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We consider the conceptual two-layered oscillating tank of Inoue & Smyth (2009
J. Phys. Oceanogr. vol. 39, no. 5, pp. 1150–1166), which mimics the time-periodic
parallel shear flow generated by low-frequency (e.g. semi-diurnal tides) and small-angle
oscillations of the density interface. Such self-induced shear of an oscillating pycnocline
may provide an alternate pathway to pycnocline turbulence and diapycnal mixing in
addition to the turbulence and mixing driven by wind-induced shear of the surface mixed
layer. We theoretically investigate shear instabilities arising in the inviscid two-layered
oscillating tank configuration and show that the equation governing the evolution of linear
perturbations on the density interface is a Schrödinger-type ordinary differential equation
with a periodic potential. The necessary and sufficient stability condition is governed by
a non-dimensional parameter β resembling the inverse Richardson number; for two layers
of equal thickness, instability arises when β > 1/4. When this condition is satisfied, the
flow is initially stable but finally tunnels into the unstable region after reaching the time
marking the turning point. Once unstable, perturbations grow exponentially and reveal
characteristics of Kelvin–Helmholtz (KH) instability. The modified Airy function method,
which is an improved variant of the Wentzel–Kramers–Brillouin theory, is implemented to
obtain a uniformly valid, composite approximate solution to the interface evolution. Next,
we analyse the fully nonlinear stages of interface evolution by modifying the circulation
evolution equation in the standard vortex blob method, which reveals that the interface
rolls up into KH billows. Finally, we undertake real case studies of Lake Geneva and
Chesapeake Bay to provide a physical perspective.
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1. Introduction
Turbulent mixing in the stratified ocean interior, originating from internal gravity wave
breaking (MacKinnon et al. 2017), plays a central role in determining the global
distributions of carbon, heat, nutrients, plankton and other salient tracers (Wunsch &
Ferrari 2004). Kelvin–Helmholtz (KH) instability is arguably one of the key mechanisms
generating such small-scale turbulence and diapycnal mixing (Caulfield 2021; Dauxois
et al. 2021). Wind-induced shear in the surface mixed layer can render the internal
(or interfacial) gravity waves at the pycnocline unstable, causing the interface to roll up
into billow-like structures – the hallmark of KH instability (Smyth & Moum 2012). This
paper digresses from the typical studies on KH instability where the background shear
flow is assumed to be steady, for example, see Caulfield & Peltier (2000), Mashayek &
Peltier (2012), Rahmani, Lawrence & Seymour (2014) and Mashayek, Caulfield & Alford
(2021). Instead, our study is motivated by settings where the background shear has an
explicit time dependence, periodic to be specific. During the summer seasons, shelf seas
(Mihanović et al. 2009; Guihou et al. 2018), lakes (Lemmin, Mortimer & Bäuerle 2005)
and estuaries (Sanford, Sellner & Breitburg 1990) often display a two-layered stratification;
moreover, the pycnocline can undergo slow basin-scale (low-mode) oscillations. Such
‘see-saw’ oscillations of the pycnocline can generate a time-periodic buoyancy-driven
shear flow, which induces mixing, as revealed in field observations (Sanford et al. 1990).
Within the shelf sea seasonal pycnocline, fine-scale shear and stratification observations
suggest a state of marginal stability (MacKinnon & Gregg 2005) such that the addition of
even a small amount of shear due to pycnocline oscillations could be sufficient to trigger
the cascade of energy from the low-mode oscillations, such as inertial oscillations and
internal tides, into pycnocline turbulence, and thence to enhanced levels of mixing. The
aim of this paper is to understand this alternate pathway to instability arising from an
oscillating pycnocline.

By titling a tank consisting of a two-layered fluid at a constant angle, Thorpe
(1969) generated a constantly accelerating buoyancy-driven shear flow, and supported the
experimental observations on the ensuing KH instabilities using theoretical arguments.
Thorpe’s tilting tank set-up has paved the pathway for many controlled experimental and
numerical studies on stratified shear instabilities induced by a sloping density interface,
and remains an area of active research (Atoufi et al. 2023; Zhu et al. 2024). More complex
density interface profiles in controlled two-layered set-ups have also been studied in
recent years. One such example is the generation of internal solitary waves at the density
interface, whose subsequent breaking leads to KH instabilities (Carr et al. 2017). Thorpe’s
set-up was numerically extended to a two-layered oscillating tank by Inoue & Smyth
(2009), and the same set-up has been recently studied by Lewin & Caulfield (2022). The
two-layered oscillating tank configuration provides a simplified analogue of an oscillating
pycnocline; while the analogy with standing-wave oscillations (e.g. seiches) is obvious,
a superficial connection can be made with pycnocline oscillations induced by travelling,
long interfacial waves, which induce a near-parallel, oscillating shear flow. Indeed, the
direct numerical simulation (DNS) studies of Inoue & Smyth (2009) and Lewin &
Caulfield (2022) have clearly revealed how a slowly oscillating density interface generates
time-periodic shear flow that renders the interface unstable, and leads to the formation of
KH billows, which subsequently drive turbulence and mixing. Their studies may provide
an explanation of the appearance of a long train of KH billows superposed on internal
gravity waves of lower frequency (corresponding to semi-diurnal tides) at approximately
560 m depth over the Great Meteor Seamount (van Haren & Gostiaux 2010). Unlike
the DNS studies of Inoue & Smyth (2009) and Lewin & Caulfield (2022), which have
focused on the ‘late-time dynamics’ like turbulence and mixing, the onset of instability
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Figure 1. Schematic diagram of a two-layered oscillating tank, which can render short interfacial gravity
waves unstable.

is the cornerstone of our analysis (although we also analyse the initial nonlinear stages of
billow formation until saturation). As highlighted in Lewin & Caulfield (2022), the time
of saturation of the KH billow relative to the time period of the background shear plays a
central role in shaping the fully nonlinear stages of turbulent breakdown of the billow and
therefore crucially affects the energetics and mixing. Since the standard linear stability
analysis of stratified shear flows (Drazin & Reid 2004) is based on steady background
conditions, it is unlikely to capture some of the key properties of instabilities arising
in background flows with periodic time dependence. This necessitates a linear stability
analysis of non-autonomous systems. Another key feature of this problem is the large
separation of time scales – high-frequency interfacial waves (which are rendered unstable)
being forced by low-frequency density interface oscillations. The numerical simulations
of Inoue & Smyth (2009) and Lewin & Caulfield (2022) do not indicate any finely tuned
frequency ratios for which the instability occurs. This implies that parametric instability,
for example, the problem studied in Kelly (1965), is unlikely to be the driving mechanism.
Along similar lines, the generalised stability theory for non-autonomous systems (Farrell
& Ioannou 1996) might not be best suited for the purpose of this study. This necessitates a
bespoke analysis starting from the fundamental principles.

