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Abstract

Random Fourier series are studied for a class of compact abelian hypergroups. The randomizing
factors are assumed to be independent and uniformly subgaussian. In the presence of a natural
technical hypothesis, an entropy condition of Dudley is shown to be sufficient for almost sure
continuity. The classical results on almost sure membership in L?, where p < 00, are generalized to
this setting. As an application, it is shown that a simple condition on the dual object implies that the
de Lecuw-Kahane-Katznelson phenomenon occurs. Another application is the analogue of a classical
sufficient condition for almost sure continuity. Examples illustrating the general theory are given for
the hypergroup of conjugacy classes of SU(2) and for a class of compact countable hypergroups.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 43 A 30, 60 G 17; secondary 60 G
50.

Keywords and phrases: random Fourier series, uniformly subgaussian random variables, compact
abelian hypergroup.

1. Introduction

Random Fourier series have been studied in a variety of settings: on the circle
group [0,27), on compact abelian groups, on compact non-abelian groups, and
(under the label “random central Fourier series”) on the space of conjugacy
classes of certain compact groups. In this paper we work in the generality of a
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compact (metrizable) abelian hypergroup K whose dual K is also a hypergroup.
The generalizations obtained emphasize the common features of many of the
previous settings and raise some new questions.

The space of almost surely continuous functions is studied in Section 3. Recall
that by Parseval’s relation (see Section 2) we have f € L*(K) if and only if
22 1f(,) Pri(d,) < oo where i denotes the invariant measure on K =
{¢}, ¥5,...}. A more restrictive condition, namely 3%_, |f(,) Prit(¢,)? < oo, is
necessary for almost sure continuity. This condition imposes itself in several
places. An entropy condition of Dudley is shown to be sufficient for almost sure
continuity.

Section 4 contains an introduction to random series in L?(K) and M(K). A
simple condition on K is given that implies the de Leeuw-Kahane-Katznelson
phenomenon: whenever 3%, |b, rir(y,) < oo, there exists f € C(K) such that
|7(4,)|=|b,| for all n. The results in this section also yield the analogue of a
classical sufficient condition for almost sure continuity. Multiplier interpretations
of some of the material in Section 4 are offered in Section 5.

Examples illustrating the general theory and its limitations are given in Sections
6 and 7. The countable hypergroups in Section 6 are easily understood and are
very different from compact abelian groups. The hypergroups of conjugacy
classes of compact groups in Section 7 are less bizarre and the analysis on them is
more delicate and interesting.

We are happy to thank Giancarlo Travaglini for some helpful observations and
suggestions.

2. Preliminary results

A topological hypergroup is a generalization of a topological group in which
the product of two elements is a probability measure rather than an element.
Intuitively, it is a space in which the product of two elements is a variety of
elements with various probabilities, rather than a single element for sure. Exam-
ples include spaces of conjugacy classes of a compact group, spaces of orbits in a
locally compact group induced by a compact group of automorphisms, and
double-coset spaces. For many convolution measure algebras, it turns out that the
basic underlying structure is a hypergroup. For a survey, with examples, sce [Ross
(1977)]. Our main technical reference for hypergroups is [Jewett (1975)] where
hypergroups are called “convos”.

For completeness, we give the definition of a hypergroup. Let K be a locally
compact Hausdorff space, and let M(K) denote the space of regular complex
Borel measures on K. For each x € K, §, represents the point mass at x. The
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space K is a hypergroup if there is a binary mapping (x, y)+ 8, * 8, of K X K
into M(K') satisfying the conditions listed below. Note that §, * &, need not equal
8, , since xy need not be defined.

1) The mapping (§,, 8,) > &, * §, extends to a bilinear associative operation *
from M(K) X M(K) into M(K ) such that

J rduev = [ J [ 14(5.%8) au(x) ar(y)

for all f in the space Cy( K) of continuous functions f on K vanishing at infinity.

2) For each x, y € K, the measure §, * §, is a probability measure with
compact support.

3) The mapping (s, ») > u * » is continuous from M* (K) X M*(K) into
M* (K), where M* (K) is the set of nonnegative measures in M(K ), and is given
the weak topology with respect to the family Cgy (K) U {1}; here Ci; (K) is the
set of nonnegative continuous functions on K having compact support.

4) There exists an element e in K such that 8,  §, = §, * §, = §,_ forall x € K.

5) There exists a homeomorphic involution x - ¥ of K onto K so that given
x, y in K we have (§, = ’o‘y)': 8; * §; and also

e € supp(d, +8,) ifandonlyify = %.

6) The map (x, y) > supp(, * §,) is continuous from K X K into the space
C(K) of compact subsets of K, where C(K) is given the topology whose subbasis
is given by all

Cyy={A€C(K):ANU+ g and4 CV}

where U, V are open subsets of K.

We will study random Fourier series on a compact abelian hypergroup K. Such
a hypergroup carries a Haar measure m, such that m(K) = 1 and 8, * m = m for
all x in K. Associated with K is a set K of continuous functions on K called
characters; they form an orthogonal basis for L*(K, m). Throughout this paper
we make two additional assumptions about K:

(a) K is a hypergroup under pointwise operations;

(b) X is metrizable, or equivalently K is countable.

Assumption (b) is an inessential convenience, since the Fourier transform f has
countable support for f € L(K). If K were not metrizable, the study of f could be
reduced to the metrizable case by standard methods; see the appendix to [Vrem
(1978)]. We always assume for definiteness that K is infinite.

Assumption (a) is essential. It can fail for a 3-element hypergroup, but it
appears to hold for most “natural” hypergroups, including spaces of conjugacy
classes of compact groups. See [Hartmann-Henrichs-Lasser (1979)] for a general

https://doi.org/10.1017/51446788700021741 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700021741

48 John J. F. Fournier and Kenneth A. Ross f4]

class of hypergroups satisfying (a). Assumption (a) tells us the following: given
¥, ¢ € K, the product ¢’ is a finite sum 24cf ay9 where all a, >0 and
Zpckay =1 )

2.1. Fourier series. Let m and M be the invariant measures on K and K
normalized so that m(K) = i({1}) = 1. We write K = {¢, {5,...} and we write
m(y,) in place of m({y,}). Observe that

(1) (¥,) =l,” for alln;
see 7.1A of [Jewett (1975)] and 3.6 of [Dunki (1973)). For f € L\(K, m) its Fourier
series is
1~ Z 1) m (),
n=1

Parseval’s relation states that f € L*(K, m) if and only if f € I*(K, ), and that
2 X s 2
J N dm(x) = 3 |4, (8-
n=1

Also, A(K) denotes the Banach space of all functions f such that f € I'(K, )
with the norm || /||, = 27, | f(¥,) | R (¥,).

2.2. LeMMA. Let (h,) be a sequence in L\(K) such that sup,||h,]|, < co. The
following are equivalent:

(i) (h,) is an approximate unit for L'(K);

@ii) lim,_, , A, (¢) = 1 for all y € K.

PROOF. To show (i) = (ii) use the identity &, * ¢ = h (¥)y; see [Jewett (1975),
7.3E]. The reversed implication is established by a standard argument using the
fact that trigonometric polynomials are dense in L(K); see [Vrem (1979), 2.13].

2.3. LeMMA. L'(K) has an approximate unit (h,) such that
(i) each h,, is a trigonometric polynomial,

@) l|h,ll, = 1 for all n;

(iii) &, = 0 for all n;

(iv) im,_, A, () =1 for all y € K.

PROOF. According to [Chilana-Ross (1978), 2.8], L'(K) has an approximate
unit ( f,) consisting of trigonometric polynomials such that || £,||, = 1 for all n. Let
g, =f,* f* and h, = ||g,||;'g,. Properties (i)—(iii) can be checked directly and a
citation of Lemma 2.2 yields (iv).
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2.4. PROPOSITION. If f € L(K ) and f = 0, then f € A(K) and || | s = | fllo, =
fle).

PRrOOF. Let (h,) be as in Lemma 2.3. For a finite subset F of K, Parseval’s
relation leads to

2 W h (0 m(p) < T f(¥) b () m(¥)

= [ i dm <\ lollt ) = 1o

Now let n > oo and then let F increase to K to obtain 1 flls = f(e) <||fll,- Since
Il fllo <llfll4 in general, the proposition is proved.

