all u. A proof can be based on 1.5 in [Edwards
(1965)] if desired.

4.1. PROPOSITION. Suppose that

represents a function in Lcc(K)for all w G B = (-1,1}N° where en denotes the nth
projection. Then we have f G A(K).

We next present a very useful lemma.
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4.2. LEMMA. Let (X, p), (Y, v) be a-finite measure spaces and let F be ju, X v-
measurable on X X Y. If 0 < q <p < oo, then

WP

(1)

Vi\p 1
\F(x, y)]"dp(x)\ dv{y)\

c, y)\ dv(y)

PROOF. This lemma is well known, but we sketch a proof for the readers'
convenience. One may assume Fs* 0 and p < oo. First assume q = 1 and let

= fxF(x> y) dp(x). Then show that

X\_JY

for ip G LP'(Y, v). For arbitrary q, apply (1) with F, p and q replaced by Fq, p/q
and 1, respectively.

The next lemma is a tiny generalization of Lemma 4 in [Dooley (1980)].

4.3. LEMMA. / /1 *s p < oo and

p/i

then Xu is a.s. in Lp(K)and

dm{x).

PROOF. By Fubini's theorem and Khintchine's inequality 2.9,

) < (*{p)Pj\\Xx(2dm{x)

oo 2~\p/1

WfK[ 2 |A*.)*(*.)*.(*)I J
Since |«pn|< 1 for all n, the next theorem is obvious from Lemma 4.3.

4.4. THEOREM. / / 2*=I

</> < oo.
^n)2 < oo, then Xu is a.s. in all L»(K) for
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4.5. THEOREM. Let 2<p<oo, 0 < e < 1, and q = p/e. Suppose that K has
property Xp. If

n=\

then Xa is a.s. in L\K).

PROOF. By Lemma 4.3 it suffices to show

A =
.2

dm(x) oo.

By hypothesis, there is a constant B such that \\tyn\\p *s 5| |^n | | 2 for all n. By
Holder's inequality we have

Now by Lemma 4.2, we have

1/2
VR\ "

f I 1/2

= | 2 1/(̂ )̂ (̂ )1 lltll,
1/2

= i

« -11/22}
An early version of the next theorem was kindly shown to us by Giancarlo

Travaglini.

4.6. THEOREM. Consider 2 < p < oo.

(a) If K has property Xp andf E L2{K), then Xa is a.s. in L"(K).
(b) If K does not have property Xp, there exists fin L\K) such that Xa& LP(K)

for almost all w.

PROOF, (a) This is just Theorem 4.5 with e = 1.
(b) Let h0 = 0 and given trigonometric polynomials h0, hu...,hk_x and char-

acters i ^ , , . . . , ^ _ , w e apply 2.9 in [Chilana-Ross (1978)] to select a trigonometric

https://doi.org/10.1017/S1446788700021741 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021741


11 s ] Random Fourier series on hypergroups 59

polynomial hk such that

h k = \ on {*„...,ifc,_,}

and \\hk\\\ < 2. We select \pnt £ U*!,1 supp(hj). Since K does not have property
Xp, we can also arrange for

Finally, choose / e L\K) so that A+Kk)
2m(4>nk) = \/k2 and / = 0 off

{\pn ,$„ ,...}. We complete the proof of (b) by showing

(1) XOGL"(X) implies sup \tnk(u)fk < oo
k

and

(2) sup | | n j (w)| k = ao a.s.

To check (1), note that

for all /:, while

If (£„) is a Rademacher sequence, for example, we are done since (1) shows that
Xu (£ LP(K) for all w. For the general uniformly subgaussian case, we need to
apply Proposition 2.12. So let e and c be as in 2.12 and let Ak — {a G fi:

1/c}. Then P ( A t ) ̂  1 - e for all A: since otherwise 2.12 leads to

i=H«j|2<c/" |{j

To verify (2) we show that

(3) p { | £ n /* < B for a11 k) = °
for each constant 5 > 0. In fact, by independence

fk <B for a\l
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For large k,(B/k)l/p < \/c and the corresponding factors in the infinite product
are bounded by 1 — e. This proves (3), hence (2).

4.7. REMARKS, (a) Proposition 3.7 and Theorem 4.4 combine to give the
comforting implication:

ifXu eC(K) a.s, then Xu G Lp{K)forp < oo a.s.

(b) In general, the converse to Theorem 4.4 fails. Indeed, if K has property \p

for some p > 2 but not property Xx, then there exists / e L2(K) such that
2"=i \f(in)\2fh(in)2 ~ °° a n d yet x» e LP(K) a.s. for all p < oo. To see this,
note that supn m(4>n) = oo, and so we can arrange for 4.5(1) to hold for all e > 0

/
(c) Let K be the set of conjugacy classes of a compact, connected, simply

connected, non-abelian Lie group G; let ec = 2 rank G/(dimG — rank G). Then
K has property Xp if and only if p < 2 + eG; see [Giulini-Soardi-Travaglini
(1981)]. This yields a large class of hypergroups to which part (b) above applies.

(d) For the same class of hypergroups, Theorem 4.6(a) is due to Dooley
[Dooley (1980), Theorem 2], and 4.6(b) shows that his result cannot be improved.

