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Abstract. We study the asymptotic behavior of the family of holomorphic correspondences
{Fa}a∈K, given by(

az+ 1
z+ 1

)2

+
(
az+ 1
z+ 1

)(
aw − 1
w − 1

)
+

(
aw − 1
w − 1

)2

= 3.

It was proven by Bullet and Lomonaco [Mating quadratic maps with the modular group
II. Invent. Math. 220(1) (2020), 185–210] that Fa is a mating between the modular group
PSL2(Z) and a quadratic rational map. We show for every a ∈ K, the iterated images and
preimages under Fa of non-exceptional points equidistribute, in spite of the fact that Fa
is weakly modular in the sense of Dinh, Kaufmann, and Wu [Dynamics of holomorphic
correspondences on Riemann surfaces. Int. J. Math. 31(05) (2020), 2050036], but it is not
modular. Furthermore, we prove that periodic points equidistribute as well.
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1. Introduction
In 1965, Brolin [3] studied asymptotic properties of polynomials P(z) ∈ C[z] of degree
bigger than or equal to 2. He proved the existence of a probability measure for which
the preimages P−n(z0) at time n of any point z0 ∈ C (with at most one exception)
asymptotically equidistribute, as n tends to infinity. In 1983, Freire, Lopes, and Mañé [20]
and Ljubich [24] independently proved the generalization to rational maps of degree at
least 2 on the Riemann sphere. These results have been generalized to different settings.
For instance, see [18, §1.4] and the references therein for higher dimensions, and [19, 22]
for the non-Archimedian setting.

The equidistribution properties of holomorphic correspondences have also attracted
considerable interest. Roughly speaking, a holomorphic correspondence on a complex
manifold X is a multivalued map induced by a formal sum � = ∑

ni�(i) of complex
varieties �(i) ⊂ X ×X of the same dimension. The multivalued map sends z to w if (z, w)
belongs to some �(i) (see §2.1). Let d(F ) denote the number of pre-images of a generic
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point under F. We call this number the topological degree of F, just as in the case of
rational maps. We study the existence of a Borel probability measure μ on X that has the
property that for all but at most finitely many z0 ∈ X,

1
d(F )n

(F n)∗δz0 → μ,

as n → ∞. Here, (F n)∗ denotes the push-forward operator associated to Fn. In [13],
Dinh studied the case of polynomial correspondences whose Lojasiewicz exponent is
strictly bigger than 1, in which case we always have that d(F−1) < d(F ). The case
where d(F ) = d(F−1) is open but some subcases are known. For instance, Clozel, Oh,
and Ullmo [9] proved equidistribution for irreducible modular correspondences, Clozel
and Otal [10] proved it for exterior modular correspondences, and Clozel and Ullmo
[11] for those that are self-adjoint. On the other hand, Dinh, Kaufmann, and Wu proved
in [15] that if such F is not weakly modular, then the statement holds for both F and
F−1. Modular correspondences are weakly modular, but the reverse containment does
not hold. On a different classification, Bharali and Sridharan [1] proved equidistribution
for correspondences with d(F ) ≥ d(F−1) having a repeller in the sense of [26]. We will
study a 1-parameter family in the gap between weak-modularity and modularity, and for
which the result in [1] does not apply.

Our object of study is the family of correspondences {Fa}a∈K on the Riemann sphere
Ĉ, where Fa is given in affine coordinates by(

az+ 1
z+ 1

)2

+
(
az+ 1
z+ 1

)(
aw − 1
w − 1

)
+

(
aw − 1
w − 1

)2

= 3, (1)

and K is the Klein combination locus defined in §2.2. This family was studied by Bullett
et al in [4–6, 8]. In [4], Bullett and Lomonaco proved that there is a two sided restriction
fa of Fa that is hybrid equivalent to a quadratic rational map P that has a fixed point
with multiplier 1. We refer the reader to [25] for conjugacy of parabolic-like mappings.
Moreover, for the parameters for which the Julia set of P is connected, we have that Fa is
a mating between the rational map P and the modular group PSL2(Z). This generalizes a
previous result by Bullett and Penrose [6]. The correspondence Fa has two homeomorphic
copies of the filled Julia set K of PA, denoted �a,− and �a,+, and they satisfy that
F−1
a (�a,−) = �a,− and Fa(�a,+) = �a,+. These are called the backward and forward

limit set, respectively (see §3.2).
The following theorem states that this family does not fit the conditions for any of the

equidistribution results listed above (see §1.1).

THEOREM 1.1. For every a ∈ K, we have that:
(1) Fa is a weakly modular correspondence that is not modular; and
(2) ∂�a,− is not a repeller for Fa .

Furthermore, we prove that Fa satisfies a property that is stronger than weak-modularity
(see Remark 3.4).

The purpose of this paper is to show that equidistribution holds for the family {Fa}a∈K.
Put
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Ea :=
{
∅ if a �= 5,

{−1, 2} if a = 5.

We prove the following equidistribution theorem.

THEOREM 1.2. Let a ∈ K. There exist two Borel probability measures μ+ and μ− on Ĉ,
with supp(μ+) = ∂�a,+ and supp(μ−) = ∂�a,−, such that for every z0 ∈ Ĉ \ Ea ,

1
2n
(Fn

a )∗δz0 → μ+ and
1
2n
(F−n

a )∗δz0 → μ−,

weakly, as n → ∞.

In later work [12], we prove that the measures μ+ and μ− maximize entropy: the
metric entropy in [31] yields equality for the half-variational principle with the topological
entropy in [17].

Let F be a holomorphic correspondence on X with graph �. Denote by �(n) the graph
of Fn and by

DX := {(z, z)|z ∈ X}
the diagonal in X ×X. Then the set of periodic points of F of period n is defined as
the set

Pern(F ) := π1(�
(n) ∩ DX),

and for z ∈ Pern(F ), we define the multiplicity of z as a periodic point of F of order n to
be the number ν

π1|�(n)∩DX
(z, z), defined in §2.1.

Another source of motivation is whether or not periodic points equidistribute. In [24],
Ljubich showed that this is the case for rational maps of degree bigger than or equal to 2,
where periodic points are counted either with or without multiplicity. The equidistribution
of periodic points is also studied in [2, 16, 19] in the case of maps, and in [13, 14] in the
case of correspondences. We prove this holds for the family {Fa}a∈K as well.

THEOREM 1.3. For a ∈ K,

1
|Pern(Fa)|

∑
z∈Pern(Fa)

δz and
1

2n+1

∑
z∈Pern(Fa)

ν
π1

∣∣∣
�
(n)
a ∩D

Ĉ

δz

are both weakly convergent to 1
2 (μ− + μ+), as n → ∞.

In §5, we define the set P̂ �n of superstable parameters of order n. Combining the main
results of [5, 29], we obtain a homeomorphism � : M → M� between the Mandelbrot
set M and the connectedness locus M� of the family {Fa}a∈K. These results, together
with the equidistribution result in [23], yield the following theorem.

THEOREM 1.4. In M� , superstable parameters equidistribute with respect to �∗mBIF,
that is,

lim
n→∞

1
2n−1

∑
a∈P̂ �n

δa = �∗mBIF.
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1.1. Notes and references. There is a bigger family studied by Bullett and Harvey
in [8], given by replacing the right-hand side of equation (1) by 3k, where k ∈ C.
For these correspondences, it is also possible to define limit sets �a,k,− and �a,k,+
analogous to those in the case where k = 1. In [1], Bharali and Sridharan show how
their equidistribution result applies to these correspondences in the case where �a,k,−
is a repeller. Parameters for which this is the case exist from the results in [8]. However,
we prove in Theorem 1.1 part (2) that this is never the case when k = 1 and a ∈ K.

1.2. Organization. The structure of this paper is as follows. In §2.1, we give an
introduction to holomorphic correspondences and their action on Borel measures. In §2.2,
we introduce the correspondences Fa given by equation (1). We define critical values and
find those of Fa in §2.3, and define Klein combination pair and the Klein combination
locus K in §2.4. In §3.1, we define modular and weakly modular correspondences,
and prove part (1) of Theorem 1.1. To prove that Fa is weakly modular, we use the
decomposition Fa = Ja ◦ CovQ

0 , given in [4], into a certain involution Ja composed with
the deleted covering correspondence CovQ

0 described in §2.2, and construct the measures
in the definition of weakly modular using the symmetry of the graph of CovQ

0 . The fact that
Fa is not modular follows from the fact that Borel measures assigning positive measure
to non-empty open sets are not invariant by Fa . In §3.2, we define the limit sets �a,− and
�a,+, and prove part (2) of Theorem 1.1 by showing that the parabolic fixed point in ∂�a,−
violates the definition of a repeller. In §4, we describe the exceptional set of the two-sided
restriction fa and the set Pern(Fa) of periodic points of period n. Finally, in §5, we use
the description of fa given in [4] together with the results in [20, 24] to prove Theorems
1.2 and 1.3 about asymptotic equidistribution of images, preimages, and periodic points.
We finish with the proof of Theorem 1.4 about equidistribution of special points in the
modular Mandelbrot set M� .

2. Preliminaries
2.1. Holomorphic correspondences. Let X be a compact Riemann surface and let πj :
X ×X → X be the canonical projection to the jth coordinate, j = 1, 2. We say that a
formal sum � = ∑

i ni�(i) is a holomorphic 1-chain on X ×X if its support supp � :=⋃
i �(i) is a subvariety of X ×X of pure dimension 1 whose irreducible components

are exactly the �(i), and the ni are non-negative integers. We say that the �(i) are the
irreducible components of �.

Let � = ∑
i ni�(i) be a holomorphic 1-chain satisfying that for j = 1, 2 and every

i such that ni > 0, the restriction πj |�(i) of the canonical projection X ×X → X to the
irreducible component �(i) is surjective. The chain � induces a multivalued map F from
X to itself by

F(z) :=
⋃
i

π2|�(i)(π1|�(i)−1
(z)).

The multivalued map F is called a holomorphic correspondence and it is said to be
irreducible if

∑
i ni = 1. We say that �F := � is the graph of the holomorphic corre-

spondence F. Let ι : X ×X → X ×X be the involution (z, w) �→ (w, z). We can define
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the adjoint correspondence F−1 of F by the relation F−1(z) := ⋃
i π1|�(i)(π2|�(i)−1

(z)),
which is a holomorphic correspondence, whose graph is the holomorphic 1-chain �−1

F =∑
i ni ι(�(i)).
In [30], Stoll introduced a notion of multiplicity that will be useful for this paper. Let

M be a quasi-projective variety and N a smooth quasi-projective variety. If g : M → N

is regular, and a ∈ M , then we say that a neighborhood U of a is distinguished with
respect to g and a if U is compact and g−1(g(a)) ∩ U = {a}. Such neighborhoods exist
if and only if dima g

−1(g(a)) = 0 and, in this case, they form a base of neighborhoods.
If U is distinguished with respect to g and a, then put μg(z, U) := |g−1(g(z)) ∩ U |. It
can be shown that ν̂g(a) := lim supz→a μg(z, U) does not depend on the distinguished
neighborhood U, and the maps nb defined on N by a �→ ∑

b∈g−1(a) ν̂g(b) are constant in
each component.