We will need a property of K that corresponds to “local central A »  in the case
of the space of conjugacy classes of a compact group [Rider (1972a)]. The
definition can be made quite general.

2.5. DEFINITION. Let ¥ be a set of L functions on a probability space (R, P). For
1 < p < oo, we say ¥ has property \ , provided

(1) sup{If o/ If:fEF} < oo

2.6. REMARKS. (a) Of course & has property A , if and only if {|f|: f € %} does.
(b) For p > 2 the requirement 2.5(1) is equivalent to

(1) sup{|lfll,/Ifll2: f € F} < oo

by an argument using Holder’s inequality; see [LOpez-Ross, page 54}.
(c) % has property A, if and only if there is a constant k > 0 such that

@) P{If1=3slfll} = «*/16 forallf €F

The necessity of (2) is shown in Lemma 13.7.1 of [Kawata (1972)], and the
sufficiency is trivial to verify.

(d) Since ||y|l, =¥(e) =1 for all ¢ € K, (1) and 2.1(1) show that K has
property A if and only if inf,||{,||, > 0 if and only if sup, M(y,) < co.

2.7. ExampLES. For ¥ in G, where G is a compact abelian group, all L? norms
are equal to 1 and so G trivially has property A, for all p. As observed in 7.2, if K
is the space of conjugacy classes of SU(2), then K has property A, if and only if
p < 3, and if SU(2) is replaced by a compact, connected, 51mply connected Lie
group, then K has property A, for some values of p > 2. On the other hand, there
are hypergroups K such that K has property A, for no p > 1; see 6.1. We know of
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no hypergroup K for which K has property A, and yet K has property A » for no
p=>2

We finally define the principal object of study in this paper.
2.8. DEFINITION. For f € L*(K ') we consider random Fourier series as follows:
(v ¢]
X(x,0) = X f()m()u(x)E(0),  (x,0) EKXQ.
n=1

Here (£,) is a sequence of symmetric independent random variables on a
probability space (£2, P) where Var(£,) = 1 and E(£,) = 0 (automatically) for all
n. We also assume that (§,) is uniformly subgaussian: there exists § > 0 such that

2
(1) E(e"‘")SCxp[gi\—] for all A € R and all n.

Note. If the sequence (£,) is identically distributed, then the adjective “* uni-
formly” is of course superfluous. A gaussian sequence is subgaussian and so is a
Rademacher sequence. In fact, any uniformly bounded sequence (£,), with
E¢, = 0 for all n, is uniformly subgaussian. This follows from Lemma 5.3, page
111 in [Jain-Marcus (1978)]; 4 can be taken as 4 - sup,||{, |12

According to Example 5.5, page 113 in [Jain-Marcus (1978)], our process has
subgaussian increments provided £, | (¥, ) (¥,) [ < o0. In Section 3 we will
impose this condition on £ and this forces all X, to be in L*(R); see 3.7. In any
case, for f € L*(K) we have X, € LX(Q, P) for m-almost all x € K and X, €
L*(K, m) for almost all v € Q.

The following useful result, familiar for Rademacher sequences, holds for our
uniformly subgaussian sequence (§,).

2.9. LEMMA ( Khintchine’s inequality). There is a constant k > 0, depending only
on 6, such that

(1)

for p>2and(a,) €I

<xfp

p

o0
2 a,¢,
n=1

00
2 angn
n=1

2

PrOOF. Let £ = 3%_,a,£,, a series that converges a.s. We may suppose that all
a, are real and that ||£||3 = 22, a2 = 1. Using the independence of the £,, one
shows easily that £ also satisfies the subgaussian inequality 2.8(1). Inequality (1)
now follows from an observation of Kahane (Proposition 9 in [Kahane (1960)] or

Exercise 10, Chapter VI, in [Kahane (1968)]).
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2.10. REMARKS. (a) Using Holder’s inequality as in [Lopez-Ross (1975), page
55], and 2.9 for p = 4, we obtain
o0
S ad,)| <)
n=1 2

(1)

)
2 angn
n=1

1

In particular, we have ||¢,]l, = (2x)~2 for all n, and so
2 inf ¢, > 0.

(b) Khintchine’s inequality and a slight generalization of (1) together tell us
that the set (§,} of functions on £ has property A, for all p > 1.

In Section 4 we will need a sharpened version of (1) which we base on the
following general lemma.

2.11. LEMMA. Let F be a set of functions on a probability space (2, P). Suppose
that % has property N,. Then there exist ¢ >0 and ¢ > 0, depending only on

B = sup{Il fll, /N f 1l f € F}, such that

(1) P(A)>1—¢ and fEF imply ||f||2<cfAlf|dP.

PROOF. Select € > 0 so that B/e < 4 and let ¢ = 2B. For P(A)>1 — ¢ and
f € %,we have

1/2
/ IfIdP<(f |f|2dP) P(@\A)"
2\ A a\A

<|Ifll./e < Byellf I <4lflh,
hence [, |f| dP = 3|} f]|, so that

I/l < Blflh < 2B |flaP.
A

2.12. PROPOSITION. Let (§,) be as in Definition 2.8. There exist ¢ > 0 and ¢ > 0,
depending only on 8, such that
<c
A

o0

2 angn
1

n=

P(A)>1—¢ implies dP

oo
2 at,
n=1

for (a,) € I

PROOF. Apply 2.10(1) and Lemma 2.11 with B = (2x)>.
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2.13. REMARK. The same technique shows that in certain discussions of the
notation of strict 2-associatedness [Bonami (1970), pages 294-296; Lopez-Ross
(1975), 9.3-9.5] the hypothesis that a certain set E be a A, set for some ¢ > 2 can
be weakened to E being a A, set.

3. Almost surely continuous functions

We continue to write K = {{, §»,...}, but we now stress that ¢, ,,...
endows K with an ordering. The next definition, of U(K), depends on the
particular ordering of K.

3.1. DEFINITION. U(K) consists of all f in L'(K) such that (Sy f)%-, converges
uniformly where Sy f = ZN_, f4, Yit(¥, ¥

Our first proposition is completely elementary.

3.2. PROPOSITION. A(K) C U(K) C C(K).

3.3. PROPOSITION. If f € U(K), then 32_, f(4,)(¥,) converges.

PROOF. The series must converge at the identity e and y,(e¢) = 1 for all n.

3.4. REMARKS. (a) The converse to Proposition 3.3 can hold for a particular K
and a particular ordering of K; see 6.2.

(b) Consider a function f such that f € U(K) for all orderings of K. Then
22 f(\[/,,)rh(\p,,) converges for all orderings and so the series converges abso-
lutely. Therefore we must have f € A(K).

(c) As noted in 6.2, the equality U(K ) = C(K) is possible. On the other hand,
the equality U(K) = C(K) cannot persist for all orderings of K, for this would
imply A(K') = C(K) by part (b), whereas A(K) = C(KX) if and only if K is finite
by 2.11 in [Vrem (1978)]; see also 5.4 herein.

(d) It will be shown in 5.4(d) that if K has property A,, then U(K) # C(K) no
matter how K is ordered.

We next define the space C,(K) of almost surely continuous functions.
3.5. DEFINITION. C, (K ) denotes the space of all fin L*(K ) such that

(1) X, ~ §f‘(¢,.)m(¢n)£n(w)¢,,

n=1

https://doi.org/10.1017/51446788700021741 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700021741

(9] Random Fourier series on hypergroups 53

represents a continuous function on K for almost all w € . Similarly, U,(K) is
all fin L?(K) such that the series (1) converges uniformly on K for almost all
w€E Q.

The definition of U, (K') appears to depend on the ordering of K, but the next
theorem shows that this appearance is illusory.

3.6. THEOREM. For any ordering of K, we have U, (K) = C,(K).

ProOF. We will apply Theorem 1, Chapter II of [Kahane (1968)]. Consider
fEC,(K) and let X, (@)= f(¥, ) ($)ém(@),; €ach X, is a symmetric
C(K )-valued random variable. Let (4,) be an approximate unit as in Lemma 2.3,
and let a,, = h,({,,). Then S = (a,,) is a summation matrix as defined by
Kahane. Since C(K)= L'(K)* C(K) by the Cohen factorization theorem
[Hewitt-Ross (1970), 32.22], we have

lim |g*h,—gll, =0 forallg e C(K).
n—oo
In particular, for almost all @ € £ we have

[>0]
lim Y a,, m(w)—hmh *X, = X,

20 m=

in the Banach space C(K). Thus £%_, X,, is a.s. S-summable in C(K ), and by
Kahane’s Theorem 1 this series converges in C(K) a.s. This shows that f must be
Up(K).