(e) The proofs of Theorems 4.4, 4.5, and 4.6 easily yield estimates on expected
values of certain norms. We record two such estimates for use later in this section:

(1) / | | * X dP(a) < K"pp/\ f | / ( ^ ) m ( ^ ) | 2 ^ , in general;
a L"=l

(2) f \\Xafp dP(u) < Kppp/2\\f\\P
2 if khas property X p>2.

We next study series that are a.s. in M(K).

4.8. THEOREM. If2^=^n(u)anm(\j/n)}(/n is a.s. a Fourier-Stieltjes series, then

(1) / 2 laM+nHni*)

Moreover,

I oo \ 1/2

(2) 2 k l *(*.)2ll*.n; < °°-

PROOF. For almost all w £ fi, 2"=iln(w)anm(i//n)^ is the Fourier-Stieltjes
series for a measure pu in M(K). The function w -> \\pj\ is measurable on S,
since there exists a countable family Q of trigonometric polynomials / satisfying
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1 such that

11/* J = SUP

Let e > 0 and c > 0 be as in Proposition 2.12. Since U ^ = 1 {w G ft: | |juj| < m)
has probability 1, there exists a measurable set A in ft and a constant 5 so that

(3) P(A) > 1 - e and B for all to G A.

Let (/*„) be an approximate unit for D{K) as in Lemma 2.3. For each u G A,
(3) shows that ||An * /x j | , < 5 and so /A /^ | / i n * /i J rf/w JP(w) < £/>(A). Since
hn * /iw(x) is measurable on K X ft, we apply Fubini's theorem and obtain

(4) \K * lia(x)\dP(o>) dm(x) <BP(A).

By Proposition 2.12, for each x G K and n we have

k=\

1/2

A : = l

Now integrate over K and use (4):

°°

Now let n -> oo to obtain (1).
To prove (2) we apply Lemma 4.2 and (1) as follows:

1/2

1/2

<

4.9. REMARKS, (a) If /^ has property X2, then conclusion (2) in Theorem 4.8
implies

(1) 2 \a \ m
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so that there exists / G L2(K) with/(;//„) = an for all n. Then Xa e L2(K) a.s.,
and a fortiori Xu e M(K) a.s. To obtain (1) from 4.8(2), note that m(tnMn\\i =
(Unh/Wli)2 is bounded away from 0.

(b) Part (a) applies to the hypergroup of conjugacy classes of a compact Lie
group G by Theorem 6.2 in Dooley [1979], the connected case of which is due to
Price [1975]. In particular, this provides a generalization of Theorem 1 in [Dooley
(1980)]. Dooley's Theorem 1 is given for connected G; even for this case our proof
is different.

(c) For the hypergroups in 6.1, condition 4.8(2) is equivalent to the inequality
S^=! | an |

2 < oo, which does not imply (1) above.
(d) The proof of Theorem 4.8 shows that the quantities 4.8(1) and 4.8(2) are

both majorized by nja\\\iu\\M{K) dP(u).

In the case where K is the unit circle group T, the estimate 4.7(1) originates in a
classical result of Paley and Zygmund [Paley-Zygmund (1930), Theorem III].
Recently, de Leeuw, Kahane, and Katznelson [1977] used this classical theorem to
prove that every /2-sequence on the integers can be majorized in absolute value by
the Fourier coefficients of some continuous function on T. We now use estimate
4.7(2) to prove a generalization of the latter fact.

4.10. THEOREM. Suppose that K has property Xp for some index p > 2. Then for
each element b of 12(K, m) there is a function f in C(K) for which \f(\p) \>\ b(4>) |
for all \p in K.

PROOF. Following [Kizlyakov (1981)], we use an abstract version, due to S. V.
Krushchev, of the original method of de Leeuw, Kahane, and Katznelson. Let 6
be a nonnegative nonincreasing function on the half-line (0, oo) such that 6{t) -» 0
as t -* oo. Say that 6 has property (*) if there exists an increasing, positive
sequence (cn)~=1 such that

n = l »

For example, if 6(t) = t" for some constant a < 0, then the sum above is finite
when cn = 2" for all n. According to [Kizlyakov (1981), Theorem 1] the conclu-
sion of Theorem 4.10 holds provided that there is a function 0 with property (*)
so that the following is true: For each function/on K with | | / | | 2 = 1, and each
number t > 0, there is an element w of ft for which the function

n=\
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can be written as a sum gu + hu, where \\gj\x >£ /, and \\hj2 *£ 6(t). Here, the
functions en are Rademacher functions taking only the values ±1, that is,
projections o n 8 = {-1,1 }s°. We note that [Kizlyakov (1981), Theorem 1] is
stated for orthonormal rather than orthogonal systems; to deduce the variant
given above, just pass to the orthogonal system (^n/||^n||2)r=i-

To verify that such a splitting of Xu is possible for some w, fix a function / as
above, and apply inequality 4.7(2). Thus

Si

Choose w so that \\XJ\P < KppP/2. Given /, let

, 0 otherwise,
and

0 otherwise.

