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CYCLABILITY OF r-REGULAR r-CONNECTED GRAPHS

W.D. McCuaic AND M. ROSENFELD

For each value of » >4 , r even, we construct infinitely many
r-regular, r—connected graphs whose cyclability is not greater

than 6r - 4 if r Z0 (mod 4) and 8, -5 if r = 2 (mod 4) .

1. Introduction

We use the terminology and notation in Bondy and Murty [1]. The
cyelability of a graph G is the largest integer k such that any &
vertices of G 1lie on a common cycle. This notion was introduced and
studied by Chvatal [2]. We denote by f(r) the largest integer k such
that any k vertices in an »r-regular, »r-connected graph (r = 3) 1lie on
a common cycle. Various authors investigated the function f(r) . For
r = 3 , the Petersen graph shows that f(3) <9 . Holton, McKay, Plummer
and Thomassen [4], proved that f(3) = 9 and constructed an infinite
family of cubic graphs (based on the Petersen graph) with cyclability 9 .
Holton [3], proved that f(r) 2 r+ 4 . (This result was also obtained by
Kelmans and Lomonosov [7]1.) Meredith [8], described a construction of non-
Hamiltonian r-regular, r-connected graphs for all r = 4 (thus showing
that Nash-Williams' conjecture, that all U-regular, Ub-connected graphs
are Hamiltonian is false). Meredith's construction is based on the
Petersen graph, and yields the upper bound f(r) = 10r - 11 . It is not

obvious how one can obtain from Meredith's construction, for each value of
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r , infinitely many graphs with cyclability not greater than 10r - 11 .

In this paper we modify Meredith's construction, and obtain, for each
r , infinitely many nr-regular r-connected graphs with cyclabilities
6r -4 (rz0 (modk)) and 8r-5 (r =2 (mod 4)) . Our method enables
us to construct non-Hamiltonian, r-regular, r-connected bipartite graphs.

(such a graph on 8k wvertices, for r = 4 1is described.)

2. Meredith's construction

Meredith's construction of r-regular r-connected non-Hamiltonian

graphs is based on the following two steps:

(i) in a graph G , add edges parallel to existing edges, so
that the resulting multigraph is r-regular and r-edge

connected;

(ii) replace each vertex of the multigraph obtained above by a

copy of K , connecting the » (r-1)-valant vertices

r,r-1

of K with the »r edges incident with the
r,r-1

substituted vertex.

Let 62 denote the graph obtained from a graph G by the above

steps. Meredith proved that 02 is r-regular, nr-connected. 6'2 is

Hamiltonian, if and only if G is. A graph G , to which step (i) is
applicable is called r-good. Meredith showed that the Petersen graph is
r-good for all r = L4 . Since the Petersen graph is not Hamiltonian, all
r-regular r-connected graphs obtained by the above construction are not
Hamiltonian. It is easy to obtain, in each of these graphs, a set of

10r -~ 10 vertices that do not lie on a common cycle. Jackson and Parsons
(51, [6], in their study of longest cycles in r-regular, r-connected
graphs, modified Meredith's construction. They pointed out that any non-
Hamiltonian graph G , that is r-good may be used. They proved that all
cubic 3-connected graphs are r-good for »r > 4 . They also point out,

that one is not restricted to use Kzu-l » in step (ii). Actually any
>

r-regular, r-connected graph H , for which there is a vertex h € V(H)
such that H\{h]} cannot be covered by two disjoint paths with endpoints in

N(h) can be used in step (ii). All these constructions are based on non-
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Hamiltonian graphs, and they do not necessarily yield, infinitely many

r-regular r-connected graphs with cyclability 10r -~ 11 .

3. Construction of r-regular r-connected graphs

In this section, we describe a modification of Meredith's
construction. This modification allows a much greater flexibility in
choosing the underlying graph (we do not have to start with a non-

Hamiltonian graph). We assume that r = 0 (mod 2) .

et G be an r-regular, r-connected graph. Let e; = (921:_1, gi) s
1=1, ..., /2 , be disjoint edges of G . Let Hr be any r-regular,
r-connected graph, G n Hr =@ . Let N(y) = {yl, cees yr} , Y € V(Hr)
be the neighbors of Yy in Hr . We say that the graph

P (OMeys con eyl v BAGY v llg w) 1 =1, e, 2]

is obtained from & by replacing the edges {el, ceey er'/2-} by Hp .
[Observe that many graphs F can be produced by a fixed choice of
{el, ceey er/e} and Hr , we still have the freedom of choosing Yy € V(H}J
and ordering N(y) )

LEMMA 1., Let G be an r-regular, r-connected graph. Let F be
obtained from G by replacing the r/2 disjoint edges {el, cees er/z}

by the r-regular r-connected graph H, - Then F 1is an r-regular,
r-connected graph.