3.7. PROPOSITION. For f € L*(K ) we have (i) = (ii) = (iii) where
() f € C(K);
(i) B2, 1/(4,) Bir(y,)? < o0;

(iii) x - X, maps K continuously into L*(Q).

PrOOF. By Proposition 3.3, the series =3, f(¢,,)m(¢,,)§ (w) converges a.s.
Hence (ii) holds by a standard theorem about real-valued random variables; see
for example Theorem 13.7.1 in [Kawata (1972)]. Note that liminf, E|£,|> 0 in
view of 2.10(2).

If (ii) holds, then each X, is in L%(R) since

X = 2 )i ()|

and |y, (x)|<1 for all n. A routine argument, using the continuity of each v,
shows that || X, — X, ||, is small provided y is sufficiently close to x.
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3.8. COROLLARY. C,(K) is a Banach space with the norm
”ﬂlas = ‘/S-l 2 f(‘Pn)’h(‘Pn)gn(w)‘pn
n=1

Proor. Consider f € C,(K) and let (X,,) be as in the proof of Theorem 3.6;
we need to show that §=3%_, X is in LY(Q, C(K)). By Corollary 3.3 in
[Hoffman-Jergensen (1974)), it suffices to show that N € L'(Q) where N(w) =
Sup,, || X, (w)ll,, for w € . Observe that

dP(w).

>3]

Mo < 3 (ol = S At o)l

Adding variances, and applying Proposition 3.7, we find

o0

5| 3 1)t )| = 3

m=1

F(m)i ()| < oo.

It follows that N belongs to L2(22) and hence to L'(2).

3.9. REMARKS. (a) The implication (i) => (ii) in Proposition 3.7 can also be
proved using Theorem 7, Chapter III in [Kahane (1968)]. This implication does
not say anything if sup, m(y,) < oo, since in this case (ii) holds for all f € L*(K).

(b) There are hypergroups K in which (i) and (ii) of Proposition 3.7 are
equivalent; see 6.3.

(c) If sup, Mm(y,) = o, then C,(K) # L*(K). To see this, select f € LK)
that violates 3.7(ii).

For emphasis, we remind the reader that X is an infinite, compact, metrizable,
abelian hypergroup with hypergroup dual K.

3.10. THEOREM. ( Dudley’s theorem for hypergroups.) Consider f € L*(K ) satisfy-
ing

0 3 [ ) < o

Let X(x, w) be as in 2.8 and define the pseudometric

1,2

(5, 7) =15~ %], =| 3 7)) 400 ~HON
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on K. Let N(¢) be the least number of d-balls of radius < € (with centers in K) that
cover K. If

Q) / ' Jlog N(¢) de < oo,
0
then f € C,(K).
Note. Condition (1) is a reasonable hypothesis in view of Proposition 3.7.

PROOF. As noted after Definition 2.8, the process (X,),cx has subgaussian
increments. By Proposition 3.7, the pseudometric d is continuous on K and
x - X, maps K continuously into L?(2). By Dudley’s theorem ([Dudley (1967)],
[Dudley (1973)], or Theorem 5.2, page 165 in [Jain-Marcus (1978))), there is a
process (Y,), e x equivalent to (X, ), <k so that (Y, ), cx has d-continuous sample
paths. Such paths are continuous on K and so

(3) each Y is continuous in K;

4 PX. #Y)}=0foralxe€K.

It suffices to observe that a.s.

Y, has Fourier series %f(\pn)m(‘p,,)&,,(w)xpn.
n=1

By the uniqueness of Fourier transforms, it suffices to show that a.s.

Y. (4,) = f(¥,)¢,(w) foralln.

Thus it suffices to fix n and verify

(5) Y, (4,) = (). (0) as.

This can be shown by considering the L?*(f)-valued integral Z =
fx Y,(x) dm(x) and using (4) to show that Z = f(y,, )¢, as elements of L3(2).
Since Z(w) = Y,(,) for all w, (5) holds.

3.11. REMARKS. (a) It is known [Marcus-Pisier (1980), Theorem 2.32] that if X is
a compact abelian group, then the entropy condition (2) is also necessary for
almost sure continuity of f. We will see in Section 6 that on the countable
hypergroups considered there condition (2) is again necessary for f to be almost
surely continuous, but we do not know whether this condition is necessary in
general.
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(b) We give another sufficient condition for almost sure continuity at the end of
Section 4.

3.12. DiscussION. Suppose that the hypergroup K can be identified with an
interval [0, b]. Let 8(«#) = u when 0 < u < 1, and 8(u) = 1 when u = 1. Suppose
that there are constants C, > 1 so that

(1) W) = (W) < GB(nlx —yl) foralln €N, x,y€EK.

Arguing as in Section IV.3 and applying Lemma 1V.5.3 of [Jain-Marcus (1978)],
we can show that if

(B )G
n(log n)"’*

@) §

then condition 3.10(2) holds, and f € C,,. When X is the circle group, condition
(1) holds with C, = 2, and condition (2) is the Salem-Zygmund sufficient condi-
tion for almost sure continuity. When K is the set of conjugacy classes of SU(2),
condition (1) holds with C, = Clog n, and condition (2) is then only a little more
restrictive than condition 3.7(ii), which is necessary for almost sure continuity; see
7.6 for more details.

4. Series in L?(K ) and M(K)

We begin with a simple “sure” result that shows, among other things, that the
requirement X, € C(K) for all w is a much stronger condition than the require-
ment X, € C(K) for almost all w. A proof can be based on 1.5 in [Edwards
(1965)] if desired.

4.1. PROPOSITION. Suppose that
x ~
X, ~ Z f)m(d,)e(w),
n=1

represents a function in L*(K) for all @ € @ = {-1,1}"° where ¢, denotes the nth
projection. Then we have [ € A(K).

We next present a very useful lemma.
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4.2. LeMMA. Let (X, p), (Y, v) be o-finite measure spaces and let F be p X v-
measurableon X X Y. If0 < g < p < o0, then

{fY([fxlF(x’ y)l"d,u(x)] ‘/")" dv(y)}vp
) {/X([fymx’ g )lpd”(y)]l/p)qdu(x)}l/q.

ProOOF. This lemma is well known, but we sketch a proof for the readers’
convenience. One may assume F =0 and p < co. First assume ¢ = 1 and let
o(y) = [y F(x, y) du(x). Then show that

< | Fxen ant)]” ana) -

for ¢ € L?'(Y, v). For arbitrary g, apply (1) with F, p and g replaced by F9, p/q
and 1, respectively.

| fyw dv

The next lemma is a tiny generalization of Lemma 4 in [Dooley (1980)].

43.LEMMA. If1 < p < o0 and

p/2
Y (4 )| ] dm(x) < oo,

then X is a.s. in LP(K) and
oo . p/2
[1x.J,dP(w) < x2p?/2 [ | 3 |F )] | dm(x
2 Kl n=1

PRrOOF. By Fubini’s theorem and Khintchine’s inequality 2.9,

L% aP(w) = [ I, dm(x) < (wlp )" [ 1X.JF dm(x)
s 5] 272
= (wlp)’ fK[ DRTCALICATAC)! ] am(x).

Since |y, |< 1 for all n, the next theorem is obvious from Lemma 4.3.

4.4, THEOREM. If 2% ,|f(¢ YRm($,)? < oo, then X, is a.s. in all LP(K) for
l<p<oo.
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4.5. THEOREM. Let 2<p < o0, 0<e <1, and q = p/e. Suppose that K has
property A, If

o 3 1) 4y)' ™" < o,

then X, is a.s. in LY(K).
ProoF. By Lemma 4.3 it suffices to show

o 2q/2
A=L1§M%MWWM@4 dm(x) < co.