Suppose that g : M → N is a finite and surjective regular map, with M and N as above.
Stoll proved in [30] that ν̂g(a) generalizes the notion of multiplicity of g at a and whenever
ϕ is a continuous function with compact support in M, the map

a �→
∑

b∈g−1(a)

ν̂g(b)ϕ(b)

is continuous.
To study dynamics, we proceed to define the composition of two holomorphic corre-

spondences F and G with associated holomorphic 1-chains �F = ∑
i ni�F (i) and �G =∑

j mj�G(j), respectively. For each i and j, let Ai,j be the image of the projection pi,j :
(�G(j)× �F (i)) ∩ {x2 = x3} ↪→ X ×X that forgets the second and third coordinates,
i.e.,

Ai,j = {(z, w)∈X×X| there exists x ∈X such that (z, x)∈�G(j), and (x, w) ∈ �F (i)}.
Let {�(i, j , k)}N(i,j)k=1 be the irreducible components of Ai,j . Observe that since �G(j) and
�F (i) are both quasi-projective, and so is {x2 = x4} ⊂ X4, then pi,j is a regular map from
the quasi-projective variety (�G(j)× �F (i)) ∩ {x2 = x3} to the smooth quasi-projective
variety X ×X. Then we have that the map a �→ n

pi,j |�(i,j ,k)
(a) defined on �(i, j , k)

is constant. Therefore, ηi,j ,k := n
pi,j |�(i,j ,k)

(a) denotes the number of x ∈ X such that

((z, x), (x, w)) ∈ �G(j)× �F (i), for a generic point (z, w) ∈ �(i, j , k). Define the
composition F ◦G as the holomorphic correspondence determined by the holomorphic
1-chain

�F◦G :=
∑
i,j

N(i,j)∑
k=1

nimjηi,j ,k�(i, j , k).

Note that the supp �F◦G = ⋃
i,j Ai,j .

Set d(F ) := ∑
i ni deg(π2|�(i)). We have that d(F ◦G) = d(F )d(G). Thus, in partic-

ular, for every integer n ≥ 1, we have that d(Fn) = (d(F ))n. We call d(F ) the topological
degree of F, and it corresponds to the number of preimages of a generic point under F.

If F is an irreducible holomorphic correspondence over X with graph � and ϕ : X → C

is a continuous function, then
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F ∗ϕ(z) :=
∑

(z,w)∈π1|�
−1
(z)

ν̂
π1|� (z, w)ϕ(w)

is continuous as well, see [11, Lemma 1.1]. Now let F be a holomorphic correspondence
that is not necessarily irreducible, with graph �F = ∑

i ni�(i). We denote by Fi the
holomorphic correspondence induced by �(i) and we put

νFi (z, w) =
⎧⎨⎩ν̂π1|�(i) if (z, w) ∈ �(i),

0 otherwise,

and νF := ∑
i niνFi . Then for every continuous function ϕ : X → C, the map

z �→
∑

w∈F(z)
νF (z, w)ϕ(w) =

∑
w∈f (z)

( ∑
i

niνFi (z, w)
)
ϕ(w)

=
∑
i

niFi∗ϕ(w)

is also continuous.
The holomorphic correspondence F induces an action F∗ on finite Borel measures μ by

duality, namely 〈F∗μ, ϕ〉 := 〈μ, F ∗ϕ〉, called the push-forward operator and the resultant
measure F∗μ is the push-forward measure of μ under F. We define as well the action
F ∗ := (F−1)∗, called the pull-back operator and the resultant measure F ∗μ is called the
pull-back measure of μ under F. This action on measures agrees with the action on points

F ∗δz :=
∑

w∈F(z)
νF (z, w)δw,

where δz is the Dirac delta at z.
To see this, note that for every continuous function ϕ : X → C,〈 ∑

w∈F(z)
νF (z, w)δw, ϕ

〉
=

∑
w∈F(z)

νF (z, w)〈δw, ϕ〉

=
∑

w∈F(z)
νF (z, w)ϕ(w)

=
∫ ( ∑

w∈F(ζ )
νF (ζ , w)ϕ(w)

)
dδz(ζ )

= 〈δz, F∗ϕ〉
= 〈F ∗δz, ϕ〉.

2.2. The family {Fa}a . Let Q(z) ∈ C[z] be a nonlinear polynomial. The deleted cover-
ing relation of Q on C × C is defined by w ∈ CovQ

0 (z) if and only if

PQ(z, w) := Q(z)−Q(w)

z− w
= 0. (2)

Note that the denominator ‘deletes’ the obvious association of z with itself in the equation
Q(z) = Q(w).
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In this section, we will identify Ĉ with the complex projective line when it is convenient
to work with homogeneous coordinates (z : w).

PROPOSITION 2.1. Put Q(z) := z3 − 3z. The closure of the relation in equation (2) is an
irreducible quasiprojective complex variety �0 of Ĉ × Ĉ of dimension 1. Moreover, the
projectionsπ1|�0 andπ2|�0 are both surjective and of degree 2.

Proof. Note that PQ(z, w) = z2 + zw + w2 − 3 and consider PQ(z, w) as a single
variable polynomial in (C[z])[w]. Then its discriminant −3z2 + 12 is not a square in C[z].
Therefore, PQ(z, w) is an irreducible polynomial, and hence

Z := {(z, w) ∈ C × C |PQ(z, w) = 0}
is an irreducible subvariety of C × C.

Now we want to describe the closure Z of Z in Ĉ × Ĉ. Observe that if we fix
z ∈ C, then limw→∞ PQ(z, w) = ∞, and if we fix w ∈ C, then limz→∞ PQ(z, w) = ∞.
Therefore, there are no points of the form (z, ∞) or (∞, w) in Z . Given R > 0, let
z ∈ C be such that |z| = R. Observe that PQ(z, ·) ∈ C[w] is non-constant and therefore
has at least one root in C. Let w ∈ C be a root. Then (z, w) ∈ Z and we have that
|w3 − 3w| = |Q(w)| = |Q(z)| = |z3 − 3z| ≥ R3 − 3R. By taking R → ∞, we get that
(z, w) → (∞, ∞). Therefore, Z = Z ∪ {(∞, ∞)}. In particular, Z extends the relation
given by equation (2) from C × C to Ĉ × Ĉ.

Take the homogenization

T (z, x, w, y) := z2y2 + zxwy + x2w2 − 3x2y2

of PQ(z, w), so PQ(z, w) = T (z, 1, w, 1), and note that T (λ1z, λ1x, λ2w, λ2y) =
λ2

1λ
2
2T (z, x, w, y). Thus, for the closed subvariety

�0 := {((z : x), (w : y)) ∈ Ĉ × Ĉ |T (z, x, w, y) = 0}
of Ĉ × Ĉ, we have that �0 = Z . To prove that �0 is irreducible, note that each of its
irreducible components intersecting C × C must be a closed subset of �0 containing �0 ∩
(C × C) = Z , and therefore it is �0 itself. Thus, �0 has only one irreducible component
and hence it is irreducible.

We proceed to show �0 has dimension 1. Observe that the polynomial T (z, x, w, y)
is irreducible in C[z, x, w, y], as whenever S(z, x, w, y)|T (z, x, w, y) in C[z, x, w, y],
then S(z, 1, w, 1)|PQ(z, w) in C[z, w]. Therefore, the zero set Z(T ) ⊂ C2 × C2 of T is
an irreducible hypersurface of C2 × C2, and hence it has codimension 1. Now let p : C2 \
{(0, 0)} → Ĉ be the projection sending (z, x) �→ (z : x). Note that in the chart

U1 = {(z, w) ∈ C2 \ {(0, 0)}|w �= 0},
the map p is simply (z, w) �→ (z/w : 1), and in the chart

U2 = {(z, w) ∈ C2 \ {(0, 0)}|z �= 0},
it becomes (z, w) �→ (1 : w/z). Let p̂ : (C2 \ {(0, 0)})× (C2 \ {(0, 0)}) → Ĉ × Ĉ be the
map defined by p̂((z, x), (w, y)) := (p(z, x), p(w, y)). Then p̂|Z(T ) : Z(T ) → �0 is a
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regular map between irreducible varieties, and p̂|Z(T ) has constant fiber dimension equal
to 2, as T is homogeneous in (z, x) and in (w, y). Therefore,

dim �0 = dim Z(T )− dim p̂|Z(T )−1
(z, w) = 1.

Finally, observe that the polynomial equation (2) has at least one and at most two
solutions for every z ∈ C, and by symmetry, the same holds for w ∈ C. Note as well that
∞ is in correspondence with and only with itself. Thus, the projectionsπ1|�0 andπ2|�0 are
both surjective. Moreover, PQ(1, 1) = PQ(1, −2) = 0, and hence PQ(1, w) has exactly
two solutions. Therefore, deg(π1|�0) = deg(π2|�0) = 2.

Remark 2.2. Proposition 2.1 holds for a large class of polynomials Q(z). Observe that no
polynomial can have Q(z) = Q(∞) for a finite number z. Therefore, following the proof
of Proposition 2.1, we conclude that to get an irreducible holomorphic correspondence,
it suffices to prove that PQ(z, w) is irreducible over C. This holds under fairly general
conditions. For instance, this is the case when Q is indecomposable and not linearly related
to either zn or a Chebyshev polynomial (see [21]).

On the other hand, note that whenever Q = R ◦ S with R and S of degree greater than
1, then PS(z, w) divides PQ(z, w), and therefore PQ(z, w) is reducible.

Proposition 2.1 says that �0 is the graph of an irreducible holomorphic correspondence,
where �0 is a quasi-projective variety and π1|�0 : �0 → Ĉ is a finite and surjective
morphism over C, and hence we can use our definition of pull-back and push-forward
operators induced by the correspondence on finite measures. We call this correspondence
the deleted covering correspondence of Q, denoted by CovQ

0 as well. That is, CovQ
0 is the

holomorphic correspondence on Ĉ × Ĉ such that �CovQ
0

= �0. From now on, we always

consider Q(z) = z3 − 3z.
Now take a ∈ C \ {1} and let Ja : Ĉ → Ĉ be the involution

Ja(z) := (a + 1)z− 2a
2z− (a + 1)

.