Proof. The proof is essentially similar to the proof of Lemma % in

Rosenfeld [9]; we omit the details.

To obtain our construction, we add to Meredith's construction the

following step:

(iii) replace {el, ey ez'/2} by Hr .

Let G and G' be the graphs in Figure 1 (see p. 4). If r =lm ,
let Gr be the multigraph obtained from G by replacing the edges of the
1-factor AiBi , ©t=0,1,2, by 2m parallel edges each and all other

edges by m parallel edges each. If r =khm + 2 , let G, be the
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FIGURE 1

. . R .
multigraph obtained from G’ by replacing AOCl, AlCo, CODl , and ClDO
by m parallel edges each, AODO and AlDl by m+ 1 parallel edges
2 .B. .D. L =

each, BOBl by 2m parallel edges and A1,Bz and C'tD1 , T 0, 1 by
2m + 1 parallel edges each.

LEMMA 2. G, is r-edge-connected.

Proof. The lemma is proved by showing that any pair of vertices of
G are connected by r edge—disjoint paths.

r

CASE 1. r = 4m . The pairs of vertices are:

(1) 43, , i=0,1,2,
(2) 4B,

,i#j,i,j=0,l,2.
(3) Az, BB

By symmetry, it suffices to consider one example from each case.
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Case Edge Types of Paths Number of Paths
1 AOBO , AOBO’ AOAlBlBO, A0A28230 2m, m, m
2 AOBl AOBOBl’ AOBOBZBl’ AoAlBl, AOAZAlBl m, my my m
3 AoAl AoBoBlAl, AOBOBZBlAl’ A0A2Al, AOAl m, my, my m

CASE 2, »r»=4m+ 2 . The pairs of vertices are:

(1) 4.8, , (9) A4

(2) 4,0, » (10) 4., ,

(3) 4.0, , (11) 4D, » £ 20,1 (md?2),
(+) BoBl s (12) Bici+1 R

(5) BC, , (13) B.D. ,

(6) €Dy » (h) B:Dy

(1 ¢, , (15) ¢, »

(8) AiBiﬂ » (16) DODl .

Again, by symmetry, it suffices to consider one example from each case.

Case Edge Types of Paths Number of Paths
1 AOBO AOBO, AODOCOAlBlBo, AoclplAlBlBO 2m¥l, m, m
AODOCOBO 1
2 AoCl AOBOBlAlplcl’ AOCl, AODOCl, AOBOBlAlcOD]_Cl ml, m, m, m-1
AODOCOAlBlCl, AOBOCODlCl 1,1
3 AODO AODO, AOClDO, AOBOBlAlcODO ml, m, m
AOBOBlAlDlCODO, AOBOCODO m, 1

https://doi.org/10.1017/50004972700021213 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700021213

6 W.D. McCuaig and M. Rosenfeld
Case Edge Types of Paths Number of Paths
Y BOBl BOBl’ BOAODOCoAlBl, BOAOClDlAlBl 2m, m, m
BOAODOClBl, BOC‘ODlAlBl 1,1
5 BOCO BOAODOCO, BOBlAlUO, BOAOClDOCO m+l, m, m
B,B,4,D,Cy» ByC, m, 1
6 CODl CODOAOBOBlAlDl, CODOClDl, C‘ODl mtl, m, m
CoAlBlBOAOClDl, COBOAOClDl, CoAlBlC'lDl m-1l, 1,1
7 CODO CODO’ COchlDO, CoAlBlBOAODO, COBOAODO 2m+l, m, m, 1
8 AOBl AOBOBl, AOClDlAlBl, AODOCOAlBl 2m, m, m
AyBCoPyC1By > AgPoCoP A, By 1,1
9 AOA AOBOBlAl’ AODOCOAJ.’ AOClDIAl 2m, m, m
AByCoP1A1 s APoC1B14, 1,1
10 AOCO AODUCO’ AOBoBlAlCO, AOBoBlAlDlCO m¥l, m, m
4,C,05Co> 4,805 m, 1
11 AODl AOBOBlAlDl, AOBOBlAlCODl, AOBOCODl ml, m1, 1
AOClDl, AODoClDl, AODOCOAlBlclpl m, my, 1
12 BOC‘l BOBlAlDlCl, BoBlAlCODlCl, BOAOCl mtl, m-1, m
BvoDoCl, BOCODlC s BOAODOCOAlBlCl m, 1, 1
13 BODO BOAODO, BOAOClDo, BOCODO ml, m, 1
BoBlAlCODO, BOBlAlDlCODO m, m
14 BOD1 BoBlAlDl, BOBlAlCODl, BOAOC'lD1 mtl, m-1, m
BOAODOClDl, BOCODl, BOAODOCOAlBlchl my, 1,1
15 COCl CODlCl’ COAlDlCl, CODOAocl m, my, m
cbnbc ,CBBC,CDABBADC m, 1, 1