By hypothesis, there is a constant B such that ||y, ||, < BJ|,|l, for all n. By
Holder’s inequality we have

& 1—- e &
”‘pn"q <""Pnllpll\llnlloo ) = "‘Pn"]l = Be”‘l’n"Z

Now by Lemma 4.2, we have

2 172
A1 < {é. ([f,(lf(‘Pn)'ﬁ(xPn)‘Pn(x)lqdm(x)]w) }

1/2

{ ) |f"(¢,,)rﬁ(¢n)l2l|¢,.llf,}
2e 172
il }

A( 2—5}1/2
¥) < oo.

A

B{?M%

2

An early version of the next theorem was kindly shown to us by Giancarlo
Travaglini.

It

||M8

|7(¢)

4.6. THEOREM. Consider 2 < p < oo.

(a) IfK has property A , and f € LX(K), then X, is a.s. in L?(K).

(b) If K does not have property A, there exists f in L*(K) such that X, & L?(K)
for almost all w.

PRrROOF. (a) This is just Theorem 4.5 with e = 1.
(b) Let hy = 0 and given trigonometric polynomials g, h,,...,h,_, and char-
acters y,. .. we apply 2.9 in [Chilana-Ross (1978)] to select a trigonometric

b nk—l’
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polynomial /, such that
he=1 on{¥,....4, }

and ||A,l|, <2. We select y,, & Uf; |l supp(# ;). Since K does not have property
A, we can also arrange for

P /4
”\I/n;‘"p > kP+ : "‘Pnk“ 27

Finally, choose f€ L*K) so that f(¥, )*ri(¥, )= 1/k* and f=0 off
{¥n)» ¥y - - - }- We complete the proof of (b) by showing

(1) X, € LP(X) implies sip |§,,k(w)|Pk < 00
and
(2) 51;p |§,,k(w)|pk = as.

To check (1), note that

= (ki = hey) = X < 42)X,1

£,.(0)7(4n ) (it

for all k, while

=l |7 A C)|” ),
SO S [ I T

>e, () k- k7 =g, (o) -k

&, (@) (¥, )in( ¥, ),

If (£,) is a Rademacher sequence, for example, we are done since (1) shows that
X, & LP(K) for all w. For the general uniformly subgaussian case, we need to
apply Proposition 2.12. So let ¢ and ¢ be as in 2.12 and let A, = {w € :
1€, (@)1<1/c}. Then P(A,) <1 — ¢ for all k since otherwise 2.12 leads to

= 1
1 _ugnkNZ < C_/;\klgnkldP < Cj:\k ;dP < 1.
To verify (2) we show that

(3) P(l¢, [k <Bforallk} =

for each constant B > 0. In fact, by independence

0o U,
P{|¢, [k <Bforallk) = [| P{linkls(g) ,,}.
k=1
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For large k,(B/k)!/? < 1/c and the corresponding factors in the infinite product
are bounded by 1 — &. This proves (3), hence (2).

4.7. REMARKS. (a) Proposition 3.7 and Theorem 4.4 combine to give the
comforting implication:

ifX,€ C(K)a.s,then X, € LP(K) forp <  a.s.

(b) In general, the converse to Theorem 4.4 fails. Indeed, if K has property A »
for some p > 2 but not property A, then there exists f € L*(K) such that
22 1(4,) Bi(y,)? = o and yet X, € LP(K) a.s. for all p < o0. To see this,
note that sup, /() = oo, and so we can arrange for 4.5(1) to hold for all ¢ >0
and yet 22 | f(y,,) Prin(y,)? = oo.

(c) Let K be the set of conjugacy classes of a compact, connected, simply
connected, non-abelian Lie group G; let ¢; = 2rank G/(dim G — rank G). Then
K has property A , If and only if p <2+ g5 see [Giulini-Soardi-Travaglini
(1981)]. This yields a large class of hypergroups to which part (b) above applies.

(d) For the same class of hypergroups, Theorem 4.6(a) is due to Dooley
[Dooley (1980), Theorem 2], and 4.6(b) shows that his result cannot be improved.

(e) The proofs of Theorems 4.4, 4.5, and 4.6 easily yield estimates on expected
values of certain norms. We record two such estimates for use later in this section;:

o0

0 [ <wp)| §

n=1

A 2|77
F(,)m(4,)| , in general;
(2) fg IX, |, dP(w) < kPp?/?|f| if K has propertyA,, p >2.

We next study series that are a.s. in M(K).

4.8. THEOREM. If 23 £, (w)a,m(Y, ), is a.s. a Fourier-Stieltjes series, then

-] 2 1/2
0 1 £ ltnor]  ane) <
Moreover,
i 2 2 2}
@) [ £ laicen i) <o
n=1

ProoF. For almost all w € &, 2_, ¢, (w)a,m(y,)y, is the Fourier-Stieltjes
series for a measure p, in M(K). The function w - ||, || is measurable on £,
since there exists a countable family C of trigonometric polynomials f satisfying

https://doi.org/10.1017/51446788700021741 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700021741

{17} Random Fourier series on hypergroups 61

| fllo < I such that
el = p{} [ Fp,
K

Let € >0 and ¢ > 0 be as in Proposition 2.12. Since U._, {w € &Q: |ju, ]| < m}
has probability 1, there exists a measurable set A in £ and a constant B so that

:fe@}.

(3) P(A)>1—¢and|p)<B forallw € A.

Let (h,) be an approximate unit for L'(K) as in Lemma 2.3. For each w € A,
(3) shows that ||, * p ||, < B and so [, [x|h, * p,|dm dP(w) < BP(A). Since
h, * p(x) is measurable on K X {2, we apply Fubini’s theorem and obtain

(4) j;(/;\!h" s, (x)|dP(w) dm(x) < BP(A).

By Proposition 2.12, for each x € K and n we have
o 1172
[ 2 () am($ (x| ]
k=1

dP(w)

f élﬁ,,(xpk)amwkm(x)sk(w)

= cf Iy = pu(x)|aP(o).

Now integrate over K and use (4):

/2
_/[ 2 ’h (\Pk)akm(‘l/k)‘l/k(x” ] dm(x) < cBP(A).

Now let n — oo to obtain (1).
To prove (2) we apply Lemma 4.2 and (1) as follows:

Ml |anm(¢n)¢"(x)|dm(x>]2}W

™ L1172
<f| 2 tentwnorf| " ant) <.

49. REMARKS. (a) If K has property A,, then conclusion (2) in Theorem 4.8
implies
[o}

(1) S la () < o0
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so that there exists f € LK) with f(y,) = a,, for all n. Then X, € LXK) a.s.,
and a fortiori X, € M(K) a.s. To obtain (1) from 4.8(2), note that A (y, )l|y,lii =
(W ll1/1W9,l,)? is bounded away from 0.

(b) Part (a) applies to the hypergroup of conjugacy classes of a compact Lie
group G by Theorem 6.2 in Dooley [1979], the connected case of which is due to
Price [1975]. In particular, this provides a generalization of Theorem 1 in [Dooley
(1980)). Dooley’s Theorem 1 is given for connected G; even for this case our proof
is different.

(¢) For the hypergroups in 6.1, condition 4.8(2) is equivalent to the inequality
2%_,|a,P < oo, which does not imply (1) above.

(d) The proof of Theorem 4.8 shows that the quantities 4.8(1) and 4.8(2) are
both majorized by « foll1, || pcx) dP(w).

In the case where K is the unit circle group 7, the estimate 4.7(1) originates in a
classical result of Paley and Zygmund [Paley-Zygmund (1930), Theorem III].
Recently, de Leeuw, Kahane, and Katznelson [1977] used this classical theorem to
prove that every /%-sequence on the integers can be majorized in absolute value by
the Fourier coefficients of some continuous function on 7. We now use estimate
4.7(2) to prove a generalization of the latter fact.

4.10. THEOREM. Suppose that K has property X p for some index p > 2. Then for
each element b of I*(K, 1) there is a function f in C(K) for which | f(¥)|=]b(¢)]
for all Y in K.