The composition of CovQ
0 with the involution Ja is again an irreducible holomorphic

correspondence Fa := Ja ◦ CovQ
0 on Ĉ × Ĉ with graph �a for which we can use the

pull-back and push-forward operators above as well. Note that d(Fa) = d(F−1
a ) = 2 and

F−1
a = CovQ

0 ◦ Ja = Ja ◦Fa ◦ Ja , since CovQ
0

−1 = CovQ
0 and J−1

a = Ja .
Set φa(z) := (az+ 1)/(z+ 1). Then φ−1

a ◦ Fa ◦ φa is a holomorphic correspondence
on Ĉ × Ĉ that, restricted to (Ĉ \ {−1})× (Ĉ \ {1}), induces the relation given by equation
(1). Thus, (z, w) ∈ (Ĉ \ {−1})× (Ĉ \ {1}) satisfies equation (1) if and only if w ∈ Fa(z)
[4, Lemma 3.1].

Observe that F−1
a (1) = CovQ

0 (Ja(1)) = CovQ
0 (1) = {1, −2}, independent of a ∈ C \

{1}. In particular, 1 ∈ Per1(Fa) and we say that 1 is a fixed point of Fa .

2.3. Critical values. In this section, we will discuss what parts of the graph of Fa are
locally the graph of a holomorphic function, by defining and finding all critical values and
ramification points of �a . This will be used in §4 to find the exceptional set.
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Definition 2.3. Let � be the graph of an irreducible holomorphic correspondence on Ĉ,
and put

Aj(�) := {α ∈ �| for all open neighborhoods W of α,πj |W∩� is not injective},
for j = 1, 2 and Bj (�) := πj (Aj (�)).

We extend the definition to holomorphic 1-chains � = ∑
i ni�(i) by

Aj(�) :=
⋃
i

Aj (�(i)) and Bj (�) := πj (Aj (�)).

We callA2(�) the set of ramification points of the holomorphic correspondence associated
to �, and B2(�) the set of its critical values.

Note that A1(�) = ι(A2(�
−1)) and A2(�) = ι(A1(�

−1)), where ι : Ĉ × Ĉ → Ĉ × Ĉ

is the involution ι(z, w) = (w, z).
Suppose � is the graph of a holomorphic correspondence on Ĉ. Let g : � → Ĉ be a

holomorphic function defined on a domain� of Ĉ, whose graph Gr(g) is contained in one
of the irreducible components �(i) of �. If a ∈ � is a critical point for g, then (a, g(a)) ∈
A2(�(i)) ⊂ A2(�) and therefore g(a) ∈ B2(�), i.e., the critical value π2|�(i)(α) = g(a)

of the function g is a critical value for the holomorphic correspondence associated to �, as
well.

On the other hand, if α /∈ A1(�), then there exists a holomorphic function g : � → Ĉ

defined on a neighborhood � of a = π(α), such that (a, g(a)) = α, and Gr(g) ⊂ �(i)

for some i. If in addition α ∈ A2(�), then g is not locally injective at a, and therefore
g′(a) = 0. Therefore, a is a critical point of g and π2(α) = g(a) is a critical value of g.

If we denote by CritPt(g) the set of critical points of g, and by

CritVal(g) := {g(a)|a ∈ CritPt(g)}
the set of critical values of g, then we get a motivation for the name ‘critical values’ in
Definition 2.3 by the containment

B2(�) \ B1(�) ⊂
⋃
i

⋃
Gr(g)⊂�(i)

CritVal(g),

where the first union runs over the irreducible components of � and the second union runs
over all the holomorphic functions g : � → Ĉ whose graph Gr(g) is contained in �(i).

PROPOSITION 2.4. For every a ∈ C \ {1}, we have that

A1(�a) =
{(

∞,
a + 1

2

)
,
(

− 2, 1
)

,
(

2,
3a + 1
3 + a

)}
, (3)

and

A2(�a) =
{(

∞,
a + 1

2

)
,
(

1,
4a + 2
a + 5

)
,
(

− 1,
2

3 − a

)}
. (4)

As a consequence, B1(�a) = {∞, −2, 2} and B2(�a) = {(a + 1)/2, (4a + 2)/(a + 5),
2/(3 − a)}. Moreover, �a is smooth at all points except (∞, (a + 1)/2).

To prove this proposition, we first prove the following lemma.
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LEMMA 2.5. For each a ∈ C \ {1},
A1(�CovQ

0
) = {(∞, ∞), (−2, 1), (2, −1)}

and

A2(�CovQ
0
) = {(∞, ∞), (1, −2), (−1, 2)}.

Thus, B1(�CovQ
0
) = {∞, −2, 2} and B2(�CovQ

0
) = {∞, 1, −1}.

Proof. Differentiating the equation PQ(z, w) = 0 with respect to w, we get that
∂wPQ(z, w) = z+ 2w vanishes if and only if w = −z/2. Also, PQ(z, −z/2) = 0 if
and only if z = ±2. Therefore, dw/dz exists on C \ {−2, 2}. Thus, by the implicit
function theorem, for every (z, w) ∈ �CovQ

0
such that z ∈ C \ {−2, 2}, there exists a

domain � containing z and a holomorphic function g : � → Ĉ such that g(z) = w

and Gr(g) = �CovQ
0

∩ U , for some open neighborhood U of (z, w). In addition, the
function g will be locally injective at z if ∂zPQ(z, w) = 2z+ w is non-zero. Therefore, if
(z, w) ∈ �CovQ

0
satisfies that both z and w are different from ±2, then (z, w) /∈ A2(�CovQ

0
).

On the other hand, observe that the only points (z, w) ∈ �CovQ
0

with z = ±2 are (−2, 1)
and (2, −1). In particular, w �= ±2, and by the symmetry of the above argument, we can
use the implicit function theorem to obtain a neighborhood U of w and a function g :
U → Ĉ satisfying Gr(g) ⊂ �CovQ

0
and g(w) = z, and such thatπ2|�

CovQ
0

is injective in the

neighborhood (g(U)× U) ∩ �CovQ
0

of (z, w). This proves that neither (−2, 1) or (2, −1)
belong to A2(�CovQ

0
). Since the only points (z, w) ∈ �CovQ

0
with z = ±1 are (1, −2) and

(−1, 2), and since �CovQ
0

\ (C × C) = {(∞, ∞)}, we have that A2(�CovQ
0
) is contained in

{(∞, ∞), (1, −2), (−1, 2)}.
We will check that for every neighborhood W of (∞, ∞), (1, −2), and (−1, 2), we have

thatπ2|W∩�
CovQ

0

is not injective. Let W1, W2, and W3 be open neighborhoods of (∞, ∞),

(1, −2), and (−1, 2), respectively. Then there exists T > 0 such that for every 0 < t < T ,(
1
2

(
± √

3

√
− 1
t2

− 4
t

+ 1
t

+ 2
)

, −2 − 1
t

)
∈ �CovQ

0
∩W1,

(
1
2

(± √
3
√

−t2 − 4t + t + 2
)
, −2 − t

)
∈ �CovQ

0
∩W2,

and (
1
2

(± √
3
√

4t − t2 + t − 2
)
, 2 − t

)
∈ �CovQ

0
∩W3.

We conclude that A2(�CovQ
0
) = {(∞, ∞), (1, −2), (−1, 2)}, and by the symmetry of

CovQ
0 , A1(�CovQ

0
) = {(∞, ∞), (−2, 1), (2, −1)}. We conclude that

B2(�CovQ
0
) = {∞, −2, 2} = B1(�CovQ

0
).
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Proof of Proposition 2.4. Since Fa = Ja ◦ CovQ
0 and Ja is an involution, we have that

Aj(�a) = {(z, Ja(w)) : (z, w) ∈ Aj(�CovQ
0
)},

for j = 1, 2. Using Lemma 2.5, this gives us equations (3) and (4), and thus B1(�a) =
{∞, −2, 2} and

B2(�a) = {Ja(∞), Ja(−2), Ja(2)} =
{
a + 1

2
,

4a + 2
a + 5

,
2

3 − a

}
.

In addition, observe that locally, �a is either a function on z or on w for all (z, w) ∈ �a
with z �= ∞, then the only point that can be irregular is (∞, (a + 1)/2). Indeed, this point
is irregular, as the curve given by the points(

1
2

(
± √

3

√
− 1
t2

− 4
t

+ 1
t

+ 2
)

, −2 − 1
t

)
∈ �CovQ

0

self-intersects at (∞, ∞) with an angle of 2π/3. In other words, there are two functions
z(w) which intersect with different derivatives, which makes (∞, ∞) an irregular point of
�CovQ

0
. Thus, passing through the involution Ja , we get that (∞, (a + 1)/2) is an irregular

point of �a .

Remark 2.6. The correspondence CovQ
0 , and hence Fa , sends open sets to open sets.

Indeed, let U ⊂ Ĉ be open and take w0 ∈ CovQ
0 (U). Then there exists z0 ∈ U for which

(z0, w0) ∈ �CovQ
0

. We will prove that CovQ
0 (U) is open by showing that in all the cases,

w0 ∈ int(CovQ
0 (U)).

• Suppose (z0, w0) /∈ A1(�CovQ
0
). By Lemma 2.5 and since (CovQ

0 )
−1(∞) = {∞}, we

have that w0 �= ∞. Moreover, there exists a holomorphic function g : � → C on an
open subset� ⊂ U , and (z0, w0) ∈ Gr(g) ⊂ �CovQ

0
. Furthermore, �CovQ

0
is irreducible

and CovQ
0 is not constant, so g is not constant. Thus, g is open and then w0 ∈ g(�) ⊂

int(CovQ
0 (U)).

• Now suppose (z0, w0) /∈ A2(�CovQ
0
). By Lemma 2.5 and since CovQ

0 (∞) = {∞}, then

z0 �= ∞ and there exists a holomorphic function g̃ : �̃ → C on an open subset �̃ ⊂ C

so that (z0, w0) ∈ ι(Gr(g̃)) ⊂ �CovQ
0

. Since g̃ is continuous, then g̃−1(U) is open and

w0 ∈ g̃−1(U) ⊂ int(CovQ
0 (U)).

• Finally, if (z0, w0) ∈ A1(�CovQ
0
) ∩ A2(�CovQ

0
), then Lemma 2.5 implies that

(z0, w0) = (∞, ∞). For each r > 0, put Ur := {|z| > r} ∪ {∞}. To show that
∞ ∈ int(CovQ

0 (U)), we will show that for every R >
√

3, U2R ⊂ CovQ
0 (UR). We

proceed by the contrapositive. If PQ(z, w) = 0 and |w| ≤ R, then

|z|2 = |3 − zw − w2| ≤ 3 + |z||w| + |w|2 ≤ 2R2 + |z|R.