Clearly \\g\\n, < / as required. On the other hand, since all nonzero values of h
exceed / in absolute value,

j\h{x)\2 dm{x)^t2-P j\h{x)\P dm{x);

hence

= 0(t) say.

Since this function 6 has property (*), the proof is complete.

4.11. REMARKS, (a) Let us say that the pair (K, K) has the d.L.K.K.-property if
the conclusion of Theorem 4.10 holds for K. Observe first that if K has this
property, then K must have property X2. Indeed, suppose that K does not have
property A2; then there is a sequence {nt}%x so that

Since |/(^) |< | | / | | JM| , , and since 1/||^||2 = m(^)1/2, it would follow that
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for a l l / in C(K). Choose b in l\K, m) so that

Then there is no function/in C(K) such that |/(^Bj>) \>\b(yf>n.)\ for all /.
(b) We do not know whether the condition that K have property \2 implies that

the pair (K, K) has the d.L.K.K. property, but we will show in 5.4 that a
convexified version of the d.L.K.K. phenomenon does occur if K has property A2.

(c) The hypothesis that K have property \p for some p > 2 is satisfied by many
of our examples, but not by the countable hypergroups to be discussed in Section
6. In particular, this hypothesis is satisfied if K is the space of conjugacy classes of
a compact simple, simply connected Lie group.

(d) In [Kizlyakov (1981)], S. V. Kizlyakov showed that in the case of the circle
group T, the conclusion of Theorem 4.10 holds with the space C(T) replaced by
U{T). This seems to be a much deeper fact than Theorem 4.10, because
Kizlyakov's proof requires a key estimate in Carleson's proof of the Lusin
conjecture.

(e) Propositions 3.3 and 3.7 show that i f /belongs to U(K) or Cas(K), then
limn^00/(i/'n)m(i/'n) = 0. It follows easily that if sup^rfi(^) = 00, then the space
C(K) in Theorem 4.10 cannot be replaced by U(K) or Ca£K). It is also worth
mentioning that, when K = T, well known necessary conditions on Cas(T)
[Marcus-Pisier (1980), 7.1.3] show that C(T) cannot be replaced by Cas(T) in
Theorem 4.10.

Finally, we use the estimate 4.7(1) to derive another sufficient condition for
almost sure continuity. Given/ in L'(AT), let

thus inequality 4.7(1) asserts that

For positive values of t, let $ ( 0 = e'2 - 1 and tj»(t) = t(\ + log(l + 0 ) 1 / 2 ;
denote the corresponding Orlicz spaces on K by L9(K) and

4 . 1 2 . L E M M A , / / / e l , and g E L # , then f * g e C(K), and \ \ f * g \ \

PROOF. If g is a trigonometric polynomial, then / * g G C(K), and the norm
estimate follows easily from the duality between LQ and Lr But trigonometric
polynomials are dense in L^.
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4.13. THEOREM. Suppose that III/III2 < oo and that g E L^K). Then f* g e

PROOF. AS in [Marcus-Pisier (1980), Lemma 6.1.3] inequality 4.7(1) implies that

It then follows from Lemma 4.12 that Xa* g E. C(K) almost surely, and that

as required.

4.14. REMARKS, (a) For K=T, the theorem above goes back to Paley and
Zygmund [1930], page 344. The analogue for random Fourier series on compact
groups is implicit in [Rider (1977)].

(b) In 7.6, we will use a consequence of Theorem 4.13: If / and g are
trigonometric polynomials, with ||g||, > 1, then

This inequality follows from the theorem, because, in this case, \\g\\^

(c) Another consequence of Theorem 4.13 is that if (/n)^=1 and (gn)*=1 are
sequences of trigonometric polynomials, with S^III/JLllgJ.j, < <*>, then the
series 2™=]fn*gn is norm convergent in the space Cas. A theorem of Pisier
[Marcus-Pisier (1980), 6.1.1] states that if A" is a group then every function in Cas

can be represented as a sum of such a series. We shall see in 6.9 that the
corresponding assertion is false for some hypergroups.

5. Some multiplier results

5.1. DEFINITION. For Banach spaces B and D of functions on K, 911(2?, D)
denotes the space of all functions of multipliers p on K such that f E. B implies
fp = g for some (unique) g E D.

By the closed graph theorem, the multipliers p correspond to bounded linear
operators Tp of B into D. Specifically, Tp(f)=fp for / E B. We will write the
operator norm of Tp as ||2^||B>D or \\p\\B<D.
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5.2. REMARK. A function p on K belongs to 9H(L2, A) if and only if
2"=i \P(^n)\

2rfl(^n) < oo» i n which case p{^n) = /(</'„) for all n for some / G
L2(K). Moreover,

n=\

5.3. PROPOSITION, (a) We have 9H(C, A) = 9H(L°°, v4)

(b) jFbr/> G 91L(C, A) we have
oo

7 1 = 1

(c) If K has property \2, then 91t(C, ^ ) = 91L(L2, y4).

PROOF, (a) Consider p G 91L(C, A) and feL°°(K) and let (An) be as in
Lemma 2.3. Each/ * An is in C( A") and so

00

for all n. The proof is easily completed on letting n -> oo.
(b) Consider/? G 9IL(C, 4̂) and let (en) be a Rademacher sequence. For « G fi

and/G C(/O, we have
A/A/

//2 <2
n=\

In other words, the measure jujf such that dp™ = 2^L, en(
satisfies

= lbllc,^ll/IU for/GC(A").