ProoOF. Following [Kizlyakov (1981)], we use an abstract version, due to S. V.
Krushchev, of the original method of de Leeuw, Kahane, and Katznelson. Let §
be a nonnegative nonincreasing function on the half-line (0, 00) such that 8(¢) - 0
as 1 — oo. Say that 8 has property (») if there exists an increasing, positive
sequence (¢, )y-, such that

X ¢

3 2o(e,) < .

n=1 n

For example, if 6(z) = ¢* for some constant a < 0, then the sum above is finite
when ¢, = 2" for all n. According to [Kizlyakov (1981), Theorem 1] the conclu-
sion of Theorem 4.10 holds provided that there is a function § with property (*)
so that the following is true: For each function f on K with || f||, = 1, and each
number ¢ > 0, there is an element w of & for which the function

X.= 3 7)),
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can be written as a sum g, + h, where ||g_ ||, < ¢, and ||h ||, < 6(¢). Here, the
functions g, are Rademacher functions taking only the values =1, that is,
projections on € = {-1,1}%. We note that [Kizlyakov (1981), Theorem 1} is
stated for orthonormal rather than orthogonal systems; to deduce the variant
given above, just pass to the orthogonal system (¢, /|{{,,|[,)3% .

To verify that such a splitting of X, is possible for some w, fix a function f as
above, and apply inequality 4.7(2). Thus

JIX.N, dP(w) < k2pP/?.
Q

Choose w so that || X, ||2 < k?p?/2, Given ¢, let

X (x) if|X (x)|=1,
0 otherwise.
and

h(x) = {Xw(x) if1X,(x) 1> 1,
0 otherwise.

Clearly ||g|l, = ¢ as required. On the other hand, since all nonzero values of A
exceed 7 in absolute value,

2 _ P
J RO dm(x) <272 [ |h(x)[" dm(x);
hence
IAlla < ' =272(|jml, )"

< tl—p/z(”Xw"p)l’/2
< gt'7r?
=0(t)  say.
Since this function @ has property (*), the proof is complete.

4.11. REMARKS. (a) Let us say that the pair (K, K) has the d.L.K. K ~property if
the conclusion of Theorem 4.10 holds for K. Observe first that if K has this
property, then K must have property A,. Indeed, suppose that K does not have
property A,; then there is a sequence {r,}2, so that

o0
21 el /I, < o0
Since | f(¥) < || fll.lI¥ll;» and since 1/]|y|l, = ()2, it would follow that

3 [7n)

’h(¢ni)l/2< ©
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for all fin C(K ). Choose b in [*(K, ) so that
o0
2 Ib(\l/n‘)
i=1

Then there is no function fin C(KX ) such that | f(zp,,_) [=5(y,,)| for all i.

(b) We do not know whether the condition that K have property A, implies that
the pair (K, K) has the d.L.K.K. property, but we will show in 5.4 that a
convexified version of the d.L.K.K. phenomenon does occur if K has property A ,.

(c) The hypothesis that K have property A , for some p > 2 is satisfied by many
of our examples, but not by the countable hypergroups to be discussed in Section
6. In particular, this hypothesis is satisfied if K is the space of conjugacy classes of
a compact simple, simply connected Lie group.

(d) In [Kizlyakov (1981)], S. V. Kizlyakov showed that in the case of the circle
group 7, the conclusion of Theorem 4.10 holds with the space C(T') replaced by
U(T). This seems to be a much deeper fact than Theorem 4.10, because
Kizlyakov’s proof requires a key estimate in Carleson’s proof of the Lusin
conjecture.

(e) Propositions 3.3 and 3.7 show that if f belongs to U(K) or C,(K), then
lim, ., f(4,)m(¥,) = 0. It follows easily that if sup, M1(y) = oo, then the space
C(K) in Theorem 4.10 cannot be replaced by U(K) or C,(K). It is also worth
mentioning that, when K = 7, well known necessary conditions on C,(T)
[Marcus-Pisier (1980), 7.1.3] show that C(T') cannot be replaced by C,(T) in
Theorem 4.10.

Finally, we use the estimate 4.7(1) to derive another sufficient condition for
almost sure continuity. Given fin L'(K), let

(4,)" = .

/2

o ) 1
il = [ £ Vo]
n=1
thus inequality 4.7(1) asserts that
L1%l7 ap(e) < wmpr/ 1l

For positive values of 7, let ®(r) =e” — 1 and ¢(¢) = (1 + log(1 + 1))'/%
denote the corresponding Orlicz spaces on K by Lg(K') and Ly(K).

4.12. LeMMA. If f€ Ly and g E Ly, then f+g € C(K), and |f*gl, <
k)l flloliglly-

PROOF. If g is a trigonometric polynomial, then f* g € C(K), and the norm
estimate follows easily from the duality between Lg and L,. But trigonometric
polynomials are dense in L.
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4.13. THEOREM. Suppose that ||flll2 < co and that g € L(K). Then f+ g €
Cas(K)’ and “f* g”as < ""|f|||2||g||¢

PROOF. As in [Marcus-Pisier (1980), Lemma 6.1.3] inequality 4.7(1) implies that
[ 1%llo aP(@) < el ]

It then follows from Lemma 4.12 that X *+ g € C(K) almost surely, and that

J X+ gl aP(w) < w71l

as required.

4.14. ReMARKS. (a) For K = T, the theorem above goes back to Paley and
Zygmund [1930], page 344. The analogue for random Fourier series on compact
groups is implicit in [Rider (1977)}.

(b) In 7.6, we will use a consequence of Theorem 4.13: If f and g are
trigonometric polynomials, with ||g||, = 1, then
)1/2

(1) 17 * 8llas < 1711|218l (10g(1 +gll2)

This inequality follows from the theorem, because, in this case, [|g|l, <
«llgll, (log(1 + 1igll;))' /2

(c) Another consequence of Theorem 4.13 is that if ()5, and (g,)5=, are
sequences of trigonometric polynomials, with 22 Il £, l2llg,ll, < oo, then the
series 22_,f, * g, is norm convergent in the space C,,. A theorem of Pisier
[Marcus-Pisier (1980), 6.1.1] states that if K is a group then every function in C,,
can be represented as a sum of such a series. We shall see in 6.9 that the
corresponding assertion is false for some hypergroups.

5. Some multiplier results

5.1. DerFINITION. For Banach spaces B and D of functions on K, 9(B, D)
denotes the space of all functions of multipliers p on K such that f € B implies
fp = g for some (unique) g € D.

By the closed graph theorem, the multipliers p correspond to bounded linear
operators T, of B into D. Specifically, T,( f ) = fp for f € B. We will write the
operator norm of T, as ||T,| g p o1 || pli g, p-
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52. REMARK. A function p on K belongs to 9W(L? A) if and only if

2 1p($,) Pia(y,) < oo, in which case p(y,) = f(y,) for all n for some f €
L*(K). Moreover,

Ioliv.a= 3 lp(#) ) =1

5.3. PROPOSITION. (a) We have ON(C, A) = IM(L®, A) and

(1) Iplic.a =lpli=,4 forp € M(C, 4).
(b) For p € OM(C, A) we have

2) 3 1P (Il < elple.s.
n=1
() If K has property A, then M(C, A) = M(L?, A).

PrOOF. (a) Consider p € IM(C, A) and f € L*(K) and let (h,) be as in
Lemma 2.3. Each f = b, is in C(K) and so

S (o)l At ()

m=1

() <lplc.alfllw

for all n. The proof is easily completed on letting n — 0.
(b) Consider p € IN(C, A) and let (¢,) be a Rademacher sequence. For w €
and f € C(K), we have

)/Kf' 3 en(©)p (b)), dm

In other words, the measure p* such that dp™ = M. & (w0)p(¥,)W(¥,)¥, dm
satisfies

< gl ()l (g F ()| <Pl allf -

<|plc,alfllo forf€ C(K).

fo dpl

Thus ||u|| < || pllc4 for all M. By Alaoglw’s theorem, (p¥)%_, has a weak- =
cluster point in M(K ') whose Fourier-Stieltjes series is 2, &,(w)p($,)M(Y, )Y,
Remark 4.9(d) now applies to complete the proof.

(c) If K has property A, then, as noted in Remark 4.9(a), inequality (2) implies
that

() § P A(%) < Kol

To see that IM(C, A) = M (L2, A) in this case, observe first that M (L2, 4) C
M(C, A) in any case, and then deduce from Remark 5.2 that if the left side of
inequality (3) is finite, then p € ON(L?, A).
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5.4. REMARKS. (a) The analogue of inequality 5.3(3) for orthogonal systems in
L?*[0, 1] having property A, is due to Mahmudov [1965]; our proof is similar to
his.

(b) As in Remark 4.11(a), the inclusion 9(C, A) C OM(L?, A) implies that K
has property A,.

