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Abstract. Let o/ = f(¢, u), u(0) = uy be an initial value problem with quasimo-
notone increasing right-hand side. We prove that if u, v are solutions such that
u(ty) < v(tp) then there is a solution w with u(#y) < w(ty) < w(to).
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1. Introduction. Let uy € R", and f:[0, 7] x R" — R" be continuous with
I/ (¢, x)I| <ec, (2, x) €0, T] x R". We consider the initial value problem

u =1t u), u(0)=u. (1)

Let L denote the Kneser funnel of problem (1); that is
L :={u e C([0, T],R") : u solves (1)}.

According to Kneser’s Theorem L is compact and connected; see for example [1, p.
24]. In particular for ¢y € [0, 7] the funnel section

Ly ={u(ty) :ue L}

is a compact and connected subset of R”. For further investigations of the topolo-
gical properties of funnels and funnel sections see [3], [4], [6] and references given
there. In this paper we will consider the case that R” is ordered by a cone and that /
is in addition quasimonotone increasing.

Consider R" together with a partial ordering < induced by a cone K. A cone K is
a closed convex subset of R" with AKC K, A >0, and KN (—K) = {0}. We will
always assume that K is solid; that is Int K # . As usual x < y <= y — x € K, and
we use the notations x <y if x <y but x#y, and x L yif y —x € Int K. Let K*
denote the dual wedge; that is the set of all continuous linear functionals ¢ on R”
with ¢(x) > 0, x > 0. For x <y let [x, y] be the order interval {z € R": x <z < y}.
Since K is solid we can fix p € Int K and norm R" by the Minkowski functional || - ||
of [—p, p]. For the sequel let K,(x) denote the closed ball {y € R": ||x — y|| < r}.
Finally let C([0, 7], R") be endowed with the corresponding maximum norm || - ||.

Let D c R". A function f: [0, T] x D — R" is called quasimonotone increasing
(in the sense of Volkmann [7]) if

tel0, 7], x,yeD, x<y, pe K, ¢(x)=0() = o(f(t,x)) < o(f(t, ).

For quasimonotone increasing right-hand sides in problem (1) we prove the
following additional structure of L.
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THEOREM 1. Let f: [0, T] x R" — R" be quasimonotone increasing, let u,v € L
and ty € (0, T). If u(ty) < v(ty), then there exists w € L such that u(ty) < w(ty) < v(to).

REMARKS. 1. Under the assumptions of Theorem 1 there is always a maximal
and a minimal solution of problem (1); that is, there are functions u, # € L such that
u(?) < u(t) <u(e), t € [0, T], for each u € L. See [5].

2. In dimension n = 1 every function is quasimonotone increasing (K = [0, 00);
< and « means the same), L,, is a point or a compact interval, and if u(zy) < v(t)
then Theorem 1 can be proved by starting at n € (u(ty), v(¢y)) and going left along a
solution until one hits u or . This proof of course does not work for n > 2.

3. In Theorem 1 it is not supposed that u(¢) and v(¢) are comparable for all ¢.
The assertion of Theorem 1 is equivalent to x, y € L, x < y implies that there exists
z € L,, such that x < z < y. In fact the proof shows that x < z « y is possible. By an
analogous proof one can obtain x < z < y.

4. An analogous local version (f:[0,7] x K.(uo) — R", ||f]| <c¢ and
to € (0, min{T, r/c}]) of Theorem 1 holds. The proof is more technical but is essen-
tially the same.

5. Consider dimension n =2 and K = {(x, y) e R* : x > 0, y > 0}. Set o = 1/10.
For example the set defined by

(=LIP)\ e —a <y+x<a,py<x)

is compact, connected, contains a maximal and a minimal element, but cannot be a
funnel section if f'is quasimonotone increasing according to Theorem 1 (although it
can be a funnel section if f'is not quasimonotone increasing; see [6, Corollary (5.5)]).

Note added in proof. Dr. Roland Uhl showed me the following example.
Considerf: [0, 2] x R* — R, f(#, x, ) = (4((1 — 0),)(x)"/?, 2((x + y — 1),)"/?). This
function is monotone in (x, y) (with respect to K as in 5.), and for problem (1) with
up = (0, 0) we have L, = ([0, 1] x {0}) U ({1} %[0, 1]).

ft.x,9) = (@401 =0, (x)'2, 2 +y = D).
2. Proof. To prove Theorem 1 we shall use the following Proposition.

PROPOSITION 1. Let € >0 and R > 0. Then there is a continuous function
fe 1[0, T] xR" — R" such that:

LIf(t,x) = fe(t, 0l <&, (1,x) €0, T] x Kr(up),

2|[fe(t, 0l < ¢, (1,x) €0, T] x R,

3 there exists L, > 0 such that

|V;?(t’ X) _fF(t’y)” S LF“x_y”’ (lv X), (lvy) € [O’ T] X Rn;

4 f, is quasimonotone increasing.