The paper is organised as follows. Section 2 discusses the governing equations for
the background flow and adds linear perturbations to the system to derive the equation
governing the interfacial dynamics. The condition for instability is also obtained. Section 3
deals with various kinds of linear stability analyses, e.g. Floquet theory, normal-mode
theory (based on steady-state analysis) and the modified Airy function (MAF) technique,
and provides comparisons with numerical solutions. Building on the current vortex
method technique, § 4 incorporates unsteady effects and captures the nonlinear evolution
of the interface. Physical interpretation of the system is provided in § 5 by undertaking
two case studies – Lake Geneva and Chesapeake Bay. Finally, the paper is summarised
and concluded in § 6.

2. Governing equations

2.1. Background flow
We consider the two-dimensional (2-D) flow produced by oscillating a horizontal tank
having a rectangular cross-section of depth h, while the along-channel (x) and cross-
channel (y) dimensions are infinite. The z direction is positive upward; see figure 1 for
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the schematic of the set-up. The tank consists of a Boussinesq, two-layered, inviscid and
immiscible fluid with the following density distribution:

ρ(z)=
{
ρ1 0< z < h/2,
ρ2 − h/2< z < 0.

(2.1)

The fluid is stably stratified, i.e. ρ1 <ρ2. A more generic setting in which the two layers
have unequal depths is discussed in Appendix A. Throughout the paper, subscripts 1 and
2 will respectively denote quantities associated with the upper and lower fluid layers.
The system is restricted to a small angle of oscillation α(t), typically max |α(t)|� 7◦.
The small tilt of the density interface functions as a geophysically plausible mechanism for
generating shear; the vertical motions induced by the sloping interface have a negligible
effect on the fluid dynamics (Lewin & Caulfield 2022). For the setting in figure 1, the
governing Navier–Stokes equations under the Boussinesq approximation read (Inoue &
Smyth 2009; Lewin & Caulfield 2022)

Du

Dt
= − 1

ρ0

∂p

∂x
− g

ρ

ρ0
sin α(t)+ 2α,tw, (2.2a)

Dw
Dt

= − 1
ρ0

∂p

∂z
− g

ρ

ρ0
cos α(t)− 2α,t u. (2.2b)

Here, D/Dt = ∂/∂t + u · ∇, where ∇ = (x̂ ∂/∂x, ẑ ∂/∂z), u = (u, w) is the velocity
vector, ρ0 is the constant reference density, g is the acceleration due to gravity and the
suffix, ‘,t ’ denotes ordinary derivative d/dt . The last terms in (2.2a)–(2.2b) represent
Coriolis accelerations arising from the time-dependent rotation. The incompressibility
condition is satisfied by the continuity equation

∂u

∂x
+ ∂w

∂z
= 0. (2.3)

The background state velocity is assumed to be parallel to the x-axis, i.e. U = (U, 0).
Hence, the continuity equation, (2.3), implies that U is only a function of z and t .
Therefore, the background state equations yield

∂U

∂t
= − 1

ρ0

∂P

∂x
− g

ρ

ρ0
sin α(t), (2.4a)

P = −
∫ [

gρ(z) cos α(t)+ 2ρ0α,tU (z, t)
]

dz + G(x, t), (2.4b)

where P(x, z, t) denotes the background state pressure.
Equation (2.1) indicates that ρ is a function of z only. Consequently from (2.4b),

P(x, z, t) can be expressed as the sum of a function that is dependent on z and t , and
another function G dependent on x and t . This implies ∂P/∂x is a function of x and t .
However, as per (2.4a), both ∂U/∂t and g(ρ/ρ0) sin α(t) are functions of z and t only.
Therefore, ∂P/∂x must be a function of t alone. Since the tank is enclosed and there is no
net flux across the walls, we must have (Thorpe 1969)∫ h/2

−h/2
U (z, t) dz = 0. (2.5)

The above condition can be used to obtain the background state velocity profile. In this
regard, we integrate (2.4a) in both z and t and substitute (2.5)∫ t

0

∂P

∂x
dt = −g

h

∫ h/2

−h/2
ρdz

∫ t

0
sin α(t̃) dt̃ . (2.6)
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Finally, we integrate (2.4a) in t and combine with (2.6) and (2.1), which yields the
background state velocity profile

U (z, t)=

⎧⎪⎪⎨⎪⎪⎩
U1(t)= g′

2

∫ t

0
sin α(t̃) dt̃ 0< z < h/2,

U2(t)= −g′

2

∫ t

0
sin α(t̃) dt̃ − h/2< z < 0,

(2.7)

where g′ = g(ρ2 − ρ1)/ρ0 is the reduced gravity. We assume that the tilt angle varies
sinusoidally with time

α(t)= α f sin(ω f t), (2.8)

where α f and ω f respectively denote the maximum angular amplitude and frequency
of oscillation of the tilted tank. Since we have restricted our study to small oscillations
(α f � 1), this implies sin α≈ α and cos α≈ 1 − α2/2. Under this assumption, the
background state velocity in (2.7) simplifies to

U1(t)= g′

2
α f

ω f
[1 − cos(ω f t)] 0< z < h/2, (2.9a)

U2(t)= −g′

2
α f

ω f
[1 − cos(ω f t)] − h/2< z < 0. (2.9b)

The fact that the signs in (2.9a)–(2.9b) agree with our intuition can be verified by simply
inspecting figure 1, which can be regarded as the maximum angle in the counter-clockwise
direction attained by the tank, equalling α f . As per (2.8) this implies ω f t = π/2, which,
when substituted into (2.9a)–(2.9b), yields U1 = − U2 = g′α f /2ω f . The signs make
sense because the heavier, lower layer must have a negative velocity since it would flow
downwards due to gravity, and the upper layer should compensate for this by flowing
upwards, yielding a positive velocity.

2.2. Linear perturbations
We now consider the effect of infinitesimal perturbations added to the background state,
and follow an approach similar to Thorpe (1969). The displacement of the two-fluid
interface, given by z = ξ(x, t), sets up an irrotational perturbation velocity field in the
two layers. The total velocity reads

u =
{

U1(t)x̂ + ∇φ1(x, z, t) 0< z < h/2,
U2(t)x̂ + ∇φ2(x, z, t) − h/2< z < 0,

(2.10)

where φ1 and φ2 are, respectively, the perturbation velocity potentials in the upper and
lower fluid layers, which satisfy Laplace’s equation in their respective layers

∇2φ1 = 0 0< z < h/2, (2.11a)

∇2φ2 = 0 − h/2< z < 0. (2.11b)
The linearised dynamical boundary conditions at z = 0 for the two layers are as follows:

P1

ρ1
+ ∂φ1

∂t
+ ∂

∂t
(U1x)+ U1

∂φ1

∂x
+ gx sin α(t)+ gz cos α(t)= A1(t), (2.12a)

P2

ρ2
+ ∂φ2

∂t
+ ∂

∂t
(U2x)+ U2

∂φ2

∂x
+ gx sin α(t)+ gz cos α(t)= A2(t), (2.12b)
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where P1 and P2, respectively, denote pressure in the upper and lower fluid layers, and
A1 and A2 are arbitrary functions of time. Likewise, the linearised kinematic boundary
conditions at z = 0 for the two layers read

∂ξ

∂t
+ U1(t)

∂ξ

∂x
= ∂φ1

∂z
, (2.13a)

∂ξ

∂t
+ U2(t)

∂ξ

∂x
= ∂φ2

∂z
. (2.13b)