Thus IIJU^H < H/'llc,̂  f°r all M. By Alaoglu's theorem, (juif)^=i has a weak- *
cluster point in M(K) whose Fourier-Stieltjes series is 2^=i en(u)p(\pn)m(\pn)\l/n.
Remark 4.9(d) now apph'es to complete the proof.

(c) If K has property A2, then, as noted in Remark 4.9(a), inequality (2) implies
that

(3) 2 K*jfa(*J<"'MlL<-
To see that 91t(C, A) = 9H(L2, A) in this case, observe first that 91L(L2, A) C
9H(C, A) in any case, and then deduce from Remark 5.2 that if the left side of
inequality (3) is finite, thenp G 9H(L2, A).
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5.4. R E M A R K S , (a) T h e ana logue of inequal i ty 5.3(3) for or thogonal systems in
L 2 [0 ,1 ] having proper ty X2 is d u e to M a h m u d o v [1965]; ou r proof is similar to
his.

(b) As in Remark 4.1 l(a), the inclusion 91L(C, A) C 9H(L2, A) implies that K
has property A2-

(c) A standard duality argument [Caveny (1969), Theorem 3.3] shows that the
inclusion 91t(C, A) C 91L(L2, A) holds if and only if the following convexified
version of the de Leeuw-Kahane-Katznelson phenomenon occurs: For each
function b in l\K, m) there is a sequence {fk)f=\ °f functions in C(K) so that

k=\

and

2 \fk(+n)\>\M for all n.
k=\

This suggests the conjecture that if K has property X2, then the pair (K, K) has
the d.L.K.K. property.

(d) Proposition 5.3(c) is useful in showing that if K has property X2, then
U(K)^ C(K) no matter how K is ordered. Suppose first that K has property
Xx; then, by Remark 2.6(d), the corresponding orthonormal system {̂ /

n/||V'nll2}n>= i
is uniformly bounded, because Hl̂ /IIV'nlhllloo = Vll^nlk- Now it is known
[Bockarev (1978), 2.2] that the Littlewood conjecture holds on the average for
uniformly bounded orthonormal systems, and it then follows, by the usual
uniform boundedness argument, that C(K) =£ U(K). Suppose next that K has
property X2 but not property Xx. Again by Remark 2.6(d), supn w(^n) = oo. It
follows that there are functions p on K so that 2"=1|/»(^n)|< oo, but

p/w(^n) = oo. By Proposition 3.3, any such function p belongs to
), A(K)), but by Proposition 5.3(c), any such function/? does not belong

to <m,(C(K), A(K)). Hence C(K) *= U(K).
(e) In the same spirit, Proposition 5.3 can be used to show that the spaces C(K)

and A{K) are distinct, even if K does not have property X2. Indeed, ||^n||2 < ||^rtHi,
because Ĥ Hoj, = 1; therefore ^(^^I^H, > 1 for all n. In particular, inequality
5.3(2) implies Z"=, \p($n)? < oo for all/? in 91t(C, A). On the other hand, clearly
°HL(A, A) = r(K), so that 9H(C, A) ¥= ^(A, A), and C(K) * A(K). The fact
that C(K) ^A(K) was proved earlier by Vrem [1978], by a method that also
applies when K is not abelian.

(f) By 5.3(b), the finiteness of the left side of inequality 5.3(2) is a necessary
condition for p to be in 911(0", ^4). It is natural to ask if this condition is also
sufficient for/? to be in 91l(C, A). If Khas property X2, then the answer is "yes",
because, in that case, the proof of 5.3(c) shows that if the left side of 5.3(2) is
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finite, then p e 9H(L2, A) C 9H(C, A). We conjecture that when K does not
have property X2 the answer to the question above is always "no". In 6.5, we
verify this conjecture for the special countable hypergroups considered in Section
6.

(g) Finally we describe a condition on p that is necessary and sufficient for
membership in 9H(C, A) even if K does not have property X2- Let p 6 (Dlt(C, A)
and let juu be the measure obtained as in the proof of 5.3(b) but with the
randomizing factors en(«) taken to be Steinhaus rather than Rademacher. It is
easy to verify that s u p j | / i j | = ||/>||Cj/( and, by the symmetry of the en's, that

SUPu,tfl|Sjv/lJ|, = SUpJ|/iJ|.
Introduce an isomorphic copy, K' say, of the hypergroup K. The method of

[0rno (1976)] transfers easily to this setting, and yields that there is a sequence
(cJ^L, with 2£=, | c j 2 < oo, an orthonormal sequence (%)™=l in L\K U K'),
and a function F in L2(K U A"') so that for each n the functionp(^n)m(ipn)ipn is
the restriction to K of the product cnF • %. Conversely, it is easy to verify that if
p{^n)m{^n)\lin is representable as above for each n, then measures /iu with
supUiAr||5Ar/iu||, < oo exist, and/? G 91L(C, A).