Hence, |z|2 − R|z| − 2R2 ≤ 0 and |z| ≤ 2R. This implies that for every R >
√

3, we
have that CovQ

0 (U2R) ⊂ UR . By the symmetry of CovQ
0 ,

U2R ⊂ CovQ
0 (CovQ

0 (U2R)) ⊂ CovQ
0 (UR).
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FIGURE 1. Klein combination pair for |a − 4| ≤ 3.

Moreover, if R >
√

3 is large enough so that UR ⊂ U , then

∞ ∈ U2R ⊂ int(CovQ
0 (U)).

Therefore, CovQ
0 sends open sets to open sets. Since the involution Ja also sends open sets

to open sets, then so does Fa .

2.4. Klein combination pairs. In this section, we will define the set K of parameters we
will consider for our family.

Definition 2.7. A fundamental domain for an irreducible holomorphic correspondence F
is an open set �F that is maximal with the property that �F ∩ F(�F ) = ∅.

Definition 2.8. We say that a pair (�CovQ
0

, �Ja ) of fundamental domains for CovQ
0 and

Ja , respectively, is a Klein combination pair for Fa if both �CovQ
0

and �Ja are simply
connected domains, bounded by Jordan curves, and satisfy

�CovQ
0

∪�Ja = Ĉ \ {1}.
We define as well the Klein combination locus K to be the set of parameters a ∈ C \ {1}
for which there exist a Klein combination pair.

In [4], for |a − 4| ≤ 3, a �= 1, the authors found a Klein combination pair for Fa , where
�CovQ

0
is given by the right side of the curve

L :=
{(

1 + t

2

)
± i

√
3
(
t + t

2

2) ∣∣∣∣t ∈ [0, ∞]
}

= CovQ
0 ((−∞, −2]),

and �Ja is given by the exterior of the circle passing through z = 1 and z = a with
diameter contained in the real line.

This pair (�CovQ
0

, �Ja ) is composed by simply connected fundamental domains for

CovQ
0 and Ja , respectively, whose boundaries are Jordan curves, smooth except from

∂�CovQ
0

at (∞, ∞) (see Figure 1 and [4, Proposition 3.3]). In particular,

{a ∈ C| |a − 4| ≤ 3} \ {1} ⊂ K.
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From now on, whenever a ∈ K, we denote by (�CovQ
0

, �Ja ) a Klein combination pair
for Fa .

The following remark will be useful to prove that Fa is not modular, and later to analyze
the asymptotic behavior of Fa .

Remark 2.9. Let a ∈ K.
(1) Note that Fa(Ĉ \�Ja ) ⊂ Ĉ \�Ja and Fa((Ĉ \�Ja ) \ {1}) ⊂ Ĉ \�Ja . Indeed,

Fa(1) = Ja(CovQ
0 (1)) = Ja({1, −2}) =

{
1,

4a + 2
a + 5

}
.

From Remark 2.6, we have that CovQ
0 sends open sets to open sets. In par-

ticular, −2 cannot belong to �CovQ
0

, as 1 /∈ CovQ
0 (�CovQ

0
) = Ĉ \�CovQ

0
. By the

Klein combination pair condition, this implies that −2 ∈ �Ja , and thus Ja(−2) =
(4a + 2)/(a + 5) /∈ �Ja . Since we also have that 1 /∈ �Ja , we have that

Fa(1) ⊂ Ĉ \�Ja .

However, for z ∈ Ĉ \�Ja , z �= 1, we have that z ∈ �CovQ
0

. Therefore,

CovQ
0 (z) ⊂ Ĉ \�CovQ

0
⊂ �Ja ,

and thus, since Ja is an involution fixing ∂�Ja ,

Fa(z) = Ja ◦ CovQ
0 (z) ⊂ Ja(�Ja ) = Ĉ \�Ja .

In particular, �Ja \ Fa(Ĉ \�Ja ) �= ∅.
(2) Observe that F−1

a (�Ja ) ⊂ �Ja and F−1
a (�Ja ) ⊂ �Ja ∪ {1}. Indeed, for every

z ∈ �Ja , we have that Ja(z) ∈ Ĉ \�Ja ⊂ �CovQ
0

. From Remark 2.6 and since
(�CovQ

0
, �Ja ) is a Klein combination pair, then

F−1
a (z) = CovQ

0 (Ĉ \�Ja ) ⊂ CovQ
0 (�CovQ

0
) ⊂ Ĉ \�CovQ

0
⊂ �Ja .

Furthermore, for w ∈ �Ja , we have that

F−1
a (w)⊂ CovQ

0 (Ja(�Ja ))⊂ CovQ
0 (Ĉ \�Ja )⊂ CovQ

0 (�CovQ
0
)⊂ Ĉ \�CovQ

0
⊂�Ja .

3. Clasification of the family {Fa}a
In this section, we prove that Fa is weakly modular but not modular, for every a ∈ K. In
addition, we prove that it does not satisfy the required conditions for the equidistribution
result [1, Theorem 3.5]. All together proving Theorem 1.1.

3.1. Modularity and weak modularity.

Definition 3.1. Let G be a connected Lie group, � a torsion free lattice, and K a compact
Lie subgroup. Let g ∈ G be such that g�g−1 ∩� has finite index in �. The irreducible
modular correspondence induced by g is the multivalued map Fg on X = � \G/K
corresponding to the projection to X of the map x �→ (x, gx) on G → G×G. Denote
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by �g the graph of Fg . A modular correspondence F is a correspondence whose graph is
of the form

∑
j nj�gj , for �gj as before.

The following definition was introduced by Dinh, Kaufmann, and Wu in [15].

Definition 3.2. Let X be a compact Riemann surface and let F be a holomorphic
correspondence on X with graph � such that d(F ) = d(F−1). We say that F is a weakly
modular correspondence if there exist Borel probability measures μ1 and μ2 on X, such
that

(π1|�)∗μ1 = (π2|�)∗μ2.

Remark 3.3
(1) Let F be a modular correspondence that is also a holomorphic correspondence. Then

it is always the case that

d(F ) =
∑
j

nj [� : gj�g−1
j ∩�] =

∑
j

nj [� : g−1
j �gj ∩�] = d(F−1).

(2) With the notation in Definition 3.1, let λ be the direct image on X of the finite Haar
measure on � \G. Then, (1/d)(Fg)F ∗

g λ = λ and if we put μ1 = μ2 = λ, we get
that

(π1|�g )∗μ1 = (π2|�g )∗μ2.

Therefore, modular correspondences are weakly modular.
(3) The measure λ above is Borel, invariant under Fg , and assigns positive measure to

non-empty open sets.

Proof of Theorem 1.1 part 1. Observe that the graph �CovQ
0

of the correspondence CovQ
0 is

symmetric with respect to the diagonal D
Ĉ

= {(z, z)|z ∈ Ĉ}, as z ∈ CovQ
0 (w) if and only if

w ∈ CovQ
0 (z). Let m be any positive and finite measure on �CovQ

0
, and ι : �CovQ

0
→ �CovQ

0
the involution ι(z, w) := (w, z). Take

m0 :=
(
π1|�

CovQ
0

)∗(
π1|�

CovQ
0

)
∗m+ ι∗

(
π1|�

CovQ
0

)∗(
π1|�

CovQ
0

)
∗m.

The measure m0 is symmetric in �CovQ
0

in the sense that ι∗m′ = m′ and moreover(
π1|�

CovQ
0

)∗(
π1|�

CovQ
0

)
∗m0 =

(
π2|�

CovQ
0

)∗(
π2|�

CovQ
0

)
∗m0. (5)

After normalizing if necessary, this proves that CovQ
0 is weakly modular with measures

μ′
1 := (π1|�

CovQ
0

)∗m0 and μ′
2 := (π2|�

CovQ
0

)∗m0. Our goal is to show there are probability

measures μ1 and μ2 on Ĉ such that

(π1|�a )∗μ1 = (π2|�a )∗μ2, (6)

where �a is the graph of the correspondence Fa = Fa ◦ CovQ
0 .

Put μ2 := (Ja)∗μ′
2 = (Ja)∗μ′

2 and observe that by symmetry of Ja , we have that

(π2|�a )∗μ2 = (π2|�a )∗(Ja)∗μ′
2 = (Ja ◦π2|�a )∗μ′

2. (7)
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Now let Ĵa : Ĉ × Ĉ → Ĉ × Ĉ be given by Ĵa(z, w) := (z, Ja(w)). Observe that whenever
(z, w) ∈ �CovQ

0
, then (z, Ja(w)) ∈ �a and

(Ja ◦π2|�
CovQ

0

)(z, w) = Ja(w) = (π2|�a ◦ Ĵa)(z, w). (8)

On the other hand, π1|�
CovQ

0

◦ Ĵa(z, w) =π1|�a (z, w) with multiplicity 2. This, together

with equations (5), (7), and (8) yield

(π2|�a )∗μ2 = (Ĵa)∗(π2|�
CovQ

0

)∗μ′
2 = (Ĵa)∗(π1|�

CovQ
0

)∗μ′
1 = 2(π1|�

CovQ
0

)∗μ′
1. (9)

Observe that μ1 := 2μ′
1 and μ2 both have 2 times the mass of μ1 and μ2. After

normalizing, equation (9) proves that Fa is weakly modular, as desired.
To check Fa is not modular, we will prove that no Borel measure λ on Ĉ that

gives positive measure to non-empty open sets can be invariant under Fa . Suppose by
contradiction that λ is such a measure satisfying 1

2F∗
a λ = λ. In particular, we have that

λ((Ĉ \�Ja ) \ Fa(Ĉ \�J )) = 0. On the other hand, note that

Fa(Ĉ \�Ja ) =π2|�a (�a ∩ ((Ĉ \�Ja )× Ĉ))

is closed in Ĉ. By Remark 2.9 part (1), (Ĉ \�Ja ) \ Fa(Ĉ \�Ja ) is open and non-empty,
contained in (Ĉ \�Ja ) \ Fa(Ĉ \�J ). This contradicts part (3) of Remark 3.3, as λ cannot
assign 0 measure to open sets.