The upper and lower boundaries satisfy the impermeability condition

∂φ1

∂z
= 0 at z = h/2, (2.14a)

∂φ2

∂z
= 0 at z = −h/2. (2.14b)

Next, we assume the perturbations in the form of Fourier modes

ξ(x, t)= η(t)eikx , (2.15a)

φ1(x, z, t)=ψ1(t) cosh k

(
z − h

2

)
eikx , (2.15b)

φ2(x, z, t)=ψ2(t) cosh k

(
z + h

2

)
eikx , (2.15c)

where k denotes the wavenumber and it is understood that the real parts of terms appearing
on the right-hand sides are to be taken. It is straightforward to verify that the perturbation
velocity potentials satisfy Laplace’s equations (2.11a)–(2.11b) and the impermeability
condition (2.14a)–(2.14b). The continuity of pressure across the interface (P1 = P2) is
applied in (2.12a)–(2.12b), thereby combining these two equations into one

ρ1 A1 − ρ1ψ1,t cosh
(

kh

2

)
eikx − ρ1xU1,t − ikρ1U1ψ1 cosh

(
kh

2

)
eikx − ρ1gx sin α(t)

− ρ1gη cos α(t)eikx = ρ2 A2 − ρ2ψ2,t cosh
(

kh

2

)
eikx − ρ2xU2,t

− ikρ2U2ψ2 cosh
(

kh

2

)
eikx − ρ2gx sin α(t)− ρ2gη cos α(t)eikx . (2.16)

Note that, in the above equation, we have substituted (2.15a)–(2.15c). Next we collect the
coefficients of eikx (Thorpe 1969, Appendix A), and invoke the Boussinesq approximation(

ψ1,t −ψ2,t
)

cosh
(

kh

2

)
+ ik (U1ψ1 − U2ψ2) cosh

(
kh

2

)
= g′η cos α(t). (2.17)

Finally, we substitute the linearised kinematic boundary conditions (2.13a)–(2.13b) in
the above equation, yielding a second-order ordinary differential equation (ODE) only
in terms of η

η,t t +
[

kg′

2
tanh

(
kh

2

)
︸ ︷︷ ︸

ω2

cos α(t)− k2

2

(
U1(t)

2 + U2(t)
2)]η= 0. (2.18)

The explicit time dependence of the background flow has been intentionally emphasised.
For a tank at rest, meaning α= 0 and U1 = U2 = 0, we recover the equation governing
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interfacial gravity waves with frequencyω= ±√(g′k/2) tanh(kh/2) propagating in a two-
layered fluid where each layer has a depth of h/2, see Sutherland (2010). Hereafter, we will
restrict our attention to tanh(kh/2)≈ 1, i.e. the waves are much shorter than the depth of
the individual layers. The justification behind this choice is motivated by the fact that the
wavelengths of KH instabilities arising in the pycnocline are usually much smaller than
the pycnocline’s depth. Hence, the layer depths do not play any further role in governing
the dynamics.

Substituting (2.9a)–(2.9b) into (2.18) yields

η,t t +
[
ω2

(
1 − α2

f

4
(1 − cos(2ω f t))

)
−ω4

α2
f

ω2
f

(
3
2

− 2 cos
(
ω f t
)+ 1

2
cos
(
2ω f t

))]
η= 0.

(2.19)

Hereafter, ω f will represent low-frequency oscillations of the density interface. Physically,
this can represent low-order, basin-scale modes (Sutherland 2010, Chapter 2.5) which
are essentially standing waves equivalent to seiches in lakes. Furthermore, although the
analogy is tenuous, ω f can also represent the frequency of propagating long interfacial
waves; see Inoue & Smyth (2009). In any case, the two-layered oscillating tank set-up
in figure 1 is a simplified representation of the realistic scenario, and the key outcome
in this context is the appearance of a small parameter ε =ω f /ω� 1. In other words,
the frequencies (wavelengths) of the gravity waves at the density interface, which could
be rendered unstable, are orders of magnitude greater (smaller) than the frequencies
(wavelengths) characterising the mean density interface, i.e. the background flow. The
mean density interface represents a small-amplitude long wave of infinite wavelength,
which essentially makes it a straight line and further ensures that the background shear
flow is parallel.

Defining a non-dimensional time τ =ω f t , (2.19) yields

ε2η,ττ +
[

1 − 3
2
β + β

(
2 cos (τ )− 1

2
cos (2τ)

)
︸ ︷︷ ︸

F(τ )

−α
2
f

4
(1 − cos(2τ))

]
η= 0, (2.20)

where β = α2
f /ε

2. Comparing β with the definition of minimum Richardson number
Rimin in Inoue & Smyth (2009), Equation (13), we observe that β resembles the inverse
of minimum Richardson number. However, we are cautious that there is no length scale
(shear layer thickness) in our problem, hence a direct comparison with Inoue & Smyth
(2009) might be misleading. Note that β � α2

f , thus O(α2
f ) terms can be neglected. This

transforms (2.20) into the following governing equation of the interface, which can be
classified as a Schrödinger-type equation with a periodic potential:

ε2η,ττ +F(τ )η= 0 where F(τ )=F(τ + 2π). (2.21)

It is worthwhile to compare (2.21) with the governing ODE obtained by Kelly (1965),
Equation (3.17). Kelly’s two-layered flow with imposed layer-wise oscillating shear is
only applicable to non-Boussinesq flows (shear disappears under the Boussinesq limit,
see Kelly 1965, Equation (2.3)) and hence is fundamentally different from our system.
The ODE governing Kelly’s system is Mathieu-type and therefore undergoes parametric
instability when the forcing frequency ω f is twice the natural frequency ω. Such
parametric resonance is not expected to be the mechanism driving instability in our
system since ω and ω f differ by many orders of magnitude. Furthermore, previous authors
(Inoue & Smyth 2009; Lewin & Caulfield 2022) do not report any finely tuned frequency
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ratios for observing the instability. The order separation of the two frequencies gives rise to
the coefficient ε2 in the second derivative, thereby rendering (2.21) into a Schrödinger-type
equation. We note in passing that Onuki, Joubaud & Dauxois (2021) numerically studied
the situation for which ω∼ω f (hence ε ∼ 1), and indeed the authors report parametric
subharmonic instability.

2.2.1. Necessary and sufficient condition for instability
The nature of the solution to (2.21) is determined by the sign of F(τ ); instability implies
F(τ ) < 0 while the flow is stable for F(τ ) > 0. After some algebra, the necessary and
sufficient condition for instability is found to be

cos τ < 1 − 1√
β
=⇒ β > βmin = 1

4
. (2.22)

This implies all waves with wavenumbers k > klong-wave-cut-of f =ω2
f /2g′α2

f are unstable.
Figure 2 represents the variation of F(τ ) with τ for various β values. Initially, the flow is
stable for all finite β values. For β > 0.25, the solution ‘tunnels’ into the unstable region
after crossing the (first) turning point τ = τc, which signifies F(τ ) changing sign from
positive to negative. From (2.22), τc can be straightforwardly determined

τc = cos−1
(

1 − 1√
β

)
. (2.23)

Noting that F(τ ) has a period of 2π and a mirror symmetry about τ = π , it changes
sign (for β > 0.25) twice within its period – first at τ = τc and then at τ = 2π − τc. The
stability condition provides an upper bound for the time of occurrence of the instability –
if the flow is unstable, then instability will set in before τ = π . The second turning point
at τ = 2π − τc signifies stabilisation, which may have little effect for higher β values that
allow sustained growth for a longer time interval (2π − 2τc). This is because τc reduces
as β increases. Hence, the role of β is analogous to that of the inverse of the Richardson
number.