(c) A standard duality argument [Caveny (1969), Theorem 3.3] shows that the
inclusion IM(C, 4) C IM(L?, A) holds if and only if the following convexified
version of the de Leeuw-Kahane-Katznelson phenomenon occurs: For each
function b in [2(K, ) there is a sequence ( )=, of functions in C(K) so that

o0
2 Il =< xllBll2,
k=1
and
[e o]
k21|fk(¢n)|>|bn| foralln.

This suggests the conjecture that if K has property A,, then the pair (K, K) has
the d.L.K.K. property.

(d) Proposition 5.3(c) is useful in showing that if K has property A,, then
U(K) # C(K) no matter how K is ordered. Suppose first that K has property
A; then, by Remark 2.6(d), the corresponding orthonormal system {v,,/||¥,,]| 3%,
is uniformly bounded, because ||[¥,,/1¥,ll.0l.c = 1/ll¥,ll,. Now it is known
[Botkarev (1978), 2.2] that the Littlewood conjecture holds on the average for
uniformly bounded orthonormal systems, and it then follows, by the usual
uniform boundedness argument, that C(K) # U(K ). Suppose next that K has
property A, but not property A .. Again by Remark 2.6(d), sup, #(y,) = oo. It
follows that there are functions p on K so that %, |p(y,)|< o0, but
2= | p(¢,) Prin(y,) = oo. By Proposition 3.3, any such function p belongs to
M(U(K), A(K)), but by Proposition 5.3(c), any such function p does not belong
to M(C(K), A(K)). Hence C(K ) # U(K).

(e) In the same spirit, Proposition 5.3 can be used to show that the spaces C(K)
and A(K) are distinct, even if K does not have property A ,. Indeed, [[,,|13 < ||¥,l,»
because ||{,|l, = 1; therefore m(y,)l|¥,|l, =1 for all n. In particular, inequality
5.3(2) implies 2%, | p(y;,) > < oo for all p in M (C, A4). On the other hand, clearly
M(A4, A) = I°(K), so that M(C, A) # M (4, A), and C(K) # A(K). The fact
that C(K) # A(K) was proved earlier by Vrem [1978], by a method that also
applies when X is not abelian.

(f) By 5.3(b), the finiteness of the left side of inequality 5.3(2) is a necessary
condition for p to be in O (C, A). It is natural to ask if this condition is also
sufficient for p to be in M(C, A4). If K has property A, then the answer is “yes”,
because, in that case, the proof of 5.3(c) shows that if the left side of 5.3(2) is
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finite, then p € M (L2, 4) C M(C, 4). We conjecture that when K does not
have property A, the answer to the question above is always “no”. In 6.5, we
verify this conjecture for the special countable hypergroups considered in Section
6.

(g) Finally we describe a condition on p that is necessary and sufficient for
membership in M (C, 4) even if K does not have property A, Let p € O(C, A)
and let p, be the measure obtained as in the proof of 5.3(b) but with the
randomizing factors ¢,(w) taken to be Steinhaus rather than Rademacher. It is
easy to verify that sup,||p |l = || pllc 4 and, by the symmetry of the ¢,’s, that
sup,, nlISytulli = sup,|lp,|l

Introduce an isomorphic copy, K’ say, of the hypergroup K. The method of
[@rno (1976)] transfers easily to this setting, and yields that there is a sequence
(c,)%-, with 22, ¢, < oo, an orthonormal sequence (¥,)2, in L*(K U K),
and a function F in L*(K U K’) so that for each n the function p(y, )#(y, )y, is
the restriction to K of the product ¢, F - ¥,. Conversely, it is easy to verify that if
p(¢, )My, )Y, is representable as above for each n, then measures u, with
sup,, ylISyt,ll; < oo exist, and p € OM(C, A).

If p has such a representation, then it follows easily that

/2

@ | £ Iptantnor]” anto) < o

and hence that the left side of inequality 5.3(2) is finite. These seem to be the
simplest conditions on the size of p that follow easily from the representation
discussed above. Inequality (2) goes back to Orlicz [1933].

6. Countable hypergroups

Dunkl and Ramirez [1975] investigate an interesting class of countable hyper-
groups K, indexed by a where 0 < a < 1/2. When a = 1/p for a prime p, then
K, can be obtained from the group A, of p-adic integers as follows. Let W be the
multiplicative group of units in A, and note that each element of W induces an
automorphism of A, via multiplication. Then X, ,, is exactly the hypergroup of
orbits of A, under W as constructed in [Dunkl-Ramirez (1975), Section 3] or
[Jewett (1975), Section 8).

6.1. The hypergroup K, is identified with {0,1,2,...,00}. The invariant mea-
sure m is given by

m({k}) = a*(1 —a) fork<oo, and m({e0})=0.
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We have K, = (¥, ¥y, ¥p, * - - } Where y = 1 and

1 fork=n,
v(k)=3a/(a—1) fork=n—1,n=1,
0 fork<n-—1.

Direct computation shows that

=+ (755077

Hence Ka does not have property A , for any p > 1.
The invariant measure 71 on K, is given by () = 1 and #(y,,) = (1 — a)a™
forn=1.

6.2. PROPOSITION. The following are equivalent:
M f € C(K,);

(i) f € U(K,);

(iii) 22\ f(¥,)i(¥,) converges.

PROOF. (i) and (ii) are equivalent by Theorem 6.3 in [Dun}d-Ramirez (1975)],
and (ii) = (iii) by Proposition 3.3. If (ii}) holds, then 2%, f(y,)a™" converges.
Given ¢ > 0 there exists N, such that

N=M=>N, imply <e.

N A~
2 f(§)a™"
=M

n

Routine estimates then show that

<€

:E )1 = a)a "y, (k)

n

for N= M > N, and all k € K. Therefore f € U(K,).

6.3. COROLLARY. We have f € C,(K,) if and only if
o 2 )
(1) 2 )] m(4,)" < oo.
n=1

PROOF. The necessity of (1) is proved in Proposition 3.7. If (1) holds, then
X fWm(Y,)é,(w) converges a.s. by Theorem 7, Chapter III in [Kahane
(1968)}. Hence f € C,(K,) by Proposition 6.2.
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6.4. SUMMARY.

(a)f€ LX(K,) ifandonlyif 3%,|f(y,)fa" < co.
(b)f€A(K,) ifandonlyif 32,|f(¥,)la™" <.
(c)fe C(K,) ifandonlyif 3= ,f(¥,)a " converges.
(d)f€ C(K,) ifandonlyif 32,1f(¢,)fa™ < .

Note that f € C(K,) and f= 0 imply f € A(K,); this also follows from the
general Proposition 2.4,

6.5. REMARK. Since K, does not have property A,, the pair (K,, K,) does not
have the d.L.K.K. property (see Remark 4.11(a)); also IM(C, 4) # M(L?, A)
(see Remark 5.4(b)). It follows easily from the next proposition that there are
functions p for which the left side of inequality 5.3 (2) is finite but p & M (C, 4).
Thus the conjecture made in Remark 5.4(f) holds for the hypergroups K ,.

6.6. PROPOSITION. For K = K we have

(1) P ENR(C,A) fandontyf T |p(4y)]< .

PrOOF. Let cond denote the set of sequences (b,) such that 2b, is (condition-
ally) convergent. In view of 6.4, assertion (1) is equivalent to the claim that the
space of multipliers from cond to /! is precisely /', This is an elementary fact;
note that given (a,) in ¢, there exists (b,) in cond such that |b,|={a,| for all n.

Our next example shows that the converse to Theorem 4.4 fails for these
hypergroups.

6.7. ExamMpLE. There exists f € L*(K ) such that

o) S ) (4 = .

(2) X, isas.inall L?(K,), 1<p<oo.

To accomplish (2), Lemma 4.3 says it suffices to obtain

Q 21272
_/;([ 21 () a4, ¢,(x)] dm(x) < o
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for all p < co. Since m({k}) =a*(1 —a), m(y,) =1 —a)a™", |§,|<1 and
¥,(k) = 0 for n = k + 2, it suffices to arrange

k+1

R 2| 272
2 lf(‘l’n)a_"l ak* <o forp< oo.

n=1

[

®3) )

k=1

Let f(\pn) = a" for all n; then conditions (1) and (3) both hold, and f € L*(K ).