Remark 3.4. For a (d, d) holomorphic correspondence F on compact Riemann surface X,
the operator (1/d)F ∗ acts on the space L2

(1,0) of (1, 0)-forms with L2 coefficients. In [15],
the authors showed that the operator norm satisfies ‖(1/d)F ∗‖ ≤ 1, with strict inequality
for non weakly modular correspondences. This strict inequality is a key factor of their
equidistribution result. However, this is never the case for F = Fa , a �= 1. We claim that∥∥ 1

2F∗
a

∥∥ = sup
{∥∥ 1

2F∗
a φ

∥∥
L2

∣∣φ ∈ L2
(1,0), ‖φ‖L2 = 1

} = 1,

and furthermore that the supremum is attained. To prove this, we use that ‖(1/d)F ∗φ‖L2 =
‖φ‖L2 for φ ∈ L2

(1,0) if and only if for every U ⊂ X \ B1(�) and for every pair of local
branches f1 and f2 of F on U, the equality f ∗

1 φ = f ∗
2 φ holds on U (see [15, Proposition

2.1]).
Observe that the form φ(z) = e−|Q(z)| dz belongs to L2

(1,0) for Q as in §2.2. Let

U ⊂ Ĉ \ B1(�CovQ
0
). Then the deleted covering correspondence CovQ

0 sends z to the values
w for which (Q(z)−Q(w))/(z− w) = 0. Hence, any two local branches f1 and f2 of
CovQ

0 satisfy f ∗
1 φ(z) = Q(z) = f ∗

2 φ(z), and thus ‖ 1
2 CovQ

0
∗‖ = 1. Now note that Ja is an

involution, and hence J∗
a has operator norm 1. Thus we can conclude that ‖ 1

2F∗
a ‖ = 1 as

well, with supremum attained at φ.

3.2. Limit sets. In this section, we define limit sets and give some properties. We
will also prove that the application listed in [1, §7] does not hold for our family of
correspondences, and hence this is a new case to study equidistribution.
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Remark 3.5. From Proposition 2.4, observe that 1 /∈ B1(�a), and hence there is a
holomorphic function g whose graph contains (1, 1) and is contained in �a . After the
change of coordinates ψ(z) = z− 1, the function g has Taylor series expansion

gψ(z) = z+ a − 7
3(a − 1)

z2 + · · ·

whenever a �= 7, and

gψ(z) = z+ 1
27
z4 + · · ·

for a = 7 (see [4, Proposition 3.5]). In particular, gψ has a parabolic fixed point at 0 with
multiplier 1.

In [4, Proposition 3.8], the authors showed that for each a ∈ K, after a small per-
turbation of ∂�CovQ

0
and ∂�Ja around z = 1, we can choose a Klein combination pair

(�′
CovQ

0
, �′

Ja ) so that ∂�′
CovQ

0
and ∂�′

Ja are both smooth at 1, and transverse at 1 to the

line generated by the repelling direction at z = 1 for a �= 7, and to the real axis in the case
a = 7.

For a ∈ K and (�CovQ
0

, �Ja ) as above, we define

�a,+ :=
∞⋂
n=0

Fn
a (Ĉ \�′

Ja ) and �a,− :=
∞⋂
n=0

F−n
a (�′

Ja )

to be the forward and backward limit set of Fa , respectively. These sets do not depend on
the choice of the Klein combination pair (�′

CovQ
0

, �′
Ja ) as above.

LEMMA 3.6. Let a ∈ K. We have that:
(1) Ja(�a,±) = �a,∓ and Ja(∂�a,±) = ∂�a,∓;
(2) �a,− ∩�a,+ = {1};
(3) if z /∈ �a,−, then there exists n ≥ 1 so that Fn

a (z) ⊂ Ĉ \�′
Ja , and if z /∈ �a,+, then

there exists n ≥ 1 such that F−n
a (z) ⊂ �′

Ja ;
(4) F−1

a (�a,−) = �a,− and F−1
a (∂�a,−) = ∂�a,−; and

(5) Fa(�a,+) = �a,+ and Fa(∂�a,+) = ∂�a,+.

Proof. Since Ja is an involution sending �′
Ja and Ĉ \�′

Ja to each other, and since
Ja ◦Fn

a = F−n
a ◦ Ja , then

Ja(�a,+) =
∞⋂
n=0

Ja ◦Fn
a (Ĉ \�′

Ja ) =
∞⋂
n=0

F−n
a ◦ Ja(Ĉ \�′

Ja ) = �a,−,

and applying Ja to both sides, we also get Ja(�a,−) = �a,+. Moreover, since Ja is
continuous, note that

�a,− ∩�a,+ ⊂ �′
Ja ∩ (Ĉ \�′

Ja ) = ∂�′
Ja .

Since (�′
CovQ

0
, �′

Ja ) is a Klein combination pair, Ĉ \�′
Ja ⊂ �′

CovQ
0

, so ∂�′
Ja ⊂ �′

CovQ
0

.
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If z ∈ �′
CovQ

0
, then CovQ

0 (z) ⊂ Ĉ \�′
Ja , and Fa(z) = Ja ◦ CovQ

0 (z) ⊂ �′
Ja . This is a

contradiction, as Fa(z)must belong to�a,+ ⊂ Ĉ \�′
Ja as well. Again, since (�′

CovQ
0

, �′
Ja )

is a Klein combination pair, we have that z ∈ ∂�′
CovQ

0
∩ ∂�′

Ja = {1} and we conclude that

�a,− ∩�a,+ = {1}.
We prove part (3) by the contrapositive. Suppose that for all n, there existsw ∈ Fn

a (z) ∩
(Ĉ \�′

Ja ), then z ∈ Fn
a (w) ⊂ Fn

a (Ĉ \�′
Ja ) for all n. This implies that z must belong to

�a,−. The other case is analogous.
It is immediate from the definition of �a,− and from part (2) of Remark 2.9 that

F−1
a (�a,−) = �a,−. (10)

From this and Remark 2.6,

F−1
a (int(�a,−)) ⊂ int(F−1

a (�a,−)) = int(�a,−). (11)

Observe that if z ∈ ∂�a,− \ {1} ⊂ �′
CovQ

0
, then

Fa(z) = Ja(CovQ
0 (z)) ⊂ Ja(Ĉ) ⊂ Ja(�′

Ja ) ⊂ Ĉ \�′
Ja .

Since �a,− ⊂ �′
Ja , then we conclude that

�a,− ∩ ∂�′
Ja = {1}. (12)

Put w ∈ ∂�a,− and z ∈ F−1
a (w) ⊂ �a,−. We will show that z ∈ ∂�a,− by the contrapos-

itive. Suppose w �= 1 and z ∈ int(�a,−). Then equation (12) implies that

w ∈ Fa(int(�a,−)) ∩�′
Ja .

From Remark 2.6, and the fact that �′
Ja is open, we have that Fa(int(�a,−)) ∩�′

Ja is
open. Moreover, for each z′ ∈ int(�a,−), the set Fa(z′) consists of a point in �′

Ja and
one in Ĉ \�′

Ja . Since the one in �′
Ja is actually in �a,− by definition of �a,−, then

Fa(int(�a,−)) ∩�′
Ja ⊂ �a,−. Then w ∈ int(�a,−). This proves that

F−1
a (∂�a,−) ⊂ �a,−. (13)

As for w = 1, we have that z ∈ F−1
a (1) = {−2, 1}. We know 1 ∈ ∂�a,−, so it suffices

to show that −2 ∈ ∂�a,− as well. Let U ⊂ Ĉ be an open neighborhood of −2. From
Remark 2.6, we have that Fa(U) is an open neighborhood of 1. Since 1 ∈ ∂�′

Ja , and
∂�′

Ja is a Jordan curve, then there exists a point w′ ∈ U ∩ ∂�′
Ja , w′ �= 1. We have that

Fa(∂�′
Ja \ {1}) ⊂ Ĉ \�′

CovQ
0

, so F−1
a (w′) consists of two points, z′, z′′ ∈ Ĉ \�′

CovQ
0

, with

z′ ∈ U . We will prove that z′ /∈ �a,− by showing that Fa(z′) ∩�a,− = ∅, and thus
−2 ∈ �a,− \ int(�a,−) = ∂�a,−. Indeed,

Fa(z′) = Ja({z′′, Ja(w′)}) = {Ja(z′′), w′} ⊂ Ĉ \�′
Ja .

From part (2) of Remark 2.9, we have that z′ /∈ �a,−, and −2 ∈ ∂�a,− as desired. This,
together with equations (10), (11), and (13) prove part (4).
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We have that part (1) of Remark 2.9 together with the definition of �a,+ prove that
Fa(�a,+) = �a,+. To prove the rest of part (5), we use part (4) together with the fact that
Fa = Ja ◦F−1

a ◦ Ja and Ja(∂�a,±) = ∂�a,∓, as Ja is a continuous involution. Thus,

Fa(∂�a,+) = Ja ◦F−1
a ◦ Ja(∂�a,+) = Ja(F−1

a (∂�a,−)) = Ja(∂�a,−) = ∂�a,+.

The following definition is from [1, 26].

Definition 3.7. Let F be a holomorphic correspondence on X. We say that R ⊂ X is a
repeller for F if there exists a set U such that R is contained in the interior of U, and

R =
⋂

K∈K(U ,F−1)

K ,

where

K(U , F−1) := {K ⊂ X|F−1(K) ⊂ K and F−n(U) ⊂ K for some n ≥ 0}.
Bharali and Sridharan proved an equidistribution result similar to that in this paper [1,

Theorem 3.5] for correspondences having a repeller. Moreover, in [1, §7.2], they showed
that there is a set of pairs (a, k) for which their result can be applied to the correspondence(

az+ 1
z+ 1

)2

+
(
az+ 1
z+ 1

)(
aw − 1
w − 1

)
+

(
aw − 1
w − 1

)2

= 3k.

For these correspondences (studied by Bullett and Harvey in [8]), there is a set �a,−
analogous to that presented here (see [7] for the general definition of limit sets). For
the pair (a, k) to work for their theorem, it is crucial for ∂�a,− to be a repeller for the
correspondence. Nevertheless, part (2) of Theorem 1.1 says this never happens for k = 1
and |a − 4| ≤ 3.

Proof of Theorem 1.1 part (2). Let U ⊂ Ĉ contain ∂�a,− in its interior. We have that
1 ∈ ∂�a,− and is a parabolic fixed point of the function g whose graph is contained in �a ,
described in Remark 3.5. Take an attracting petal P at 1 so that P ⊂ U . We first show that
every K ∈ K(U , F−1

a ) contains ∂�a,− ∪ P . Indeed, for every K ∈ K(U , F−1
a ) and some

integer n ≥ 0,

P ⊂ g−n(P) ⊂ F−n
a (P) ⊂ F−n

a (U) ⊂ K . (14)

Moreover, from part (4) of Lemma 3.6, we have that

∂�a,− ⊂ F−n
a (U) ⊂ K . (15)

Putting equations (14) and (15) together, we get that everyK ∈ K(U , F−1
a ) contains the

union ∂�a,− ∪ P , and therefore so does the intersection over all K. Since int(∂�a,−) = ∅

and int(P) �= ∅, we have that

∂�a,− � ∂�a,− ∪ P ⊂
⋂

K∈K(U ,F−1
a )

K .

