Can. J. Math., Vol. XXVIII, No. 1, 1976, pp. 19-23

OPERATORS OF RANK ONE IN REFLEXIVE ALGEBRAS
W. E. LONGSTAFF

1. Introduction. If H is a (complex) Hilbert space and .# is a collection of
(closed linear) subspaces of H it is easily shown that the set of all (bounded
linear) operators acting on H which leave every member of % invariant is a
weakly closed operator algebra containing the identity operator. This algebra
is denoted by Alg # . In the study of such algebras it may be supposed [4] that
F is a subspace lattice i.e. that Z is closed under the formation of arbitrary
intersections and arbitrary (closed linear) spans and contains both the zero
subspace (0) and H. The class of such algebras is precisely the class of reflexive
algebras [3]. In [2] it is shown that if # is totally ordered then Alg.% is the
strongly closed algebra generated by the operators of rank one it contains. We
consider the problem of which subspace lattices have this density property.
Totally ordered complete lattices are completely distributive in the sense of
G. N. Raney [6]. It is shown that a subspace lattice with this density property
is completely distributive and the converse is established in the case where the
underlying space is finite dimensional.

2. Notation and preliminaries. Most of the notation is taken from [5].
An abstract lattice L is called distributive if

a AN Ve)=(@@ANb) V(e ANc) (abc€ L)

and its dual statement hold identically in L. In the following let L be a com-
plete lattice. We adopt the conventions that V@ = 0 and A@ = 1 where 0 and
1 are the zero and unit element of L respectively. The following notation and
definition is taken from [6]. If A is a non-empty index set and ¢ = {¢, : @ € A}
is a family of non-empty subsets of L let S(¢) denote the collection of mappings
s : A — L with the property that s(a) € ¢ (e € A). Fors € S(¢) let s(A) denote
the image of A under s. The complete lattice L is called completely distributive
if for every such family ¢ both

A{Vea:a €Al = V{AsSQA):s € .S()}

and its dual statement are valid. This condition is stronger than distributivity.
If « € L the elements a_ and «, of L are defined by a— = V{b € L:a £ b}
and a, = A{b_:0 € L and b £ a}. Then a_, a, € L and o = a,. It is
shown in [5] that L is completely distributive if and only if ¢ = «, for every
element « of L.

Received May 13, 1974 and in revised form, April 25, 1975.
The author is a Flinders University Research Fellow.

19

https://doi.org/10.4153/CJM-1976-003-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-003-1

20 W. E. LONGSTAFF

If e and f are non-zero vectors of the Hilbert space H denote by e ® f the
operator of rank one defined by x — (x|e)f (x € H). If # is a subspace lattice
denote by Z# the set of operators of rank one belonging Alg.%# . Denote by A
the algebra generated by # and by ¥ the closure of 9 in the strong operator
topology. Then clearly if #Z = @ we have A = {0} and otherwise ¥ is the set of
finite sums of operators in #. It is also clear that 3 C Alg.# . For any sub-
space N of H denote by Py the (orthogonal) projection whose range is N.

3. A necessary condition. Let.# be a subspace lattice on H and let £,
A and I be as described above.

TuroreM 3.1. If A = Alg F then F is completely distributive.

Proof. Since # is a complete lattice we need only show that M = M, for
every element M of .# . We may suppose that dim H = 1. Then clearly # = 0.
Fix M € % . We first show that (1 — Py)(e ® )Py, = 0 for every operator
¢ ®f ¢ HA. This is equivalent to showing that ¢ ® f maps M, into M. By
Lemma 3.1 of [5] there is a subspace K € .% such thatf ¢ Kande ¢ H © K_.
If KC M then (¢ ® )M, CTK C M. If KZ M then M, € K_ and so
(e® /)M, = (0) € M. Thus (1 — Py)(e @ f)Pu, = 0 for every operator
e ®fCA. It follows that (1 — Py )AP,y, = 0 whenever A € . Since the
mapping 1" — X1V (X, Y fixed operators) is strongly continuous it follows
that (1 — Py)APy, = 0 for every operator 4 € . Since I € A we have
0=(00— Py)Py, = Py, — Pyyand so M = M,. The proof of the theorem
is complete.

As noted earlier a partial converse has been obtained by Erdos [2].

4. Finite-dimensional case. We now prove the converse of Theorem 3.1
in the case where the underlying space is finite-dimensional. Every finite dis-
tributive lattice is completely distributive. Every completely distributive
lattice of finite length is distributive and so, by Theorem 5 of [1, p. 139], is
finite. Thus if dim H < o the class of completely distributive subspace
lattices on H is precisely the class of finite distributive subspace lattices. An
element « of an abstract lattice L is called join-irreducible if « = b V ¢(b,c € L)
implies that either « = b or« = ¢. If L is distributive and finite, by Theorem 9
of 1, p. 142], every non-zero element of L is the join of all the non-zero join-
irreducible elements it contains. Also in this case, if « € L is non-zero and join-
irreducible then « coversa A «_,i.e. « A a_ < « and there is no element b of L
satisfying « A «_ < b < «. To see this notice that « A a_ = a would imply
that « = V{« Ac:c ¢ L and « £ ¢} and this contradicts the join-irre-
ducibility of a. So ¢ A «_ < a. Now notice that b < «, b € L implics b <
a A a—. Another elementary fact we need is that if 2 is any partially ordered
set and.? is any finite subset of &2 we can enumerate.?, say.¥ = {x1xs. .. x,},
in such a way that the partial order induced on % is not violated. Nore
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precisely, such that x; < x,implies ¢ < j. This is easily proved by induction on
the number of elements in .%.