In Appendix A, we discuss the generic situation in which the two fluid layers have
unequal depths: h1 and h2 = h − h1. In this scenario, the necessary and sufficient
condition for instability is given by (see (A5))

β > βmin = 1
8
[
r2 + (1 − r)2

] , (2.24)

where r = h1/h. Since r ∈ (0, 1), we must have 1/8<βmin � 1/4. The upper bound for
the time of occurrence of the instability is independent of r and occurs at τ = π . In the
oceanographic context, the typical depth of the pycnocline (h1) is much less than the total
ocean depth (h), i.e. r � 1, which leads to the instability condition β > 1/8.

2.2.2. Predictions from the steady background flow assumption
Undertaking a conventional, steady-state-based linear stability analysis for an inherently
unsteady background flow could appear simplistic. However, such an analysis has a key
advantage – the simplifications can result in an exact solution of (2.21), leading to a closed-
form expression for the growth rate. Furthermore, if the growth is exponential (verified
a posteriori), then the time scale of growth is much faster than the slow time dependence
of the background flow, implying that the steady-state assumption is sensible. Here we
intend to explore the predictions obtained from steady-state-based analyses and the extent
of errors incurred.
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0 π/2 3π/2

β = 0.20

β = 0.25

β = 0.30

β = 0.50

β = 1

2ππ

τ

F(
τ)

Figure 2. Variation of F(τ ) with τ for different β values. The flow becomes unstable when F(τ ) < 0.
For reference, τ = π/2 implies the maximum counter-clockwise excursion (i.e. α = α f ) of the two-layered
oscillating tank, while τ = π implies that the tank, through clockwise rotation, has reached the horizontal
position.

One way of removing the explicit time dependence of the background flow is time
averaging. By averaging (2.9a)–(2.9b) over its period, we obtain

U1 = −U2 = g′

2
α f

ω f
, (2.25)

which when substituted into (2.18) converts (2.21) into a second-order constant coefficient
ODE with F = 1 − β. This yields the instability condition β > 1, which implies normal-
mode instabilities with a growth rate of σnormal-mode = √

β − 1/ε. Comparison with
(2.22) shows that the above instability condition is erroneous.

Next, we undertake another steady-state-based approach where the maximum
background velocity of each layer given in (2.9a)–(2.9b) is considered

U1,max = −U2,max = g′ α f

ω f
. (2.26)

The above background velocities are substituted in (2.18) yielding F = 1 − 4β in the
governing equation (2.21). This flow becomes unstable to normal-mode instabilities which
has a growth rate of

σnormal-mode =
√

4β − 1
ε

. (2.27)

The resulting instability condition β > 1/4 exactly matches the unsteady analysis in
(2.22). To see how this growth rate compares with the classical KH instability of two
discontinuous layers, we write the well-known expression for its dimensional growth rate
(Drazin & Reid 2004; Guha & Rahmani 2019)

σ̃KH =
√

U 2k2 − g′k
2
, (2.28)
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where the upper (lower) layer of density ρ1 (ρ2) is moving with a constant
velocity U (−U ). Substituting U = U1,max from (2.26) and non-dimensionalising
(2.28) with ω f , it is straightforward to verify that the non-dimensional growth rate
σKH = σ̃KH/ω f = σnormal-mode in (2.27).

In summary, the steady-state-based linear stability analysis that considers the maximum
(instead of time-average) background velocity in each layer provides the same instability
condition as the time-dependent problem. The normal-mode growth rate exactly matches
the classical KH instability. However, such an analysis is unable to capture key features
of the actual system, which is inherently unsteady. For example, the steady-state-based
analysis cannot predict the time of onset of the instability. Since τ is a slow time, a delayed
onset of instability is a salient feature of this system. How well the growth rate predicted
from the steady-state-based analysis compares with the unsteady analysis also needs to be
examined.

3. Linear stability analysis

3.1. Floquet analysis, numerical integration and normal-mode predictions
Equation (2.21) can be written as a 2-D dynamical system[

η

v

]
,τ

=
[

0 1
−ε−2F(τ ) 0

]
︸ ︷︷ ︸

L(τ )

[
η

v

]
, (3.1)

where the linear operator L(τ ) has a fundamental period of T = 2π . The fundamental
solution matrix Φ(τ) satisfies

Φ,τ (τ )=L(τ )Φ(τ) where Φ(0)= I. (3.2)

Floquet analysis is the standard technique for analysing the stability of linear periodic
systems. If the analysis finds that the energy of the disturbance at the end of one period
is larger than the energy at the outset, the system is deemed unstable. In this regard, the
monodromy matrix Φ(T ) (which is numerically computed in general) is first determined
and its eigenvalues, known as Floquet multipliers μ, are sought. The Floquet exponentsΩ ,
signifying the complex temporal growth rate, are related to the Floquet multipliers via the
relationμ= exp (ΩT ). The system is deemed unstable if there exists at least one eigenval-
ue satisfying |μ|> 1 (Re(Ω) > 0). Likewise, the system is stable if all eigenvalues satisfy
|μ|< 1 (Re(Ω) < 0). When all eigenvalues satisfy |μ| = 1 (Re(Ω)= 0), the system oscil-
lates between finite bounds ∀τ (Richards 2002). In this case, the solution is neutrally stable
and can yield quasiperiodic behaviour in time (Kovacic, Rand & Mohamed Sah 2018).

We compute Floquet exponents and the Floquet multipliers using Matlab corresponding
to different β values in table 1. We keep α f fixed at 0.05 (which is equivalent to 2.86◦)
in the entire paper. The system is bounded for β = 0.1 and 0.2, and unstable for 0.27, 0.3
and 0.35, which are the expected outcomes as per the condition in (2.22). Furthermore,
we also observe that, when β > 0.25, the higher the β value, the higher the maximum
growth rate Re(Ωmax ). We restrict our Floquet analysis to up to β = 0.35 since, beyond
this value, the numerical solution becomes unreliable owing to the resulting extremely
large and extremely small Floquet multipliers.

To understand how the amplitude evolves in time, and to explore a bigger range of β
values, we numerically solve (2.21) using Matlab’s inbuilt ODE45 solver (which was also
used to construct the monodromy matrix while performing the Floquet analysis). For the
two initial conditions, we take
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β μ1 μ2 |μmax | Re(Ωmax )

0.1 0.3564−0.9343i 0.3564 + 0.9343i 1 0
0.2 −0.1704 − 0.9854i −0.1704 + 0.9854i 1 0
0.27 0.3108 3.2176 3.2176 0.1860
0.3 0.0120 83.1471 83.1471 0.7036
0.35 6.9617E − 04 1.4364E + 03 1.4364E + 03 1.1570

Table 1. Floquet analysis of the system (3.1).