Since U is arbitrary, we conclude that ∂�a,− is not a repeller for Fa .
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4. Exceptional set and periodic points
In this section, we will define a two-sided restriction of Fa and prove it is a proper
holomorphic map of degree 2. We will find its exceptional set and that of Fa . This will
be important for the next section, as it is the set of all points that may escape from the
equidistribution property given in Theorem 1.2.

The following definition is classical.

Definition 4.1. Let f : U → V be a holomorphic proper map, with U , V open, U ⊂ V .
For z ∈ U , we denote by [z] the equivalence class of z by the equivalence relation

w ∼ z ⇔ there exist n, m ∈ Z+ ∪ {0}, f n(w) = f n(z).

We say that z is exceptional for f if [z] is finite, and we call exceptional set the set E of all
points that are exceptional for f.

Put a ∈ K and denote by fa the two-sided restrictionFa| : F−1
a (�′

Ja ) → �′
Ja , meaning

fa sends each z ∈ F−1
a (�′

Ja ) to the unique point in Fa(z) ∩�′
Ja . This it is a single-valued,

continuous, and holomorphic 2-to-1 map (see [4, Proposition 3.4] and Theorem 4.2 below)
that extends on a neighborhood of every point z ∈ ∂F−1

a (�Ja ) \ {−2}. In particular, fa
extends around z = 1 and fa(1) = 1. Since �′

Ja is open and fa is continuous, then
F−1
a (�′

Ja )(= f−1
a (�′

Ja )) is open as well. Note that the analogous of part (2) of Remark
2.9 holds for �′

Ja and �′
CovQ

0
instead, using the definition of Klein pair and the fact that Ja

is open. Thus, F−1
a (�′

Ja ) ⊂ �′
Ja .

The following theorem is the main result of this section.

THEOREM 4.2. For each a ∈ K, we have the following.
(1) The two-sided restriction fa : F−1

a (�′
Ja ) → �′

Ja of Fa is holomorphic and proper,
of degree 2.

(2) The map fa has a critical point if and only if 2 ∈ Ĉ \�′
Ja . Furthermore, in that case,

we have that the critical point is −1.
(3) The exceptional set Ea,− of fa is non-empty if and only if a = 5. In that case,

Ea,− = {−1}.
Computing images and preimages under Fa , we see that when a = 5, we have that

� −1 �→ 2 �. In the following section, it will be useful to use the full orbit of Ea,− under
Fa , meaning

Ea :=
{
∅ if a �= 5,

{−1, 2} if a = 5.

Proof of Theorem 4.2. We first show part (1). Observe that ∞ and Ja(∞) lie on opposite
sides of ∂�′

Ja . Therefore, (∞, (a + 1)/2) /∈ (F−1
a (�′

Ja )×�′
Ja ). In view of Proposition

2.4, this implies that for every

(z0, w0) ∈ Gr(fa) = (F−1
a (�′

Ja )×�′
Ja ) ∩ �a ,

there there exists a neighborhood U of (z0, w0) such that U ∩ �a is the graph of
a holomorphic function either in z or in w. Therefore, Gr(fa) is an open subset of
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�a \ {(∞, (a + 1)/2)}, which has no singularities. Thus, Gr(fa) is a Riemann surface and
fa is holomorphic.

It is clear that f−1
a (w) is compact for all w ∈ �Ja , since

1 ≤ |f−1
a (w)| ≤ |F−1

a (w)| ≤ 2.

Moreover, fa is a closed map, and therefore a proper map. Indeed, let C ⊂ F−1
a (�′

Ja )

be closed. Then C = C′ ∩ F−1
a (�′

Ja ) for some closed subset C′ ⊂ Ĉ. Observe that
fa(C) = Fa(C′) ∩�′

Ja and that

Fa(C′) = π2(�a ∩ (C′ × Ĉ)).

By compactness of Ĉ, π2 is closed, and since both �a and C′ × Ĉ are closed subsets of
Ĉ × Ĉ, then Fa(C′) is closed. Therefore, fa(C) is closed in �′

Ja and fa is a closed map.
We conclude fa is proper. Moreover, by definition of fa , every preimage z of a point
w ∈ �′

Ja belongs to the domain of fa , and fa(z) = w. Therefore, fa has degree 2, since
Fa has two preimages of a generic point in �′

Ja .
We proceed to show part (2). Let z0 be a critical point of fa . Then (z0, fa(z0))

belongs to

A2(�a) ∩ (F−1
a (�′

Ja )×�′
Ja ).

Observe that F−1
a (�′

Ja ) ⊂ �′
Ja and 1 /∈ �′

Ja , so (1, Ja(−2)) /∈ F−1
a (�′

Ja )×�′
Ja . Since

we also have that ∞ and Ja(∞) lie on opposite sides of ∂�′
Ja and from Proposition 2.4,

it must be the case that (z0, fa(z0)) = (−1, Ja(2)). Thus, z0 = −1 and Ja(2) ∈ �′
Ja ,

and therefore 2 ∈ Ĉ \�′
Ja . To prove the reverse implication, note that whenever

2 ∈ Ĉ \�′
Ja , we have that Ja(2) = 2/(3 − a) ∈ �′

Ja , so there exists z0 ∈ F−1
a (�′

Ja ) such
that fa(z0) = 2/(3 − a), by definition of fa . Then z0 = −1 ∈ F−1

a (�′
Ja ) is a critical point

for fa , as fa has degree 2 and f−1
a (2/(3 − a)) = {−1}. This proves that fa has a critical

point if and only if 2 ∈ Ĉ \�′
Ja , and the critical point is z0 = −1.

Finally, we prove part (3). Observe that if w ∈ f−1
a (z), then [w] = [z], so

f−1
a (Ea,−) ⊂ Ea,− and thus, |f−1

a (Ea,−)| ≤ |Ea,−|. In particular, all points of Ea,− must
have only one preimage under fa , and therefore, be critical. By part (2), if Ea,− �= ∅,
then −1 must be fixed. We know fa(−1) = 2/(3 − a), and therefore if Ea,− �= ∅, then
2/(3 − a) = −1. Solving the equation, we get that a = 5. On the other hand, if a = 5,
then 2 ∈ Ĉ \�′

Ja and therefore z0 = −1 is a critical point for fa that is fixed.

Remark 4.3. Put a �= 1, |a − 4| ≤ 3, and (�CovQ
0

, �Ja ) the Klein combination pair from

[4] described in §2.2. Away from z = 1, �′
Ja agrees with �Ja . Let r be the radius of the

circle ∂�Ja . Since the circle passes through a and has center (1 + r), then 2 ∈ Ĉ \�Ja if
and only if r > 1

2 . Equivalently, a /∈ B( 3
2 , 1

2 ). Since 2 is away from z = 1, 2 ∈ Ĉ \�′
Ja if

and only if a /∈ B( 3
2 , 1

2 ) as well.

• If 0 < r ≤ 1
2 , then fa : F−1

a (�′
Ja ) → �′

Ja has no critical points and hence is an
unramified covering map. Since fa is a 2-to-1 map, the Riemann–Hurwitz formula
yields
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χ(F−1
a (�′

Ja )) = 2χ(�′
Ja ) = 2,

where χ denotes the Euler characteristic. Since fa has degree 2, F−1
a (�′

Ja ) has at most
two connected components, each of them with Euler characteristic at most 1. It follows
that F−1

a (�′
Ja ) has exactly two connected components, each of them homeomorphic

to a disk.
• If 1

2 < r < 3, then fa is a ramified covering of degree 2 with one critical
point at z0 = −1, whose ramification index equals 2. Therefore, again by the
Riemann–Hurwitz formula, we get that

χ(F−1
a (�′

Ja )) = 2χ(�′
Ja )− (2 − 1) = 1.

Let � be the component of F−1
a (�′

Ja ) that contains −1. Thenf |� is not locally injec-
tive at −1, and therefore of degree 2. Therefore, F−1

a (�′
Ja ) = � has one connected

component, which is homeomorphic to a circle, and mapped 2-to-1 onto �′
Ja .

We finish this section by listing some properties of the periodic points of Fa . To do so,
recall that for a holomorphic correspondence F on X,

Pern(F ) = π1(�
(n) ∩ DX),

where �(n) is the graph of Fn and DX is the diagonal in X ×X. Note that

Pern(F ) = {z ∈ X|z ∈ Fn(z)} = {z ∈ X|z ∈ F−n(z)}.

LEMMA 4.4. For every a ∈ K, we have that:
(1) Pern(Fa) ⊂ �a,− ∪�a,+;
(2) Ja(Pern(Fa)) = Pern(Fa);
(3) Ja(Pern(Fa) ∩�a,±) = Pern(Fa) ∩�a,∓; and
(4) Pern(Fa) ∩�a,− = Pern(fa).

Proof. To prove part (1), suppose z ∈ Pern(Fa). If z ∈ �′
Ja , then z ∈ F−kn

a (z) ⊂
F−kn
a (�′

Ja ) for all k ≥ 1. Since the sets F−k
a (�′

Ja ) are nested and their intersection is
�a,−, then z ∈ �a,−. On the other hand, if z /∈ �a,−, by Lemma 3.6 part (3), there
exists m ≥ 1 so that Fm

a (z) ⊂ Ĉ \�′
Ja . A similar argument as above shows that for all k

sufficiently large, z ∈ Fk
a (Ĉ \�′

Ja ), which implies that z ∈ �a,+.
Next, note that if z ∈ Pern(Fa), then z ∈ F−n

a (z) and Ja(z) ∈ Ja(F−n
a (z)) = Fn

a (Ja(z)).
Therefore, Ja(z) ∈ Pern(Fa) as well. Since Ja is an involution, this shows part (2).

Recall from Remark 3.6 that Ja sends the limits sets to each other. Therefore,
Ja(Pern(Fa) ∩�a,−) = Pern(Fa) ∩�a,+, and again since Ja is an involution, we also have
that

Ja(Pern(Fa) ∩�a,+) = Pern(Fa) ∩�a,−.