The author wishes to thank Dr. K. J. Harrison for pointing out some
important simplifications to the original proof of the following theorem.

THEOREM 4.1. If F is a completely distributive subspace lattice on a finite-
dimensional Hilbert space H then A = Alg.F where U is the algebra generated by
the set of operators of rank one belonging to Alg % .

Proof. Clearly we may suppose that dim H = 1. By our earlier remarks % is
distributive and finite. Let /# be the set of non-zero join-irreducible elements
of #. Then/ # @. For every K € / select a basis Z (K) for K© (K N K_)
andlet X = U {#(K): K € F}.

First we show that X is a linearly independent set of vectors. Enumerate
the elements of /, say KiK. ... K, in such a way that K; C K, implies
1 < j. Consider

j—1

K;© (K;NK,;)] nk\_/l [Ki © (Kx N K;)] for2 <j<mn.

Letl =k =j — 1. If K; and K; are not comparable then K; € K, . If they
are comparable then K; C K; by the method of enumeration and so again
we have K; C K, . Thus

j—1

K0 & NKIIN VK © (Kx N K.)]
C K, & NKIINK,- = ©).

Hence
j—1

K;0 (K;NK)IN v [K: © (K NKx)] = (0) for2=j=mn.

It follows that X is a linearly independent set of vectors.

Next we show that X M M is a basis for M, for every non-zero element M
of # . Notice that this result is true for every atom. For if K is an atom then
Ke fandK =Ko (KNK_)soXNK =% (K). Suppose that M ¢ F
is non-zero and is not an atom. Then M strictly contains an element of JZ.
If the result is true for every element of/ strictly contained in M then it is
true for M itself. For either M ¢ # or M ¢ Z. In the former case M N M_ =
VIK € /K C M} and X N\ M contains % (M) and X N K for every
element K € /satisfyingK C M.Inthelattercase M = V{K¢e #:K C M}
and X M M contains X N K for every element K ¢ # satisfying K C M.
Suppose then that M € % is non-zero and is not an atom and that X N M is
not a basis for M. Then there is a non-atomic element KV € / with KO C M
such that X M K@ is not a basis for K. There is a non-atomic element
K® ¢ / with K@ C K® such that X M K® is not a basis for K®. This
process continues indefinitely and this contradicts the finiteness of /. So
X M M is a basis for M for every non-zero element M of % .
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Let X = {fifs ... fu}. Then X is a basis for H. Let {eies ... e,} be the
corresponding dual basis uniquely defined by the requirement that (file;) = 8,
(1 £4,j Sm). Let R € Alg # be arbitrary. Then R = Y iLie; ® Rf,. To
complete the proof of the theorem we show thate, ® Rf, € Alg # (1 <1 < m).
Let M € % be non-zero and let x € M. If f, € M then Rf, ¢ M and
so (e; @ Rf)x = (x|le)Rf; € M. 1{f, ¢ Mthene, € H©® M since X N\ M is
a basis for M. Then (e; ® Rf:)x = 0 € M. Thuse, ® Rf, € Alg# (1 <1 <
m) and the proof is complete.

5. Operators of finite rank on atomic Boolean algebras. The following
theorem, due to J. R. Ringrose, is proved in [2].

THEOREM 5.1. If % is a totally ordered subspace lattice every operator of finite
rank belonging to Alg F can be written as a finite sum of operators of rank one,
each belonging to Alg % .

Totally ordered complete lattices are completely distributive. Can ‘totally
ordered’ be replaced by ‘completely distributive’ in the above theorem? If the
underlying space is finite-dimensional the answer is athrmative by Theorem 4.1.
We show that ‘totally ordered’ can be replaced by ‘atomic Boolean algebra’.

THEOREM 5.2. If the subspace lattice F is an atomic Boolean algebra, every
operator of finite rank belonging to Alg F can be written as a finite sum of opera-
tors of rank one, each belonging to Alg % .

Proof. By Proposition 7.1 and Lemma 3.1 of [5] the operator of rank one
¢ @ f belongs to Alg.%# if and only if there is an atom K € % such that f ¢ K
and ¢ ¢ H © K’ where K’ denotes the complement of K in % . Let R € Alg %
have rank n. Then R has the form R = Y_;e; ® [, where {e,}i_; and { f.}"-
are each linearly independent sets of vectors. Since H is the span of all the
atoms of %, Pre; # 0 for some atom K. Since

0= (1 — Px)RPx = Zjl (Pres) @ (1 — Px)f;
we have

n D, D
(1 — Po)fi = 2, M1 — Pr)fi where \; = — Mk—fl)' (:
[P
Thus, e, ® fi = e, @ fi + Xi—e (Nier) @ fywhere fi' = Pyl fi — X NS4
IHence, R = ¢, @ fi’ + Xi—ve! ® fiwheree/ = ¢; + Niex(2 £ 1 £ n).
Now fi" € K and so (1 — Pg/)f)’ # 0. Since (1 — Py )RPx = 0 we have
0 = PeR*(l — Pr) = [(1 = Pe)fi'] @ Prer + i [(1 — Pro)fi] @

Pyxre/. Thus

(8

<1 =< n).

(= Py’ = P
(1 — P |

n
Pxre, = E wiPgei where u; = /) 215 n).
i=2
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Hence &1 ® fi = &/ @ fi' + XYli—2ei/ ® @ift’ wheree)/ = (1 — Px)le; —
Z’i:z Fviei/]~ Thus R = e/ ® i+ Z’i=2 e/ ® fi, \Vheref‘il = fi + ﬁifl'(2 =
1 = n). Nowfi’ € Kand e,/ € H © K’ and K is an atom. Thus e,’ ® f,’ €
Alg % . The proof is completed by a simple induction argument.
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