6.8. ExampLE. Here we consider random Fourier series on K, using a Rade-
macher sequence. There exists f € L2(K) so that

(1) X, ¢ L?(K,) forallw € Qandallp > 2.

The proof of Theorem 4.6(b) accomplishes this for each p, so we will not provide
details here. We merely state that f can be selected so that f(y,) = a"/?/n and
that Proposition 7.7 in [Dunkl-Ramirez (1975)] is useful in establishing (1).

Finally, we consider, for the hypergroups K,, the sufficient conditions for
almost sure continuity that were presented at the ends of Sections 3 and 4. We
first show that the entropy condition of Section 3 is also necessary in this
situation.

6.9. THEOREM. If f € C,(K,), then

(1) fo‘\/log N(e) de < .

ProoF. First observe that for each nonnegative integer k

0 foralln >k + 1,
V(k)=13a/(a—1) forn=k+1,
1 foralin < k.

It follows that the pseudometric d of 3.10 is given by

|2

d(j, k) = {Ii(%)m(%)[a/(a —1-1]

+ 3 1m0 -1

jtl<n=k

A ,) 172
+|f(‘l’k+1)’;'(¢k+1)[0 —a/(a— 1)” } >
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whenever 0 <j < k < oo. Let d’ be the pseudometric on K, defined by letting

k+1 . ) 1/2
d'(f,k)={ 2 lf(%)m(‘p,.)l}

n=j+1

whenever 0 < j < k < o0, and

o ,) V2
d'(j, o) = { PIRTICALICA] } :
n=j+1
It is easy to verify that
d=sd<2d.
As in 3.10, let N’(¢) be the least number of d’ balls of radius =< ¢ (with centers in
K ,) that cover K. It follows easily that

() ](;l\ﬂog N(e)de <

if and only if
2) [ Viog N'(&) de < oo.
0

In view of this and 6.3 it suffices to show that condition 6.3(1) implies condition
9.

To this end, suppose that f satisfies condition 6.3(1). Fix ¢ > 0. Define elements
n,, n,,... of K,, and d’-balls B,, B,,... by the following procedure. Let n, = 0
and let B, be the d’-ball of radius ¢ centered at n,. Given B,, B,,...,B,, stop at
this stage if these balls cover K,; otherwise, let n,,, be the first point of K, not
covered by B, U B, U - - - UB,, and let B, | be the d’-ball of radius ¢ centered at
n,,,- The idea now is to show that this process stops after most 1 + 4(ll flil,/¢)*
steps.:

Call n; terminal if the process stops at the /th step. It follows from the
definitions above that if n, is not terminal, and if n,, | < oo, then

ntl

a 2
(3) 2 |f)m(y,)| =€
n=n+1
Similarly, if n, is not terminal, and if n,, | = oo, then

o0

(@) S )y, > e

n=n;+1

Split the set of integers n, into two classes by declaring that n, € § if either n, is
not terminal and

LIRS

5) S W) =2,

n=n,+1
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or if n, is terminal and

[ o]

(6) S 1)) = e,

n=n;+1

and declaring that n, € % otherwise. Summing the left sides of inequalities (5)
and (6) over all n,in § yields at most the quantity

3 (7wl =l

therefore, the class § contains at most ||| fI13/(¢2/2) points n,.
Suppose next that n, € ? and that n, is not terminal. Then

RS

(7) S 1)) <e2.

n=n;+1

2
25

By inequality (4) it cannot be the case that n,,, = c. It then follows from (3)
and (7) that

F{CS L (R I )

and hence that n,, | € §. Therefore the class & contains at most 1 + [l flll3/(¢*/2)

points n,, and the process specified above does indeed stop after at most
1 + 4l fll,/¢€)? steps. Thus

N'(e) < 1+ 4(lflll/¢)’,
and inequality (2’) holds as required.

6.10. ExaMPLES. Given a real number s > 0, define a function f, in L*(K,,) by
setting f(y,,) = n~*/m(y,) for all n.

(a) First observe that ||| £,lll, < oo if and only if s > 1/2. It follows from 6.4(d)
that f, € C,, if and only if s > 1/2. By 6.9 the entropy condition holds if and
only if s > 1/2.

(b) Next we verify that when s < 3 /4, the function f, cannot be represented in
the manner discussed in Remark 4.14(c). To do this, we need the fact that if
f€ L,andlllglll; < o, then

0 " "
®) 3 WLl y,) < ol
n=
Assuming this inequality, we see that if f, could be represented as in Remark
4.14(c), then it would follow that

§ TAC]

nl/4 ”“,(‘p")<w.

n=1
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In fact, however, the sum on the left is infinite when s < 3 /4, so that, in this case,
f, cannot be represented in the manner discussed in Remark 4.14(c).
Now inequality (3) follows by Cauchy-Schwarz from the inequality
S )P
(4) 2 T

2
n|/2 < Kz”f”¢7
n=1

and since || llo < flly < fll,, inequality (4) follows from the inequality
[+e}
5) 5 Wl oy,
n=1 N

Inequality (5) is the analogue for K, of an inequality proved for the unit circle
group T by C. Bennett [1975], and it follows from Bennett’s theorem by a
transference argument. To this end, identify (T, df/27) in a measure preserving
way with the interval [0, 1). Given a function g on X, let G be the function on
[0, 1) that is equal to g(n) on the interval [1 — g@”,1 — a"*'); then ||G||, = |Igll,.
because each point in K, has the same measure as the corresponding half-open
interval in [0, 1). Denote the Borel field generated by the class of all such
functions G by 9, and let E_ be the conditional expectation operator h — E(h, %,);
regard E,h as a function on K,. In a similar way, let the point ¢, in K,
correspond to the interval [a~"*', a ") in [0, 00), and transfer functions b on K,
to functions R, on [0, o0) by making R, equal to b(y,) on the interval corre-
sponding to y,,. Finally, given any function k on [0, o) let rk be its restriction to
the set Z* of all nonnegative integers.

The proof of Theorem 4.3 of [Bennett (1975)] shows that if a linear operator L
is bounded from L(T) to I*°(Z") and from L*(T) to [*(Z"), then there is a
constant k, depending only on the norms of L in the two endpoint cases
mentioned above, so that

” ST

- <«||fle-
j=2 jllog j)/*

We apply this to the operator L defined by the following sequence of operations:
L:h— E,h > (Eh)~ rR(E,h).

It is easy to see that L is bounded from L'(T) to I°(Z*), with norm 1. Also, the
operator E, is an L*-contraction, and the operator E,# — R(E,h) is an isometry
from L*(K,) into L?[0, c0); finally

lrRb|lizcz+) < V2 | RB|| (0,09,

because mi(y,) = 1 for all n. So, inequality (6) holds for this operator L.
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Let f€ L(K,); then F € L,[0,1), and ||F||, = || f|l4. Since E,F =, it fol-
lows from inequality (6) that

S (ROG) _
]EZ jliog /)%~ Wl

It follows easily from the definitions of the operators R and r that this inequality
holds if and only if

3 If(tP,,)l

< «”|flls,

as required.

It follows that if 1/2 < s < 3/4, then f, € C,,, but f, cannot be represented in
the manner discussed in Remark 4.14(c).

(c) Finally, we show that if s > 1, then f, can be represented as in Remark
4.14(c). Consider the Dirichlet kernels

n
= 3 alu),
and the functions
= 2 ‘Pj -
j=0

Dunkl and Ramirez [1975] show that || D,||, = 1; on the other hand, by Parseval,
1D, < a™"/2. Also lH,ll; = (n+ )‘/2 because H,(¥;) = 1/m(y;) if j<n,
and H (¥;) = 0 otherwise. Since H, = H, * D,, it follows from inequality 4.14(1)
that || H,||,, < «’(n + 1). To see that f, € C,; when 5 > 1, sum the Fourier series
for f, by parts, and use the estimate above for || H,|| ;-

6.11. DiscussioN. Consider three conditions on a function f with ||| f]ll, < oo:

() f € C(K).

(i1) the entropy condition 3.10 holds.