This proves part (3).
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Finally, we prove part (4). We have that for each z ∈ F−1
a (�′

Ja ) ∪ {1}, F−n
a (z) =

f−n
a (z) and part (1) implies that all periodic points of Fa not in �a,+ must belong to
�a,−. Since z ∈ Pern(fa) if and only if z ∈ f−n

a (z) = F−1
a (z), then

Pern(Fa) ∩�a,− = Pern(Fa) ∩ (F−1
a (�′

Ja ) ∪ {1}) = Pern(fa).

5. Equidistribution of {Fn
a }n

In this section, we prove Theorems 1.2 and 1.3 using the results from [20, 24], together
with [4, 5].

Recall every rational map PA of the form

PA(z) = z+ 1/z+ A, (16)

with A ∈ C, has critical points ±1 and a parabolic fixed point at ∞ with multiplier equal
to 1. Now note that in the coordinate φ(z) = 1/z, we have that

P
φ
A(z) = z

z2 + Az+ 1
= z− Az2 + (A2 − 1)z3 − · · ·

near 0. Thus, z = 0 is a fixed point of PφA with multiplicity 2 if A �= 0, and 3 if A = 0. We
conclude that for A �= 0, the parabolic fixed point has multiplicity 1, and 3 for A = 0.

For A ∈ C \ {0}, let �A be the basin of attraction of ∞, and for A = 0, we make the
choice �0 = {x + iy|x, y ∈ R, x > 0}. We define the filled Julia set of PA as the set

KPA = Ĉ \�A.

Remark 5.1. No periodic points of PA live in �A. Indeed, it is clear that points in �A for
A �= 0 cannot be periodic, as their iterates converge to ∞. Moreover, it is easy to check
that if �(z) denotes the real part of z �= 0, then �(PA(z)) = �(z)(|z|2 + 1)/|z|2. Then�0

is completely invariant and has no periodic points. Therefore, for all A ∈ C, we have that
Pern(PA) ⊂ KPA , for all n ≥ 1.

LEMMA 5.2. For every a ∈ K, there exists a measure μ− with supp(μ−) = ∂�a,− such
that

1
2n
(f na )

∗δz0 → μ−

weakly, for all z0 ∈ �Ja \ Ea,−.

Here, Ea,− is the exceptional set of the two-sided restriction fa of Fa that leaves �a,−
invariant, described in §4.

Proof. From the previous section, we can see that the two-sided restriction fa can extend
around 1. In [4, Proposition 5.2], the authors proved the existence of closed topological
disks V ′

a and Va containing�a,− with V ′
a = F−1

a (Va) ⊂ Va and satisfying most properties
for fa to be a parabolic-like map from V ′

a and Va . Moreover, from the proof of [4,
Theorem B], there exists a neighborhood U of �a,−, A ∈ C and a quasiconformal map
h : U ∩ V ′

a∩ → h(U) ∩ Va such that h ◦ f = PA ◦ h, where PA is as in equation (16).
Such conjugacy sends �a,− onto the filled Julia set KPA of PA.
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From [20, 24], there exists a measure μ̃A on Ĉ supported on the Julia set JPA of PA,
such that for all z0 ∈ Ĉ not in the exceptional set E of PA, (1/2n)(P nA)

∗δz0 is weakly
convergent to μ̃A.

Recall �a,− is the intersection of the nested compact sets F−1
a (�′

Ja ). Thus, there exists

N ∈ N such that Fn
a (�

′
Ja ) ⊂ U ∩ V ′

a , for all n ≥ N . Observe as well that h−1(E) = Ea,−
as elements in Ea,− must have only one preimage and h is a homeomorphism, and the
analogous holds for E and h−1.

Now take z0 ∈ �′
Ja \ Ea,−. Then, f−N

a (z0) = F−N
a (z0) ⊂ U ∩ V ′

a . Then for each
ζ ∈ f−N

a (z0), we have that h(ζ ) /∈ E and (1/2n)(P nA)
∗δh(ζ ) is weakly convergent to

μ̃A. Note that δh(ζ ) = h∗δζ , and therefore for n ≥ N ,

1
2n
(P nA)

∗δh(ζ ) = 1
2n
(h−1 ◦ PnA)∗δζ = 1

2n
(f na ◦ h−1)∗δζ = h∗

(
1
2n
(f na )

∗δζ
)

.

Since the left-hand side is weakly convergent to μ̃A, then (1/2n)(f na )
∗δζ is weakly

convergent to μ− := h∗μ̃A, which is supported on h−1(JPA) = ∂�a,−. Thus,

1
2n
(f na )

∗δz0 = 1
2N

∑
ζ∈f−N

a (z0)

νf Na
(ζ )

1
2n−N

(f n−Na )∗δζ

is weakly convergent to μ− as desired.

Proof of Theorem 1.2. Let μ− be as in Lemma 5.2 and put μ+ := (Ja)∗μ−. Clearly,
supp(μ+) = ∂�a,+. Denote by δz0 the Dirac measure at z0. If z0 ∈ Ĉ \ (�a,− ∪ Ea), there
exists n0 ∈ Z+ ∪ {0} such that Fn0

a (z0) ∩�′
Ja = ∅ by part (3) of Lemma 3.6. In particular,

this gives us that Fn0
a (z0) is contained in Ĉ \�′

Ja , and therefore Fn
a (z0) ⊂ Ĉ \�′

Ja , for all
n ≥ n0. In addition, for every zj ∈ Fn0

a (z0), Ja(zj ) /∈ Ea,−. Thus, for such a z0, we get that

1
2n
(Fn

a )∗δz0 = 1
2n

∑
ζj∈Fn0

a (z0)

ν
π1|�(n0)

(z0, ζj )(Fn−n0
a )∗δζj

= 1
2n0

∑
ζj∈Fn0

a (z0)

ν
π1|�(n0)

(z0, ζj )
1

2n−n0
(Fn−n0

a )∗δζj

= 1
2n0

∑
ζj∈Fn0

a (z0)

ν
π1|�(n0)

(z0, ζj )
1

2n−n0
(Ja ◦F−(n−n0)

a ◦ Ja)∗δζj

= 1
2n0

∑
ζj∈Fn0

a (z0)

ν
π1|�(n0)

(z0, ζj )(Ja)∗
(

1
2n−n0

(Fn−n0
a )∗δJa(ζj )

)

→ 1
2n0

∑
ζj∈Fn0

a (z0)

ν
π1|�(n0)

(z0, ζj )(Ja)∗μ− = μ+,

weakly, as n → ∞, where �(n0) is the graph of Fn0
a .

Now observe that the two-sided restriction fa of Fa sends �a,− to itself. Indeed,
note that the sets F−n

a (�′
Ja ) are nested and if fa(z) /∈ F−n

a (�′
Ja ) for some n ∈ Z+, then

z /∈ Fn−1
a (�′

Ja ) ⊃ �a,−. Note as well that −2 ∈ F−1
a (1) and 1 ∈ �a,−, so −2 ∈ �a,−.
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Define f̃a : �a,− → (Ĉ \�′
Ja ) ∪ {1} by f̃a(z) = w, where Fa(z) \ {fa(z)} = {w} for

z �= −2, and f̃a(−2) = fa(−2) = 1 for z ∈ F−1
a (1) \ {1}. Then for z0 ∈ �a,− \ Ea , we

have that Fa(z0) = {fa(z0), f̃a(z0)}, and

1
2
(Fa)∗δz0 = 1

2
δfa(z0) + 1

2
δ
f̃a(z0)

,

1
4
(F2

a )∗δz0 = 1
4
δfa2(z0)

+ 1
4
δ
f̃a◦fa(z0)

+ 1
2
(Fa)∗δf̃a(z0)

,

1
8
(F3

a )∗δz0 = 1
8
δfa3(z0)

+ 1
8
δ
f̃a◦fa2(z0)

+ 1
4
(Fa)∗δf̃a◦fa(z0)

+ 1
2
(F2

a )∗δf̃a(z0)
,

...

1
2n
(Fn

a )∗δz0 = 1
2n
δfan(z0) +

n∑
j=1

1
2j
(Fn−j

a )∗δf̃a◦faj−1(z0)
.

Since (1/2n)δfan(z0) has mass 1/2n, then it is weakly convergent to a measure with zero
mass. Put

μn,j := 1
2j
(Fn−j

a )∗δf̃a◦faj−1(z0)
and μn := 1

2n
(Fn

a )∗δz0 − 1
2n
δfan(z0) =

n∑
j=1

μn,j .

If we truncate the sum definingμn atN < n, we obtain a sequenceμ(N)n = ∑N
j=1 μn,j sat-

isfying μ(N)n → ∑N
j=1(1/2

j )μ+ = (1 − 2−N)μ+ weakly. Let ϕ : Ĉ → R be continuous
and ε > 0. Choose N ∈ Z+ big so that (3/2N) sup |ϕ| < ε, and n > N such that∣∣∣∣ ∫

ϕ dμ(N)n − (1 − 2−N)
∫
ϕ dμ+

∣∣∣∣ < 1
2N

sup |ϕ|

by the convergence μ(N)n → (1 − 2−N)μ+. Then,∣∣∣∣ ∫
ϕ dμ(N)n −

∫
ϕ dμ+

∣∣∣∣ ≤
∣∣∣∣ ∫

ϕ dμ(N)n −
(

1 − 1
2N

) ∫
ϕ dμ+

∣∣∣∣ + 1
2N

∣∣∣∣ ∫
ϕ dμ+

∣∣∣∣
≤ 1

2N−1 sup |ϕ|.

Since μn − μ
(N)
n = ∑n

j=N+1 μn,j has mass at most 1/2N , we get∣∣∣∣ ∫
ϕ dμn −

∫
ϕ dμ+

∣∣∣∣ ≤
∣∣∣∣ ∫

ϕ dμn −
∫
ϕ dμ(N)n

∣∣∣∣ +
∣∣∣∣ ∫

ϕ dμ(N)n −
∫
ϕ dμ+

∣∣∣∣
≤ 3

2N
sup |ϕ| < ε.

This proves that for all ϕ : Ĉ → R, we have that
∫
ϕ dμn → ∫

ϕ dμ+ as n → ∞
and hence μn → μ+. Since (1/2n)(Fn

a )∗δz0 = (1/2n)δfan(z0) + μn, we obtain that
(1/2n)(Fn

a )∗δz0 is weakly convergent to μ+, as desired.
Applying again the push-forward by Ja , we get that for every z0 /∈ Ea , (1/2n)(Fn

a )
∗δz0

is weakly convergent to μ−.
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Now, we show the asymptotic equidistribution of periodic points of Fa of order n with
respect to the probability measure 1

2 (μ− + μ+).