η(0)= 1 and η,τ (0)= i
ε
, (3.3)

which satisfy the governing equation

ε2η,ττ + η= 0. (3.4)

The above equation, which can be obtained by taking the limit τ → 0 of (2.21), physically
represents propagating deep water interfacial waves inside the two-layered horizontal tank
at rest (i.e. non-oscillating).

Figure 3(a) shows that the system undergoes bounded oscillations for β = 0.2, which
cannot be predicted from the normal-mode theory. As already noted in § 2.2, systems with
β > 0.25 start becoming unstable when τ > τc. Within the nth period, the system will
grow when 2nπ + τc < τ < 2(n + 1)π − τc, i.e. the interval when F(τ ) < 0 is satisfied.
This fact is evident in figure 3(b) which corresponds to β = 0.27. Furthermore, the plot
also reveals the amplification of energy between consecutive periods. Figures 3(c) and 3(d)
respectively correspond to β = 0.5 and β = 0.8, and reveal a much larger growth rate, as
is expected from the trend observed in table 1.

Finally, we compare the growth rate σnumerical obtained from the numerical solutions
(calculated when τ > τc) with the normal-mode predictions in (2.27):

(i) β = 0.27: σnormal-mode = 2.94 σnumerical = 0.18 (amplitude envelope growth rate);
(ii) β = 0.5: σnormal-mode = 14.14 σnumerical = 14.12;

(iii) β = 0.8: σnormal-mode = 26.53 σnumerical = 26.53.

As evident from the above data and also from figures 3(c) and 3(d), the normal-mode
growth rate predictions from (2.27) provide an excellent agreement with the numerical
solution, and this agreement improves even further as β increases. Since the normal-mode
growth rate exactly matches with that of the classical KH instability, this conclusively
proves that the instability is of KH type. However, for the β = 0.27 (which is a β value
slightly greater than the instability condition) case, the normal-mode theory fails to predict
the growth rate of the amplitude envelope, as well as the intricate temporal dynamics of
the amplitude evolution, which is clear from figure 3(b).

We also emphasise here that β, by definition, is proportional to ω2 = g′k/2. The
growth rate trend reveals the classical ‘ultraviolet catastrophe’, i.e. shorter waves are more
unstable, which is an artefact of the absence of a length scale (i.e. finite thickness of the
interface) in the problem.

Finally, we compare our theoretical predictions with the DNS results of Lewin &
Caulfield (2022). In this regard, we choose the case ‘NM72D’, where normal-mode
perturbations have been used to seed the flow. Note that the authors use smooth profiles,
hence, their parameters need to be suitably adjusted to fit our discontinuous set-up.
Their parameters are as follows: α f = 7.28◦ = 0.127 radians, λ= 14.28 implying k = 0.44,
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(a) β = 0.2 β = 0.27
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Figure 3. Plots of |η| vs τ for different β values. Unstable regions predicted from (2.23) are shaded in grey.
Line colours are as follows: black – normal-mode solution (based on steady background flow (2.26)), blue –
numerical solution of (2.21) and dashed red – MAF solution (3.21). The dashed-blue line in (b) represents the
amplitude envelope.

half-shear layer thickness δ = 1 and ω f /Nb = 0.072, where Nb denotes background
buoyancy frequency. Noting that g′ = N 2

b δ, we can state ε2 in their variables

ε2 = ω2
f

ω2 = 2
kδ

(
ω f

Nb

)2

= 0.024. (3.5)

This yields

β = α2
f

ε2 = 0.67>
1
4
, (3.6)

and thus the set-up for NM72D satisfies our instability condition (2.22). Indeed, the
authors observe KH instability for the case NM72D. Furthermore, the onset of instability
predicted from (2.23) is τc = 0.57π , which excellently matches the corresponding DNS
result τc = 0.54π (see the Acknowledgement). However, we provide a note of caution that
while certain instability characteristics (e.g. τc) can have a direct quantitative agreement
between discontinuous and smooth profiles, this does not guarantee a correspondence
between other instability characteristics. For example, growth rates obtained from
discontinuous profiles are unreliable. Moreover, discontinuous profiles cannot predict the
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band of unstable wavenumbers or the most unstable wavenumber. A proper evaluation of
these parameters demands consideration of a finite-thickness shear layer.

3.2. Asymptotic solution: the modified Airy function method
Here, we aim to construct an approximate solution to the amplitude evolution. A standard
approach in this regard would be to employ the well-known singular perturbation
technique – the Wentzel–Kramers–Brillouin (WKB) method (Bender & Orszag 2013).
In the WKB method, the asymptotic series in the small parameter ε is written as follows:

η(τ)∼ exp

(
1
ε

∞∑
n=0

εn Sn(τ )

)
, (3.7)

where Sn(τ ) denotes the complex phase. Substitution of the above expansion in (2.21)
yields the following first-order expressions for η (valid for 0 � τ < 2π − τc, i.e. up to the
second turning point:

η(τ)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C1|F(τ )|− 1

4 exp
(

i
ε

∫ τ
0

√|F(τ̃ )| dτ̃
)

for 0 � τ < τc,

C2|F(τ )|− 1
4 exp

(
1
ε

∫ τ
τc

√|F(τ̃ )| dτ̃
)

+C3|F(τ )|− 1
4 exp

(
−1
ε

∫ τ
τc

√|F(τ̃ )| dτ̃
)

for τc < τ < 2π − τc.

(3.8)

The solution exhibits an oscillatory behaviour when τ < τc and grows monotonically
(the decaying solution would rapidly become insignificant) when τc < τ < 2π − τc. Note
that C1 can be straightforwardly determined from (3.3) and yields C1 = 1. To find C2 and
C3, turning point analysis at τ = τc is required, which employs Airy functions to match the
solutions on the two sides of the turning point. Instead of the standard WKB turning point
analysis, we employ the modified Airy function (MAF) method, which can be regarded as
an improved variant of WKB. The key aspect of MAF is its recognition of the fact that the
Airy functions provide a uniformly valid composite approximation both near and far from
a turning point. The MAF method was first introduced by Langer (1935); for a detailed
discussion on this technique, also see Ghatak, Gallawa & Goyal (1991), Bender & Orszag
(2013) and Wine, Achtymichuk & Marsiglio (2025). Here, we employ MAF to analyse
both turning points, and hence obtain a uniformly valid solution for the entire period of
2π . In MAF, the amplitude η(τ) is expressed as

η(τ)=
{

F1(τ )Ai (ζ1(τ ))+ G1(τ )Bi (ζ1(τ )) for 0 � τ � τp,

F2(τ )Ai (ζ2(τ ))+ G2(τ )Bi (ζ2(τ )) for τp � τ � 2π,
(3.9)

where τp = π is the location of absolute minima of the periodic potential F(τ ), and Ai(ζ )
and Bi(ζ ), respectively, the MAFs of the first and second kinds, satisfy

Ai,ζ ζ − ζ Ai(ζ )= 0, and Bi,ζ ζ − ζ Bi(ζ )= 0. (3.10)

We will proceed by focusing on one of the terms (say, F1(τ )Ai(ζ1(τ ))) in (3.9), as the
other terms follow similar algebra, and they can be treated independently. Substituting
F1(τ )Ai(ζ1(τ )) into the governing equation (2.21) and using the Airy function equations
we obtain

F1,ττ Ai(ζ )+ 2F1,τ Ai,ζ1ζ1,τ + F1 Ai,ζ1ζ1,ττ + F1 Ai(ζ1)
[
ε2ζ1(τ )ζ

2
1,τ +F(τ )]= 0.