Up has such a representation, then it follows easily that

(2) J h
and hence that the left side of inequality 5.3(2) is finite. These seem to be the
simplest conditions on the size of p that follow easily from the representation
discussed above. Inequality (2) goes back to Orlicz [1933].

6. Countable hypergroups

Dunkl and Ramirez [1975] investigate an interesting class of countable hyper-
groups Ka, indexed by a where 0 < a < 1/2. When a = \/p for a prime p, then
Ka can be obtained from the group Â , of />-adic integers as follows. Let W be the
multiplicative group of units in A and note that each element of W induces an
automorphism of Ap via multiplication. Then Kl/p is exactly the hypergroup of
orbits of Ap under W as constructed in [Dunkl-Ramirez (1975), Section 3] or
[Jewett (1975), Section 8].

6.1. The hypergroup Ka is identified with {0,1,2,.. . ,00}. The invariant mea-
sure m is given by

m({k}) - ak(\ - a) for k < 00, and m({oo}) =
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We have Ka = {\j/0, ipu *p2, • • •} where \pQ = 1 and

f l for k>n,
in(k) = la/(a- 1) for k = n - l,n> 1,

[o forA:<« - 1.

Direct computation shows that

Hence Ka does not have property Xp for any/> > 1.
The invariant measure m on Ka is given by w(^0

for n > 1.

6.2. PROPOSITION. The following are equivalent:
(i)fec(Kay,

( i i ) /e £/(*„);
(iii) S^L^C^JwCV'J converges.

— 1 and m(\pn) = (1 — a)a~"

PROOF, (i) and (ii) are equivalent by Theorem 6.3 in [Dunkl-Ramirez (1975)],
and (ii) => (iii) by Proposition 3.3. If (iii) holds, then 2f=lf(\pn)a~" converges.
Given e > 0 there exists No such that

N> M> NQ imply

Routine estimates then show that

N

<e
n — M

for TV 7* M > 7V0 and all k E Ka. Therefore/ E

6.3. COROLLARY. We havef E Cas(Ka) if and only if

00

(1) 1
n=\

PROOF. The necessity of (1) is proved in Proposition 3.7. If (1) holds, then
2™=J(\pn)m(}pn)Zn(u) converges a.s. by Theorem 7, Chapter III in [Kahane
(1968)]. Hence /E Cas(Ka) by Proposition 6.2.
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6.4. SUMMARY.

( a ) / E L 2 ( t f a ) if and only if 2? = ,!/(</<„) I V " < oo.

(b)fEA(Ka) if and only if 2 ? = 1 | / ( ^ ) | a - < oo.

(c)f<EC(Ka) if and only if l^JUn)a-
n converges.

( d ) / G CM(AT0) ifandonlyif 2 ^ , 1 / U J |V 2 f l < oo.

Note that / E C(A:a) and / > 0 imply / £ ^ ( ^ a ) ; this also follows from the
general Proposition 2.4.

6.5. REMARK. Since Ka does not have property X2, the pair (Ka, Ka) does not
have the d.L.K.K. property (see Remark 4.1 l(a)); also <9H(C, /I) ^ ^ ( L 2 , yl)
(see Remark 5.4(b)). It follows easily from the next proposition that there are
functionsp for which the left side of inequality 5.3 (2) is finite butp $ 91L(C, A).
Thus the conjecture made in Remark 5.4(f) holds for the hypergroups Ka.

6.6. PROPOSITION.ForK = Kawehave

(1) pG^iC, A) ifandonlyif f |/>(*J|< ».

PROOF. Let cond denote the set of sequences (bn) such that 2bn is (condition-
ally) convergent. In view of 6.4, assertion (1) is equivalent to the claim that the
space of multipliers from cond to / ' is precisely /'. This is an elementary fact;
note that given (an) in c0 there exists (£>„) in cond such that | b j ^ | f l j for all n.

Our next example shows that the converse to Theorem 4.4 fails for these
hypergroups.

6.7. EXAMPLE. There exists/ e L\Ka) such that

n=\

(2) A^isa.s.inallL^tfJ, 1 </>< oo.

To accomplish (2), Lemma 4.3 says it suffices to obtain

4 oo 2 ] p/2

2 \K+M(4M»(x)\ dm{x) < oo
n=\ J
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for all p < oo. Since m({k}) - ak{\ - a), m(ipn) = (1 - a)a~", |^n|< 1 and
*pn(k) = 0 for n > k + 2, it suffices to arrange

» r*+i 2 />/2
(3) 2 2 | / ( ^ ) a ' " | «*<«» for/><oo.

/„) = a" for all n; then conditions (1) and (3) both hold, and / £ L2(Ka).

6.8. EXAMPLE. Here we consider random Fourier series on Ka using a Rade-
macher sequence. There exists/ £ L2(K) so that

(1) Xu$.L"{Ka) f o r a l lw£f l andau>>2 .

The proof of Theorem 4.6(b) accomplishes this for each p, so we will not provide
details here. We merely state that / can be selected so that f{^n) = an/2/n and
that Proposition 7.7 in [Dunkl-Ramirez (1975)] is useful in establishing (1).

Finally, we consider, for the hypergroups Ka, the sufficient conditions for
almost sure continuity that were presented at the ends of Sections 3 and 4. We
first show that the entropy condition of Section 3 is also necessary in this
situation.