Proof of Theorem 1.3. From Lemma 4.4, we have that all periodic points lie in
�a,− ∪�a,+ and

|Pern(Fa) ∩�a,−| = |Pern(Fa) ∩�a,+| = |Pern(fa)|.
Denote this number by dn. Since 1 ∈ Fa(1) and Lemma 4.4 says�a,− ∩�a,+ = {1}, then

(Pern(Fa) ∩�a,−) ∩ (Pern(Fa) ∩�a,+) = {1}.
Thus, |Pern(Fa)| = 2dn − 1. Since the conjugacy h between fa and the quadratic rational
map PA sends �a,− onto the filled Julia set KPA of PA, which contains all periodic points
of PA by Remark 5.1, Pern(PA) = h(Pern(Fa) ∩�a,−) and

|Pern(fa)| = |Pern(PA)| = dn

as well. We have that limn→∞ dn = ∞ (see in [24, p. 363]). Then,

1
2dn − 1

∑
z∈Pern(Fa)∩�a,−

δz = 1
2dn − 1

∑
z∈Pern(fa)

δz

= h∗
(

1
2dn − 1

∑
z∈Pern(fa)

δh(z)

)

= h∗
(

dn

2dn − 1
1
dn

∑
ζ∈Pern(PA)

δζ

)
,

which is weakly convergent to 1
2h

∗μ̃A = 1
2μ− by the corollary to Theorem 3 in [24]. Thus,

1
2dn − 1

∑
z∈Pern(Fa)∩�a,+

δz = J∗
a

(
1

2dn − 1

∑
Ja(z)∈Pern(Fa)∩�a,−

δJa(z)

)

is weakly convergent to 1
2 J∗

a μ− = 1
2μ+, and

1
|Pern(Fa)|

∑
z∈Pern(Fa)

δz = 1
2dn − 1

∑
z∈Pern(Fa)
z∈�a,−

δz + 1
2dn − 1

∑
z∈Pern(Fa)
z∈�a,+

δz − 1
2dn − 1

δ1

converges weakly to 1
2 (μ− + μ+), as desired.

Finally, we proceed to show that the equidistribution still holds when counting with
multiplicity. Observe that the only points of �a,− that are not in the interior of the
topological conjugacy h are −2 and 1, and we have that −2 is not a periodic point for
Fa . We claim that for every z0 ∈ Pern(fa) \ {1}, we have that

ν
π1|Gr(f na )∩DĈ

(z0, z0) = ν
π1|Gr(Pn

A
)∩D

Ĉ

(h(z0), h(z0)).

Indeed, the topological conjugacy h sends attracting periodic points to attracting periodic
points, so if |(f na )′(z0)| < 1, then |(P nA)′(h(z0))| < 1 as well. Thus, both z0 and h(z0)

have multiplicity 1 as a periodic point in this case. The same happens for |(f na )′(z0)| > 1.

https://doi.org/10.1017/etds.2023.33 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.33


884 V. Matus de la Parra

Finally, if |(f na )′(z0)| = |(P nA)′(h(z0))| = 1, Naishul’s theorem [27] (later re-proven by
Pérez-Marco in [28]) shows that (f na )

′(z0) = (P nA)
′(h(z0)). Moreover, attracting directions

are preserved under topological conjugacy, so the parabolic fixed point z0 of Fa and the
parabolic fixed point h(z0) of PA have the same number of attracting directions. Therefore,
both z0 and h(z0) have the same multiplicity as periodic points of order n of fa and PA,
respectively. Therefore,∑

z∈Pern(Fa)∩�a,−
z �=1

ν
π1|

�
(n)
a ∩D

Ĉ

(z, z) =
∑

ζ∈Pern(PA)
ζ �=∞

ν
π1|Gr(Pn

A
)∩D

Ĉ

(ζ , ζ )

= (2n + 1)− ν
π1|Gr(Pn

A
)∩D

Ĉ

(∞, ∞).

From Lemma 4.4 part (2) and given that Ja is a Mobius transformation, we have that∑
z∈Pern(Fa)∩�a,+

z �=1

ν
π1|

�
(n)
a ∩D

Ĉ

(z, z) = (2n + 1)− ν
π1|Gr(Pn

A
)∩D

Ĉ

(∞, ∞)

as well.
Since the multiplicity of a periodic point is the multiplicity as a periodic point of its

minimal period and since φ−1(0) = ∞, we have that

ν
π1|Gr(Pn

A
)∩D

Ĉ

(∞, ∞) =
{

3 if A = 0,

2 otherwise.

Similarly, from the equations for gψ listed in Remark 3.5, we have that

ν
π1|

�
(n)
a ∩D

Ĉ

(1, 1) =
{

4 if a = 7,

2 if a ∈ K \ {7}.
In [5, Corollary 4.3], the authors showed that for a = 7, the member of the family of

quadratic rational maps

{PA(z) = z+ 1/z+ A|A ∈ C}

that is conjugate to fa is P0. Therefore, for all a ∈ C \ {1}, |a − 4| ≤ 3,∑
z∈Pern(Fa)

ν
π1

∣∣
�
(n)
a ∩D

Ĉ

(z, z) = 2
(

2n + 1 − ν
π1

∣∣
Gr(Pn

A
)∩D

Ĉ

(∞, ∞)
)

+ ν
π1

∣∣
�
(n)
a ∩D

Ĉ

(1, 1)

= 2n+1

and we have that

1
2n

∑
z∈Pern(Fa)∩�a,−

z �=1

ν
π1

∣∣
�
(n)
a ∩D

Ĉ

(z, z)δz = h∗
(

1
2n

∑
ζ∈Pern(PA)
ζ �=∞

ν
π1

∣∣
Gr(Pn

A
)∩D

Ĉ

(ζ , ζ )δζ

)
,
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which also converges weakly to μ− by [24, Theorem 3]. Using that Ja preserves
multiplicities and that J∗

a μ− = μ+, we have that

1
2n

∑
z∈Pern(Fa)∩�a,+

z �=1

ν
π1

∣∣
�
(n)
a ∩D

Ĉ

(z, z)δz = J∗
a

(
1
2n

∑
z∈Pern(Fa)∩�a,−

z �=1

ν
π1

∣∣
�
(n)
a ∩D

Ĉ

(z, z)δz

)

is weakly convergent to μ+. Since (1/2n)ν
π1|

�
(n)
a ∩D

Ĉ

(1, 1)δ1 has total mass 1/2n and

Pern(Fa) = {1} ∪ (Pern(Fa) ∩�a,− \ {1}) ∪ (Pern(Fa) ∩�a,+ \ {1})
is a disjoint union, then

1
2n+1

∑
z∈Pern(Fa)

ν
π1

∣∣
�
(n)
a ∩D

Ĉ

(z, z)δz

is weakly convergent to 1
2 (μ− + μ+).

In what follows, we will introduce terminology and prove Theorem 1.4.

Definition 5.3. A holomorphic correspondence F with graph � is said to be postcritically
finite if for all w ∈ B2(�), there exist 0 ≤ m < n so that

Fm(w) ∩ Fn(w) �= ∅. (17)

Equivalently, for every w ∈ B2(�), there exists m ≥ 0 and z ∈ Fm(w) so that
z ∈ Pern(F ) for some n ≥ 1. This definition generalizes that of postcritically finite rational
maps. Indeed, if F is a rational map that is postcritically finite as a correspondence, then
we have that every w ∈ B2(�) is pre-periodic. Since B2(�) = F(CritPt(F )), then every
critical point is pre-periodic as well. Hence, F is postcritically finite as a rational map.

If F is a holomorphic correspondence and z0 ∈ Pern(F ), there exists a cycle

(z0, z1, z2, . . . , zn−1) (18)

so that zi ∈ F(zi−1) and z0 ∈ F(zn−1).

Definition 5.4. We say that a holomorphic correspondence with graph � is superstable
if there exists α ∈ A2(�) and a cycle in equation (18) satisfying that z0 = π1(α) and
z1 = π2(α).

Observe that if F is a rational map, then π1(α) corresponds to a critical point and π2(α)

corresponds to its critical value. Therefore, the definition of superstable correspondences
reduces to F having a superstable cycle, meaning a cycle containing a critical point.

In the context of the family {Fa}a∈K, Proposition 2.4 says that

B2(�a) =
{
a + 1

2
,

4a + 2
a + 5

,
2

3 − a

}
.

Observe that (a + 1)/2 = Ja(∞) /∈ �a,− ∪�a,+. Indeed, since ∞ is fixed by CovQ
0

and (�′
CovQ

0
, �′

Ja ) is a Klein combination pair, then ∞ ∈ (Ĉ \�′
CovQ

0
) \ {1} ⊂ �′

Ja , so
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Ja(∞) /∈ �a,− ⊂ �′
Ja . On the other hand, F−1

a (Ja(∞)) = {∞} does not intersect �a,+,
so Ja(∞) /∈ �a,+. By Lemma (4.4), (a + 1)/2 cannot satisfy equation (17). Therefore,
there are no parameters a ∈ K for which Fa is postcritically finite.

However, F−(n+1)
a ((4a + 2)/(a + 5))=F−n

a (1)⊂�a,− and (4a + 2)/(a + 5)∈�a,+,
so (4a + 2)/(a + 5) is not periodic. Therefore, Fa is superstable if and only if 2/(3 − a)

is periodic. Since F−1
a (2/(3 − a)) = {−1} and F−1

a = f−1
a , then Fa is superstable if and

only if −1 is a critical point of fa that is periodic. We say that the parameter a ∈ K is
superstable whenever Fa is superstable.

We consider the quadratic family

{pc(z) = z2 + c|c ∈ C}
and let P̂n := {c ∈ C|pnc (0) = 0} be the set of superstable parameters of order n. Note that
P̂n has 2n−1 points, counted with multiplicity, and that it is contained in the Mandelbrot
set M. Levin proved in [23] that

lim
n→∞

1
2n−1

∑
c∈P̂n

δc

converges to a measure mBIF on M, which we call the bifurcation measure.
Let M� denote the connectedness locus of the family {Fa}a∈K and M1 denote the

parabolic Mandelbrot set. The conjugacy shown in [4] between fa and PA induces a map
a �→ 1 − A2 from M� and M1. From [5, Main Theorem], that map is a homeomorphism.
On the other hand, [29, Main Theorem] says that M1 is homeomorphic to M. Moreover,
both homeomorphisms constructed preserve the type of dynamics associated to the
parameter (see [29, §1]). Therefore, there is a homeomorphism � : M → M� that gives
a one-to-one correspondence between superstable parameters of M� and superstable
parameters of M. Pushing the bifurcation measure forward through �, and writing

P̂ �n = {a ∈ K superstable |f na (−1) = −1},
we obtain the statement in Theorem 1.4.
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