(3.11)
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To eliminate the terms in square brackets, ζ1(τ ) is chosen to satisfy

ε2ζ1(τ )[ζ1,τ (τ )]2 +F(τ )= 0, (3.12)

which gives

ζ1(τ )=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
(

3
2ε

∫ τc

τ

√
F(τ̃ )dτ̃

)2/3

for 0 � τ � τc,(
3
2ε

∫ τ

τc

√
−F(τ̃ )dτ̃

)2/3

for τc � τ � τp.

(3.13)

Here, F1(τ ) is obtained by assuming F1,ττ ≈ 0. Thus, F1(τ ) satisfies

2F1,τ Ai,ζ1ζ,τ + F1 Ai,ζ1ζ1,ττ = 0, (3.14)

which leads to

F1(τ )= D1√
ζ1,τ (τ )

. (3.15)

Similarly, G1(τ ), F2(τ ), and G2(τ ) can be expressed as

G1(τ )= D2√
ζ1,τ (τ )

, F2(τ )= D3√
ζ2,τ (τ )

and G2(τ )= D4√
ζ2,τ (τ )

, (3.16)

where

ζ2(τ )=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
3
2ε

∫ 2π−τc

τ

√
−F(τ̃ )dτ̃

)2/3

for τp � τ � 2π − τc,

−
(

3
2ε

∫ τ

2π−τc

√
F(τ̃ )dτ̃

)2/3

for 2π − τc � τ � 2π.

(3.17)

The arbitrary constants D1, D2, D3 and D4 will be determined by using the initial
conditions (3.3) and the continuity of η(τ) and η,τ (τ ) at τp = π . The initial conditions
(3.3) give[

D1

D2

]
= π

√
ζ,τ (0)

[
Bi,τ (ζ1(0))

−Ai,τ (ζ1(0))

]
− π√

ζ,τ (0)

(
i
ε

+ ζ,ττ (0)
2ζ,τ (0)

) [ Bi (ζ1(0))

−Ai (ζ1(0))

]
.

(3.18)

The continuity of η(τ) and η,τ (τ ) at τp = π yields the following system of linear equations
with unknowns D3 and D4:[

A3(τp) B3(τp)

A3,τ (τp) B3,τ (τp)

] [
D3

D4

]
=
[

A2(τp) B2(τp)

A2,τ (τp) B2,τ (τp)

] [
D1

D2

]
, (3.19)

where

A j (τ )= Ai(ζ j (τ ))√
ζ j,τ (τ )

and B j (τ )= Bi(ζ j (τ ))√
ζ j,τ (τ )

for j = 2, 3. (3.20)

Finally, the MAF solution of (2.21) over one period (and thus capturing both first and
second turning points) is given by

η(τ)=
{(
ζ1,τ (τ )

)−1/2 [
D1 Ai (ζ1(τ ))+ D2 Bi (ζ1(τ ))

]
for 0 � τ � τp,(

ζ2,τ (τ )
)−1/2 [

D3 Ai (ζ2(τ ))+ D4 Bi (ζ2(τ ))
]

for τp � τ � 2π.
(3.21)
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Figure 4. Comparison between numerical solution (blue) and MAF (dashed red) for one period for the case
β = 0.5. The first and second turning points are, respectively, τc and 2π − τc; the unstable region predicted
from (2.23) is shaded in grey.

Figure 4, which is for the case β = 0.5, reveals that the MAF solution is nearly
indistinguishable from the numerical solution. Unlike figure 3(c), figure 4 has been plotted
for the entire 2π period and thus includes the behaviour around both turning points.
While figure 4 reveals oscillations after the second turning point, the existence of such
a behaviour is contentious in reality since, even before the second turning point is reached,
the flow is likely to enter the fully nonlinear stages of KH instability, making the linear
solution invalid.

4. Numerical simulation: unsteady vortex blob method
Here, we extend the linear interfacial dynamics to the fully nonlinear stages via the vortex
blob method, which is a standard numerical technique for capturing the nonlinear evolution
of vortex sheets (Baker, Meiron & Orszag 1982; Sohn, Yoon & Hwang 2010; Pozrikidis
2011; Bhardwaj & Guha 2018). The applicability of the vortex blob method to our two-
layered oscillating flow problem is fully justified since the two-fluid interface is a vortex
sheet, i.e. the tangential component of fluid velocity has a jump discontinuity. In vortex
methods, the interface is described as a parametric curve x(s, t)= (x(s, t), z(s, t)) with s
being the arc-length parameter, and evolves according to

x,t = q, (4.1)

where q = (u, w) = (u1 + u2)/2 is the arithmetic mean of the velocities above (i.e.
u1 = (u1, w1)) and below (i.e. u2 = (u2, w2)) the interface. For a domain that is periodic
in the along-channel direction x , the velocity q is obtained via the Birkhoff–Rott equation

u − iw= i
2λ

∫ λ
0
γ̃ cot

[
π(χ − χ̃ )

λ

]
d̃s, (4.2)

where χ is the complex position of the interface: χ = x(s, t)+ iz(s, t), λ is the wavelength
and γ̃ = γ (̃s, t) denotes the vortex-sheet strength, which is defined as the jump in the
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tangential velocities of the two fluids across the interface

γ = (u1 − u2) · ŝ. (4.3)

In order to solve (4.2), the evolution equation for the vortex-sheet strength is needed.
To obtain this, first we rewrite (2.2a)–(2.2b) for each layer in a vectorial form

Dui

Dt
= − 1

ρ0
∇Pi − g

ρi

ρ0
(sin α(t)x̂ + cos α(t) ẑ)+ 2α,t ŷ × ui , (4.4)

where ui = (ui , wi ), and i = 1(2) implies upper (lower) layer. Subtracting the equation
for i = 2 from i = 1 and projecting the resultant equation along the tangential direction
(by taking an inner product with ŝ) yields

Dγ
Dt

+ γ
∂q
∂s

· ŝ = g′(sin α(t)x̂ + cos α(t) ẑ) · ŝ +[2α,t ŷ × (u1 − u2)]· ŝ, (4.5)

where D/Dt = ∂/∂t + q · ŝ ∂/∂s. In obtaining (4.5), the continuity of pressure across the
interface has been used. Furthermore, using the identities x̂ · ŝ = ∂x/∂s and ẑ · ŝ = ∂z/∂s,
we find that the last term on the right-hand side of (4.5), arising from the Coriolis
acceleration, vanishes since the interface is a streamline

( ŷ × u1,2) · ŝ =w1,2
∂x

∂s
− u1,2

∂z

∂s
= 0. (4.6)

Previous studies with vortex methods have primarily been restricted to steady
background flows (for example, see Sohn et al. (2010) and references therein) although
the method itself applies to unsteady flows. In our case, the explicit time dependence of
the flow clearly manifests on the right-hand side of (4.5) through the angle of oscillation
parameter α(t).