6.9. THEOREM. / / / £ CflJ( A"a), then

PROOF. First observe that for each nonnegative integer k

(0 forall/i>Jfc+1,
*„(*) = \a/{a-\) iorn = k+\,

11 for all n < k.

It follows that the pseudometric d of 3.10 is given by

+ 2
7+K/K*

- a/(a -
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whenever 0 <j < k < oo. Let d' be the pseudometric on Ka defined by letting

( k+\ 1 '/2

» 2
2 |/("/'n)'^(V'n)| [

n=j+\ J
whenever 0 <j < k < oo, and

1/2

U=y+1

It is easy to verify that
d'^d<2d'.

As in 3.10, let N'(e) be the least number of d' balls of radius *s e (with centers in
Ka) that cover Ka. It follows easily that(2) (X^\ogN{e)de < oo

•'o
if and only if
(2') ('/log #'(£)<*£< oo.

•'o
In view of this and 6.3 it suffices to show that condition 6.3(1) implies condition

(20-
To this end, suppose that /satisfies condition 6.3(1). Fix e > 0. Define elements

n,, «2>-• • °f ^a> a n ^ '/'-balls Bx, B2,... by the following procedure. Let «, = 0
and let Bx be the </'-ball of radius e centered at «,. Given Bx, B2,...,B,, stop at
this stage if these balls cover Ka\ otherwise, let n/+1 be the first point of Ka not
covered by Bx UB2U • • • UZ?,, and let B,+ l be the d'-b&ll of radius e centered at
n/+1. The idea now is to show that this process stops after most 1 + 4(|||/|||2/e)2

steps.
Call n, terminal if the process stops at the /th step. It follows from the

definitions above that if n, is not terminal, and if nl+, < oo, then

(3) "l+i i / a ^ a ) ! 2 ^ 2 -
Similarly, if n, is not terminal, and if n / + I = oo, then

I(4) I

Split the set of integers nt into two classes by declaring that n, £ Q if either n, is
not terminal and

(5) 2 2
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or if n, is terminal and

(6) 1 W

and declaring that n, E 9 otherwise. Summing the left sides of inequalities (5)
and (6) over all n, in % yields at most the quantity

2>
n=\

therefore, the class § contains at most IH/lll2/(£2/2) points nt.
Suppose next that n, E 9 and that nt is not terminal. Then

(7) " f |/(^)m(^)|2<e2/2.
n = n,+ \

By inequality (4) it cannot be the case that nl+l = 00. It then follows from (3)
and (7) that

and hence that «; + 1 e §. Therefore the class 9 contains at most 1 + lll/ll|2/(e2/2)
points n,, and the process specified above does indeed stop after at most
1 + 4fl||/|||2/e)2 steps. Thus

N'(e) < 1 + 4(|||/|| |2/e)2,

and inequality (2') holds as required.

6.10. EXAMPLES. Given a real number s > 0, define a function fs in L2(Ka) by
setting//.JO = « - ' / m ( i ) for all n.

(a) First observe that HI/JH2 < 00 if and only if s > 1/2. It follows from 6.4(d)
that fs e Cas if and only if s > 1/2. By 6.9 the entropy condition holds if and
only if s > 1/2.

(b) Next we verify that when s *s 3/4, the function fs cannot be represented in
the manner discussed in Remark 4.14(c). To do this, we need the fact that if
/ E L^ and |||g|||2 < 00, then

(3) I

Ma% this inequality, we see that if fs could be represented as in Remark
4.14(c), then it would follow that

n = l
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In fact, however, the sum on the left is infinite when * =£ 3/4, so that, in this case,
fs cannot be represented in the manner discussed in Remark 4.14(c).

Now inequality (3) follows by Cauchy-Schwarz from the inequality

(4) 1
and since \\f\\x ^ ||/| |i ^ | | / | |$ , inequality (4) follows from the inequality

(5) 2 %r

Inequality (5) is the analogue for Ka of an inequality proved for the unit circle
group T by C. Bennett [1975], and it follows from Bennett's theorem by a
transference argument. To this end, identify (T, d$/2ir) in a measure preserving
way with the interval [0,1). Given a function g on Ka, let G be the function on
[0,1) that is equal to g(n) on the interval [1 - a", 1 - a"+1); then ||G||^ = ||g||^,
because each point in Ka has the same measure as the corresponding half-open
interval in [0,1). Denote the Borel field generated by the class of all such
functions G by lfa, and let Ea be the conditional expectation operator h -» E(h,^a);
regard Eah as a function on Ka. In a similar way, let the point \pn in Ka

correspond to the interval [a"" + 1 ,a"") in[0 , oo), and transfer functions b on Ka

to functions Rb on [0, oo) by making Rb equal to b(\pn) on the interval corre-
sponding to ipn. Finally, given any function A: on [0, oo) let rk be its restriction to
the set Z + of all nonnegative integers.