(iii) f can be represented as in Remark 4.14(c).
When K is a compact abelian group, these conditions are known [Marcus-Pisier
(1980)] to be equivalent. We have shown, in Sections 3 and 4, that the implica-
tions (ii) = (i) and (iii) = (i) hold for all compact abelian hypergroups K. By 6.9
and 6.10, the implications (i) = (iii) and (ii) = (iii) are false for each hypergroup
K,. Finally, the implications (i) = (ii) and (iii) = (ii) hold for the hypergroups K ,,
but we do not know whether they hold for all compact abelian hypergroups K.
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7. Conjugacy classes of compact Lie groups

7.1. Let G be a compact non-abelian group and K the hypergroup of conjugacy
classes. The dual object = consists of the equivalence classes o of continuous
irreducible unitary representations of G. Each ¢ in Z has finite dimension 4, and
trace x,. The functions x, are called characters but the hypergroup characters are
normalized by dividing x, by d,. More precisely, if #: G — K is the natural map,
then ¥, on K is defined by the formula y, o 7 = d;'x, and K = {y,: ¢ € 2}. The
invariant measure m on K is induced from Haar measure on G via 7. The
invariant measure /7 on K is given by

m(y,) = dZ;
see 2.1(1) and 27.31 in {Hewitt-Ross (1970))].

7.2. Observe that K has property A p» as defined in 2.5, precisely when the dua}
object 2 is a local central A, set [Rider (1972a)]. Dooley [1979, 6.2] proved that K
has property A, whenever G is a compact Lie group. Rider [1972b] showed that if
G = U(n) or SU(n), then K has property A, for p <2+ 2/n but not for p = 3.
Rider’s results have been generalized as follows. Let G be a compact connected
Lie group. Then K has property A p forp <2 + e where

. = 2rank G .

¢ dimG —rank G’
see Clerc [1976] and Dooley [1979]. In [Giulini-Soardi-Travaglini (1981)] it is
shown that K does not have property A,, and, when G is a connected, simple,
simply connected Lie group, K does not have property A pforp=2+eg.

7.3. Conjugacy classes of SU(2). For the remainder of this paper, K will denote

the hypergroup of conjugacy classes of SU(2). We identify K with [0, 7] where 8
in [8, 7] corresponds to the conjugacy class containing the matrix

exp(i@) 0 )
0 exp(-if) |’

see 15.4 in [Jewett (1975)). For each n = 1,2,3,..., the dual subject of SU(2)

contains exactly one element of dimension n. We write its character as x, and we

write ¢, for the corresponding normalized hypergroup character on K = [0, 7].
Then

sin n@
nsin @

¥,(0) = for 8 € (0, 7).

The invariant measure m on K is given by

27 .
fodm = ;/0 f(0)sin* 6 d6.
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As noted in 7.1 we have

m(y,) = n?and ||y, =1 for all n.
n nli2 n

Thus
X . 2

(1) fE€LXK) ifandonlyif 2 |f(¢,)| n*< oo;
n=1

(2) fE€A(K) ifandonlyif 3 |f(¥,)|n* < 0.
n=1

Propositions 3.3 and 3.7 tells us

(3) feU(K) implies Y f(y,)n? converges;

n=1
(4) f€CulK) implies 3 |f(#,)] n* < oo.
n=1

A technique of R. A. Mayer [1967] allows us to give some specific examples for
this interesting hypergroup.

7.4. Mayer’s examples. Let (n,) be a sequence in N such that n, > 1 and
n,.,>n, + 2 for all k, and let (a,) be a sequence in /2. There exists an f in
L?*(K) such that

a; s ~a,

ﬂ%ﬁJ:Z:T’ (1) =

and f( ¥,) = 0 elsewhere. We claim

(1)f € A(K) if and only if Z2_,|a,|n, < o;

(2)if Z¥_,|a,|< o, then f € C(K);

3)if f € U(K), thenlim, _ ,a,n, = 0;

4)if Z7-,|a,|< oo and lim,_, , a,n, = 0, then f € U(K);

(5)if f € C,(K), then 32, |a, n2 < co.

Claim (1) is trivial. For claim (2), we calculate, as in [Mayer (1967)], the partial
sums

m
5., +1/(8) =2 X a,cosn,8.
k=1

If 2|a,]|< co these partial sums converge uniformly to a continuous function
which has to agree a.e. with f. Claims (3) and (5) follow from Propositions 3.3 and
3.7. Claim (4) is verified by comparing any partial sum with a suitable Sn,+1/-

(a) In Mayer’s original example, n, = k> and a, = 1/k?. In this case, f € C(K),
fe¢C(K)andf & UK).

(b)Letn, = 3k anda, = k3/2. Thenf € U(K) but f & C,(K).
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(c) Let n, = 3k and a, = k™2 Then f € U(K) and f & A(K). Since 2 |a, [ni
< o0, (5) does not tell us whether f € C,(K). We will see in 7.6 that f does
belong to C,(K).

7.5. REMARK. We have already spelled out in 4.7 results concerning a.s.
membership in L?#(K'). Note that Theorem 4.5 implies that if

> 1) 14 < oo
n=1

for all € > 0, then X is a.s. in all L?(K), p < oo.

7.6. Almost sure continuity again. (a) We now indicate how Discussion 3.12
applies to the hypergroup K = [0, 7] of conjugacy classes of SU(2). An induction
argument involving some elementary trigonometry shows that there is an absolute
constant C such that

[¥a(x) = ¥,(»)| < Clog n B(n]x — y]).

Here () is as specified in 7.3 and B is the function defined in 3.12. In this case,
condition 3.12(2) is equivalent to

< 0.

(1)

$ (33_,a2m*log> m)""*
n=2 n(log n)"?

It follows that if (1) holds for a, = f(4,), then f is in C, (K ). Related generali-
zations of the Salem-Zygmund theorem appear in [Ragozin (1976)] and [Rider
(1977)).

Condition (1) holds whenever

o0
(2) D aintlog*tin < o0
n=2
for some ¢ > 0; see, for example, page 608 in [Kawata (1972)]. Compare with
7.3(4). As an example, it can be shown that (2), and hence (1), hold for a, = f( V)
where f is defined in 7.4(c). This function f belongs to C,(K).

(b) Finally, we indicate how the methods of Section 4.14 apply in this situation.
These methods can be used to show that the condition obtained from (1) above
by omitting the term log?m is still sufficient for almost sure continuity (see
Marcus [1973], Appendix (iv)); we will just show, however, that the condition

o0
(3) > aln®log'tn < o0
n=2

is sufficient for almost sure continuity.
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Assume without loss of generality that f(\lz,) =0. For n=2, let ¢, =
a,(logn)'*9/2 and let H,= 37_,ck*Y,. If condition (3) holds, then
sup, [l H,ll, < 0. As in 6.12(c), the idea now is to represent H, as H * V, for a
suitable function ¥, and thereby estimate || H, || -

As the notation suggests, the kernels V, to be used have properties like those of
the classical de la Vallée-Poussin kernels on the unit circle. Recall that

sin(nd)
f) = 9)= .
Let h,=(x; + X, + - +x,)° In analysing these functions it is helpful to
consider their differences
g =h,—h,_| = Xi+ 2x,(x X2t FXam)-
Adopt the convention that &, = 0, so that g, = h; = x; = ;. The reader may
verify that
gn = X1 + 2X2 + .- +an + (n - l)Xn+l + - +X2n—l

for all n = 2. It follows that g,(y,) =1 for k = 1,2,...,n, that g,(¢,) = 0 for
k= 2n, and that g (y,) decreases as k increases from n to 2n. Hence by
induction on n, }f,,(\lz,) =n, and h,(y,) is a nonincreasing function of k.
Moreover, since A, = 0, ||h,|l, = h,(¥,) = n. The kernels F, = h,/n are like the

classical Féjer kernels of order 2n in that F, = 0, ||F,||; = 1, F,,(\pk) is a nonin-
creasing function of k, and F(¢y, ) = 0 for all k = 2n.
Let

V,=2F,— F,=(hy, —h,)/n= (8,51t gura t -~ +8.)/n.
It is easy to verify that ||V, ||, =< 3, that 17,,(xl/k) =1 for all k < n, that 17,,(¢k) =0
for all k = 4n, and that I;;,( ¥, ) is a nonincreasing function of k. Since () = k2,
the Plancherel formula yields the estimate ||V, ||, < xn®/2.
Clearly H, = H, » V,, so that, by Theorem 4.13, || H,,||,, < x'(log n)'/?. To see
that f € C,__, write its Fourier series as

o0
S (logn) "% (H, - H,_)),
n=2

and sum by parts.
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