For the numerical implementation, we first write (4.2) in a discretised fashion

um = xm,t = 1
2

N∑
n=1,n �=m

Γn
sinh[k(zm − zn)]

cosh[k(zm − zn)] − cos[k(zm − zn)] + δ2 , (4.7a)

wm = zm,t = −1
2

N∑
n=1,n �=m

Γn
sin[k(xm − xn)]

cosh[k(zm − zn)] − cos[k(zm − zn)] + δ2 , (4.7b)

where (um, wm) is the velocity of the m th point vortex (Lagrangian marker) at the location
(xm, zm), N denotes the total number of point vortices, k = 2π/λ denotes the wavenumber
and δ denotes Kransy’s parameter (Krasny 1986) which regularises the otherwise singular
kernel in (4.2). The parameter δ can be regarded as a proxy for viscous effects, numerically
replacing point vortices with vortex ‘blobs’, and thereby adding a finite thickness to the
otherwise discontinuous shear layer. Finally, Γm denotes the circulation of the m th point
vortex, which is given as follows:

Γm = γm�sm, (4.8)

where �sm is the arc length about the m th point vortex

�sm =
√
�x2

m +�z2
m . (4.9)

In the above equation, �xm = (xm+1 − xm−1)/2 and �zm = (zm+1 − zm−1)/2. Equations
(4.7a)–(4.7b) succinctly show that the interaction between the point vortices representing
the discretised vortex sheet leads to interface evolution.
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Figure 5. Interface amplitude evolution for different β values. Blue – solution to the linear equation (2.21),
black – solution obtained using the vortex method. Unstable region predicted from (2.23) is shaded in grey.

Using (4.8) in (4.5), we obtain the discretised version of the circulation evolution
equation

Γm,t =�xm g′ sin α(t)+�zm g′ cos α(t). (4.10)

Next, we numerically solve (4.7a)–(4.7b) along with (4.10) (where the definition of
α(t) is given in (2.8)) using the fourth-order Runge–Kutta time integration scheme.
To speed up the computation, we recast the governing equations into the slow-time
variable τ . The system is initialised with a short, linear, interfacial gravity wave with
the following interfacial displacement, written in a discretised fashion: zm = a cos(kxm),
where xm = m/N , k = 2π and a = 10−6. The initial circulation of the m th point vortex is
then given by

Γm(0)= −2ωzm�xm, (4.11)

where ω=√g′k/2 = 0.1772, and corresponds to g′ = 0.01. Initially we take N = 400.
With the progress of time, especially during the highly nonlinear stages, the interface can
develop poor resolution in certain locations. To tackle this, we follow the vortex insertion
scheme outlined in Sohn et al. (2010). In this procedure, a threshold arc length �sthresh
is defined; if the arc length at any location m becomes greater than the threshold, i.e.
�sm >�sthresh , then a point vortex is inserted. The x coordinate of the inserted vortex is
taken to be the average of the x coordinates of the m th and (m + 1)th vortices; the same
approach is followed for the z coordinate and the circulation. The Kransy parameter δ is
chosen accordingly to suppress spurious high wavenumber instabilities.

Figure 5 compares the interface evolution obtained from the linear equation (2.21) with
the fully nonlinear solution obtained using the vortex blob method for two different β
values. The growth rate and the onset of instability predicted from the vortex method
solution agree well with the linear theory.

Figure 6 shows the interface evolution for the case β = 0.8. The interface rolls up into
a KH billow, qualitatively agreeing with the DNS results of Inoue & Smyth (2009) and
Lewin & Caulfield (2022). The numerical simulation is run until the billow saturates.
Any further late-time dynamics may not be representative of the reality since the vortex
method is strictly two-dimensional and hence does not capture the 3-D effects emanating
from secondary instabilities, which can crucially alter the dynamical behaviour (Lewin &
Caulfield 2022).
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Figure 6. Interface evolution for the case β = 0.8 for τ = 2.285, 2.315, 2.340 and 2.395.

5. Physical interpretation and case studies
The oscillating tank system is a simplified model for studying instabilities arising in a
temporally varying pycnocline in lakes, estuaries and oceans. Pycnocline oscillations are
typically generated by wind forcing, or by diurnal and semi-diurnal tides interacting with
underwater topography (Sanford et al. 1990; Mihanović et al. 2009). During the summer
months, many shelf seas and lakes reveal a two-layered density stratification (Lemmin
et al. 2005; Mihanović et al. 2009; Guihou et al. 2018), providing ideal conditions to
compare the flow field induced by low baroclinic mode oscillations of the pycnocline with
the oscillating tank system. Below we provide two case studies, one for Lake Geneva and
the other for the Chesapeake Bay.

5.1. Lake Geneva
We consider the background conditions of the summer of 1950 given in Lemmin
et al. (2005): h1 = 15 m, h2 = 175 m, ρ1 = 998.49 kg m−3 (corresponding to 19 ◦C) and
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ρ2 = 1000 kg m−3 (corresponding to 5.5 ◦C). The frequency of mode-1 is ω f = 2.14 ×
10−5 s−1 (period of 81.5 h) and corresponds to a Kelvin seiche. The maximum width
of the lake is 13.8 km and the maximum difference in thermocline excursions at the
two extremities of the lake width (station-3 and station-8) due to mode-1 is ≈2 m.
Hence, tan α f ≈ α f = 2/13800 = 0.000145. Since the two layers are of unequal depths,
the analysis provided in Appendix A will be applicable. The problem can be simplified
since the lower layer is much deeper than the upper layer, which leads to the instability
condition β > 1/8; see (2.24). This yields

β = α2
f
ω2

ω2
f

>
1
8
=⇒ k >

ω2
f

4g′α2
f

or λ<
8πg′α2

f

ω2
f

. (5.1)

For the parameters of Lake Geneva, the above equation would imply that interfacial waves
at the pycnocline shorter than λlong-wave-cut-of f = 17.03 m will be rendered unstable. An
interfacial wave of wavelength 17 m will start to grow after τc = cos−1[1 − (2β)−1/2]
= 40 hours (see Appendix A) from initiation of the mode-1 oscillation.

5.2. Chesapeake Bay
Here, we consider the background conditions of May/June 1993 of the Chesapeake Bay
given in Frizzell-Makowski (1997). In this case, h1 = 10 m, h2 = 13 m, ρ1 = 1004 kg m−3

and ρ2 = 1011 kg m−3 . Pycnocline oscillations had a period of 12 h (ω f = 0.00014 s−1),
which was generated by the interaction of semi-diurnal tides with a discontinuity in the
bathymetry. Approximately 4 m of vertical displacement over half of the wavelength
(0.5 × 25 km = 12.5 km) of the internal tide was observed, yielding tan α f ≈ α f =
4/12500 = 0.00032. The two layers have unequal depths with r = h1/h = 0.435, yielding
the instability condition β > 0.246. Following the analysis in Appendix A, we obtain

β = α2
f
ω2

ω2
f

> 0.246=⇒ k >
0.492ω2

f

g′α2
f

or λ<
4.065πg′α2

f

ω2
f

. (5.2)

Hence, for the parameters of Chesapeake Bay, interfacial waves at the pycnocline shorter
than λlong-wave-cut-of f = 4.2 m will become unstable. This implies that an interfacial wave
of wavelength 4 m would start to grow τc = 5.4 h (see (A6)) after the inception of the
internal tide. However, it is important to note that these values should be taken as a rough
estimate since the value of 4.2 m for the longest unstable wavelength is not large enough
to disregard the finite-thickness effects of the pycnocline (pycnocline always has a finite
thickness, however small).