The proof of Theorem 4.3 of [Bennett (1975)] shows that if a linear operator L
is bounded from L\T) to 1™(Z+) and from L2(T) to / 2 (Z + ) , then there is a
constant K, depending only on the norms of L in the two endpoint cases
mentioned above, so that

We apply this to the operator L defined by the following sequence of operations:

It is easy to see that L is bounded from L\T) to /°°(Z+), with norm 1. Also, the
operator Ea is an L2-contraction, and the operator Eah -* R(Eah)~ is anisometry
from L2(Ka) into L2[0, oo); finally

because rh(\pn) S
5 1 for all n. So, inequality (6) holds for this operator L.

https://doi.org/10.1017/S1446788700021741 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021741


[31] Random Fourier series on hypergroups 75

Let / G L+( tfa); then F E L#[0,1), and | |F | | # = | | / | | + . Since EaF = / , it fol-
lows from inequality (6) that

It follows easily from the definitions of the operators R and r that this inequality
holds if and only if

n=\ in

as required.
It follows that if 1/2 < s « 3/4, t h e n / E Cas, b u t / cannot be represented in

the manner discussed in Remark 4.14(c).
(c) Finally, we show that if s > 1, then / can be represented as in Remark

4.14(c). Consider the Dirichlet kernels

and the functions

7 = 0

7 = 0

Dunkl and Ramirez [1975] show that \\Dn\\l = 1; on the other hand, by Parseval,
\\Dn\\2< a'"/2- Also \\\Hn\\\2 = (n + I)1/2 , because Hnty) = \/m{^) if j < n,
and Hn(\pj) = 0 otherwise. Since Hn — Hn* Dn, it follows from inequality 4.14(1)
that | | / /J | a 5 < K ' ( " + !)• To see that/5 E Caj when 5 > 1, sum the Fourier series

by parts, and use the estimate above ior\\Hn\\as.

6.11. DISCUSSION. Consider three conditions on a function / with III/III2 < 00:

(ii) the entropy condition 3.10 holds.
(hi) /can be represented as in Remark 4.14(c).

When K is a compact abelian group, these conditions are known [Marcus-Pisier
(1980)] to be equivalent. We have shown, in Sections 3 and 4, that the implica-
tions (ii) => (i) and (iii) =» (i) hold for all compact abelian hypergroups K. By 6.9
and 6.10, the implications (i) => (iii) and (ii) => (iii) are false for each hypergroup
Ka. Finally, the implications (i) => (ii) and (iii) => (ii) hold for the hypergroups Ka,
but we do not know whether they hold for all compact abehan hypergroups K.
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7. Conjugacy classes of compact Lie groups

7.1. Let G be a compact non-abelian group and K the hypergroup of conjugacy
classes. The dual object 2 consists of the equivalence classes a of continuous
irreducible unitary representations of G. Each a in 2 has finite dimension da and
trace xo- The functions xo are called characters but the hypergroup characters are
normalized by dividing xo by da. More precisely, if IT: G -* K is the natural map,
then 4>a on K is defined by the formula \pa° -rr = d~lxa and K = {\pa: a e 2}. The
invariant measure m on K is induced from Haar measure on G via tr. The
invariant measure m on K is given by

see 2.1(1) and 27.31 in [Hewitt-Ross (1970)].
7.2. Observe that K has property Xp, as defined in 2.5, precisely when the dual

object 2 is a local central A, set [Rider (1972a)]. Dooley [1979, 6.2] proved that K
has property X2 whenever G is a compact Lie group. Rider [1972b] showed that if
G = U{n) or SU{n), then K has property Xp for p < 2 + 2/n but not for p = 3.
Rider's results have been generalized as follows. Let G be a compact connected
Lie group. Then K has property Â  for p < 2 + ea where

_ 2 rank G
tc~ d i m G - r a n k G '

see Clerc [1976] and Dooley [1979]. In [Giulini-Soardi-Travaglini (1981)] it is
shown that K does not have property A3, and, when G is a connected, simple,
simply connected Lie group, K does not have property \p for p > 2 + eG.

7.3. Conjugacy classes of SU(2). For the remainder of this paper, K will denote
the hypergroup of conjugacy classes of SU{2). We identify A: with [0, TT] where 6
in [0, w] corresponds to the conjugacy class containing the matrix

/exp(/0) 0
\ 0 exp(-/0)

see 15.4 in [Jewett (1975)]. For each n= 1,2,3,..., the dual subject of SU(2)
contains exactly one element of dimension n. We write its character as xn and we
write \j/n for the corresponding normalized hypergroup character on K = [0, IT].

Then

The invariant measure m on K is given by

2f fdm = -ff{0)sm20d0.
JK irJ0
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As no ted in 7.1 we have

*(*.) = "2 and W 2 = - for a11 n-

Thus

(1) f£L2(K) ifandonlyif f \f{^n)f n2 < 00;
n=\

(2) f^A(K) ifandonlyif f \f(in)\n
2 < 00.

7 1 = 1

Propositions 3.3 and 3.7 tells us
00

(3) fEU(K) implies 2 /(<Un2converges;
«=1

(4) ftCjK) implies f \f(*n)\\* < 00.
n=\

A technique of R. A. Mayer [1967] allows us to give some specific examples for
this interesting hypergroup.