0707"1” 0707171’ 00001111
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Case Edge : Types of Paths Number of Paths
16 DOD1 DOClDl, DOCODl, DOCOAlDl, DOAOClDl m, m, my, m
bDCBBAD , DABBCD 1,1

07000111 00011

By the terminology of the previous section, G is r-good for all

r 20 (mod 4) and G' is »r-good for all r = 2 (mod k)

THEOREM 1. For r=2u4, r =0 (mod 4) there are infinitely many
r-regular r-connected graphs with cyclability not greater than 6r - L .

Proof. TFor each value of r we first construct an infinite family of

r-regular, »r-connected graphs as follows: let Gr be the multigraph
described in Lemma 2, Case 1. Let G; be the graph obtained from Gr

after applying step (ii) of Meredith's construction. By Meredith's

theorem, G; is an r-regular r-connected graph. Let G; be a graph
obtained from G; by replacing the r/2 disjoint edges in G; s
corresponding to the edges AiBi , t=0,1,2, in G , by an arbitrary

r-regular, r-connected graph HP . (Figure 2, p. 8, shows a graph Gﬁ s

’

with 5S4 vertices, obtained from Gh by using X_ for replacing the

5

indicated edges.) By Lemma 1, G; is r-regular and r-connected.

Let 5, EiV(G;] contain the r - 1 vertices of the smaller color

class of each copy of the six KX s wused in step (ii) and also contain

r-1,r

one vertex from each of the three replacement graphs Hr .

CLAIM. No cycle in G; contains Sr . Assume that such a cycle C ,

does exist. Since C contains all the vertices in {Sl, N l} (Figure

3, p. 9), it must contain all vertices of the corresponding Kr 1.0
k]

Therefore, ¢ can use exactly two edges from the set

{el, cees €y f1s e, fi} . Similarly, C uses exactly two edges from

1 1 1} 1
the set {el, A O LTI fZ}
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FIGURE 2

Since a vertex of Hr is contained in ¢ , ¢ must contain at least

two edges from {el, ceas ek, ei, ey eé} . If C has two edges from
{el, cees ek} , it cannot contain any edge from {f,, ..., fi} . Therefore
C has either zero or two edges from {ei, cey eé} and connot contain any
edge from the set {fi, N fi} . But then C( cannot contain any
vertices outside the configuration in Figure 3. It follows that ( will
have to contain one edge from each of {el, ceey ek} R {e’, ey eé} .

{rys --on £} e {s7, oo, £}

Contraction of each copy of Kr to a single vertex would yield a

-1,r

cycle in G that contains the three edges AOBO, AlBl , and A232 . It is

easy to see that such a cycle does not exist. This proves our claim.

Since ISrl = 6(r-1) + 3 , the cyclability of each graph G% thus obtained
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’ #
G(G') G Gr

FIGURE 3

is at most 6r - 4 as claimed.

THEOREM 2. For r 26, r =2 (mod L) there are infinitely many
r-regular r-comnected graphs with cyclability not greater than 8r - 5 .

Proof. Let Gr be the multigraph described in Lemma 2, case 2. Let
G; be obtained from Gr by applying step (ii) of Meredith's construction
to it, and let G; be obtained from G; by replacing the r/2 disjoint
edges of G; , corresponding to the edges AOBO’ AlBl’ CODO , and ClDl in
G' by arbitrary copies of r-regular, r-connected graphs Hr . For the
set Sr E_V(G;] , containing the 8(r-1) vertices of the smaller color
class of each Kf-l,r and a single vertex from each of the four graphs

Hr , an identical argument to the proof of Theorem 1, shows that any cycle

in G; containing Sr , will yield a cycle in G' containing the edges
AOBO, AlBl, CODO , and ClDl . Since such a cycle does not exist, Sr is
not contained in a cycle. Hence the cyclability of G; is at most 8r - 5

as claimed.
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4, Concluding remarks

The modification of Meredith's construction enables us to construct
many r-regular, r-connected graphs with prescribed properties. The basic
idea is to start with an »r-good graph in vwhich some edges are not
contained in a cycle. In Figure L a b-connected, L-regular non-
Hamiltonian bipartite graph with 84 vertices, is described. This graph,
based on the Mobius ladder, uses the fact that no cycle of the Mobius L

ladder uses the four "vertical edges".

We believe that the upper bound for the cyclability of r-regular
r-connected graphs can be further improved by other choices of graphs. It

seems though that another idea for odd r is needed.

FIGURE 4
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