6. Summary and conclusion
This study uses mathematical and numerical techniques to investigate the generation
mechanism and fundamental characteristics of instabilities arising at the density interface
in a two-layered oscillating channel flow. The set-up provides a simplified model for
studying shear instabilities arising at the density interface due to the time-periodic shear
generated by the slow oscillations of the density interface itself. This self-induced shear of
the oscillating pycnocline may provide an alternate pathway to turbulence and diapycnal
mixing in addition to that obtained via wind-induced shear in the upper ocean or the lake
epilimnion.

The equation governing the density interface dynamics, given by (2.21), is a
Schrödinger-type equation with a time-periodic potential. The small parameter ε, which is
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the ratio of the low-frequency pycnocline oscillations (forcing frequency) and the high-
frequency short waves (that could be rendered unstable), encapsulates the separation
of time scales. This makes (2.21) fundamentally different from the commonly studied
time-periodic dynamical systems governed by Mathieu-type equations, which can lead to
parametric instabilities. An inverse-Richardson-number-like non-dimensional parameter
β determines the necessary and sufficient stability condition of (2.21); for two layers
of equal thickness, the flow becomes linearly unstable when β > 1/4. When the layers
have unequal thickness, the stability condition depends on the ratio of layer thicknesses,
see Appendix A. Once the instability condition is satisfied, the solution does not start
to grow after τ = 0+, but rather tunnels into the unstable state after τ = τc. Using the
parameters of a DNS case study in Lewin & Caulfield (2022), we show that our theory
correctly predicts the time of onset of instability. Next, we study the interface evolution
by numerically solving (2.21) and compare it with the asymptotic solution obtained via
the MAF method. We show that MAF provides a uniformly valid composite solution over
the entire period (which includes two turning points) and reveals an excellent agreement
with the numerical solution. To evaluate the temporal growth rate, we compute the Floquet
exponents; furthermore, we also derive the exact normal-mode growth rate obtained for
various steady-state-based approximations of the background flow. We observe that the
normal-mode theory implemented on a background flow that considers the maximum
velocity in each layer (as opposed to the time average over a period) provides a highly
accurate growth rate prediction. The normal-mode growth rate is shown to exactly match
the classical vortex-sheet KH instability, thereby conclusively proving that the instability
is of KH type. Next, we extend the linear analysis of the interface evolution to the fully
nonlinear stages via the unsteady vortex blob method. While the standard vortex blob
method is commonly implemented for steady background flows, the procedure also applies
to time-dependent flows. This needs modification to the circulation evolution equation
typically used in vortex methods problems with density stratification. We derive the
unsteady circulation evolution (4.10), which captures the explicit time dependence of the
flow. The time of the onset of instability as well as the growth rate show good agreement
with the predictions from the linear analysis. During the nonlinear stages, the interface
rolls up into KH billows, agreeing with the previous DNS studies (Inoue & Smyth 2009;
Lewin & Caulfield 2022).

Finally, we provide a physical context to the two-layered oscillating tank model by con-
sidering two case studies – Lake Geneva and Chesapeake Bay. Each of these sites reveals
pycnocline oscillations, and using the available data, we obtain the stability condition,
estimate the time of onset of the shear instabilities as well as the long-wavelength cutoff.

As a closing remark, we reiterate the fact that stability analysis with discontinuous
profiles provides spurious growth rates (ultraviolet catastrophe), which necessitates
stability analysis of background flows with finite shear layer thickness. The latter is also
essential for obtaining the wavenumber corresponding to the maximum growth rate, as
well as a short-wavelength cutoff, which cannot be obtained from discontinuous analysis.
Despite these limitations, the two-layered configuration studied in this paper provides
a foundational basis for the unsteady shear instability mechanism, makes the problem
analytically (or semi-analytically) tractable through a simple governing equation, and
also provides the necessary and sufficient condition for instability, which leads to key
predictions (e.g. the time of onset of instability) that excellently compare with numerical
results obtained from smooth profiles.
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Appendix A. Derivation of the stability condition for two layers of unequal depths
Let us consider the two layers having different depths, denoted by h1 and h2. The
background state density distribution is then given by

ρ(z)=
{
ρ1 0< z < h1,

ρ2 − h2 < z < 0,
(A1)

where h2 = h − h1, in which h represents the total channel depth. Following the method
outlined in § 2.1, the background state velocity profile is given by

U (z, t)=

⎧⎪⎪⎨⎪⎪⎩
g′h2

h

∫ t

0
sin α(t̃) dt̃ 0< z < h1,

− g′h1

h

∫ t

0
sin α(t̃) dt̃ − h2 < z < 0.

(A2)

Under the assumption of small oscillations, the background state velocity profile
simplifies to

U (z, t)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g′h2

h

α f

ω f
(1 − cos(ω f t)) 0< z < h1,

− g′h1

h

α f

ω f
(1 − cos(ω f t)) − h2 < z < 0.

(A3)

Following the procedure in § 2.2, infinitesimal perturbations are added to the
background state. The waves are assumed to be significantly shorter than the depth of
the individual layers, i.e. kh1 � 1 and kh2 � 1. The evolution equation of the interface
η(τ) between the two fluid layers under the Boussinesq approximation is given by

ε2η,ττ +
[

1 − 3β
(
r2 + (1 − r)2

)+ 2β
(
r2 + (1 − r)2

) (
2 cos(τ )− 1

2
cos(2τ)

)
+O (α2

f

)]
η= 0, (A4)

where r = h1/h. All variables and parameters are the same as in § 2.2. The necessary and
sufficient condition for instability is found to be

β > βmin = 1
8
[
r2 + (1 − r)2

] . (A5)

Since r ∈ (0, 1), this implies that 1/8<βmin � 1/4.
The turning point τc, marking the time at which the flow tunnels into the unstable region

is given by

τc = cos−1

⎛⎝1 − 1√
2β
[
r2 + (1 − r)2

]
⎞⎠ . (A6)
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The maximum growth rate obtained from the normal-mode analysis is as follows:

σnormal-mode =
√

8β
[
r2 + (1 − r)2

]− 1

ε
. (A7)

In a typical oceanographic scenario, the depth of the pycnocline is much smaller than the
total depth of the ocean, i.e. r � 1. In this situation, the instability condition becomes
β > 1/8, the instability will start after τc = cos−1[1 − (2β)−1/2], and the maximum
growth rate obtained from the normal-mode method simplifies to σnormal-mode =√

8β − 1/ε.
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