7.4. Mayer's examples. Let (nk) be a sequence in N such that nx > 1 and
nk+l > nk + 2 for all k, and let (ak) be a sequence in /2. There exists an / in
L\K) such that

— 0 elsewhere. We claim
(1)/ £ A(K) if and only if lf=l \ak \nk < 00;
(2) i f2? = 1 K|<oo, then/eC( / ! : ) ;
(3) if/ £ {/(#), then lim^^^ aknk = 0;
(4) if 2^=, |«A|< o o a n d l i m ^ ^ a ^ ^ O , then /£ U(K);
(5) if/ £ Caf(tf), then 2?=, | a, |2«^ < 00.
Claim (1) is trivial. For claim (2), we calculate, as in [Mayer (1967)], the partial

sums

k
k=l

akcosnk6.

If 21 ak |< 00 these partial sums converge uniformly to a continuous function
which has to agree a.e. with/. Claims (3) and (5) follow from Propositions 3.3 and
3.7. Claim (4) is verified by comparing any partial sum with a suitable sn +, / .

(a) In Mayer's original example, nk = A:3 and ak = I/A:2. In this case,/ £ C(K),
f <£ Cas(K) and f$U(K).

(b) Let nk = 3k and ak = A:"3/2. Then/ £ U(K) but/ <2 Q/AT).
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(c) Let nk = 2k and ak = k'1. Then/ e U(K) and / £ A(K). Since 21ak\
2n2

k

< oo, (5) does not tell us whether/E Cas(K). We will see in 7.6 that / does
belong to Cas(K).

7.5. REMARK. We have already spelled out in 4.7 results concerning a.s.
membership in LP(K). Note that Theorem 4.5 implies that if

for all £ > 0, then Xu is a.s. in all Lp{K), p < oo.

7.6. Almost sure continuity again, (a) We now indicate how Discussion 3.12
applies to the hypergroup K = [0, w] of conjugacy classes of SU(2). An induction
argument involving some elementary trigonometry shows that there is an absolute
constant C such that

Here (\j/n) is as specified in 7.3 and /8 is the function defined in 3.12. In this case,
condition 3.12(2) is equivalent to

< o c -

It follows that if (1) holds for an =/(>/'„), then/is in Cas(K). Related generali-
zations of the Salem-Zygmund theorem appear in [Ragozin (1976)] and [Rider
(1977)].

Condition (1) holds whenever

(2) 2 an
2«4log3+£«<oo

n = 2

for some e > 0; see, for example, page 608 in [Kawata (1972)]. Compare with
7.3(4). As an example, it can be shown that (2), and hence (1), hold for an = /($„)
where/is defined in 7.4(c). This function/belongs to Cas(K).

(b) Finally, we indicate how the methods of Section 4.14 apply in this situation.
These methods can be used to show that the condition obtained from (1) above
by omitting the term log2m is still sufficient for almost sure continuity (see
Marcus [1973], Appendix (iv)); we will just show, however, that the condition

(3) | a2n4log1 + en<oo
n = 2

is sufficient for almost sure continuity.
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Assume without loss of generality that /(<//,) = 0. For n > 2, let cn =
an(logn)(l+E)/2, and let Hn = 2n

k=2ckk
2^k. If condition (3) holds, then

supn|||//n|||2 < oo. As in 6.12(c), the idea now is to represent Hn as Hn * Fn for a
suitable function Vn and thereby estimate | |//J|a i .

As the notation suggests, the kernels Vn to be used have properties like those of
the classical de la Vallee-Poussin kernels on the unit circle. Recall that

Let hn = (x, + X2 + ' ' ' +X«)2- In analysing these functions it is helpful to
consider their differences

gn = hn~ hn-\ =xl + 2Xn(Xi + Xi + •' • +X»-i)-
Adopt the convention that h0 — 0, so that g, — h{ = Xi = Vv The reader may
verify that

gn ~ Xl + 2X2 + • ' • +"Xn +(n- l)Xn+\ + ~' +Xln-\
for all n s* 2. It follows that gn(tk) = 1 for A: = 1,2,... ,n, that gn{^k) = 0 for
k > 2M, and that gn(«^) decreases as A: increases from « to In. Hence by
induction on n, hn(\px) = n, and hn(^/k) is a nonincreasing function of k.
Moreover, since hn>0, ||/in||, = A„(<//,) = «. The kernels Fn = hjn are like the
classical Fejer kernels of order 2n in that Fn > 0, ||Fn||, = 1, Fn(\pk) is a nonin-
creasing function of k, and Fn(\}/k) = 0 for all A: > 2n.

Let

F n = 2 F 2 n - F n = ( h 2 n - h n ) / n = ( g n + 1 + g n + 2 + ••• + g l n ) / n .

It is easy to verify that ||KJ|, < 3, that Vn(^k) - 1 for all k < n, that Vn($k) = 0
for all A; ^ 4«, and that Vn($k) is a nonincreasing function of A:. Since m(\pk) — k2,
the Plancherel formula yields the estimate ||Fn||2 < KH3/2.

Clearly Hn = Hn* Vn, so that, by Theorem 4.13, \\Hn\\as < K'(logn)1/2. To see
that/ E Cas, write its Fourier series as

2
n = 2

and sum by parts.
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