Proof. Let 0<é&<1 be such that ||f(s,x)—f(t, )l <e if (1 x),
(t,y) € [0, T] x Kpy1(up) with ||x — y|| < §. Let h € C*°(R", R) be such that

hx) >0, xeR" supp’h C Ks(0), / h(x) dx = 1.
R
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Now let f; : [0, T] x R" — R" be defined by
it x) = / hE — X)f (1, 8) d = / BEV (1, &+ x) de.
R" R"

By standard reasoning (see [2, S.25]) I, 2 and 3 hold. To prove 4 let (t, x),
(t,y) €[0,T] x R" and ¢ € K* with x < y and ¢(x) = ¢(y). Then £+ x < &+ y and
@&+ x) = (& + y), for each & € R", and therefore

o) = [ @01, + ) d <
8
|| Hepw s+ ) de = (it .
R”

Proof of Theorem 1. Let u,v € L with u(ty) < v(tg). We set R = T(c + 3). Fix
g € (0, 1). There is a function f; : [0, T] x R" — R", as in Proposition 1.
We set

q(&) = 1fCw) = fe( oo + 1S G v) = fes Moo
For A € [0, 1] we consider the function F; : [0, 7] x R" — R" defined by Fy (¢, x) =
Je(t, x) + (1= M) (1, u(@®) = fe(t, u(®) + A(f (1, V(1)) — fe(2, (1)) + Ag(e)p.

Now consider the initial value problems

w, = Fi(t, wy),  wi(0) = uy, (* € [0, 1]).

Since F) is Lipschitz the solutions w; : [0, 7] — R" are unique and depend con-
tinuously on A €0, 1], and we have wy(¢) = u(¢), t € [0, T]. Moreover we have
v(t) < wi(?), t €0, T], and wy(r) <wu(1), t€[0,T]if 0 <A <p <1. For [0, 7],
we have

V(8) — Fi(t, (1)) = —q(e)p < 0 = wi(t) — F1(t, wi (1)),  v(0) = up = w1(0).
Since F; is Lipschitz and quasimonotone increasing we have v(f) < w;(¢) according

to a classical theorem on differential inequalities; see [7]. To prove the second
inequality consider

(01— A0 10) ol 1))+ A (0) e, 0) + glep) =

—(f (1, u(®) = fe(t, u(0))) + (f (1, (1)) — fe(2, (1)) + q(e)p = 0,

according to the property |[|x|[p—x >0 of the chosen norm. Therefore
F(t, x) — fo(¢t, x) 1s monotone increasing in A (and independent of x). Hence for
A <wpandrel0,T]

Wi () = Fu(t, wa(0) = 0 < wi (1) — Fa(t, wu(1)),  wi(0) = ug = wy,(0).
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Again we conclude that w, () <w,(?), t€[0,7] and, in particular, we have
u(t) <w(t), t€[0,T] and X €0, 1]. Next, we have [|u(f) —uy|| < Tc < R and
[Iv(f) — up|] < Te < R, t € [0, T). Therefore, for each A € [0, 1], we have

[|Fo(t, X)|| < c+3e, (t,x) €0, T] x R".
Hence

[lwy (1) —upll < T(c+3e) <T(c+3)=R, te]0,T];
that is w; (1) € Kgr(up), t € [0, T], which implies that
||F)u(t5 M})\(Z)) _f(lv w’)»(t))H =< 48’ te [0’ T]

Since u(ty) < v(ty) there exists § > 0 such that x < v(¢y) for each x € Kj(u(t)). We
define @ : C([0, 7], R") — R by

(h) = [|h(10) — u(to)[| — 8.

The function & is continuous. We have ®&(wy))=du)=-8<0 and
®(wy) = ®(v) > 0. Hence there exists A = A(e) € (0, 1) with &(w;) = 0.

According to the construction above and for ¢, = 1/(k + 1) we find a sequence
of functions wy : [0, 7] — R" with the following properties (k € N):

L. u(t) < wi(0), t €0, T;

2. D(wg) =0;

3. wy is a solution of wi(f) =f(t, wi(f)) + g(t), wi(0) =up, with [|gr(D)I]
<d4er=4/(k+1).

According to the Arzela-Ascoli Theorem there is a limit w € L of a subsequence of
(we)rey- We have u(r) < w(r), t € [0, T], and u(ty) < w(ty) since ||w(ty) — u(ty)|| = 6.
According to the choice of § we have w(ty) < v(ty), especially w(zy) < v(tp).
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